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Abstract

In the setting of secure computation, a set of parties wish to securely compute some function
of their inputs, in the presence of an adversary. The adversary in question may be static
(meaning that it controls a predetermined subset of the parties) or adaptive (meaning that it
can choose to corrupt parties during the protocol execution and based on what it sees). In this
paper, we study two fundamental questions relating to the basic zero-knowledge and oblivious
transfer protocol problems:

• Adaptive zero-knowledge proofs: We ask whether it is possible to construct adaptive zero-
knowledge proofs (with unconditional soundness). Beaver (STOC 1996) showed that
known zero-knowledge proofs are not adaptively secure, and in addition showed how to
construct zero-knowledge arguments (with computational soundness).

• Adaptively secure oblivious transfer: All known protocols for adaptively secure oblivious
transfer rely on seemingly stronger hardness assumptions than for the case of static adver-
saries. We ask whether this is inherent, and in particular, whether it is possible to construct
adaptively secure oblivious transfer from enhanced trapdoor permutations alone.

We provide surprising answers to the above questions, showing that achieving adaptive security
is sometimes harder than achieving static security, and sometimes not. First, we show that
assuming the existence of one-way functions only, there exist adaptive zero-knowledge proofs
for all languages in NP . In order to prove this, we overcome the problem that all adaptive
zero-knowledge protocols known until now used equivocal commitments (which would enable
an all-powerful prover to cheat). Second, we prove a black-box separation between adaptively
secure oblivious transfer and enhanced trapdoor permutations. As a corollary, we derive a black-
box separation between adaptively and statically securely oblivious transfer. This is the first
black-box separation to relate to adaptive security and thus the first evidence that it is indeed
harder to achieve security in the presence of adaptive adversaries than in the presence of static
adversaries.

∗This research was supported by the israel science foundation (grant No. 781/07).



1 Introduction

In the setting of secure two-party and multiparty computation, parties with private inputs wish to
securely compute some joint function of their inputs, where “security” must hold in the presence of
adversarial behavior by some of the parties. An important parameter in any definition of security
relates to the adversary’s power. Is the adversary computationally bounded or all powerful? Is
the adversary semi-honest (meaning that it follows all protocol instructions but tries to learn more
than it’s supposed to by analyzing the messages it receives) or is it malicious (meaning that it can
arbitrarily deviate from the protocol specification)? Finally, are the adversarial corruptions static
(meaning that the set of corrupted parties is fixed) or adaptive (meaning that the adversary can
corrupt parties throughout the computation and the question of who to corrupt and when may
depend on the adversary’s view in the protocol execution). It is desirable to achieve security in
the presence of adaptive adversaries where possible, since it models the real-world phenomenon
of “hackers” actively breaking into computers, possibly while they are executing secure protocols.
However, it seems to be technically harder to achieve security in the presence of adaptive adversaries.
Among other things, it requires the ability to construct a simulator who can first generate a
transcript blindly (without knowing any party’s input) and then later, upon receiving inputs,
“explain” the transcript as an execution of honest parties with those inputs.

In this paper, we ask two basic questions related to the feasibility of achieving security in the
presence of adaptive adversaries. Our questions were borne out of the following two observations:

1. Adaptive zero-knowledge proofs: It has been shown that the zero-knowledge proof system
of [23] (and all others known) is not secure in the presence of adaptive adversaries, or else the
polynomial hierarchy collapses [1]. Due to this result, all known zero-knowledge protocols for
NP in the adaptive setting are arguments, meaning that soundness only holds in the presence
of a polynomial-time prover (adaptive zero-knowledge arguments were presented by [1] and
later in the context of universal composability; e.g., see [8, 11]). However, the question of
whether or not adaptive zero-knowledge proofs exist for all NP has not been addressed.

2. Adaptively secure oblivious transfer: One of the goals of the theory of cryptography is to
understand what assumptions are necessary and sufficient for carrying out cryptographic
tasks; see for example [24]. Despite this, no such study has been carried out regarding
adaptively secure protocols. In particular, we do not know what assumptions are necessary for
achieving adaptively secure oblivious transfer (since oblivious transfer is complete for secure
computation, this question has important ramifications to adaptively secure computation in
general). Currently, what is known is that although statically secure oblivious transfer can be
constructed from enhanced trapdoor permutations [16, 22], all constructions for adaptively
secure oblivious transfer use additional assumptions like the ability to sample a permutation
without knowing its trapdoor [3, 11].

Our results – adaptive zero-knowledge proofs. All known zero-knowledge protocols for NP
essentially follow the same paradigm: the prover sends the verifier commitments that are based on
the statement being proved (and its witness), and the verifier then asks the prover to open part
or all of the commitments. Based on the prover’s answer, the verifier is either convinced that the
statement is true or detects the prover cheating. It therefore follows that soundness only holds if
the commitment scheme used is binding, and this is a problem in the setting of adaptive security.
Consider an adversary that corrupts the verifier at the beginning of the execution and the prover
at the end. In this case, the zero-knowledge simulator must generate a transcript without knowing
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the NP-witness. However, at the end, after the prover is corrupted (and the simulator then receives
a witness), it must be able to show that the commitments were generated using that witness. Until
now, this has been solved by using equivocal commitments that can be opened to any value desired
(in order for soundness to hold, the ability to equivocate is given to the simulator and not the
real prover). However, this means that the protocol has only computational soundness, because
an all-powerful prover is able to equivocate like the simulator. Indeed, the above observation led
us to initially conjecture that adaptive zero-knowledge proofs exist only for SZK. However, our
conjecture was wrong, and in this paper we prove the following theorem:

Theorem 1 Assuming the existence of one-way functions that are hard to invert for non-uniform
adversaries, there exist adaptive zero-knowledge proofs for all NP.

We prove Theorem 1 by constructing a new type of instance-dependent commitment scheme.
Instance-dependent commitment schemes are commitments whose properties depend on whether
the instance (or statement) in question is in the language or not [4, 26]. Typically, they are defined
for a language L as follows. Let x be a statement. If x ∈ L then the commitment associated with x
is computationally hiding and if x /∈ L then the commitment associated with x is perfectly binding.
This has proven very useful in the context of zero-knowledge where hiding alone is needed for the
case of x ∈ L, and binding alone is needed in the case of x /∈ L; see for example [32, 40, 33]. We
construct an instance-dependent commitment scheme with the additional property that if x ∈ L
then the commitment is equivocal and the simulator can open it to any value it wishes. To be more
exact, we need the commitment itself to be adaptively secure, meaning that it must be possible
to generate a commitment value c and then later find “random coins” r for any bit b so that
c is a commitment string generated by an honest committer with input b and random coins r.1

In contrast to the above, if x /∈ L then the commitment is still perfectly binding. Given such a
commitment (which is actually very similar to the commitment schemes presented in [17] and [11])
we are able to construct the first computational zero-knowledge proof for all NP that is secure
also in the case of adaptive corruptions.2

Our results – adaptively secure oblivious transfer. As we have mentioned, all known pro-
tocols for adaptively secure oblivious transfer require assumptions of the flavor that it is possible
to sample a permutation without its trapdoor. In contrast, standard trapdoor permutations do
not have this property. We remark that enhanced trapdoor permutations do have the property
that it is possible to sample an element in the domain of the permutation without knowing its
preimage. This begs the question as to whether such “oblivious sampling” of the permutation’s
domain suffices for achieving adaptively secure oblivious transfer, or is something stronger needed
(like oblivious sampling of permutations themselves). We remark that oblivious sampling is used
in this context by having the simulator sample unobliviously and then “lie” in its final transcript
by claiming to have sampled in the regular way. However, this strategy is problematic when the
oblivious sampling is carried out on elements in the domain because if the trapdoor is known then
it may be possible to see if the preimage of the sampled value appears implicitly in the protocol

1We stress that this is a strictly stronger requirement than equivocality. In most equivocal commitments, the com-
mitter reveals only some of its coins upon decommitting. This does not suffice for achieving adaptive commitments.

2In [33], adaptively secure commitment schemes were constructed for the languages of Graph Isomorphism and
Quadratic Residuosity (although they were not presented in this way nor for this purpose). The constructions in [33]
are incomparable to ours. On the one hand, they require no hardness assumptions whereas we use one-way functions.
On the other hand, our construction is for all languages in NP whereas they are restricted to the above two specific
languages (which are also in SZK).
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transcript. (For example, in the protocol of [16], the preimages fully define the sender’s input and
so if the trapdoor is known, the values can be checked.) Of course, such arguments do not consti-
tute any form of evidence. In order to demonstrate hardness, we use the methodology of black-box
separations, introduced by [25] and later used in [39, 29, 19, 38] amongst others. We prove the
following informally stated theorem:

Theorem 2 There exists an oracle relative to which enhanced trapdoor permutations exist but
adaptively secure oblivious transfer does not exist.

Recalling that statically secure oblivious transfer can be constructed from any enhanced trap-
door permutation in a black-box way [16, 22], we obtain the following corollary:

Corollary 3 There exists an oracle relative to which statically secure oblivious transfer exists but
adaptively secure oblivious transfer does not exist.

This is the first evidence that it is strictly harder to achieve security in the presence of adaptive
adversaries than to achieve security in the presence of static adversaries. We prove Theorem 2 by
showing that if it is possible to achieve adaptively secure oblivious transfer using only enhanced
trapdoor permutations, then it is possible to achieve statically secure oblivious transfer using only
symmetric encryption (this is very inexact but sufficient for intuition). We then show that statically
secure oblivious transfer does not exist relative to most symmetric encryption oracles. In order to
prove this, we use the recent result of [12] that shows the equivalence of the random oracle and
ideal cipher models, to replace a symmetric encryption oracle by a “plain” random oracle (using six
rounds of the Luby-Rackoff construction [30])3. This enables us to extend the black-box separation
of [25] to show that key agreement does not exist relative to most symmetric encryption oracles.
(Indeed this is a novel interpretation of that result and it means that all black-box separations with
random oracles hold also with symmetric encryption). We conclude the proof by recalling that
key agreement can be constructed from oblivious transfer [19]. Thus, adaptively secure oblivious
transfer cannot be constructed in a black-box way from enhanced trapdoor permutations. We
remark that all of our results for oblivious transfer are proven for semi-honest adversaries (and
thus hold also for malicious adversaries).

Our proof makes no explicit use of the fact that the functionality being computed is oblivious
transfer and holds for any functionality. We conclude that either a given function can be securely
computed statically assuming only the existence of one-way functions (or to be more exact, only
given a “symmetric” random oracle), or enhanced trapdoor permutations do not suffice for com-
puting it with adaptive security.

Related Work. Instance dependent commitment schemes were first implicitly used in [4] to con-
struct a constant round zero-knowledge proof for the language of Graph Isomorphism. In [26] they
follow these ideas and explicitly define instance-dependent commitment schemes4 as commitment
schemes where both the sender and the receiver receive an instance x ∈ {0, 1}∗ and the binding and
the hiding properties depend on whether x ∈ L or not. Since then, a great deal of work has been
carried out to investigate the relationship between zero-knowledge proofs and instance-dependent
commitment schemes (see [40, 32, 35, 27, 13, 14]) and finally in the recent work of [36] it was shown

3The reason that 6 rounds are needed and not 4 (as in the construction of pseudorandom permutations from
pseudorandom functions) is due to the fact that the distinguisher has access to the intermediate values

4Actually, in [26], they use the term “language-dependent cryptographic primitives”.
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that instance-dependent commitment schemes are necessary and sufficient for constructing zero-
knowledge proofs. It is interesting to note that in contrast to regular commitment schemes, where
the commitment cannot be both statistically hiding and statistically binding, instance-dependent
commitment schemes that are statistically hiding when x ∈ L and statistically binding when x 6∈ L
exist for certain languages (such as Graph Isomorphism).

The method of proving black box separations between cryptographic primitives, as a way to
conclude that it is not likely that the existence of a certain cryptographic primitive implies the
existence of another primitive, was first introduced in the seminal work of Impagliazzo and Rudich
[25]. In their work, they consider a world where all parties have access to a random permutation
oracle, which is provably one-way in the strongest sense. On the other hand, they show that if
P = NP , there doesn’t exists a secure key agreement protocol (even relative to such a random
oracle). This result has the following consequence: There is an oracle relative to which one way
permutation exists but key agreement does not exist (This oracle is constructed from the random
oracle and a PSPACE-complete problem). This method of proving black-box separation was
subsequently used in many other works (see [37, 39, 29, 28, 21, 18, 31, 10, 20]).

Adaptive zero-knowledge arguments were constructed in [1] and later adaptively secure univer-
sally composable zero-knowledge arguments were constructed in [8, 11]. Adaptively secure oblivious
transfer was constructed in [3] using trapdoor permutations with the additional property that it
is possible to select a permutation without knowing its trapdoor, and in [11] from non-committing
encryptions (see [9, 2, 15]). All constructions of adaptively secure oblivious transfer (and non-
committing encryptions) require the possibility to sample a permutation without its trapdoor. In
this sense, our result is a complementary result to these construction as we prove that enhanced
trapdoor permutations alone are not sufficient for constructing an adaptively secure oblivious trans-
fer in a black-box manner.

In [12] it is shown that the random oracle and the ideal cipher models are equivalent. Our
techniques imply a new application for this result: all black-box separations that have been proven
relative to a random oracle also hold relative to an ideal cipher (or a symmetric encryption oracle).

2 Preliminaries and Definitions

2.1 Preliminaries and Notations

We let n denote the security parameter. We say that a function µ : IN → IN is negligible if for
every positive polynomial p(·) and all sufficiently large n it holds that µ(n) < 1

p(n) . We use the
abbreviation PPT to denote probabilistic polynomial-time. For an NP relation R, we denote by
Rx the set of witnesses of x and by LR its associated language. That is, Rx = {w| (x,w) ∈ R} and
LR = {x| ∃w (x,w) ∈ R}.

Let 〈A,B〉 be an interactive protocol. 〈A(xA; rA), B(xB ; rB)〉 denotes the joint output of A and
B, where the input of A is xA and its random tape is rA and the input of B is xB and its random
tape is rB . 〈A(xA), B(xB)〉 denotes the random variable describing 〈A(xA; rA), B(xB ; rB)〉 where
the random tapes of the parties are chosen uniformly. The view here contains the oracle replies as
well.

V IEWΠ
A (xA, xB) is a random variable describing the view of A in an execution of protocol Π

on inputs xA and xB, where the random tapes are chosen uniformly. The view of a party includes
its input, random tape and the messages the party received. For an oracle O, V IEWΠ,O

A (xA, xB)
describes the view of A in an execution of protocol Π on inputs xA and xB with oracle access to O,
where the random tapes are chosen uniformly. For a distribution D on oracles, V IEWΠ,D

A (xA, xB)
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describes the view of A in an execution of protocol Π on inputs xA and xB where the random tapes
are chosen uniformly and the parties have access to an oracle that was chosen according to D.

Definition 2.1 Let X = {Xn}n∈IN and Y = {Yn}n∈IN be two distribution ensembles. We say that

X and Y are computationally indistinguishable, denoted X
c
≡ Y , if for every PPT machine D, every

positive polynomial p(·) and all sufficiently large n:

|Pr [D(Xn, 1
n) = 1] − Pr [D(Yn, 1

n) = 1]| <
1

p(n)

Definition 2.2 Let X = {Xn}n∈IN and Y = {Yn}n∈IN be two distribution ensembles. We say that

X and Y are computationally indistinguishable relative to an oracle O, denoted X
cO
≡ Y , if for every

PPT oracle machine D, every positive polynomial p(·) and all sufficiently large n:

∣∣∣Pr
[
DO(Xn, 1

n) = 1
]
− Pr

[
DO(Yn, 1

n) = 1
]∣∣∣ < 1

p(n)

We sometimes use the same notation when we refer to a distribution D on oracles rather than
a single oracle O. We now present definitions for semi-honest security for static adversaries. This
will be needed in our proof in Section 4.

Definition 2.3 Let 〈S,R〉 be an interactive protocol, where the input of S is a pair of strings
s0, s1 ∈ {0, 1}k (where k = poly(n)) and the input of R is a bit σ, and let n be the security
parameter. We say that 〈S,R〉 computes the OT 2

1 functionality5 if there exists a negligible function
neg(·) such that for all n, for every s0, s1 ∈ {0, 1}k , σ ∈ {0, 1}:

Pr [〈S(1n, s0, s1), R(1n, σ)〉 = (λ, sσ)] ≥ 1 − neg(n)

We say that 〈SO, RO〉 computes the OT 2
1 functionality relative to an oracle O if there exists a

negligible function neg(·) such that for every n and every s0, s1, σ:

Pr
[
〈SO(1n, s0, s1), R

O(1n, σ)〉 = (λ, sσ)
]
≥ 1 − neg(n)

Definition 2.4 Let Π = 〈S,R〉 be a protocol for computing the OT 2
1 functionality. We say that Π

securely computes the OT 2
1 functionality in the presence of static semi-honest adversaries if there exist

two probabilistic polynomial-time algorithms SS and SR such that:

{SS(1n, s0, s1)}s0,s1∈{0,1}k ,σ∈{0,1}

c
≡

{
V IEWΠ

S (1n, s0, s1, σ)
}
s0,s1∈{0,1}k ,σ∈{0,1}

{SR(1n, σ, sσ)}s0,s1∈{0,1}k ,σ∈{0,1}

c
≡

{
V IEWΠ

R (1n, s0, s1, σ)
}
s0,s1∈{0,1}k,σ∈{0,1}

Let Π = 〈SO, RO〉 be a protocol for computing the OT 2
1 functionality relative to an oracle O.

We say that Π securely computes the OT 2
1 functionality relative to an oracle O in the presence of static

semi-honest adversaries if there exist two PPT oracle machines SS and SR such that:

{
SOS (1n, s0, s1)

}
s0,s1∈{0,1}k ,σ∈{0,1}

cO
≡

{
V IEWΠ,O

S (1n, s0, s1, σ)
}
s0,s1∈{0,1}k ,σ∈{0,1}

{
SOR (1n, σ, sσ)

}
s0,s1∈{0,1}k ,σ∈{0,1}

cO
≡

{
V IEWΠ,O

R (1n, s0, s1, σ)
}
s0,s1∈{0,1}k ,σ∈{0,1}

5For s0, s1 ∈ {0, 1}k and σ ∈ {0, 1}, the functionality 1-out-of-2 Oblivious Transfer, denoted OT 2
1 , is defined as:

OT 2

1 ((s0, s1), σ) = (λ, sσ).
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2.2 Adaptive Security- Definitions

In this section we provide a definition for adaptive security of two party protocols (for a deterministic
functionality f). The definition is taken from [7]. Adjustments of the definition for the special
cases of adaptive zero-knowledge proofs (for malicious adversaries) and adaptively secure oblivious
transfer (for semi-honest adversaries) will be described afterwards.

The real-life model: Each party Pi begins with an input xi ∈ {0, 1}∗, a random tape ri and
the security parameter n. An adaptive real-life adversary A is a probabilistic polynomial-time
interactive Turing machine that starts with a random tape rA and security parameter n. The
environment Z is another probabilistic polynomial-time interactive Turing machine that starts
with an input z, a random tape rZ and the security parameter n.

At the outset of the protocol, A receives some initial information from Z. Next the computation
continues in rounds. Before each round, if there exists an uncorrupted party, the adversary A might
choose to corrupt one of the parties or both. Next, A activates the party that is supposed to be
active in this round according to the protocol. At each round, A sees all messages sent by the
parties (that is, the conversation between the parties is visible to the adversary).

Upon corrupting a party, the adversary learns its input and its random tape. In addition,
Z learns the identity of the corrupted party and hands some auxiliary information to A. If the
adversary is malicious, once a party is corrupted, it follows the adversary’s instructions from this
point. If the adversary is semi-honest, the corrupted party continues following the protocol.

At the end of the computation, the parties locally generate their outputs. Uncorrupted parties
output their output as specified by the protocol and corrupted parties output a special symbol ⊥.
In addition the adversary outputs an arbitrary function of its internal state. (Without loss of
generality, this output consists of all the information seen in the execution: the random tape rA,
the information received from the environment and the corrupted parties’ views of the execution.)

Next, a postexecution corruption process begins. Z learns the outputs. Next, Z and A interact
in at most two rounds, where in each round Z can generate a “corrupt P1” or “corrupt P2” message
and hand it to A. Upon receipt of this message, A hands Z the internal state of the party.At the
end of this process, Z outputs its entire view of the interaction with the parties and A.

Let realΠ,A,Z(n, x1, x2, z,−→r ), where −→r = (rZ , rA, r1, r2), denote Z’s output on input z, random
tape rZ and security parameter n after interacting with adversary A and parties P1 and P2 running
protocol Π on inputs x1, x2, random input −→r and security parameter n. Let realΠ,A,Z(n, x1, x2, z)
denote the random variable describing realΠ,A,Z(n, x1, x2, z,−→r ) when the random tapes of the
parties rZ , rA, r1, r2 are chosen uniformly. Let realΠ,A,Z denote the distribution ensemble

{realΠ,A,Z(n, x1, x2, z)}x1,x2,z∈{0,1}∗,n∈IN

The ideal process-adaptive model: Each party Pi has input xi and no random tape is needed.
An adaptive ideal-process adversary SIM is a probabilistic polynomial-time interactive Turing
machine that starts with a random tape rSIM and the security parameter n. The environment Z
is another probabilistic polynomial-time interactive Turing machine that starts with an input z, a
random tape rZ and the security parameter n. In addition, there is an incorruptible trusted party
T . The ideal process proceeds as follows:

First corruption stage: First, SIM receives some auxiliary information from Z. Next, SIM
proceeds in at most two iterations, where in each iteration SIM may decide to corrupt one
of the parties. Once a party is corrupted, its input becomes known to SIM. In addition, Z
learns the identity of the corrupted party and hands some auxiliary information to SIM.
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Computation stage: Uncorrupted parties hand the inputs to T . In the malicious settings, cor-
rupted parties hand values chosen by SIM to T . In the semi-honest setting, corrupted
parties hand their inputs to T . Let y1, y2 be the values handed to T . T computes f(y1, y2)
and hands P1 the value f(y1, y1)1 and P2 the value f(y1, y2)2.

Second corruption stage: SIM continues in another sequence of at most two iterations, where
in each iteration, SIM might choose to corrupt one of the parties based on its random tape
and the information gathered so far. Once a party is corrupted, SIM learns its input, Z
learns the identity of the corrupted party and hands SIM some auxiliary information.

Output: Each uncorrupted party Pi outputs f(y1, y2)i. Corrupted parties output a special sym-
bol ⊥. The adversary SIM outputs an arbitrary function of its internal state. Z learns all
outputs.

Postexecution corruption: After the outputs are generated, SIM proceeds in at most two
rounds with Z, where in each round, Z can generate a “corrupt Pi” message and hand it to
SIM. For any such request, SIM generates some arbitrary answer and it might choose to
corrupt any of the parties. The interaction continues until Z halts with an output.

Let idealf,SIM,Z(n, x1, x2, z,−→r ), where −→r = (rZ , rSIM), denote the output of Z on input
z, random input rZ and security parameter n after interacting with an ideal-process adversary
SIM with random input rSIM, with parties having inputs (x1, x2) and with a trusted party
T for evaluating the functionality f . Let idealf,SIM,Z(n, x1, x2, z) denote the random variable
describing idealf,SIM,Z(n, x1, x2, z,−→r ) where rZ , rSIM are chosen uniformly. Let idealf,SIM,Z

denote the distribution ensemble

{idealf,SIM,Z(n, x1, x2, z)}x1,x2,z∈{0,1}∗,n∈IN

Definition 2.5 Let Π be a protocol for computing a functionality f . We say that Π securely com-
putes the functionality f in the presence of adaptive adversaries if for every probabilistic polynomial-
time adaptive real-life adversary A and every environment Z, there exists a probabilistic polynomial-
time adaptive ideal-process adversary SIM, such that:

realΠ,A,Z
c
≡ idealf,SIM,Z

If the adversary A and the simulator SIM are restricted to semi-honest behavior, then we say that
Π securely computes the functionality f in the presence of semi-honest adaptive adversaries.

A special case – adaptive zero-knowledge: When considering zero-knowledge as a special
case of secure computation, it is most natural to define an adaptive zero knowledge proof of knowl-
edge functionality of the form fR((x,w), λ) = (λ, (x, b)) where b = 1 if R(x,w) = 1 and b = 0 if
R(x,w) = 0. However, since the goal of our work is to deal with the fundamental question of the
feasibility or infeasibility of adaptive zero-knowledge proofs (as asked by Beaver [1]), we present an
alternative definition that is more in line with the standard setting of zero-knowledge proof systems
(that are not necessarily proofs of knowledge). The advantage of this approach is that it simplifies
the proof and allows us to focus on the main issue of constructing an adaptive proof (rather than
an argument), without dealing with knowledge extraction.

Recall that in the standard setting of zero-knowledge, indistinguishability of the real world from
the ideal world is only required for instances x ∈ L. For these instances the trusted party always
returns 1, and we can therefore omit the trusted party altogether from the ideal world.
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In this case the real-life model is as defined above where the input of the verifier is an instance
x ∈ {0, 1}n (where n is the security parameter) and the input of the prover is a pair (x,w) ∈
{0, 1}n×{0, 1}p(n) for a polynomial p(·). The output of the uncorrupted prover is the empty string
λ and the output of the uncorrupted verifier is a bit specified by the protocol.

In the ideal process, the ideal process adversary SIM receives the instance x that is guaranteed
to be in the language as input and interacts with the environment and corrupted parties. Thus, we
only need 3 stages: first corruption stage, output stage and postexecution corruption stage (since
there is no computation stage, there is also no need for a second corruption stage). We also allow
the simulator to run in expected polynomial time rather than strict polynomial time (we do not
know how to construct a strict polynomial-time simulator for our protocol even though it has a
nonconstant number of rounds).

The distribution realΠ,A,Z denotes the distribution ensemble

{realΠ,A,Z(x,w, z)}x∈L,w∈Rx ,z∈{0,1}∗

and ideal
ZK
L,SIM,Z denotes the distribution ensemble

{ideal
ZK
L,SIM,Z(x,w, z)}x∈L,w∈Rx,z∈{0,1}∗

.

Definition 2.6 Let L be a language. We say that 〈P, V 〉 is an adaptive zero-knowledge proof system
(AZK) for L if 〈P, V 〉 is an interactive proof system for L and for any PPT real-life adversary A
and any PPT environment Z, there exists an expected polynomial-time probabilistic adaptive ideal-
process adversary SIM, such that

realΠ,A,Z
c
≡ ideal

ZK
L,SIM,Z

Adaptive security relative to oracles: In this work we consider security relative to oracles.
We therefore consider two distributions describing the real-life and the ideal-life process relative
to an oracle. In this case, all parties as well as the adversary A and the environment Z are PPT
oracle machines with access to the oracle O. Note that in the ideal-process the environment Z
has access to the oracle O as well (otherwise, it is easy to distinguish the real-life model from the
ideal-process) and therefore SIM must as well have access to the oracle O. While considering
security relative to oracles, an oracle O is added to all notations (random variables, distributions,
etc.).

We present the definition of security only for the semi-honest case as this suffices for our sepa-
ration.

Definition 2.7 Let Π be a protocol for computing a functionality f . We say that Π securely
computes the functionality f in the presence of adaptive semi-honest adversaries relative to an oracle O
if for every PPT real-life adversary A and every PPT environment Z, there exists a PPT adaptive
ideal-process adversary SIM, where all are given oracle access to O, such that:

real
O
Π,A,Z

cO
≡ ideal

O
f,SIM,Z
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3 Adaptive Zero-Knowledge Proofs

In this section we prove the following theorem:

Theorem 3.1 Assuming the existence of one-way functions that are hard to invert for non-uniform
adversaries, there exist adaptive zero-knowledge proofs for all NP.

Specifically, we show how to construct an adaptive zero-knowledge proof for the language of Hamil-
tonicity (HC). Our construction is based on Blum’s zero-knowledge proof for Hamiltonicity [6].
In this protocol, the prover first commits to a random permutation of the input graph G, and the
verifier then chooses randomly whether to verify that the committed graph is indeed a permuta-
tion of G or that the committed graph contains a Hamiltonian cycle. Soundness holds because a
non-Hamiltonian graph cannot simultaneously be a permutation of G and contain a Hamiltonian
cycle. The simulator for this proof system does not know the witness and so cannot decommit
to a Hamiltonian cycle after committing to a permutation of G. Therefore, it works by randomly
choosing whether to send commitments to a permutation of G or to a graph containing only a
random cycle of length n.

Observe that in the latter case, the commitments generated by the simulator are to different
values than those generated by the real prover. This is not a problem when considering static cor-
ruptions because the hiding property of the commitments means that this cannot be distinguished.
However, in the setting of adaptive corruptions, the prover can be corrupted after the simulation
ends. In this case, the simulator must be able to provide random coins that demonstrate that the
commitments sent initially are those that an honest prover would have sent. However, when the
simulator commits to a graph containing only a Hamiltonian cycle, it cannot do this (because an
honest prover never sends such a commitment). Thus, the commitment scheme used must be such
that the simulator can explain commitments to 0 as commitments to 1 and vice versa (actually
it suffices that commitments to 0 be explainable as commitments to 1). One way of solving this
problem is to use equivocal or trapdoor commitments. Loosely speaking, these are commitments
that can be decommitted to both 0 and 1 given an appropriate trapdoor. As we have discussed,
however, if we use this type of commitment scheme, then we can no longer achieve statistical sound-
ness (since an all-powerful cheating prover can find the trapdoor and use the equivocality of the
commitment scheme to fool the verifier).

We bypass this problem by constructing a new type of instance-dependent commitment scheme
[26, 4]. Roughly speaking, these are commitments whose properties depend on whether the instance
in question is in the language or not. Typically, they are defined for a language L as follows. Let
x be a statement. If x ∈ L then the commitment associated with x is computationally hiding and
if x /∈ L then the commitment associated with x is perfectly binding. In order to achieve adaptive
security, we extend this to an adaptive instance-dependent commitment scheme, where for x ∈ L
we have the additional property that commitments are equivocal (but for x 6∈ L the commitments
are still perfectly binding). Note that this type of commitment scheme is enough for constructing
zero-knowledge proofs because the hiding and the adaptivity are essential only for proving zero-
knowledge (which is needed only for x ∈ L) and the binding property is only essential for proving
soundness (in the case of x 6∈ L). In Section 3.1 we provide a formal definition of adaptive instance-
dependent commitment schemes along with a construction and a proof of security. In Section 3.2
we prove Theorem 3.1 by constructing an adaptive zero-knowledge proof system for Hamiltonicity
and proving its security.

9



3.1 Adaptive Instance-Dependent Commitment Schemes

3.1.1 Definition

Syntax. Let R be an NP relation and L be the language associated with R. A (non-interactive)
adaptive instance dependent commitment scheme (AIDCS) for L is a tuple of probabilistic polynomial-
time algorithms (Com, Com’, Adapt), where:

• Com is the bit commitment algorithm: For a bit b ∈ {0, 1}, an instance x ∈ {0, 1}∗ and a
random string r ∈ {0, 1}p(|x|) (where p(·) is a polynomial), Com(x, b; r) returns a commitment
value c.

• Com′ is a “fake” commitment algorithm: For an instance x ∈ {0, 1}∗ and a random string
r ∈ {0, 1}p(|x|), Com′(x; r) returns a commitment value c.

• Adapt is an adaptive opening algorithm: Let x ∈ L and w ∈ Rx. For all c and r ∈ {0, 1}p(|x|)

such that Com′(x; r) = c, and for all b ∈ {0, 1}, Adapt(x,w, c, b, r) returns a pair (b, r′) such
that c = Com(x, b; r′). (In other worlds, Adapt receives a “fake” commitment c and a bit b,
and provides an explanation for c as a commitment to the bit b.)

A decommitment to a commitment c is a pair (b, r) such that c = Com(x, b; r).
Note the difference between Com and Com′: Com is an ordinary committing algorithm (creating

a commitment value for a given bit), while for x ∈ L algorithm Com′ creates commitment values
that are not associated to any specific bit. However, given a witness attesting to the fact that
x ∈ L, these commitments can later be claimed to be commitments to 0 or to 1 by using algorithm
Adapt. We stress that without such a witness, a commitment generated by Com′ cannot necessarily
be decommitted to any bit.

Security. We now define the notion of security for our commitment scheme. Recall that our goal
is eventually designing an adaptive zero-knowledge proof and our definition of security is oriented
towards this goal.

Let Cx0 = {c | ∃ r s.t. c = Com(x, 0; r)} and Cx1 = {c | ∃ r s.t. c = Com(x, 1; r)}. That is, Cx0 is
the set of commitment values that can be decommitted to 0 and Cx1 the set of commitment values
that can be decommitted to 1.

Definition 3.2 Let R be an NP relation and L = LR. We say that (Com,Com′,Adapt) is a secure
AIDCS for L if the following hold:

1. Computational hiding: The ensembles {Com(x, 0)}x∈L, {Com(x, 1)}x∈L and {Com′(x)}x∈L
are computationally indistinguishable.

2. Adaptivity: For all b ∈ {0, 1}, the distributions
{
(Com(x, b;Up(|x|)), b, Up(|x|))

}
x∈L,w∈Rx

and
{
(Com′(x;Up(|x|)),Adapt(x,w,Com′(x;Up(|x|)), b, Up(|x|)))

}
x∈L,w∈Rx

are computationally indis-

tinguishable (that is, the random coins that are generated by Adapt are indistinguishable from
real random coins used by the committing algorithm Com).

3. Perfect binding: For all x 6∈ L, The sets Cx0 and Cx1 are disjoint.
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3.1.2 String commitments

We now argue that an adaptive instance-dependent commitment scheme remains secure even when
we concatenate bit commitments. First, it is easy to see that the binding and the hiding properties
are preserved when concatenating bit commitments. To prove that adaptivity is preserved as well
we consider the following experiment between an adversary and a commitment oracle. In this
experiment, the adversary outputs a message m (a sequence of bits) and the commitment oracle
chooses either to use the committing algorithm Com to commit to each of the bits of the message
and output the sequence of the commitments together with the random coins used by Com or to
generate fake commitments using algorithm Com′, use algorithm Adapt to get random coins that
are consistent with the message m and output the fake commitments together with the random
coins generated by Adapt. The adversary succeeds in the game if it can distinguish between the
choices of the commitment oracle with non-negligible probability. Formally, for a commitment
scheme C = (Com,Com′,Adapt), an adversary A, an instance x ∈ L, a witness w ∈ Rx and a value
b ∈ {0, 1}, consider the following experiment:

The string commitment adaptivity experiment StrExpAdaptbA,C(x,w):

1. Upon input x ∈ L and w ∈ Rx, where |x| = n, the adversary A outputs a message
m ∈ {0, 1}q(n).

2. Let q = q(n). If b = 0 the commitment c = Com(x,m1; r1), ...,Com(x,mq, rq) is
computed where r = r1, ...rq is uniformly chosen and (c,m, r) is given to A.

If b = 1, the commitment c = Com′(x; r1), ...,Com′(x; rq) is computed where r =
r1, ..., rq is uniformly chosen. Then for all 1 ≤ i ≤ q, (mi, r

′
i) = Adapt(x,w,Com′(x; ri),mi, ri)

is computed. Finally (c,m, r′) is given to A, where r′ = r′1, ..., r
′
q .

3. A outputs a value b′ and this is the output of the experiment.

The following proposition follows from the adaptivity of the bit commitment scheme and can be
proved by a simple hybrid argument:

Proposition 3.3 Let C = (Com,Com′,Adapt) be an AIDCS. For every PPT machine A, every
positive polynomial p(·) and all sufficiently large x ∈ L and w ∈ Rx:

∣∣∣Pr
[
StrExpAdapt0A,C(x,w) = 1

]
− Pr

[
StrExpAdapt1A,C(x,w) = 1

]∣∣∣ < 1

p(|x|)

3.1.3 The Construction

Our construction is almost identical to the trapdoor commitment of [17] (as adapted by [11]), with
one small but crucial difference. We begin by describing the adaptation of [11] of the trapdoor
commitment of [17]. Let C be a perfectly binding commitment scheme with pseudorandom range
and let G be a graph (in [17] G is a Hamiltonian graph generated by the receiver whereas in [11] it
is a Hamiltonian graph that is placed in the common reference string). Then, in order to commit
to 0, the committer chooses a random permutation π of the vertices of G and commits to the
adjacency matrix of π(G) using C. To decommit, it opens all entries and sends π. To commit to 1,
the committer chooses a random n-cycle and for all entries in the adjacency matrix corresponding
to the edges of the n-cycle, it uses C to commit to 1. In contrast, all other entries are set to
a random string (recall that the commitment scheme has a pseudorandom range and thus these
values are indistinguishable from commitments using C). To decommit, it opens only the entries
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corresponding to the edges of the n-cycle. As stated, this scheme is computationally hiding due
to the underlying commitment scheme C. In addition, it is computational binding as long as the
sender does not know the Hamiltonian cycle in G. We stress that the scheme is not perfectly
binding because an all-powerful corrupted committer can find the Hamiltonian cycle in G and send
commitments that it can later open to both 0 and 1.

Our key observation is that in the setting of zero-knowledge we can use the graph G that is the
statement being proven as the graph in the above commitment scheme. This implies that if G ∈ HC,
then the commitment scheme is computationally hiding and if G /∈ HC then it is perfectly binding,
as required. (As an added bonus, the graph need not be generated by the protocol.) Regarding
adaptivity, when G ∈ HC a commitment to 0 can be opened as a 0 or 1 given a cycle in G.

Formally, we define the commitment scheme (Com, Com’, Adapt) as follows:

• Com(G, 0) chooses a random permutation π of the vertices of G, and sets H = π(G). The
output of the algorithm is a series of commitments (using the commitment scheme C) to the
adjacency matrix of H. Namely, a matrix of size n × n, where the entry (i, j) contains a
commitment to 1 if (i, j) ∈ E(H) and to 0 if (i, j) 6∈ E(H), where E(H) denotes the set of
edges in H.

Com(G, 1) chooses a random cycle of size n. The algorithm outputs a matrix of size n × n,
where the entries corresponding to the cycle contain a commitment to 1 (using commitment
scheme C). All other entries are set to random strings of the same length as the output length
of C.

• Com′(G) acts exactly as Com(G, 0); that is, Com′(G; r) = Com(G, 0; r).

• Adapt(G,w, c, 0, r): If Com′(G; r) 6= c, then it returns ⊥. Otherwise, it outputs the bit 0
and r (recall that Com′(G; r) = Com(G, 0; r) and therefore Com(G, 0; r) = c).

Adapt(G,w, c, 1, r): If Com′(G; r) 6= c, then it returns ⊥. Otherwise, it outputs the bit 1,
the cycle of length n obtained by applying the permutation π (that is a part of r) on the
Hamiltonian cycle w, and n2 strings {ri,j}

n
i,j=1 where if the edge (i, j) ∈ π(w), then ri,j is

the randomness used by C to commit to 1 and if (i, j) 6∈ π(w), then ri,j is the commitment
value that appears in the corresponding entry in c (recall that C has pseudorandom range;
therefore these values “look” random).

Proposition 3.4 Assuming the existence of one way permutations, (Com,Com′,Adapt) is a secure
non-interactive adaptive instance-dependent commitment scheme for the language of Hamiltonicity.

Proof: We show that (Com,Com′,Adapt) fulfills Definition 3.2.

Computational Hiding : The computational hiding of the scheme has been proven in [11] and there-
fore we omit the proof.

Perfect Binding : Let G 6∈ HC. By the definition, the set CG0 contains commitments to isomorphic
graphs to G and the set CG1 contains commitments to Hamiltonian cycles. If G 6∈ HC, then a graph
cannot be simultaneously isomorphic to G and contain a Hamiltonian cycle and therefore the sets
CG0 and CG1 are disjoint.

Adaptivity : We begin by arguing that for all graphs G ∈ HC and all w ∈ RG, the distribu-
tions {(Com(G, 0;Up(n)), 0, Up(n)} and {(Com′(G;Up(n)),Adapt(G,w,Com′(x;Up(n)), 0, Up(n)))} are
computationally indistinguishable. This is easy to verify, since as we have mentioned in the con-
struction of our AIDCS, Com′(G;Up(n)) is in fact an execution of Com(G, 0;Up(n)) and in this case
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Adapt(G,w,Com′(x;Up(n)), 0, Up(n)) returns a bit 0 and the random coins used by Com′(G). We con-
clude that {(Com(G, 0;Up(n)), 0, Up(n)} and {(Com′(G;Up(n)),Adapt(G,w,Com′(x;Up(n)), 0, Up(n)))}
are identically distributed.

Now, we argue that for all G ∈ HC and w ∈ RG, the distributions {(Com(G, 1;Up(n)), 1, Up(n))}
and {(Com′(G;Up(n)),Adapt(G,w,Com′(x;Up(n)), 1, Up(n)))} are computationally indistinguishable.

Consider the following experiment: A random r ∈ {0, 1}p(n) is chosen and c = Com′(G; r) is
computed. Then, (1, r′) = Adapt(G,w, c, 1, r) is computed and the output of the experiment is
(Com(G, 1, ; r′), 1, r′). We denote the distribution induced by this experiment by HCom. It is not
difficult to see that the distributions {(Com′(G;Up(n)),Adapt(G,w,Com′(x;Up(n)), 1, Up(n)))} and
HCom are identically distributed. We will show that {(Com(G, 1;Up(n)), 1, Up(n)} and HCom are
computationally indistinguishable. Recall that Adapt(G,w, c, 1, r) outputs n2 strings {ri,j}

n
i,j=1

where if the edge (i, j) ∈ π(w), then ri,j is the random string used by C to commit to 1 and
if (i, j) 6∈ π(w), then ri,j is the value that appears in the corresponding entry in c. That is, if
(i, j) ∈ π(w), the corresponding string ri,j is a truly random string and if (i, j) 6∈ π(w), then the
corresponding string ri,j is an output of the commitment scheme C. We have taken C to have a
pseudorandom range, and this implies that the distribution {Adapt(G,w,Com′(x;Up(n)), 1, Up(n))}
is computationally indistinguishable from {Up(n)}.

Now, assume that {(Com(G, 1;Up(n)), 1, Up(n)} and HCom are not computationally indistin-
guishable. Informally speaking, there exists a PPT machine D that can distinguish between
{(Com(G, 1;Up(n)), 1, Up(n))} and HCom with a non-negligible probability. We construct a distin-
guisherD′ that can distinguish {Adapt(G,w,Com′(x;Up(n)), 1, Up(n))} and {Up(n)}. D

′ gets an input
an r that is distributed according to {Up(n)} or {Adapt(G,w,Com′(x;Up(n)), 1, Up(n))}. D

′ then com-
putes c = Com(G, 1, r), hands (c, 1, r) to D and outputs the output of D. Now, if r is distributed ac-
cording to {Up(n)}, then the input of D is distributed according to {(Com(G, 1;Up(n)), 1, Up(n)}. On
the other hand, if r is distributed according to {Adapt(G,w,Com′(x;Up(n)), 1, Up(n))}, then the input
of D is distributed as HCom and therefore D′ distinguishes {Adapt(G,w,Com′(x;Up(n)), 1, Up(n))}
and {Up(n)} with a non-negligible probability, contradicting the computational indistinguishability
of {Adapt(G,w,Com′(x;Up(n)), 1, Up(n))} and {Up(n)}.

Remark - one-way functions. Note that we can reduce our computational assumptions to the
existence of one-way functions (rather than one-way permutations) by replacing the commitment
scheme C by the scheme of [34] (which has a pseudorandom range as well). The resulting scheme will
be an interactive Adaptive Instance Dependent Commitment Scheme with computational hiding
and statistical binding. Also note that all proofs can be extended to the case of non-uniform
adversaries assuming the existence of one-way functions that are hard to invert for non-uniform
adversaries.

3.2 Adaptive Zero Knowledge Proofs for all NP

In this section, we show that the proof system for Hamiltonicity presented in [6] is an adaptive
zero-knowledge proof system when the ordinary commitment scheme is replaced by an adaptive
instance-dependent commitment scheme.

Theorem 3.5 If there exists an AIDCS for an NP-complete problem with computational hiding
and adaptivity against non-uniform adversaries, then every NP language has an adaptive zero
knowledge proof.
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Proof: We present an adaptive zero knowledge proof for Hamiltonicity; the generalization to any
language in NP is achieved by reducing the language to Hamiltonicity. Let C = (Com,Com′,Adapt)
be an AIDCS for Hamiltonicity.

Protocol 1 (Adaptive zero-knowledge proof for HC) :

• The verifier’s input: A graph G = (V,E) where |V | = n.

• The prover’s input: A graph G = (V,E) where |V | = n and a hamiltonian cycle w in G.

• The protocol:

1. The prover chooses a random permutation π of the vertices and commits to the adjacency
matrix of π(G) using algorithm Com.

2. The verifier sends a random bit σ to the prover.

3. If σ = 0 the prover sends π to the verifier and decommits to all entries of the adjacency
matrix.

If σ = 1, the prover decommits to the entries of the Hamiltonian cycle in π(G).

4. If σ = 0 the verifier checks that the decommitted graph is indeed π(G).

If σ = 1 the verifier checks that the decommitted entries form a hamiltonian cycle of
size n.

Claim 3.6 Protocol 1 is an efficient-prover interactive proof for the language of Hamiltonicity.

Proof: It is easy to see that the strategy of the verifier can be implemented in probabilistic
polynomial-time and that given a Hamiltonian cycle in G, the strategy of the prover can be imple-
mented in probabilistic polynomial-time as well.

Proving the completeness property of the protocol is straightforward. We will prove soundness
of 1

2 . Let G 6∈ HC, and assume there exists a prover strategy P ∗ such that Pr[〈P ∗, V 〉(G) = 1] > 1
2 .

Let pi be P ∗ i’th message to V . Assuming P ∗ convinces V with probability that is greater than 1
2 ,

there exists messages p′1 and p0
2 and p1

2 such both V (p′1, 0, p
0
2) and V (p′1, 1, p

1
2) accept. Namely, p0

2 is
a decommitment of p′1 to an isomorphic graph of G and p1

2 is a decommitment of some entries in the
adjacency matrix that is represented by p′1 that form a Hamiltonian cycle. Since the commitment
scheme C is perfectly binding when G 6∈ HC, this implies that G contains a Hamiltonian cycle and
that is a contradiction to G 6∈ HC.

Claim 3.7 Protocol 1 is secure against adaptive adversaries.

Proof: Let A be a PPT adaptive adversary that interacts with the prover and the verifier in
the real-life run of the protocol and let Z be a PPT environment. We construct an ideal-process
adversary(simulator) SIM such that

realΠ,A,Z
c
≡ ideal

ZK
L,SIM,Z

SIM starts with an input G and a random tape rSIM. SIM invokes a simulated copy of A on
a uniform random tape. SIM simulates the interaction of A with the environment Z as follows:
Every input SIM receives from the environment Z is written on the input tape of A, as if it came
from A’s environment. Every output written by A on its output tape, is written by SIM on its
own output tape. If SIM receives some auxiliary input from Z at the outset, then SIM hands
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it to A. To simplify our analysis, we divide our protocol into 3 rounds: The prover’s first message,
the verifier’s first message and the prover’s second message, where the adversary might corrupt any
of the parties at the onset of each round or in the postexecution corruption phase.

Our description of SIM consists of 2 parts: simulating corruptions of the parties and simulating
the run of the protocol.

• Simulating the run of the protocol: We divide the description of the simulation into
cases as following.

1. The prover is uncorrupted in the first round. SIM generates the prover’s first message
as follows. SIM chooses a random bit b ∈ {0, 1}. If b = 0, it chooses a random
permutation π and uses algorithm Com to commit to the adjacency matrix of π(G).

If b = 1, SIM creates an adjacency matrix of a graph containing only a random cycle
of length n (all other entries are set to 0). It then uses Com to commit to all 1’s in
the adjacency matrix. All other entries are filled with commitment values created by
algorithm Com′.

We proceed to the second round.

(a) The Verifier is corrupted in the second round. A generates a bit σ and SIM sets σ
as the verifier’s message. We move to the third round.

i. The prover is uncorrupted in the third round. SIM generates the prover’s
second message as follows: If b = σ = 0 then SIM sets the prover’s second
message to be decommitments to all entries at the adjacency matrix and π. If
b = σ = 1, SIM decommits to all 1’s in the adjacency matrix (and since theses
entries were created using Com, SIM can decommit). In both cases, the run of
the protocol terminates. The corrupted verifier’s output is a special symbol ⊥
and the output of the prover is the empty string λ. SIM outputs the simulated
adversary’s internal state. A postexecution corruption step starts and at the
end Z halts with an output.
If b 6= σ, SIM rewinds to the beginning of the first corruption stage (that
is, the outset of the first round) and proceeds as above. In this case if the
corruptions made by A do not lead SIM to the same scenario (that is, the
verifier is corrupted before the second round and the prover is uncorrupted in
the third round), SIM keeps rewinding to the outset of the first round until
SIM ends up in the same scenario as the current one (of course, if again b 6= σ,
SIM has to rewind again).

ii. The prover is corrupted in the third round. The simulated copy of A generates
the prover’s second message. The output of the corrupted parties is the special
symbol ⊥ and SIM outputs the simulated adversary’s internal state. Since
both parties are corrupted, no postexecution corruption step takes place and Z
halts with an output.

(b) The verifier is uncorrupted in the second round. In this case, SIM sets σ = b to be
the verifier’s first message (where b is as chosen by SIM above).

i. The prover is uncorrupted in the third round. Since σ = b, the simulator simply
decommits appropriately to the commitment it sent and the third round ter-
minates. At the end of the protocol, SIM outputs the simulated adversary’s
internal state. A postexecution corruption stage starts and at the end Z halts
with an output.
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ii. The prover is corrupted in the third round. The simulated copy of A generates
the prover’s second message and the protocol ends. SIM outputs the simu-
lated adversary’s internal state. If the verifier is uncorrupted, a postexecution
corruption stage starts and at the end Z halts with an output.

2. The prover is corrupted in the first round. The simulated copy of A generates the prover’s
first message and the first round ends.

(a) The Verifier is corrupted in the second round. The simulated copy of A generates
the verifier’s first message and the prover’s second message. At the end, both parties
output the special symbol ⊥ and SIM outputs the simulated adversary’s internal
state. Since both parties are corrupted, no postexecution corruption stage is taken
place and Z halts with an output.

(b) The verifier is uncorrupted in the second round. SIM chooses a random bit σ and
sets it as the verifier’s first message. The simulated copy of A generates the prover’s
second message and the protocol ends. SIM outputs the simulated adversary’s
internal state. If the verifier is uncorrupted, a postexecution corruption stage starts
and at the end Z halts with an output.

• Simulating Corruptions:

1. A corrupts the verifier at the outset of the first or second rounds: SIM corrupts the
verifier and hands a truly random string to A as the verifier’s random tape rV .

2. A corrupts the verifier at the outset of the third round or in the postexecution corruption
step: In this case, the verifier’s first message has been set by SIM to a random bit
σ. SIM corrupts the verifier and provides A with a random tape rV that is consistent
with σ.

3. A corrupts the prover at the outset of the first round: SIM corrupts the prover, learns
its input tape that includes the witness w, sets rP to be a truly random string and
provides A with w and rP .

4. A corrupts the prover at the outset of the second or third round or at the postexecution
corruption step: SIM corrupts the prover in the ideal-process run of the protocol and
learns the witness w which is a part of its input tape. At this stage, A expects to learn
the input and the random tape of P , and SIM has to generate a random tape for P
that is consistent with the prover’s first message. If b = 0, the prover’s first message
has been created exactly as in a real run of the protocol and the simulator can provide
A with the random coins used to create the commitment. If b = 1, the prover’s first
message is a commitment to a graph that contains a single cycle of length n; we denote
this graph by Cn. The simulator finds an isomorphism π between the Hamiltonian cycle
w in G and between Cn. It then computes H = π(G). For every edge (u, v) ∈ Cn,
SIM provides A with the randomness used by Com to commit to 1. For every edge
(u, v) ∈ H and (u, v) 6∈ Cn, SIM uses algorithm Adapt to obtain random coins such
that the appropriate commitment value in the adjacency matrix is a commitment to 1.
For every (u, v) 6∈ H, SIM uses algorithm Adapt to get random coins such that the
commitment value in the adjacency matrix is a commitment to 0. SIM provides the
simulated copy of A with the input w and the set of random coins described above as
well as with π.
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We begin by showing that the running time of SIM is expected polynomial time. We use the
enumeration of the cases above (in the simulation of the run of the protocol) to indicate which
parties have been corrupted and when in a specific run of the simulation. For example, when we
refer to case 2, we refer to the case where the prover is corrupted at the outset of the first run.
Similarly, when we refer to case 1a, we refer to the case where the prover is uncorrupted at the
outset of the first round and the verifier is corrupted at the outset of the second round and when
we refer to case 1(a)ii, we refer to the case where the prover is uncorrupted at the outset of the
first round, the verifier is corrupted at the outset of the second round and the prover is corrupted
at the outset of the third round.

It is easy to see that a single iteration of SIM (where no rewinding is carried out) is polynomial
time (recall that the real-life adversary A is a PPT machine and therefore invoking a simulated
copy of A is also polynomial time) and that SIM rewinds only if it reaches to case 1(a)i (when the
prover is uncorrupted at the third round and the verifier is corrupted before the second round) and
its random bit (b) does not equal the verifier’s first message. In this case, SIM rewinds until an
iteration where it reaches again to case 1(a)i but its random bit equals the verifier’s first message.
We denote by b̂ the random bit of SIM in its first iteration and by σ̂ the verifier’s message in the
first iteration. We obtain that in any case other than the one where SIM reaches to case 1(a)i
and b̂ 6= σ̂ the running time of SIM is polynomial and therefore:

E [TIME] = E
[
TIME | case 1(a)i ∧ b̂ 6= σ̂

]
· Pr

[
case 1(a)i ∧ b̂ 6= σ̂

]

+ E
[
TIME | ¬(case 1(a)i ∧ b̂ 6= σ̂)

]
· Pr

[
¬(case 1(a)i ∧ b̂ 6= σ̂)

]

≤ E
[
TIME | case 1(a)i ∧ b̂ 6= σ̂

]
· Pr

[
case 1(a)i ∧ b̂ 6= σ̂

]
+ poly(n)

By the hiding property of our commitment scheme, we obtain the following lemma:

Lemma 3.8 In each iteration of case 1(a)i, the probability that A replies with σ = b is greater
than 1

4 . Formally, in each iteration:

Pr[σ = b | case 1(a)i] >
1

4

The proof of this lemma is identical to the case of Hamiltonicity for static adversaries and regular
commitments (intuitively, it is due to the hiding of the commitment scheme) and therefore we omit
it.

We obtain that in each iteration:

Pr[case 1(a)i ∧ σ = b] = Pr[σ = b | case 1(a)i] · Pr[case 1(a)i] >
1

4
· Pr[case 1(a)i]

For any iteration of SIM we denote by p the probability that SIM reaches case 1(a)i and obtain:

Pr[case 1(a)i ∧ σ = b] >
1

4
· p (1)

We turn now to computing E
[
TIME | case 1(a)i ∧ σ̂ 6= b̂

]
. Given that SIM rewinds, let T

be the random variable denoting the number of iterations of SIM until the simulation ends; that
is, the number of iterations until SIM ends up again in case 1(a)i and σ = b. Since the running
time of each such iteration is polynomial time, we obtain:

E
[
TIME | case 1(a)i ∧ σ̂ 6= b̂

]
≤ poly(n) · E [T ]

17



Now, note that T is distributed according a geometric distribution with success probability at least
1
4p (Eq. 1). Therefore E [T ] ≤ 4

p
and

E
[
TIME | case 1(a)i ∧ σ̂ 6= b̂

]
≤ poly(n) ·

4

p

And finally we obtain:

E [TIME] ≤ E
[
TIME | case 1(a)i ∧ σ̂ 6= b̂

]
· Pr[case 1(a)i ∧ σ̂ 6= b̂] + poly(n)

≤ (poly(n) ·
4

p
) ·

3

4
· p+ poly(n)

which is still polynomial.
Now we show that the output of Z in the real-process is computationally indistinguishable from

the output of Z in the ideal-process. Namely, we show that

realΠ,A,Z
c
≡ ideal

ZK
L,SIM,Z

We first consider a modified simulator ˜SIM that receives as input the Hamiltonian cycle in G
(of course, ˜SIM is not a valid simulator). Then, ˜SIM works in the same way as SIM except that
if the prover is uncorrupted in the first round, it chooses a random permutation π on the vertices of
G and commits to π(G) using algorithm Com (as the honest prover would) regardless of the value
of b. If the prover is corrupted afterwards, ˜SIM sends the real random coins it used to commit to
π(G) to the simulated copy of A. It is not difficult to see that the output distribution of Z in a real
run of the protocol with adversary A interacting with the prover and the verifier is identical to that
of Z in an ideal-process run with ˜SIM. First, consider any of the cases except 1(a)i. In any of
these cases, ˜SIM acts exactly as the honest real-process parties. Therefore, when ˜SIM invokes a
simulated copy of A, it gives a perfect simulation of the real-process interaction between the honest
parties and A. We now focus on case 1(a)i. In this case, whenever σ 6= b, ˜SIM rewinds whereas in
a real-process run of the protocol, the prover decommits appropriately and the execution proceeds.
However, since ˜SIM does not proceed with the simulation until it reaches again to case 1(a)i (recall
that ̂SIM rewinds until it reaches case 1(a)i), we obtain the same distribution on the outputs of
Z also in case 1(a)i. Thus, we obtain:

realΠ,A,Z ≡ ideal
ZK

L,S̃IM,Z

We proceed to show that the output distribution of Z in an ideal-process run with ˜SIM is compu-
tationally indistinguishable from the output distribution of Z in an ideal-process run with SIM.
Intuitively, this is true because the only difference between SIM and ˜SIM is the values they
commit to and the adaptivity of the commitment scheme implies that the commitments and their
decommitments are computationally indistinguishable.

Assume by contradiction that there exists a (non-uniform) polynomial-time distinguisher D and
a polynomial p such that for infinitely many graphs G ∈ HC, where n = |G|, there exist w ∈ RG
and z ∈ {0, 1}∗, such that:

∣∣∣∣Pr[D(G, z, ideal
ZK
L,SIM,Z(G,w, z)) = 1] − Pr[D(G, z, ideal

ZK

L,S̃IM,Z
(G,w, z)) = 1]

∣∣∣∣ ≥
1

p(n)
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We useD to construct a non-uniform PPT distinguisherD′ for the commitment scheme (Com,Com’,Adapt).
Formally, we construct a PPT machine D′ such that for infinitely many G ∈ HC there exists a
w ∈ RG such that:

∣∣∣Pr
[
StrExpAdapt0D′,C(G,w) = 1

]
− Pr

[
StrExpAdapt1D′,C(G,w) = 1

]∣∣∣ ≥ 1

p(n)

Distinguisher D′ is given a graph G = (V,E) ∈ HC along with its Hamiltonian cycle w as an
input and z as an auxiliary input and works as follows.

D′ fixes the random tape of D to a uniformly distributed string. D′ then chooses a random
bit b ∈ {0, 1} and prepares commitments as follows. D′ chooses a random permutation π of the
vertices of G. If b = 0, then D′ uses algorithm Com to commit to the adjacency matrix of π(G);
we denote this commitment by c′ and by r′ the random coins used by Com. If b = 1, then D′

computes π(w) (recall that w is a Hamiltonian cycle in G and therefore π(w) is a Hamiltonian
cycle in π(G)). D′ then creates a partial adjacency matrix M of the graph π(G) except for entries
corresponding to the Hamiltonian cycle π(w) in the graph. D′ hands M to its commitment oracle
and receives back a tuple (c,M, r), that includes either real commitments c to M using algorithm
Com and the random coins r used by Com or fake commitments created by Com′ and random coins
generated by algorithm Adapt. D′ uses algorithm Com to compute commitments c1 to 1 for every
(u, v) ∈ π(w), let r1 be the random coins used by algorithm Com. Let c′ be the commitment to a
complete adjacency matrix obtained from c and c1 and let r′ be the random coins obtained from r
and r1. D

′ then starts to simulate an execution of Z on input z interacting with SIM with the
following exceptions:

• If the prover is uncorrupted in the first round, D′ sets c′ as the prover’s first message.

• If the prover is corrupted after the first round and b = 1, D′ hands r′ to the simulated copy
of A as the prover’s random coins.

In all other cases, D′ works exactly as Z and SIM. Also note that if D′ reaches case 1(a)i, then
if b = σ, D′ can decommit because it generated the appropriate commitments itself.

At the end of the simulation of the interaction between Z and SIM, D′ invokes D on G, z and
the output of Z and outputs whatever D outputs.

It is not difficult to ascertain that when D′ is interacting in experiment StrExpAdapt0D′,C(G,w),

the distribution generated by D′ is exactly the same as ideal
ZK

L,S̃IM,Z
(G,w, z). Thus,

Pr[StrExpAdapt0D′(z),C(G,w) = 1] = Pr[D(G, z, ideal
ZK

L,S̃IM,Z
(G,w, z)) = 1]

On the other hand, whenD′ is interacting in experiment StrExpAdapt1D′,C(G,w), the distribution

generated by D′ is exactly the same as ideal
ZK
L,SIM,Z(G,w, z). Thus,

Pr[StrExpAdapt1D′(z),C(G,w) = 1] = Pr[D(G, z, ideal
ZK
L,SIM,Z(G,w, z)) = 1]

Combining the above, we have that for infinitely many G ∈ HC there exists a w ∈ RG, such that:

∣∣∣Pr
[
StrExpAdapt0D′(z),C(G,w) = 1

]
− Pr

[
StrExpAdapt1D′(z),C(G,w) = 1

]∣∣∣ ≥ 1

p(n)

in contradiction to the adaptivity property of the commitment scheme.

This concludes the proof of Theorem 3.5.
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4 Adaptive Oblivious Transfer

In this section we prove a black-box separation of adaptively secure oblivious transfer from en-
hanced trapdoor permutations. We prove our black-box separation in the following steps. First, in
Section 4.1 we define Γ and ∆ oracles, where a Γ-oracle essentially represents an enhanced trapdoor
permutation and a ∆-oracle represents a type of symmetric encryption scheme. In Section 4.2 we
show that enhanced trapdoor permutations exist relative to most Γ-oracles. Then, in Section 4.3
we show that if there exists a protocol for securely computing any functionality in the presence of
adaptive adversaries relative to Γ-oracles, then there exists a protocol for securely computing the
same functionality in the presence of static adversaries relative to ∆-oracles. The next step of the
proof is to then show that for measure 1 of random ∆-oracles no statically secure OT 2

1 exists (we use
OT 2

1 as a shorthand for 1-out-of-2 oblivious transfer). This is done by using the original black-box
separation of key agreement from one-way functions [25], and the fact that key agreement can be
obtained from statically secure oblivious transfer; see Section 4.4. We conclude that for measure 1
of random Γ-oracles no adaptively secure OT 2

1 exists (see Section 4.5).

4.1 Oracle Definitions

We begin by defining (asymmetric) Γ and (symmetric) ∆ oracles which are used in our proof.

Γ-oracles. Informally speaking, a Γ oracle is supposed to model an enhanced trapdoor permuta-
tion. Thus, it has an oracle for specifying a function and its trapdoor, and an oracle for computing
the function (given the function identifier) and inverting it (given the trapdoor). The functions
themselves are over all of {0, 1}n and thus it is trivial to sample an element without knowing its
inverse (as is required for enhanced trapdoor permutations). Formally, we define a Γ-oracle to be
an oracle containing the following functions:

• GΓ(·) = (G1
Γ, G

2
Γ) is a pair of injective functions such that on an input r ∈ {0, 1}n, GΓ(r) =

(G1
Γ(r), G2

Γ(r)) = (fid, tid) ∈ {0, 1}2n × {0, 1}2n. Note that a party can query only GΓ and
cannot query one of its components separately.

• A function F (·, ·), such that for every fid ∈ Range(G1
Γ), F (fid, ·) is a permutation over

{0, 1}n and for every fid 6∈ Range(G1
Γ) and every x ∈ {0, 1}n, F (fid, x) =⊥.

• A function F−1 satisfying F−1(tid, F (fid, x)) = x for every x ∈ {0, 1}n and every (fid, tid) ∈
Range(GΓ). If tid is not in the range of G2

Γ(·), then F−1 returns ⊥. Note that since G1
Γ and

G2
Γ are injective functions, pairs of the form (fid, tid) and (fid′, tid), where fid 6= fid′ do

not exist and F−1 is well defined.

Uniform distribution over oracles – notation: We denote by UΓ the uniform distribution over
Γ-oracles. Namely, an oracle OΓ = (GΓ, F, F

−1) is distributed according to UΓ if G1
Γ and G2

Γ are two
uniformly distributed injective functions from {0, 1}n to {0, 1}2n and for every fid ∈ Range(G1

Γ),
F (fid, ·) is a uniformly distributed permutation over {0, 1}n. We write “OΓ is a random Γ-oracle”
as shorthand for “OΓ is distributed according to UΓ”.

∆-oracles. Informally, a ∆ oracle is a symmetric oracle, meaning that anyone with the ability to
compute the function also has the ability to invert it. Specifically, we define a function P and its
inverse that is analogous to F and F−1 in a Γ oracle. For reasons that will become apparent later,

20



we also define a function Q and its inverse (this has no analogue in a Γ oracle). Formally, we define
a “∆-oracle” to be an oracle containing the following functions:

• G∆ is an injective function from {0, 1}n to {0, 1}2n.

• A function P (·, ·) such that for every fid ∈ Range(G∆), P (fid, ·) is a permutation over
{0, 1}n. For fid 6∈ Range(G∆) and every x ∈ {0, 1}n, P (fid, x) =⊥.

• P−1 is the inversion algorithm of P . Namely for every fid ∈ Range(G∆) and x ∈ {0, 1}n,
P−1(fid, P (fid, x)) = x. For fid 6∈ Range(G∆) and every x ∈ {0, 1}n, P−1(fid, x) =⊥.

• Q is an injective function from the range of G∆ to {0, 1}2n. Namely, for every fid ∈
Range(G∆), Q(fid) ∈ {0, 1}2n, for every fid 6= fid′ ∈ Range(G∆), Q(fid) 6= Q(fid′) and
for every fid 6∈ Range(G∆), Q(fid) =⊥.

• Q−1 is the inversion algorithm ofQ. Namely, for every fid ∈ Range(G∆), Q−1(Q(fid)) = fid,
and for every y 6∈ Range(Q), Q−1(y) =⊥.

We denote by U∆ the uniform distribution over ∆-oracles: The oracle O∆ = (G∆, P, P
−1, Q,Q−1)

is distributed according to U∆, if G∆ is a uniformly distributed injective function from {0, 1}n to
{0, 1}2n, for every fid ∈ Range(G∆), P (fid, ·) is a uniformly distributed permutation over {0, 1}n

and Q is a uniformly distributed injective function from the range of G∆ to {0, 1}2n. We sometimes
write “O∆ is a random ∆-oracle” instead of “O∆ is distributed according to U∆”.

Note the difference between Γ-oracles and ∆-oracles. Γ-oracle have an asymmetric nature: F
and its inversion oracle F−1 use different keys. On the contrary, ∆-oracles have a symmetric nature:
identical keys are used by P and its inversion oracle P−1. (For this reason, we used a “symmetric”
character ∆ for ∆-oracles and an “asymmetric” character Γ for Γ-oracles.)

Γ-oracles versus ∆-oracles. We now show a bijection mapping φ that maps every Γ-oracle to
a corresponding ∆-oracle. Let OΓ = (GΓ, F, F

−1) be a Γ-oracle. φ(OΓ) is the tuple of functions
(G∆, P, P

−1, Q,Q−1) satisfying:

• For every r ∈ {0, 1}n, we define G∆(r) = G1
Γ(r).

• For every r ∈ {0, 1}n, Q(G∆(r)) = G2
Γ(r), and for every fid 6∈ Range(G∆), Q(fid) =⊥.

• For every fid ∈ {0, 1}2n and x ∈ {0, 1}n, we define P (fid, x) = F (fid, x).

• P−1 and Q−1 are the inversion algorithms of P and Q.

Claim 4.1 The mapping φ is a bijection from the set of Γ-oracles to the set of ∆-oracles.

Proof: We first show that for every OΓ, φ(OΓ) = (G∆, P, P
−1, Q,Q−1) is indeed a ∆-oracle:

• G∆ is an injective function because G1
Γ is an injective function.

• For fid ∈ Range(G∆) it holds that fid ∈ Range(G1
Γ) and since F (fid, ·) is a permutation

over {0, 1}n, P (fid, ·) is a permutation over {0, 1}n as well.

• For fid 6∈ Range(G∆) it holds that fid 6∈ Range(G1
Γ). For every x ∈ {0, 1}n, it holds that

F (fid, x) =⊥ and thus P (fid, x) =⊥ as desired.
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• Q is injective because G2
Γ is injective and therefore for every fid1 6= fid2 ∈ Range(G∆), it

holds that Q(fid1) 6= Q(fid2).

• For every fid 6∈ Range(G∆), Q(fid) =⊥ as desired.

We show that the mapping is injective. Let (GΓ, F, F
−1) and (ĜΓ, F̂ , F̂

−1) be two different
Γ − oracles. That is, there exists an r such GΓ(r) 6= ĜΓ(r) or a pair fid, x such that F (fid, x) 6=
F̂ (fid, x). Let (G∆, P, P

−1, Q,Q−1) = φ(G,F, F−1) and (Ĝ∆, P̂ , P̂
−1, Q̂, Q̂−1) = φ(Ĝ, F̂ , F̂−1). If

there exists an r such GΓ(r) 6= ĜΓ(r), then there are two cases:

• If G1
Γ(r) 6= Ĝ1

Γ(r), then G∆(r) 6= Ĝ∆(r).

• If G1
Γ(r) = Ĝ1

Γ(r), it implies that G2
Γ(r) 6= Ĝ2

Γ(r), and then Q(G∆(r)) 6= Q̂(G∆(r)).

Thus, in both cases, φ(G,F, F−1) 6= φ(Ĝ, F̂ , F̂−1). Next, if there exist a pair fid, x such that
F (fid, x) 6= F̂ (fid, x), then P (fid, x) 6= P̂ (fid, x). Thus, as before φ(G,F, F−1) 6= φ(Ĝ, F̂ , F̂−1)
and the mapping is injective.

It remains to show that the mapping is onto. Let O∆ = (G∆, P, P
−1, Q,Q−1) be a ∆-oracle.

We show there exists a Γ-oracle OΓ that fulfills φ(OΓ) = O∆. Let OΓ be the following oracle:

• For every r ∈ {0, 1}n, it holds that GΓ(r) = (G∆(r), Q(G∆(r)).

• For every fid ∈ {0, 1}2n and x ∈ {0, 1}n, it holds that F (fid, x) = P (fid, x).

• For every tid ∈ {0, 1}2n and y ∈ {0, 1}n, it holds that F−1(tid, y) = P−1(Q−1(tid), y)

First, observe that OΓ is indeed a Γ-oracle:

• Since G∆ and Q are injective, it holds that G1
Γ and G2

Γ are injective.

• For every fid ∈ Range(G1
Γ), since fid ∈ Range(G∆) and P (fid, ·) is a permutation over

{0, 1}n, F (fid, ·) is a permutation over {0, 1}n.

• For every fid 6∈ Range(G1
Γ), it holds that fid 6∈ Range(G∆) and for every x ∈ {0, 1}n,

P (fid, x) =⊥ and thus F (fid, x) =⊥ as desired.

• For every (fid, tid) ∈ Range(GΓ) and for every x ∈ {0, 1}n,

F−1(tid, F (fid, x)) = P−1(Q−1(tid), P (fid, x)) = P−1(fid, P (fid, x)) = x

as desired.

• For every tid 6∈ Range(G2
Γ) and every y ∈ {0, 1}n, it holds that Q−1(tid) =⊥ and thus

F−1(tid, y) =⊥.

Verifying that φ(OΓ) = O∆ is easy.

The above claim immediately implies the following:

Corollary 4.2 The random variables U∆ and φ(UΓ) are identically distributed.
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4.2 Enhanced TDP Relative to Γ-Oracles

In this section we prove that enhanced trapdoor permutations exist relative to Γ-oracles. With
every Γ-oracle OΓ = (GΓ, F, F

−1), we associate the following tuple of algorithms (I, S′, F,B)6:

• On input 1n, I selects a random r ∈ {0, 1}n and sets (α, τ) = GΓ(r).

• On input α and a random r ∈ {0, 1}n, S′ returns r (which is a uniformly distributed element
in the domain of fα).

• For a given α and x, algorithm F returns fα(x) = F (α, x).

• For a given τ and y ∈ {0, 1}n, algorithm B returns F−1(τ, y). Note that if there exists an α
such that (α, τ) is in the range of I(1n), then B(τ, y) = f−1

α (y).

We prove that for almost all Γ-oracles, the tuple of algorithms defined above is an enhanced trapdoor
permutation. We first show that fα is hard to invert.

Claim 4.3 (Adapted from [25]) Let M be an oracle PPT machine. Then, there exists a negli-
gible function neg(·) such that for any n and any input y of length n, and for every α in the range
of I1(1

n):

Pr
[
fα(M

UΓ(α, y)) = y
]
< neg(n)

where the probability is taken over random Γ-oracles and over the random tape of M .

Proof: Machine M gets as input α and y and tries to invert fα on y. Fix any random tape for
M . First, we note that if M never queries GΓ on an r such that G1

Γ(r) = α, then it can guess the
corresponding τ with probability at most 1

22n (since τ is distributed uniformly on {0, 1}2n). Now,
note that every time M makes a query to GΓ(r), the probability that G1

Γ(r) = α is equal to 1
2n . M

makes only a polynomial number of queries to GΓ and therefore M can find the corresponding τ
for α with only a negligible probability.

Now, we argue that if M does not possess the corresponding τ for α, then it can invert fα on
y with only a negligible probability. First, note that if M never queries F (α, ·) on an x such that
F (α, x) = y, then the probability that it outputs such an x is bounded by 1

2n (since x is distributed
uniformly on {0, 1}n). Every time M makes a query F (α, x) the probability that F (α, x) = y
is equal to 1

2n . M makes only a polynomial number of queries to its oracle and therefore the
probability that fα(M(α, y)) = y is a negligible function of n.

The following lemma is proven in [25, section 4.2] using Markov’s inequality and the Borel-
Cantelli lemma.

Lemma 4.4 (From [25]) Let R be a set of oracles. If for every PPT oracle machine M there
exists a negligible function neg(·) such that for every n and every input corresponding to n, M
succeeds in a given task with probability less than neg(n) (when the probability is taken over random
oracles in R and the random tape of M), then for measure 1 of oracles in R, for every PPT machine
M there exists a negligible function neg(·) such that for all sufficiently large n’s, M succeeds in the
given task with probability no more than neg(n).

6We use the definition of enhanced TDP that appears in [22], where I is a function that generates a random
permutation index with a corresponding trapdoor, S is a function that given a permutation index samples a random
element in its domain, F is a function that given a permutation index computes it on a given element in its domain,
and B is the function that given a permutation trapdoor, returns the preimage of a given element in its domain.
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Combining Claim 4.3 and Lemma 4.4, we obtain the following theorem:

Theorem 4.5 With probability 1 over random Γ-oracles, the algorithms (I, S′, F,B) associated
with the oracle form an enhanced trapdoor permutation. In particular, for every PPT machine M ,
every positive polynomial p(·) and for all sufficiently large n’s:

Pr[fI1(1n)(M(I1(1
n),Un)) = Un] <

1

p(n)

We remark also that statical semi-honest oblivious transfer can be constructed from any enhanced
trapdoor permutation [16] and thus exists relative to Γ-oracles.

4.3 Static OT
2
1 Relative to ∆-Oracles from Adaptive OT

2
1

In this section we prove that if there exists an adaptively secure OT 2
1 relative to random Γ-oracles,

then there exists a statically secure OT 2
1 relative to random ∆-oracles. We actually prove a more

general theorem that if there exists a protocol for securely computing any functionality f in the
presence of adaptive adversaries relative to a random Γ-oracle, then there exists a protocol for
securely computing f in the presence of static adversaries relative to a random ∆-oracle. We
restrict our proof to two-party protocols only, but stress that the claim can be proved similarly for
multiparty protocols as well.

Let Π1 = 〈Alice1, Bob1〉 be a protocol for securely computing a functionality f in the pres-
ence of adaptive adversaries relative to a Γ-oracle. We use Π1 to construct a new protocol
Π2 = 〈Alice2, Bob2〉 for securely computing f in the presence of static adversaries relative to a
∆-oracle.

Recall that the parties Alice2 and Bob2 have access to a ∆-oracle, while in the original protocol,
Alice1 and Bob1 have access to a Γ-oracle. There is a fundamental difference between these two
cases because a Γ-oracle is inherently asymmetric (it is possible to send a party fid while keeping
tid secret, thereby enabling them to compute the permutation but not invert it), while a ∆-oracle
is inherently symmetric (the same fid is used to compute and invert the permutation). The idea
behind our proof is to eliminate the asymmetric nature of the Γ-oracle by using the fact that in
the adaptive setting (e.g., in the post-execution corruption phase), the distinguisher can ultimately
corrupt all parties. If it does so, it obtains the entire view of all parties and in particular the view
of any party who samples a permutation using GΓ. The critical observation is that the probability
of a party finding an fid in the range of GΓ without explicitly querying it is negligible. However, if
it does make such a query, then its view contains both fid and tid and this will be obtained by the
distinguisher upon corrupting the parties. Thus, the distinguisher is able to compute and invert
the permutation, just like in the case of a ∆-oracle. The fact that the adaptive simulator must
simulate well even when the distinguisher works in this way (learning all fid, tid pairs) is the basis
for constructing a simulator for the static case when using a ∆-oracle.

We begin by defining Π2 = 〈Alice2, Bob2〉 which is constructed from Π1 by replacing the Γ-oracle
with a ∆-oracle:

Protocol Π2: On input xA, Alice2 invokes Alice1 on xA. On input xB, Bob2 invokes Bob1 on
xB. The execution is described below for a party P2 emulating P1, and is the same for both Alice2
and Bob2. In each round:

• When P2 gets the message sent by the other party in the previous round, it hands it to P1.
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• If P1 makes a query r to the oracle GΓ, P2 first queries G∆(r) and gets an output fid. Then,
P2 queries Q(fid) and gets an output tid. P2 hands the pair (fid, tid) to P1.

• If P1 makes a query (fid, x) to F , P2 queries P (fid, x), receives an output y and hands y to
P1 (note that y may equal ⊥).

• If P1 makes a query (tid, y) to F−1, P2 first queries its oracle Q−1 on tid and receives an
output fid. If the outputs is ⊥, it hands ⊥ to P1. Otherwise, P2 queries P−1(fid, y), obtains
an output x and hands x to P1.

• If P1 writes a string m on its outgoing communication tape, P2 sends m to the other party.

• At the end of the simulation, P2 outputs the output of P1.

We now prove that Π2 securely computes the functionality f in the presence of semi-honest
static adversaries.

Theorem 4.6 If Π1 securely computes a functionality f in the presence of adaptive adversaries
relative to a random Γ-oracle OΓ, then Π2 securely computes f in the presence of static semi-honest
adversaries relative to the ∆-oracle φ(OΓ).

Proof: The intuition has already been described above and we therefore proceed directly to the
proof. Let OΓ be an oracle that is distributed according to UΓ. We show that if Π1 is a secure
adaptive protocol for computing f relative to OΓ, then Π2 is a secure static semi-honest protocol
for computing f relative to O∆ = φ(OΓ). It is easy to see that Π2 computes f relative to O∆

because an execution of Π2 is, in fact, an execution of Π1 with a simulated Γ-oracle which is
exactly φ−1(O∆) = OΓ.

Next we turn to the security of Π2. We show that Π2 = 〈Alice2, Bob2〉 securely computes the
functionality f in the presence of static semi-honest adversaries relative to a O∆ = φ(OΓ). We
use the ideal-process simulator SIM of Π1 for the adaptive setting to construct two probabilistic
polynomial-time simulators SAlice2 and SBob2 for Π2 in the static setting, such that

{
SO∆

Alice2
(1n, xA, yA)

}
xA,xB∈{0,1}∗

cO
≡

{
V IEWΠ2,O∆

Alice2
(1n, xA, xB)

}
xA,xB∈{0,1}∗

{
SO∆

Bob2
(1n, xB , yB)

}
xA,xB∈{0,1}∗

cO
≡

{
V IEWΠ2,O∆

Bob2
(1n, xA, xB)

}
xA,xB∈{0,1}∗

We use the ideal-process simulator SIM of Π1 for the adaptive setting (see Section 2.2) to
construct two probabilistic polynomial-time simulators SAlice2 and SBob2 . Since the constructions
of SAlice2 and SBob2 and the proofs of indistinguishability are very similar, we present only a
construction and a proof for SBob2 .

Let A and Z be the following adversary strategy and environment: Z starts with an input
z ∈ {0, 1}. At the onset of the run of Π1, A corrupts Bob1 and at the end of the computation
outputs the entire view of Bob1. In the postexecution phase, if z = 0, no corruptions are made
and if z = 1, Z creates a “corrupt Alice1” message, hands it to A who corrupts Alice. Eventually
Z outputs the entire view of the corrupted parties (that is: if z = 0, the view of Bob alone and
if z = 1, the view of both parties). No auxiliary information is sent by Z to A. Let SIM be the
ideal-process adversary guaranteed to exist for A and Z by the adaptive security of Π1. We now
use A, Z and SIM to define SBob2 (the static simulator for the case that Bob is corrupted). SBob2
receives the input xB and output yB of Bob as defined by the functionality f and emulates the
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run of SIM in the adaptive ideal model with environment Z with input z = 0. Note that SIM
must corrupt only Bob, because in the real world only Bob is corrupted when z = 0. We also can
assume, w.l.o.g. that SIM corrupts Bob in the first corruption phase.

SBob2 receives input (xB , yB) and works as follows, simulating a Γ-oracle for SIM using its
∆-oracle:

• If SIM makes a query r to the oracle GΓ, SBob2 queries its oracle G∆(r) and receives an
output fid. It then queries Q on fid, gets an output tid and hands the pair (fid, tid) to
SIM.

• If SIM makes a query (fid, x) to F , SBob2 queries it oracle P (fid, x), gets an output y and
hands it to SIM.

• If SIM makes a query (tid, y) to F−1, SBob2 first queries its oracle Q−1 on tid, gets an output
fid. If the outputs is ⊥, it hands ⊥ to SIM. Otherwise, SBob2 queries P−1(fid, y), gets an
output x and hands x to SIM.

• When SIM decides to corrupt Bob1, SBob2 plays the role of Z by sending xB to SIM.

• In the computation phase, SBob2 plays the role of the trusted party and sends yB to SIM
(recall that SBob2 gets yB as input).

• At the end of the simulation, SBob2 outputs the output of SIM.

Informally speaking, we show that a distinguisher D2 for Π2 and SBob2 (relative to O∆) implies the
existence of a distinguisher D1 for Π1 and SIM (relative to OΓ). The idea is to have D1 simulate
the run of D2 on the view of Bob. However, D2 has oracle access to a ∆-oracle O∆, while D1 has
oracle access to a Γ-oracle OΓ. This might be problematic for example if D2 wishes to compute
P−1(fid, y) but D1 doesn’t know the corresponding tid (recall that D1 can only invert y in the Γ-
oracle world if it holds the trapdoor tid whereas D2 can invert y given fid only). Despite the above,
we use the fact that the range of GΓ is a negligible fraction of {0, 1}2n × {0, 1}2n, and therefore
any fid used in the protocol (except with negligible probability) must have been generated via a
query to GΓ, as described in the intuition above. More specifically, we show that if there exists a
distinguisher D2 that distinguishes the output of SBob2 from the output of a corrupted Bob2 in a
real execution of Π2, then there exists a distinguisher D1 that distinguishes the result of an ideal
execution with SIM from a real execution of Π1 with adversary A and environment Z with input
z = 1, meaning that Alice is also corrupted at the end. (Note that we set z = 0 in order to define
SBob2 , but now set z = 1 to construct the distinguisher. Since SIM has to work for all inputs z to
Z, this suffices.) Since both Alice and Bob are corrupted in this execution, D1 obtains all of the
(fid, tid) pairs generated by queries to GΓ and so it can invert always, enabling it to run D2 and
use its Γ-oracle to answer all of D2’s ∆ queries.

Formally, assume that there exist a PPT machine D2 and a positive polynomial p(·) such that
for infinitely many n’s, there exist xA, xB ∈ {0, 1}∗ such that:

|Pr
[
DO∆

2

(
1n, xA, xB , V IEW

Π2,O∆

Bob2
(1n, xA, xB)

)
= 1

]

− Pr
[
DO∆

2

(
1n, xA, xB ,S

O∆

Bob2
(1n, xB , yB)

)
= 1

]
| ≥

1

p(n)
(2)
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We use D2 to construct a PPT machine D1 and a positive polynomial q(·) such that for infinitely
many n’s, there exist xA, xB ∈ {0, 1}∗, z ∈ {0, 1} such that:

∣∣∣Pr
[
DOΓ

1

(
1n, xA, xB , z,real

OΓ

Π1,A,Z
(n, xA, xB , z)

)
= 1

]

− Pr
[
DOΓ

1

(
1n, xA, xB , z, ideal

OΓ

OT 2

1
,SIM,Z

(n, xA, xB , z)
)

= 1
]∣∣∣ ≥ 1

q(n)

The distinguisher D1 receives as input xA, xB , z and the output of Z. If z = 0, D1 return 0 and
halts. Otherwise, the output of Z consists of both parties’ views, including Alice’s input xA and
random tape rA and Bob’s input xB and random tape rB . D1 begins by initializing a table TQ that

will hold all pairs (fid, tid) generated by queries to the oracle. D1 invokes 〈AliceOΓ

1 , BobOΓ

1 〉 on the
appropriate input and random tapes (recall that they are a part of D1’s input because A outputs
the views of both parties when z = 1) and for every access of one of the parties to GΓ, namely a
query GΓ(r) = (fid, tid), D1 records the entry (fid, tid) in TQ. When it finishes the execution of

〈AliceOΓ

1 , BobOΓ

1 〉, D1 starts simulating D2 on the view of Bob and proceeds as follows:

• If D2 makes a query G∆(r), D1 makes a query GΓ(r), gets a pair (fid, tid), records the entry
(fid, tid) in TQ and hands fid to D2.

• If D2 tries to compute Q(fid), D1 looks for an entry (fid, tid) in TQ. If such an entry exists,
it hands tid to D2 and continues. Else, it hands ⊥ to D2.

• If D2 tries to compute Q−1(tid), D1 looks for (fid, tid) in TQ. If such an entry exists, it hands
fid to D2 and continues. Otherwise, it hands ⊥ to D2.

• If D2 tries to compute P (fid, x), D1 queries its oracle F (fid, x) and returns its answer.

• If D2 tries to compute P−1(fid, y), D1 checks whether an entry (fid, tid) exists in TQ. If not,
it returns ⊥. If yes, it queries F−1(tid, y) and returns its answer.

Note that if z = 1, a run of D1 on input xA, xB , z and the views of both parties with access to
an oracle OΓ is a simulation of the run of D2 on input xB and the view of Bob with a simulated
∆-oracle obtained from OΓ. It’s easy to see that only differences between the simulated ∆-oracle
obtained from OΓ by D1 and φ(OΓ) are:

• Queries to Q on an fid in the range of G∆ that was not created via a query to G∆: For such
queries, the simulated ∆-oracle replies with ⊥ since a pair (fid, tid) doesn’t exist in TQ, while
φ(OΓ)’s answer is different than ⊥.

• Queries to Q−1 on a tid in the range of Q, where the preimage of tid was not created via a
query to G∆: For such queries, the simulated ∆-oracle replies with ⊥ since a pair (fid, tid)
doesn’t exist in TQ, while φ(OΓ)’s answer is different than ⊥.

• Queries to P−1 on an fid in the range of G∆ that was not created via a query to G∆: For
such queries, the simulated ∆-oracle replies with ⊥ since a pair (fid, tid) doesn’t exist in TQ,
while φ(OΓ)’s answer is different from ⊥.

We define the event FIND to be true if and only if D2 makes a query to its oracle involving an fid
that was not created via a query to G∆ or a tid such that Q−1(tid) was not created via a query
to G∆. Note that finding an fid in the range of G∆ without making a query to G∆ or finding a
tid in the range of Q without creating first its preimage via a query to G∆ can happen with only a
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negligible probability (recall that the ranges of G∆ and Q are each a negligible fraction of {0, 1}2n)
and therefore:

Pr [FIND] <
1

p2(n)

We now examine the behavior of D1 in case FIND = false and z = 1 and show that there exists
a polynomial q(·) such that for infinitely many n’s, there exist xA, xB ∈ {0, 1}∗ such that:

∣∣∣Pr
[
DOΓ

1

(
1n, xA, xB , 1,real

OΓ

Π1,A,Z
(n, xA, xB , 1)

)
= 1

]

− Pr
[
DOΓ

1

(
1n, xA, xB , 1, ideal

OΓ

OT 2

1
,SIM,Z

(n, xA, xB , 1)
)

= 1
]∣∣∣ ≥ 1

q(n)

Recall that for infinitely many n’s, there exist xA, xB ∈ {0, 1}∗ for which Eq. (2) holds. Fix
such an n and the corresponding xA, xB ∈ {0, 1}∗.

First, assume that the input of D1 is the random variable real
OΓ

Π1,A,Z
(n, xA, xB , 1):

Pr
[
DOΓ

1

(
1n, xA, xB ,real

OΓ

Π1,A,Z
(n, xA, xB , 1)

)
= 1

]

= Pr
[
DOΓ

1

(
1n, xA, xB ,real

OΓ

Π1,A,Z
(n, xA, xB , 1)

)
= 1|¬FIND

]
· Pr [¬FIND]

+ Pr
[
DOΓ

1

(
1n, xA, xB ,real

OΓ

Π1,A,Z
(n, xA, xB , 1)

)
= 1|FIND

]
· Pr [FIND]

≥ Pr
[
DOΓ

1

(
1n, xA, xB ,real

OΓ

Π1,A,Z
(n, xA, xB , 1)

)
= 1|¬FIND

]
· Pr [¬FIND]

In this case, the view of Bob1 that is contained in the input of D1 is also a view of Bob2 in a
real-world run of Π2(1

n, xA, xB) with oracle access to O∆ = φ(OΓ), since a run of Π2 with oracle
access to a ∆-oracle O∆ is in fact a simulation of a run of Π1 with oracle access to a Γ-oracle
φ−1(O∆). Recall that when z = 1, D1 with oracle access to a Γ-oracle O∆ invokes a run of D2 with
a simulated ∆-oracle. If FIND = false, D1 returns 1 on real

OΓ

Π1,A,Z
(n, xA, xB , 1) if and only if D2

returns 1 on V IEWΠ2,O∆

Bob2
(1n, xA, xB) and therefore:

Pr
[
DOΓ

1

(
1n, xA, xB ,real

OΓ

Π1,A,Z
(n, xA, xB , 1)

)
= 1

]

≥ Pr
[
DOΓ

1

(
1n, xA, xB ,real

OΓ

Π1,A,Z
(n, xA, xB , 1)

)
= 1|¬FIND

]
· Pr [¬FIND]

= Pr
[
DO∆

2

(
1n, xA, xB , V IEW

Π2,O∆

Bob2
(1n, xA, xB)

)
= 1

]
· Pr [¬FIND]

Now, assume that the input of D1 is the value of the random variable ideal
OΓ

OT 2
1
,SIM,Z

(n, xA, xB , z):

Pr
[
DOΓ
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1n, xA, xB , ideal

OΓ

OT 2
1
,SIM,Z

(n, xA, xB , 1)
)

= 1
]

= Pr
[
DOΓ

1

(
1n, xA, xB , ideal

OΓ

OT 2
1
,SIM,Z

(n, xA, xB , 1)
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= 1|¬FIND
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· Pr [¬FIND]

+ Pr
[
DOΓ

1

(
1n, xA, xB , ideal

OΓ

OT 2

1
,SIM,Z

(n, xA, xB , 1)
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= 1|FIND
]
· Pr [FIND]

≤ Pr
[
DOΓ

1

(
1n, xA, xB , ideal

OΓ

OT 2

1
,SIM,Z

(n, xA, xB , 1)
)

= 1|¬FIND
]
· Pr [¬FIND]

+ Pr [FIND]

In this case, the view of Bob1 that is contained in the input ofD1 is also a view of Bob2 created by
SBob2 with oracle access to O∆ = φ(OΓ). This claim is true, because SBob2 emulates a run of SIM
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with Z and z = 0 and trusted party T with a simulated Γ-oracle that is equal to φ−1(O∆) = OΓ

and outputs the view of Bob created by SIM. Since the view of Bob depends only on the execution
phase, the view of Bob that is contained in the output of ideal

OΓ

OT 2

1
,SIM,Z

(n, xA, xB , z) is equal

to the output of SO∆

Bob2
(1n, xB , sxB

) regardless of the value of z. Therefore, if FIND = false, D1

outputs 1 on ideal
OΓ

OT 2

1
,SIM,Z

(n, xA, xB , 1) if and only if D2 returns 1 on SO∆

Bob2
(1n, xB , sxB

) and

therefore:
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DOΓ

1

(
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1
,SIM,Z

(n, xA, xB , 1)
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= 1
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DOΓ
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1
,SIM,Z

(n, xA, xB , 1)
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We conclude that:
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Bob2
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1

p2(n)
) ·

1

p(n)
−

1

p2(n)
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1

p2(n)
−

1

p3(n)
≥

1
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for some positive polynomial q(·). We conclude that Π2 = 〈Alice2, Bob2〉 is statically secure relative
to O∆ and this completes the proof of Theorem 4.6.

Remark 4.7 Theorem 4.6 is true only for random Γ-oracles. Specifically, if OΓ is not a random
Γ-oracle, then the claim that finding an fid in the range of GΓ without making a query to it can
happen only with negligible probability does not necessarily hold, and therefore the theorem is not
necessarily true for an arbitrary Γ-oracle.

The following corollary is obtained from Theorem 4.6 by taking oblivious transfer as a special
case:

Corollary 4.8 If there exists a protocol Π1 that securely computes the OT 2
1 functionality in the

presence of adaptive semi-honest adversaries relative to a random Γ-oracle OΓ, then the protocol
Π2 defined above securely computes the OT 2

1 functionality in the presence of static semi-honest
adversaries relative to φ(OΓ).

4.4 No Static OT 2
1 Relative to ∆ Oracles

For the next step of our proof, we show that static OT 2
1 does not exist relative to most ∆ oracles.

In order to do this, we show that key agreement does not exist relative to most ∆ oracles, and
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then derive the result from the fact that secure OT 2
1 implies key agreement. In order to show that

key agreement does not exist relative to most ∆ oracles, we show that a ∆-oracle can be replaced
with a “plain random oracle”, with at most a negligible difference. Thus, the results of [25] for key
agreement relative to a plain random oracle hold also relative to a ∆ oracle. We begin by formally
defining a random oracle type, denoted ρ, and show its relationship to ∆-oracles.

ρ-oracles. We define a ρ-oracle to be an oracle with the following functions:

• Gρ is an injective function from {0, 1}n to {0, 1}2n.

• GTEST is a function that returns a string in {0, 1}n on inputs in the range of Gρ(·). For any
other input, it returns ⊥. Note that GTEST is in fact a tool for examining whether a string
of size 2n is in the range of Gρ or not.7

• FP is a function that on a triple (I, k, x) ∈ {0, . . . , 5} × {0, 1}2n × {0, 1}
n
2 returns a string

y ∈ {0, 1}
n
2 . Note that for a given I and k ∈ {0, 1}2n, FP (I, k, ·) is a function from {0, 1}

n
2

to {0, 1}
n
2 .

• FQ is a function that on a pair (I, x) ∈ {0, . . . , 5}×{0, 1}n returns a string y ∈ {0, 1}n. Thus,
for a given I, FQ(I, ·) is a function from {0, 1}n to {0, 1}n.

Note that the output of Gρ is an fid – or symmetric key k – of length 2n which defines 6 random
functions FP (0, k, ·), . . . , FP (5, k, ·) which are then used to simulate the P permutation of a ∆-
oracle, using Luby-Rackoff. Likewise, the index I in FQ is used for deriving 6 different function for
Luby-Rackoff (there is no “secret key” k for FQ because it is used for simulating the Q permutation
in a ∆ oracle which is not keyed).

We denote by Uρ the uniform distribution on ρ-oracles. Namely, we say that a ρ-oracle Oρ =
(Gρ, GTEST , FP , FQ) is distributed according to Uρ if Gρ is a uniformly distributed injective function
from {0, 1}n to {0, 1}2n, GTEST is a uniformly distributed function from the range of Gρ to {0, 1}n

(and for inputs not in the range of Gρ, it returns ⊥), FP is a uniformly distributed function
from {0, . . . , 5} × {0, 1}2n × {0, 1}

n
2 to {0, 1}

n
2 and FQ is a uniformly distributed function from

(I, x) ∈ {0, . . . , 5} × {0, 1}n to {0, 1}n. We sometimes use the phrase “Oρ is a random ρ-oracle” as
an abbreviation for “Oρ is distributed according to Uρ”.

∆-oracles versus ρ-oracles. We now use the Luby-Rackoff construction [30] to replace a random
∆-oracle with a random ρ-oracle. We stress that unlike Corollary 4.2, the distributions are only
computationally indistinguishable.

Definition 4.9 (Feistel Permutation) Let f : {0, 1}l → {0, 1}l be a function and let x1, x2 ∈

{0, 1}l. DESf is the permutation defined by DESf (x1, x2)
def
= (x2, x1 ⊕ f(x2)). DESf1,...,fk

is the

permutation defined by DESf1,...,fk
(x1, x2)

def
= DESf2,...,xk

(DESf1(x1, x2)).

It is not difficult to see that inverting a Feistel permutation is no harder than computing it, as
DES−1

f (y1, y2) = (y2 ⊕ f(y1), y1). Intuitively, a Feistel permutation upon a random ρ-oracle can
be used in order to obtain an oracle that behaves like a ∆-oracle. Formally, for a given ρ-oracle
Oρ = (Gρ, GTEST , FP , FQ), an fid ∈ {0, 1}2n and x1, x2 ∈ {0, 1}

n
2 , we define six functions: f0 =

FP (0, f id, ·), f1 = FP (1, f id, ·), f2 = FP (2, f id, ·), f3 = FP (3, f id, ·) ,f4 = FP (4, f id, ·) and f5 =

7It was shown in [19] that the black-box separation of [25] holds when GTEST is added to the oracle defined in [25].
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FP (5, f id, ·). Then, the permutation PDES relative to a given oracle Oρ, that simulates the P
permutation in the ∆-oracle, is defined by

PDESOρ,fid(x1, x2)
def
= DESf0,...,f5(x1, x2)

Note that PDESOρ,fid is a permutation over {0, 1}n (similar to P (fid, ·) in a ∆-oracle). Let

PDES−1
Oρ,fid

be the inverse permutation. Similarly, for a given ρ-oracle Oρ = (Gρ, GTEST , FP , FQ)

and for x1, x2 ∈ {0, 1}n we define g0 = FQ(0, ·), . . . , g5 = FQ(5, ·). (Recall that Q oracle queries
in a ∆-oracle are not keyed and thus when simulated using FQ in a ρ-oracle, no key is used.) We
define:

QDESOρ(x1, x2)
def
= DESg0,...,g5(x1, x2)

As above, QDESOρ is a permutation over {0, 1}2n (similar to Q in a ∆-oracle). Let QDES−1
Oρ

be
the inverse permutation.

We define a mapping ψ from ρ to ∆ oracles. Let Oρ = (Gρ, GTEST , FP , FQ) be a ρ-oracle. Then
ψ(Oρ) = (G∆, P, P

−1, Q,Q−1) is the following ∆-oracle:

• For every r ∈ {0, 1}n, G∆(r) = Gρ(r)

• For every fid ∈ Range(G∆) and all x ∈ {0, 1}n, P (fid, x) = PDESOρ,fid(x)

• For every fid 6∈ Range(G∆) and for every x ∈ {0, 1}n, P (fid, x) =⊥

• For every fid ∈ Range(G∆), Q(fid) = QDESOρ(fid)

• For every fid 6∈ Range(G∆), Q(fid) =⊥

• P−1 and Q−1 are the inverse functions of P and Q

We denote by ψ(Uρ) the distribution where a random ρ-oracle is chosen and then ψ is applied to it.
The following claim states that access to a random ∆-oracle O∆ is essentially the same as access
to a ∆-oracle ψ(Oρ), when Oρ is random.

Theorem 4.10 ([12]) There exists a simulator S and a negligible function µ, such that for every
machine D with unbounded running time which makes a polynomial number of queries,

∣∣∣Pr
[
DUρ,ψ(Uρ)(1n) = 1

]
− Pr

[
DSU∆ ,U∆(1n) = 1

]∣∣∣ < µ(n)

We remark that [12] refer to a plain random oracle and a plain random permutation, without
the additional fid generating and other functions. However, Gρ = G∆ by definition, and so clearly
Gρ can be simulated given G∆. Likewise, GTEST can be simulated using P (because the latter
returns ⊥ if the fid is not in the range). We use Theorem 4.10 in order to prove the following
theorem:

Theorem 4.11 If P = NP, then relative to measure 1 of ∆-oracles, there does not exist any
statically secure protocol for computing the OT 2

1 functionality.

In order to prove Theorem 4.11, we recall the original black-box separation of key agreement
from a random oracle, as proven in [25].
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Theorem 4.12 ([25]) If P = NP, then given any key-agreement protocol relative to a random
ρ-oracle8, for every polynomial poly(·), there exists a polynomial time Eve such that Eve finds all
intersection queries with probability 1 − 1

poly(n) .

We first show that a similar argument holds relative to ∆-oracles (that is, every key agreement
protocol relative to a random ∆-oracle can be broken with probability 1 − 1

poly(n)). Then, using

the same methods as in [25], we show that relative to measure 1 of ∆-oracles, any key-agreement
can be broken in polynomial time. As described in [19], it is possible to construct a secure key
agreement from any static oblivious transfer protocol and it is easy to verify that this construction
relativizes. Therefore, we conclude that relative to measure 1 of ∆-oracles, there does not exist any
statically secure protocol for computing the OT 2

1 functionality. We begin by proving the following
claim:

Proposition 4.13 If P = NP, then given any key-agreement protocol relative to a random ∆-
oracle, for every polynomial poly(·), there exists a polynomial time Eve such that Eve finds all
intersection queries with probability 1 − 1

2poly(n) .

Proof Sketch: Let 〈A1,B1〉 be a key-agreement protocol relative to random ∆-oracles. We use
〈A1,B1〉 to construct a key-agreement protocol 〈A2,B2〉 relative to random ρ-oracles. Recall that
A2 and B2 have oracle access to a ρ-oracle while A1 and B1 have oracle access to a ∆-oracle. The
idea is to use the ρ-oracle in order to simulate a ∆-oracle while replacing queries to P , P−1, Q and
Q−1 by appropriate Feistel permutations obtained from FP and FQ.

Let 〈A2,B2〉 be the following protocol:

Protocol 2 On input 1n, A2 invokes A1 on 1n and B2 invokes B1 on 1n. The execution is described
below for a party P2 emulating P1, and is the same for both A2 and B2. In each round:

• When P2 gets the message sent by the other party in the previous round, it sends it to P1.

• If P1 makes a query r to oracle G∆, P2 queries it oracle Gρ(r), and hands the output to P1.

• If P1 makes a query P (fid, x), P2 queries its oracle GTEST on fid (recall that GTEST (fid)
returns ⊥ if and only if fid is not in the range of Gρ). If the oracle returns ⊥, P2 returns ⊥
as well. Otherwise, uses its oracle FP to compute y = PDESOρ,fid(x) and hands y to P1.

• If P1 makes a query P−1(fid, y), P2 queries GTEST on fid. If it returns ⊥, P2 returns ⊥ as
well. Otherwise, P2 uses its oracle FP to compute x = PDES−1

Oρ,fid
(y) and hands x to P1.

• If P1 makes a query Q(fid), P2 queries GTEST on fid. If it returns ⊥, P2 returns ⊥ as well.
Otherwise, it uses its oracle FQ to compute tid = QDESOρ(fid) and hands tid to P1.

• If P1 makes a query Q−1(tid), P2 uses its oracle FQ to compute fid = QDES−1(tid) and
queries GTEST (fid). If it returns ⊥, P2 returns ⊥ as well. Otherwise, P2 hands fid to P1.

• If P1 writes a string m on its outgoing communication tape, P2 sends m to the other party.

• At the end of the protocol, P2 outputs the output of P1.

8[25] refer to a single random permutation oracle; however, the same proof can be extended to ρ-oracles.
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Now, assume P = NP . Let poly(·) be some polynomial and let Eve2 be as in Theorem 4.12. We
use Eve2 to construct an adversary Eve1 for 〈A1,B1〉. Eve1 simply invokes Eve2 and simulates
the ρ-oracle using the simulator S guaranteed to exist by Theorem 4.10. Note that if Eve1 outputs
a list of intersection queries with probability less than 1− 1

2poly(n) , then it is possible to distinguish

oracles Uρ, ψ(Uρ) from SU∆ ,U∆ with non-negligible probability. Specifically, given a pair of oracles
(O1,O2) that are distributed according to Uρ, ψ(Uρ) or SU∆ ,U∆, distinguisher D first invokes a run
of 〈AO2

1 ,BO2

1 〉 and then invokes EveO1

2 on the transcript. D outputs 1 if and only if Eve2 outputs
all intersection queries. Now, if (O1,O2) are distributed according to Uρ, ψ(Uρ) then Eve2 outputs
all intersection queries with probability at least 1− 1

poly(n) , and if (O1,O2) are distributed according

to SU∆ , U∆ then Eve2 outputs all intersection queries with probability less than 1− 1
2poly(n) . Thus

D distinguishes with non-negligible probability.

Remark 4.14 Theorem 4.10 holds even when P = NP since the running time of D is unbounded.

The following corollary can be proven using the same methods as in [25] (the only difference
between it and what was proven in [25] is the type of oracle used):

Corollary 4.15 If P = NP, then for measure 1 of ∆-oracles, any key-agreement protocol can be
broken in polynomial time.

Recalling that the existence of a secure OT 2
1 relative to an oracle O implies the existence of a

secure key agreement relative to O, we obtain:

Corollary 4.16 If P = NP, then for measure 1 of ∆-oracles, there does not exist any statically
secure protocol for computing the OT 2

1 functionality.

4.5 Concluding the proof

Corollary 4.8 states that if there exists an adaptively secure protocol for OT 2
1 relative to a given Γ

oracle O, then there exists a statically secure protocol for OT 2
1 relative to the oracle φ(O). Now, by

Theorem 4.11, for measure 1 of ∆ oracles, there exists no statically secure OT 2
1 . Using the fact that

φ is a bijection (Claim 4.1), we conclude that for measure 1 of Γ oracles, there exists no adaptively
secure OT 2

1 . That is, we have the following:

Theorem 4.17 If P = NP, then for measure 1 of Γ-oracles, there does not exist any adaptively
secure protocol for computing the OT 2

1 functionality.

Similarly to [25], we derive an oracle separation of enhanced trapdoor permutations form adap-
tively secure OT 2

1 (even for semi-honest adversaries):

Corollary 4.18 There exists an oracle relative to which enhanced trapdoor permutations exist, but
not adaptively secure OT 2

1 .

Proof: Let O be a PSPACE -complete oracle combined with a random Γ-oracle. Enhanced
trapdoor permutations exist relative to O whereas adaptively secure OT 2

1 does not, as we have
shown.
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