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Abstract. Simulation-based security notions for cryptographic proto-
cols are regarded as highly desirable, primarily because they admit strong
composability and, consequently, a modular design. In this paper, we give
a simulation-based security definition for two-round authenticated mes-
sage exchange and show that a concrete protocol, 2AMEX-1, satisfies
our security property, that is, we provide an ideal functionality for two-
round authenticated message exchange and show that 2AMEX-1 realizes
it securely. To model the involved public-key infrastructure adequately,
we use a joint-state approach.

1 Introduction

Simulation-based security definitions for cryptographic protocols, see, for in-
stance, [Can01,PW01,BPW04,Küs06], are attracting much attention, the rea-
sons being that such security definitions “guarantee security even when a secure
protocol [. . . ] is used as a component of an arbitrary system” [Can01] and that
they enable “modular proofs of security” [PW01].

As a consequence, a variety of cryptographic primitives such as asymmetric
encryption and digital signatures have been treated following the simulation-
based approach. There are, however, only few complex cryptographic protocols
that have been tackled within the simulation-based framework. We are aware
of [CK02,MN06,BCJ+06,BP06,GMP+08], where, for instance, Kerberos and the
Yahalom protocol are treated.

In this paper, we deal with two-round authenticated message exchange pro-
tocols following the simulation-based approach. We (i) provide an ideal function-
ality for two-round authenticated message exchange protocols, F2AM, (ii) pro-
vide an implementation, P2AMEX−1, corresponding to a particular such protocol,
2AMEX-1, and (iii) prove the implementation of 2AMEX-1 to be secure, that
is, prove that P2AMEX−1 securely realizes the ideal functionality, in symbols
P2AMEX−1 ≤BB F2AM. (The superscript stands for black-box simulatability.)

The protocol 2AMEX-1, see [KSW09], which is a generic protocol for mes-
sage authentication in a web service setting, is complex in several respects: it
distinguishes between short-lived clients and long-lived servers; it uses digital
signatures and therefore makes use of a public-key infrastructure; it requires
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only bounded memory; it uses nonces and timestamps to counter replay attacks;
each client and each server has its own local clock. In [KSW09], 2AMEX-1 was
proved to be secure in the Bellare-Rogaway framework as presented in [BR93].

Several simulation-based approaches have been developed over the last decade
(see above). We could have used any of these approaches, but we have adopted
the one by Küsters, see [Küs06], because it provides a very flexible addressing
mechanism and easy-to-use joint-state theorems, see [KT08a]. The latter is espe-
cially useful in the analysis of 2AMEX-1, because it allows us to show with only
little effort that 2AMEX-1 works securely with a simple, but realistic public-key
infrastructure. Although Küsters’ setting comes in handy in many respects, it
also has some shortcomings, which become evident from our analysis and are
discussed in this paper.

We start with the sketch of Küsters’ model in Section 2, go on with a descrip-
tion of the setting and the ideal functionalities in Section 3 and a description
of the implementation for 2AMEX-1 in Section 4, and conclude with our main
result and a discussion in Sections 5 and 6.

We are grateful to Max Tuengerthal for helpful comments.

2 Simulation-Based Security

In this section, we give a high-level description of the simulation-based framework
from [Küs06], which is referred to as the IITM framework, where IITM stands
for inexhaustible interactive Turing machine.

In the IITM framework cryptographic protocols and the environment they
are run in (including the adversary) are modeled as concurrent, polynomial-time,
probabilistic, interactive, replicable Turing machines. Here, “concurrent” refers
to an interleaving semantics, that is, only one IITM is active at a time and there
is a mechanism that determines which IITM is activated next; “replicable” refers
to a mechanism which allows certain machines, the so-called banged machines,
to be instantiated several times (and run concurrently); “interactive” means that
the machines can communicate by sharing tapes, more precisely: an output tape
of one machine can be the input tape of another machine. From a security point of
view, it is important that systems of IITM’s can be simulated in polynomial time.
To achieve this, it is, however, not enough to require that the individual IITM’s
are polynomial-time, because two IITM’s “playing ping pong” could double their
outputs on each activation, leading to an overall exponential running time. For
that reason the IITM framework imposes certain restrictions on how machines
are interconnected, based on a partition of tapes into consuming and enriching.
Roughly speaking, the overall length of the output of one IITM up to a certain
point may be polynomial in the overall length of the input on enriching tapes
up to the same point, but there must not be any cycle of enriching tapes. This
is less restrictive than requiring that each IITM runs in time polynomial in the
security parameter; it allows to process inputs of arbitrary size.

To illustrate the IITM framework consider Figure 1 and first focus on the box
labeled F2AM. This box represents a model of two-round authenticated message
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Fig. 1. Ideal functionality for two-round message authentication

exchange protocols (details follow in the next section); it contains four machines
which represent an actual protocol: C, S, EI, and NG, of which the first three are
banged (can be replicated), and the last one is not. Every instance of machine
C is connected with machine NG, in both directions. The corresponding input
tape of NG is enriching, while the input tape of C is not.

There are two types of connections crossing the borders of F2AM: solid con-
nections representing tapes classified as I/O tapes and dashed connections rep-
resenting tapes classified as network tapes. I/O tapes should roughly be thought
of as tapes communicating with “users” of the system, whereas network tapes
are tapes where the adversary can interfere.

In Figure 1, the adversary, represented by an IITM denoted A, is not con-
nected directly with F2AM. Rather, there is a mediator between A and F2AM,
namely an IITM S called simulator. The situation is typical for simulation-based
security: a simulator “translates” network traffic to make a system (in this case
F2AM) seem equivalent to another one (usually a “real” system P, see below)
to an outside observer consisting of an environment machine E (taking over the
role of all users) and an adversary A.

Another feature of Figure 1 not discussed yet has to do with how different
instances of the same machine are addressed. Underlining the name of a machine
indicates the usage of a generic addressing mechanism provided by the IITM
framework, which works by using prefixes of messages as identifiers for instances.
In Figure 1 the machine EI is underlined twice, which adds two prefixes for



addressing, that is, a hierarchical addressing mechanism is used. We use it to
model multi-user multi-session instances.

The formal way to specify the system represented by the box F2AM in Fig-
ure 1 is by the expression

F2AM =!FC | !FS | FNG | !FEI , (1)

where FC, FS, FNG, and FEI denote (descriptions of) the underlying IITM’s,
and | denotes an operator for composing machines.

In the IITM framework, security of a protocol is defined as follows. First,
one describes a system of IITM’s, F , which works in an ideal fashion in every
setting where an environment and an adversary are connected to it, that is, how
one would expect a perfect protocol to work. Such a system is called an ideal
functionality. Then, given a real protocol, one describes a system of IITM’s, P,
which works just the way the real protocol would work in every setting where an
environment and an adversary are connected to it. Now, P is considered secure if
there is a simulator IITM S with the following property. For every environment
machine E and every adversary machine A, the system composed of P, E , and
A is computationally indistinguishable from the system composed of F , E , A,
and S. As explained above communication between these machines is restricted
as follows: all external network connections of F are handled by the simulator
S; the adversary may only communicate with F using the network interface
provided by the simulator; and the environment may only communicate with
F using I/O connections. Hence, the system composed of F and the simulator
(translating network messages) is “equivalent” to P. In other words, every attack
on the real protocol can be transferred into the ideal system.

If the above condition is satisfied, then P securely realizes (or implements)
F , denoted by P ≤BB F (for black-box simulation).

3 Two-Round Authenticated Message Exchange

We start with a description of the general scenario. In a session of a two-round
authenticated message exchange protocol (2AM protocol) a client sends a request
to a server and expects to receive an appropriate response. This is, for instance,
the case for web service calls, see, e. g., [ML07,LB07] and remote procedure
calls, see, e. g. [Sun98,Win99]. Observe that for these protocols to make sense
the request and response messages include payloads.

In a 2AM protocol the request and the response messages are required to be
secured in such a way that (i) both client and server can verify that the messages
they receive are authentic, (ii) the server accepts no message twice (payloads, on
the contrary, may be received twice, but only in different messages), and (iii) if
the client receives a response, it can be sure which of his requests the response
refers to. Note that the same client may have multiple sessions with the same or
different servers in parallel, but each session has only two rounds.



Tapes: C←←→ EC, C L9999K ÂC, C←→ S, C←→→ NG
Initialization: c = s = r = ε, n = 0, state = Init, cor = false
Steps: loop

Send a request to the server:
if (c′, (Client, s′), Init) received from EC

Let state = OK, c = c′ and s = s′.
Send (c, (Client, s),GetNonce) to NG.
Recv (c, (Client, s),Nonce, r′) from NG, let r = r′.
Send (c, (Client, s, r),Nonce, r) to EC.

Recv (c, (Client, s, r),Request, pc, 1
n′

) from EC, let n = n′.

Send (c, (Client, s, r),Request, pc, n) to ÂC.

Recv (c, (Client, s, r),Request, Send) from ÂC.
Send (c, (Client, s, r),Request, pc) to S.

Receive and process a response from the server:
if (s, (Server, c, r),Response, ps) received from S

If state 6= OK or |ps| > n, abort.
Let state = Stopped.
Send (c, (Client, s, r),Response, ps) to EC.

Corruption: Corr(cor , true, state 6= Init, ε, ÂC, {EC}, EC)
CheckAddress: Accept the initialization message only once. Check for c, s, and r as soon as each

one has been set.

Fig. 2. The client functionality FC

3.1 Overview of the Ideal Functionality

Our model of the ideal functionality for 2AM protocols consists of four function-
alities, see Figure 1: a client FC (defined in Figure 2), a server FS (defined in
Figure 3), a nonce generator FNG (defined in Appendix B.4), and an enriching
input functionality FEI (defined in Appendix B.5). The ideal functionality F2AM

is the composition of these functionalities, as defined in (1).
One instance of the client functionality handles exactly one session between

a client identity and a server, i. e., after initialization it basically (i) receives a
request from the environment and encapsulates it in a message to a server, and
(ii) receives a response from the server and forwards its contents to the environ-
ment. One instance of the server functionality also handles exactly one session;
as with the client, it consists of receiving a request and sending a response. The
nonce generator generates globally unique session identifiers (numbers used once,
nonces) to distinguish multiple sessions between two parties. The enriching input
functionality passes bits from an enriching input tape to the adversary. These
bits are necessary to give the adversary additional capabilities as explained in
Section 4.3.

3.2 Ideal Client Functionality

When the environment wants to start a new session, it provides the client with
the identity of a server the client is supposed to communicate with. The client
then responds with a nonce, which can be viewed as a handle, i. e., it allows the
environment to distinguish different sessions this client is involved in.

The environment can now pass the payload of the request message to the
client as well as enough resources to process a possible response from the server.
The client then notifies the adversary that a message is ready to be sent. If the



Tapes: S←←→ ES, S L9999K ÂS, S←→ C
Initialization: s = c = r = ps = ε, n = 0, state = Init0, cor = false
Steps: loop

Initialization by the environment:

if (s′, (Server), Init, 1n
′
) received from ES

If state 6= Init0, abort. Let s = s′ and n = n′.
Send (s, (Server), Init, n) to ÂS.

Recv (s, (Server), Init,OK) from ÂS.
Let state = Init1.

Receive and process a request from the client:
if (c′, (Client, s, r′),Request, pc) received from C

If state 6= Init1 or |pc| > n, abort. Let state = OK, c = c′, and r = r′.
Send (s, (Server, c, r),Request, pc) to ES.

Receive a response payload from the environment:
if (s, (Server, c, r),Response, p) received from ES

Let ps = p. Send (s, (Server, c, r),Response, ps) to ÂS.
Deliver a response to the client:
if (s, (Server, c, r),Response, Send) received from ÂS and not cor

If state 6= OK, abort. Let state = Stopped.
Send (s, (Server, c, r),Response, ps) to C.

Send an error message to the environment:
if (s, (Server, c, r),Response, Error) received from ÂS

Send (s, (Server, c, r),Response, Error) to ES.

Corruption: Corr(cor , true, state 6= Init0, ε, ÂS, {ES}, ES, s)
CheckAddress: Accept the initialization message only once. Check for s, c, and r as soon as each

one has been set.

Fig. 3. The server functionality FS

adversary (ever) allows the transfer, the message is written to the incoming tape
of the server. This models the adversary’s ability to delay or drop messages on
the network.

When the server transfers a response (which is not too large), the client
simply unwraps it and forwards the contents to the environment. The details
are spelled out in Figure 2.

A special mode of computation of IITM’s, CheckAddress, is used in the last
line of IITM definitions like Figure 2 to determine whether an incoming message
is addressed to the current instance of the client IITM. If a message is rejected
by all running instances, a new instance of the client IITM is started since
the client IITM is banged in F2AM. In addition, we use the corruption macro
Corr from [KT08a] (with a slightly extended addressing mechanism) to allow a
uniform treatment of corruption of clients and servers in both the ideal and the
real world, see Appendix B.3.

3.3 Ideal Server Functionality

To start a session on the server side, the environment sends a message to the
server with the identity it is supposed to receive messages for and the maximal
length of an incoming request message.

Upon receiving a request from a client, the server unwraps it and forwards
the request payload to the environment. Now the environment can respond by
passing a response payload to the server functionality. The server asks the ad-
versary, who has three options: It can either approve the sending of the payload,



in which case the server delivers the message directly to the client. Secondly, the
adversary can ignore the response, in which case the server sends no message at
all. Thirdly, the adversary can also explicitly deny processing the payload, which
results in an error message being sent to the environment.

The first two options again model that the adversary may intercept and delay
network traffic. The third type of reaction models that in our implementation the
server may reject messages due to bounded memory and notify the environment
of the rejection.

4 Implementation of the 2AMEX-1 Protocol

In this section, we describe a system of IITM’s implementing the 2AMEX-1
protocol, which is a 2AM protocol in the above sense and described in detail in
[KSW09]. First, we give an informal introduction into the protocol.

4.1 The Protocol 2AMEX-1

In 2AMEX-1, an authenticated message exchange between a client with identity
c and a server with identity s works roughly as follows.

1. a) c is asked by the environment to send the request pc
b) c sends {(From : c, To : s, MsgID : r, Time : t, Body : pc)}skc to s
c) s checks whether the message is admissible and if not, stops
d) s forwards the request (r, pc) to the environment

2. a) s receives a response (r, ps) from the environment
b) s checks whether the response is admissible and if not, stops
c) s sends {(From : s, To : c, Ref : r, Body : ps)}sks to c
d) c checks whether the message is admissible and if not, stops
e) c forwards the response ps to the environment

Here, r is the nonce as described in the previous section, which is also used as a
handle by the server (see steps 1. d) and 2. a)), t is the value of a local clock of
the client, pc is the payload the client sends, ps is the payload the server returns,
and {·}skc and {·}sks stand for signing the message by the client and server,
respectively. Repeating the message id of the request allows the client to verify
that ps is indeed a response to the request pc.

The interesting parts are steps 1. c) and 2. b). We assume that there is a
constant caps > 0, the so-called capacity of the server, and a constant tol+s that
indicates its tolerance with respect to inaccurate clocks. At all times the server
keeps a time tmin

s and a finite list L of triples (t, r, c) of pending and handled
requests. At the beginning or after a reset, tmin is set to ts + tol+s , where ts is a
timestamp retrieved from the local clock functionality, and L is set to the empty
list.

Step 1. c). Upon receiving a message as above, the server s rejects if t /∈[
tmin
s + 1, ts + tol+s

]
or if (t′, r, c′) ∈ L for some t′ and c′, and otherwise proceeds
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Fig. 4. Overview of 2AMEX-1 protocol implementation

as follows: If L contains less than caps elements, it inserts (t, r, c) into L. Other-
wise, the server deletes all tuples containing the oldest timestamp from L, until
L contains less than caps tuples. Then it sets tmin

s to the timestamp contained
in the last tuple deleted from L, and finally inserts (t, r, c) into L.

Step 2. b). When asked to send a payload ps with message handle r, the server
rejects if there is no triple (t, r, c) ∈ L with c 6= ε. If it does not reject, it updates
L by overwriting c with ε in the tuple (t, r, c) to ensure that the service cannot
respond to the same message twice.

4.2 Implementation in the IITM Model

We will now describe the system of IITM’s defined by

P2AMEX−1 = !PC | !PS | !FSig | !PSI | !FKS | !FLC (2)

and illustrated in Figure 4, which implements the 2AMEX-1 protocol.
In (2), PC is the client-side part of the protocol (defined in Figure 5), PS

is the server-side part of the protocol (defined in Appendix B.6), FSig is the
signature functionality as defined in [KT08b], PSI is an interface which allows
the adversary to access the signature functionality with few restrictions (defined
in Appendix B.7), FKS is an ideal functionality of a trusted key store (defined in
Appendix B.8), and FLC (defined in Appendix B.9) models a local clock which



is controlled by the adversary, i. e. not synchronized with the clocks of other
parties and not even monotone.

4.3 Signatures and the Public Key Infrastructure

We model the digital signatures that 2AMEX-1 uses by the ideal functionality
FSig from [KT08b], which was proved to be securely implementable using any
existentially unforgeable signature scheme.

We give the adversary access to the signature scheme and allow him to sign
any bit string that does not have the format of a 2AMEX-1 message. This models
that our protocol does not have exclusive access to the keys used to sign the mes-
sages. For example, the same key can be used to sign a 2AMEX-1 message and
parts of the payload contained in that message. This is realized by the signature
interface functionality PSI, which accepts requests from the adversary to (i) sign
messages that do not have the format of 2AMEX-1 messages and (ii) verify ar-
bitrary signatures. In P2AMEX−1, the signature interface functionality is banged
in the multi-user multi-session version, effectively meaning that the adversary
has access to all keys used in the protocol.

As the signature interface needs resources from the environment to sign mes-
sages for the adversary, it has an enriching input tape EEI. Its counterpart in
the ideal system is a tape in the enriching input functionality EI.

To coordinate how different IITM’s access a single instance of the signature
functionality, we define the ideal functionality of a key store, FKS, which allows
clients, servers, and the signature interface functionality to retrieve trusted keys
as well as the corruption status of that key. To be able to distribute the public
key, FKS also initializes the instances of the signature functionality. The par-
ticular form of this functionality is due to the fact that we want to use FSig

from [KT08b] as is. Nevertheless, one can implement FKS using standard tech-
niques for building a public key infrastructure: In an implementation, the key
store could be a local subroutine which, (i) locally stores and manages a single
public/private key pair, and, (ii) when requested to retrieve the public key of
another party, fetches that key from a key server and locally checks its validity
by using a trust model, e. g., a pre-defined set of certification authorities.

4.4 Client Implementation

The client protocol PC (see Figure 5) is a direct implementation of the ideal
functionality FC with the following changes:
– The messages are transferred over the network (rather than exchanged di-

rectly between client and server). This is modeled by writing the messages
on an external network tape.

– To secure the request message, the client signs it using a digital signature
obtained from an instance of FSig for this session. The server will be able to
obtain the public key from the according key store and verify the signature.

– When receiving a response from the server, the signature of that message is
verified by the client in the same way.



Tapes: C←←→ EC, C L9999K AC, C←→→ KS, C←→→ LC, Csig ←→→ Sig, Cver ←→→ Sig
Initialization: c = s = r = ε, n = 0, state = Init, cor = false
Steps: loop

Send a request to the server:
if (c′, (Client, s′), Init) received from EC

If state 6= Init, abort. Let c = c′ and s = s′.
Generate an η-bit nonce r randomly, where η is the security parameter.
Send (c, (Client, s, r),Nonce, r) to EC.

Recv (c, (Client, s, r),Request, pc, 1
n′

) from EC, let n = n′.
Send (c, (Client, s, r),GetKey) to KS.
Recv (c, (Client, s, r),PublicKey, kc) from KS.
Send (c, (Client, s, r),GetTime) to LC.
Recv (c, (Client, s, r),Time, t) from LC.
Send (c, (Client, s, r),Corrupted?) to KS.
Recv (c, (Client, s, r),Corrupted, cor ′) from KS. If cor ′, abort.
Let mc = (From : c,To : s,MsgID : r,Time : t,Body : pc).
Send (c, (Client, s, r), Sign,mc) on Csig.
Recv (c, (Client, s, r), Signature, σc) on Csig. Let state = OK.
Send (mc, σc) to AC.

Receive and process a response from the server:
if (ms, σs) received from AC with ms = (From : c,To : s,Ref : r,Body : ps)

If state 6= OK or cor or |ps| > n, abort.
Let n = n− |ps|.
Send (s, (Server, c, r),GetKey) to KS.
Recv (s, (Server, c, r),PublicKey, ks) from KS.
Send (s, (Server, c, r),Client, Init) on Cver.
Recv (s, (Server, c, r),Client, Init) on Cver.
Send (s, (Server, c, r),Client,Corrupted?) to KS.
Recv (s, (Server, c, r),Client,Corrupted, cor ′) from KS. If cor ′, abort.
Send (s, (Server, c, r),Client,Verify,ms, σs, ks) on Cver.
Recv (s, (Server, c, r),Client,Verified, b) from on Cver, if b 6= 1, stop.
Let state = Stopped and send (c, (Client, s, r),Response, ps) to EC.

Corruption: Corr(cor , true, state 6= Init, ε, AC, {EC}, EC, c, (Client, s, r))
CheckAddress: Check for c, s, and r as soon as each one has been set.

Fig. 5. The client protocol PC

– The nonces are not generated by a centralized entity, but randomly chosen
locally by each client. While this does not guarantee that the numbers are
unique, the probability of a collision is negligible if the length of the nonces
grows linearly with the security parameter.

– The request message is additionally secured by a timestamp. The client uses
the local clock functionality FLC to obtain a timestamp.

– Before using a signature functionality to sign or verify a message, the client
checks if the signature or the verification functionality is corrupted. If either
one is, the client aborts.

4.5 Server Implementation

The implementation PS of the server functionality (see Appendix B.6) is more
complicated than the client. To be able to counteract replay attacks, one single
IITM handles all sessions. That is, for each identity s all communication of that
identity in the server role is handled by one single instance of PS.

Therefore, the server maintains two lists: R stores resources passed by the
environment (corresponding to the fact that in the ideal system, each session of
the server is started by the environment), while L (corresponding to L described



in Section 4.1) is used to store information from request messages received so far
by this server. During initialization, i. e., when receiving the first message, the
server asks the adversary to provide values for two parameters of the 2AMEX-1
protocol, namely the capacity caps and the tolerance tol+s .

When receiving a message from the client, the server (i) tries to retrieve the
client’s key, (ii) obtains the current time from FLC (and checks for monotonic-
ity of the clock), (iii) verifies the signature, (iv) checks if a message with the
same nonce has already been accepted (i. e. the nonce is in L), (v) checks if the
timestamp is in order (i. e. not too old and not too new), and (vi) forwards the
message to the environment if everything is in order. If some step fails, the server
simply drops the message.

When the environment wants to reply to a message, the server first checks
if the nonce is valid (i. e. occurs in L), else it sends an error message to the
environment. This is important as the nonce may have been removed from L
due to capacity reasons without notification to the environment. Then, the server
initializes its instance of the signature scheme for this session, signs the message,
and writes it on an external network tape.

Note that during the steps to process a request or a response, the control may
be passed to the adversary by some of the ideal functionalities the server uses.
Hence, the execution of the steps when processing a request or response may be
interrupted by the adversary (e. g., by sending another incoming message to this
server). As soon as a message is received that is not related to processing the
current message, the processing of the current message is aborted by the server
and cannot be resumed later.

5 Results

Our result states that our protocol securely realizes the ideal functionality F2AM.
The formal statement of the theorem is as follows:

Theorem 1.

F2AM ≥BB P2AMEX−1 ≥BB PJS
2AMEX−1

where F2AM = !FC | !FS | FNG | !FEI ,

P2AMEX−1 = !PC | !PS | !PSI | !FKS | !FSig | !FLC ,

PJS
2AMEX−1 = !PC | !PS | !PSI | !FKS | !PJS

Sig | !FSig | !FLC .

Before we give the proof of the theorem, we first explain the involved simula-
tion statements. The first of these inequalities states that the IITM realization
of our protocol, when using an ideal signature functionality, realizes the system
consisting of the ideal functionalities for F2AM.

Due to the way in which the ideal signature functionality is used, the real-
ization of the protocol as stated in the first inequality is unrealistic, because for



each message sent a new key for the signature scheme is generated. This can be
avoided by applying a joint-state theorem [KT08a] allowing different sessions to
use the same key. Essentially, a “wrapper” PJS

Sig managing different sessions is
used to access the signature functionalities. The second inequality in Theorem 1
(which follows directly from [KT08b]) makes use of this wrapper, so that instead
of one key per party and per session (!FSig), there is only a single key for each

party (!FSig), as in a realistic public-key infrastructure.
Theorem 1 gives a security treatment of a complex protocol in a simulation-

based security setting: Our protocol features a long-lived server role, uses time-
stamps to prevent replay attacks, and accesses a public-key infrastructure for
digital signatures. It is easy to see that long-livedness and timestamps are re-
quired to realize our ideal functionality with bounded memory (see [KSW09]).
It is interesting to note that while our ideal server functionality is short-lived,
a realization necessarily needs to be long-lived; this is a particular property of
authenticated message exchange with only two rounds.

We now prove the theorem. A full formal proof would need to establish a
bisimulation between the system consisting of the real protocol and that con-
sisting of the ideal protocol and the simulator; the proof below argues why the
key points in a correctness proof of the bisimulation can be carried out.

Proof. As mentioned above, it suffices to show the first simulation, as the second
one follows directly from [KT08a]. First note that in the ideal functionality F2AM,
we may remove the global nonce generator FNG and let each client generate the
nonce locally—since the probability of a collision is negligible in the security
parameter, the resulting system is computationally indistinguishable from F2AM.
Hence we only need to show that P2AMEX−1 correctly realizes the thus-modified
F2AM. For the remainder of the proof, when we speak of F2AM we mean this
modified version.

To prove the theorem, we construct a simulator S such that the systems
E | A | S | F2AM and E | A | P2AMEX−1 are computationally indistinguishable
for every adversary A and every environment E . The main idea of the simulator
(which is presented in Appendix C in detail) is that while interacting with E ,
A, and all machines that are active in the ideal functionality F2AM, it simulates
every machine that would be present in a run of the system P2AMEX−1 in such a
way that the environment receives the exact same messages on the I/O interface
from the machines in F2AM as it would receive from the machines in P2AMEX−1,
and analogously presents network traffic to A that is identical to the traffic a
real instance of P2AMEX−1 would generate on the same inputs.

The key point of the proof is that in our protocol and ideal functionality
is that even in the ideal functionality, the adversary may completely control
whether a message sent by an instance will reach the environment—hence the
simulator essentially consists of book-keeping and allowing the delivery of mes-
sages by the ideal functionality as soon as delivery happens in the simulated real
functionality.

To show that this simulation indeed works as intended, we argue that for ev-
ery sequence of messages sent by A or E , the simulation is correct in the following



sense: The state of each simulated machine of the protocol P2AMEX−1 (i. e., the
client machines, server machines, signature functionality, signature interface, and
key store) is identical in the simulation and in a hypothetical execution of the real
protocol (with the same inputs). We argue separately for each type of machine.

Signature functionality FSig. By construction of the simulator, the signature
functionality is simulated exactly as it is. It also follows from the discussion
below of the (simulated) server and client machines that the simulated signature
functionality receives the exact same incoming requests in a real execution of the
protocol and in a simulation. Note that resources obtained from the environment
for PSI are forwarded to the simulated PSI directly.

Server protocol machine PS. By construction, the simulator uses an adaption
of the program of the real protocol machine PS. The negotiation of the initial
parameters of the server is directly forwarded to the adversary A, hence the
obtained parameters are as in a real execution of the protocol. Note that in a real
protocol run, when the server receives a new message while waiting for a reply of
the key store functionality or for a signature verification, the waiting is aborted
and only the new message is processed—this is mirrored in the simulation by
the instruction to cancel currently running jobs for a server when it receives a
new message.

By design of the simulation, if a network message is rejected by the server
(due to either a false signature, or an outdated timestamp), the state of the
server is not changed, and no reply of any kind is sent. Hence in this case the
simulated server behaves in the same way as in a real execution of the protocol.
In the case that a message is accepted, the list L is maintained as in the real
protocol. Instead of notifying the environment about the delivery of the message
(as the real protocol implementation would do), the simulator then instructs the
(ideal) client to deliver the message to the (ideal) server, which leads to the exact
same output to the environment as a delivery to the real server would.

When the environment instructs the (ideal) server to send a reply to a client,
then by design of the ideal server functionality, the server asks the adversary
whether to proceed. Since S receives the corresponding query intended for the
adversary, it can check whether in the simulated real server, the request of the
environment could still be fulfilled (which is the case if and only if a message
with the corresponding message id is still present in the list L and has not been
marked as answered), and in this case allow the server to proceed.

Note that the simulator simulates the exact same requests made by a server to
the signature functionality, hence the simulated functionality receives the exact
same messages as it would in a run of the real protocol.

Client protocol machine PC. This works in much the same way as the server
machine: The simulator performs the same verification steps that the real client
machine would, and outputs the same data to the environment. Again, the re-
quests for the simulated signature functionality and key store are identical in
the simulated and in a real run of the protocol.

Signature interface functionality and key store. As mentioned above, in both
real and simulated protocol runs, the signature interface and key store func-



tionalities perform the exact same requests: By construction of the simulator,
A may communicate directly with the simulated machines in the same way as
it would in a real protocol run. Since the simulator uses the code of the ideal
functionalities, this implies that they are in the same state.

Corruption. By design, a running copy of an ideal client or server functionality
is corrupted if and only if a copy of the real server or client would be in a real
protocol run. Note that the simulator ensures that as soon as a single copy of a
(short-lived) ideal server instance for an identity s is corrupted, then every newly
started ideal server instance for this identity is corrupted immediately by the
simulator; this mirrors the corresponding behavior in a run of the real protocol,
where each identity only a single server machine is running. Hence requests
of the form Corrupted? issued by E get answered positively in the simulated
protocol run if and only if the answer would be positive in a real one. Also, the
communication with corrupted parties is handled using the same Corr macro in
the same way in both simulated and real protocol runs, hence the replies of the
relevant parties are identical.

6 Discussion

Simulation-based security clearly has the advantage that it leads to an easier
statement of security than an individual, trace-based definition, and moreover,
allows to treat protocols for very different tasks in a single model. The security
properties obtained by such an analysis are quite strong and hold (via composi-
tion) in an arbitrary context. The IITM framework (and related frameworks) is
designed to support modular protocol analysis.

However, these advantages come with a price when considering a concrete
complex protocol. In [KSW09], we presented a customized model (based on the
seminal work by Bellare and Rogaway [BR93]) for proving security of 2AMEX-1.
A comparison between that work and the current paper gives insights into the
advantages and disadvantages of both approaches.

The formulation of both ideal functionalities and concrete implementations
for authenticated message exchange in the current paper is rather long and
unintuitive (the latter are significantly more complex than their counterparts
in [KSW09]). Both feature unnatural communication (bit strings to provide com-
puting resources, status and activation messages exchanged sent to and received
from the adversary and the environment), which are necessary due to how re-
sources and activation are handled. Intuitively, one would like the environment to
only access the “service” provided by the functionalities, but in the IITM frame-
work, the environment additionally needs to provide resources for the involved
parties that allow them to process the input.

Furthermore, the handling of corruption in the IITM framework is more com-
plex and seems less natural than in the Bellare-Rogaway based model. Also, for
the analysis of our protocol, the modular approach provided by the IITM frame-
work does not simplify the security analysis, compared to the proof in [KSW09].
Finally, the use of the joint-state theorem to enable realistic treatment of sig-



natures results in a slightly different protocol from the one originally stated
in [KSW09] and from a realistic implementation.

It would be very interesting to know whether the IITM framework can be
adapted to remove the above-mentioned difficulties.
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A Simulation-Based Security

Simulation-based security allows to analyze cryptographic protocols such that
properties proven remain true even when the protocol is used as a sub-protocol
of a larger system. The main idea is to define a so-called ideal functionality,
which specifies a cryptographic goal to be realized by a protocol. This ideal
functionality also documents the capabilities of an attacker on the protocol. A
concrete protocol is “secure” if it realizes the ideal functionality such that every
attacker on the real protocol can be “simulated” in the ideal setting. We briefly
sketch Küsters’ model using inexhaustible interactive Turing machines (IITM’s).
For precise definitions and background on these notions, see [Küs06].

A.1 Inexhaustible Interactive Turing Machines

Cryptographic protocols are modeled as a set of concurrently running machines,
called a system of IITM’s (see below). The machines in the system are acti-
vated sequentially, where at each point in time, only a single machine is active,
and each machine may be activated repeatedly. A single IITM is a probabilis-
tic Turing machine with an associated polynomial q used to bound its running
time and output length. In addition to work tapes, an IITM has named external
tapes which may be shared with other machines running concurrently. Exter-
nal read-tapes of machines are partitioned into consuming and enriching tapes.
This distinction serves to allow the maximal running time of the machines to
depend on the input on the enriching tapes, and not merely on the security pa-
rameter alone as in standard cryptographic models as [BR93]. In order to avoid
“exponential blow-up” of lengths of exchanged messages, a well-formed system
is defined to be one where the sub-graph of machines connected with enriching
tapes is acyclic. As proved in [Küs06], a well-formed system can be simulated on
a single polynomial-time machine.

External tapes are partitioned into network tapes and I/O-tapes. The for-
mer are used to model communication with subprocesses (here an attacker on
the system cannot interfere), the latter model network communication (this is
assumed to be controlled by the adversary completely).

http://www.w3.org/TR/soap12-part0/
http://www.w3.org/TR/soap12-part0/


An IITM can run in two different modes (determined by the content of
the mode tape upon activation): The CheckAddress mode is used to determine
whether an incoming message is intended for the current machine. When acti-
vated in this mode, the IITM reads an input message from a special input tape
and returns accept or reject on a special output tape. In this mode, computation
may not be probabilistic, and the number of steps taken must be bounded by
q(n), where q is the polynomial associated with the machine, and n is the length
of the content of the work tapes, the current input, and the security parameter.
This mode is typically used to verify whether an incoming message belongs to
the correct session. The Compute mode is then used for the actual computation
(which may include replying to the incoming message). The number of steps in
this mode must be bounded by q(n), where q and n are as in mode CheckAd-
dress. Additionally, the total output up to a point in the run of the machine,
as well as the length of all work tapes must always be bounded by q(m), where
m is the sum of the security parameter plus the length of all input received on
enriching input tapes in mode Compute in the current run of the system. This
implies that when a machine is required to produce “long” output, it previously
must be given the corresponding resources via enriching input tapes.

In each activation, a machine produces output on at most one output tape,
the machine that has the corresponding tape as an input tape is then activated
next. If no output is produced, the environmental machine is activated (see
below).

A.2 System of IITM’s for Cryptographic Protocols

A system of IITM’s is an expression of the form

P = M1 ‖ . . . ‖ Mk ‖ !M ′1 ‖ . . . ‖ !M ′k , (3)

where the Mi and M ′i are IITM’s. The machines M ′1, . . . ,M
′
k are said to appear

in the scope of a bang : The bang operator “!” provides an “infinite supply” of
machines (running the code of) M ′i . In a run of a system, this is handled as
follows: When a machine M sends a message (via a shared tape) to a machine
M ′ of which a copy is already running, but this copy rejects the message in its
CheckAddress mode and M ′ appears in the scope of a bang, then a new instance
of M ′ is started, which then may accept the message in CheckAddress mode. If
it does, it remains active and processes the incoming message. Otherwise it is
deactivated again. This allows to start an unbounded number of sessions of a
protocol.

An external tape of a system P is a tape which is a network- or I/O-tape
of one of its machines for which there is no corresponding output or input tape
in the system itself. These tapes allow external machines to communicate with
P, and thus enable P to provide a functionality to “outside” machines. This
mechanism allows to naturally compose systems of IITM’s in a way allowing
interaction: For two systems P1 and P2, P1 | P2 denotes the system containing
all machines of P1 and P2, where internal tapes of the systems are consistently



Fig. 6. An abstract view of the two systems of IITM’s

renamed (the systems only influence each other via their communication on their
external tapes).

To define security notions for cryptographic protocols, the composition of a
given system with an environment and an adversary are studied. An adversary
for P is a system A such that the set of external I/O-tapes of P and A are
disjoint, and for every external output network tape of P, there is an external
network input tape of A, and vice versa. This means that an adversary for P is
syntactically suited to connect to all external “network ports” of P. Typically,
all incoming external tapes of an adversary are defined to be enriching. An
environmental system for P similarly connects to the I/O-tapes, and its set of
external network tapes is disjoint with that of P. When P and Fare systems
(the real and the ideal system), then an adversarially connectable system S is a
simulator for Fand P, if S | F has the exact same set of external tapes (with
matching type and direction) as P (note that an output (input) tape in S | F is
only external when there is no input (output) tape with the same name in S or in
F . Hence a simulator only connects to the network tapes of F , and syntactically,
S | F and P “look the same”. In particular, a system E is a suitable environment
for P if and only if it is one for S | F .

A system may have a special external output tape named decision. When a
machine writes output to this tape (the output must be either 0 or 1), the run
of the system stops immediately. Two systems are equivalent, if the probability
that for the same input, a different value is written on the decision tape, is
negligible (in the security parameter). This means that for an outside observer
that may only interact with the systems using their I/O-interface, the systems
behave identically with overwhelming probability.

We now define the central security notion that we study, also see Figure 6—in
the following, F is supposed to be an “ideal” system (also called ideal function-
ality, and P a concrete system that attempts to “realize” the ideal functionality.
P and F are I/O-compatible if they have disjoint sets of external network tapes,
the same set of external I/O-tapes, and each external I/O-tape has the same
direction in both.



Definition 2. Let P and F be I/O-compatible systems. Then P ≤BB F .if there
is a simulator S for P and F such that for all adversaries A and environments
E for P or S | F , the systems E | P and E | S | F are equivalent.

Here “equivalent” means that with overwhelming probability, the same in-
put leads to the same output. This models the intuition expressed above: The
simulator S essentially makes the system Fbehave exactly as P (without the
simulator). Hence any attack that can be mounted on the real protocol system
P is also successful against the ideal functionality F .

A.3 Session Versions of IITM’s

The IITM model offers a simple mechanism for specifying multi-session variants
of a protocol: For an IITM M , the machine M simulates M , and expects that all
incoming messages are prefixed with a session-id. This session-id is then removed
from the string actually handed to the simulated M , and is added as a prefix to
every message written by the simulated M on an output tape. Hence a system of
the form !M has an unlimited supply of machines executing the code of M , each
using an independent session. Multi-party, multi-session variants of a protocol,
are then obtained by using M : These machines handle prefixes containing a
party- and a session-id.

B Functionalities and Protocols

B.1 Notation

When defining an IITM M , we describe it in the following way:
First, we define the tapes of M . We denote by A ↔ B a tape or a pair of

tapes in the following way:

– the label on the left-hand side (e. g., A) is the name of the tape on M ’s side
of the tape, whereas the label on the right-hand side (e. g., B) is the name
of the tape on the machine that M is connected to,

– a single output tape is denoted by −→, a single input tape is denoted by
←−, and a pair of input and output tapes is denoted by ←→,

– a consuming tape is denoted by −→, an enriching tape by −�,
– an I/O tape is denoted by −→, a network tape by 99K.

Next, we may define an initialization routine which is executed when the
IITM is activated for the first time.

In the main part, we describe a couple of steps: We assume that the machine
matches each incoming message against a couple of patterns, executing the first
step that has a matching pattern, and discarding the message if no step matches.
During the execution of a single step, if the machine waits for a specific message,
it will ignore all other incoming messages, even if they would match any of the
patterns of the steps.



For the simulator we also define functions or subroutines.
In some functionalities we then include the parameterized corruption macro,

see below. This adds a couple of steps which take precedence over the steps we
defined above.

Last, for most functionalities we describe the IITM’s operation in CheckAd-
dress mode, where the default mode is to accept all incoming messages.

B.2 Message Format

Due to the addressing mechanism used in the IITM model, a message that is
being sent to a banged IITM has to contain information allowing all currently
running instances to decide which of them is supposed to accept that message.

Thus, our messages have the format (pid , sid , ...) where pid is a party id and
sid is a session id. The party id is used to identify a client or a server, usually
the sender of the message or, in case the message comes from the environment
or the adversary, the recipient of this message. The session id usually consists of
three parts: (i) a constant, either Client or Server, to distinguish the role of the
party, (ii) the identity of the communication partner, and (iii) the nonce used in
this session.

Note that in our case it is not possible to use the identifier version as defined
in [KT08a] because of two reasons: Firstly, when initializing a new instance, at
least the nonce is not yet known by the initializing party (i. e., the environment).
Secondly, the parties have to communicate with different pids and sids than their
own, i. e., while communicating with server s and using nonce r, a client c has
to access both the key with pid c and sid (Client, s, r) for signing as well as the
key with pid s and sid (Server, c, r) for verifying.

B.3 Corruption

Both in the ideal functionality F2AM and in the implementation P2AMEX−1 we
model corruption by using the corruption macro from [KT08a] in a slightly
modified variant, in which we add parameters for an addressing mechanism.
The modified macro is defined in Appendix B.10.

Using the corruption macro we allow the adversary to corrupt our clients
and servers, while the environment can check the corruption status of each in-
stance and provide resources for corrupted machines. Once corrupted, clients
and servers abort their normal execution and only forward messages from and
to the adversary as defined in the macro.

While the adversary can corrupt single client instances, the situation on
the server side is different: If the adversary sends a corruption request to one
instance of FS running under identity s, this instance will accept all messages
which are directed to any instance running under identity s. This reflects that
in the implementation P2AMEX−1 only one (long-lived) instance of PS is running
per identity.

Note that the signature and verification functionality FSig used in P2AMEX−1

also allows corruption. But if the adversary would corrupt, e. g., a verification



instance, it would have no advantage against our protocol as long as it does not
also corrupt the server or client using that particular instance of the verifier. In
addition, in P2AMEX−1 the environment would have to pass resources to that
verification instance, while in F2AM no signature scheme is available to receive
the resources—but adding a mechanism to F2AM which receives the resources
and passes them on to the simulator would result in a rather unnatural ideal
functionality.

Therefore, even though we technically allow the adversary to corrupt in-
stances of the signature scheme (or its verifiers) in P2AMEX−1, we make it rather
useless: Before PC and PS use any signature or verification functionality, they
check the functionalities’ corruption status and abort if it is corrupted. Note
that the adversary may still get complete control over the input and output of
a client or server by simply corrupting that client or server instance.

B.4 The Nonce Generator Functionality FNG

Tapes: NG←←→ C
Initialization: L = [ ]
Steps: loop

Generate a fresh nonce:
if (pid, sid,GetNonce) = m received from C

Generate an η-bit nonce r randomly with r /∈ L, as long as |L| ≤ 2η,
where η is the security parameter.

Insert r in L.
Send (pid, sid,Nonce, r) to C.

B.5 The Enriching Input Functionality FEI

Tapes: EI� EEI, EI L9999K ÂEI
Steps: loop

Forward resources:
if (Resources, 1n, b) received from EEI

Send (Resources, b, n) to ÂEI.

B.6 The Server Protocol PS

Tapes: S←←→ ES, S L9999K AS, S←→→ KS, S←→→ LC, Ssig ←→→ Sig, Sver ←→→ Sig

Initialization: s = caps = tol+s = mc = σc = kc = ε, R = L = [ ], ts = tmin = 0, state = Init,
cor = false

Steps: loop
Initialize a new buffer:
if (s′, (Server), Init, 1n) received from ES

If state = Init,
Send (s′, (Server),GetParameters) to AS.

Recv (s′, (Server),Parameters, cap, tol+) from AS.

Let s = s′. If cap ≤ 0 or tol+ ≤ 0, abort.
Send (s, (Server, c, r),GetTime) to LC.
Recv (s, (Server, c, r),Time, t) from LC.

Let state = OK, caps = cap, tol+s = tol+, ts = t, tmin = ts + tol+s .
Append n to R.

Receive and process a request: Request the client’s key:
if (m,σ) received from AS with m = (From : c,To : s,MsgID : r,Time : t,Body : pc)

If state = Init or R is empty or cor , abort.
Let n be the first item of R. If |pc| > n, abort. Remove n from R.
Let state = WaitingForKeyc, mc = m, and σc = σ.
Send (c, (Client, s, r),GetKey) to KS.



Receive and process a request: Receive the key, request time:
if (c, (Client, s, r),PublicKey, k) received from KS

If state 6= WaitingForKeyc or cor , abort. Let state = WaitingForTime and kc = k.
Send (s, (Server, c, r),GetTime) to LC.

Receive and process a request: Receive time, initialize the verifier:
if (s, (Server, c, r),Time, t) received from LC

If state 6= WaitingForTime or cor , abort.
If t ≥ ts, let ts = t. Let state = WaitingForVerifier.
Send (c, (Client, s, r), Server, Init) on Sver.

Receive and process a request: Execute 2AMEX-1 protocol steps, relay request:
if (c, (Client, s, r), Server, Init) received on Sver

If state 6= WaitingForVerifier or cor , abort. Let state = OK.
Send (c, (Client, s, r), Server,Corrupted?) to KS.
Recv (c, (Client, s, r), Server,Corrupted, cor ′) from KS. If cor ′, abort.
Send (c, (Client, s, r), Server,Verify,mc, σc, kc) on Sver.
Recv (c, (Client, s, r), Server,Verified, b) on Sver.

If b 6= 1, t ≤ tmin or t > ts + tol+s , or (t′, r, c′) ∈ L for some t′, c′, abort.
While |L| ≥ caps:

Let tmin = min{t′ | (t′, r′, c′) ∈ L} and L = {(t′, r′, c′) ∈ L | t′ > tmin}.
Insert (t, r, c) into L and send (s, (Server, c, r),Request, pc) to ES.

Receive and process a response: Receive response payload, request key:
if (s, (Server, c, r),Response, ps) received from ES

If state = Init or cor , abort.
If (t′, r, c) /∈ L for any t′:

Let state = OK, send (s, (Server, c, r),Response, Error) to ES, and abort.
Let state = WaitingForKeys and send (s, (Server, c, r),GetKey) to KS.

Receive and process a response: Construct, sign, and send response message:
if (s, (Server, c, r),PublicKey, k) received from KS

If state 6= WaitingForKeys or cor , abort. Let state = OK.
Send (s, (Server, c, r),Corrupted?) to KS.
Recv (s, (Server, c, r),Corrupted, cor) from KS. If cor ′, abort.
Let ms = (From : c,To : s,Ref : r,Body : ps).
Send (s, (Server, c, r), Sign,ms) on Ssig.
Recv (s, (Server, c, r), Signature, σs) on Ssig.
Update (t, r, c) to (t, r, ∗) in L and send (ms, σs) to AS.

Reset the server:
if (s,Reset) received from AS

If state = Init or cor , abort.
Send (s, Server,GetTime) to LC.
Recv (s, Server,Time, t) from LC.
If t ≥ ts, let ts = t.
Let tmin = ts + tol+s , R = L = [ ], and state = OK.

Corruption: Corr(cor , true, state 6= Init, ε, AS, {ES}, ES, s)
CheckAddress: Check for s as soon as it has been set.

B.7 The Signature Interface Protocol PSI

Tapes: SI� EEI, SI L9999K ASI, SI←→→ KS, SIsig ←→→ Sig, SIver ←→→ Sig
Initialization: state = Init, res = 0, k = ε
Steps: loop

Get resources from the environment to sign messages:
if (Resources, 1n) received from EEI

Let res = res + n,
If state = Init0, let state = Init1.

Initialization—initialize the key and the verification functionality:
if (Init) received from ASI

If state 6= Init1, abort.
Send (SI,GetKey) to KS.
Receive (SI,PublicKey, k′) from KS.
Let k = k′.
Send (SI, Init) on SIver.
Receive (SI, Init) on SIver.
Let state = OK.
Send (PublicKey, k) to ASI.



Sign a message:
if (Sign,m) received from ASI

If state 6= OK, abort.
If m ∈ X, abort.
If |m| > res, abort.
Let res = res − |m|.
Send (Sign,m) on SIsig.
Receive (Signature, σ) on SIsig.
Send (Signature, σ) to ASI.

Verify a message:
if (Verify,m, σ) received from ASI

If state 6= OK, abort.
If |m| > res, abort.
Let res = res − |m|.
Send (SI,Verify,m, σ, k) on SIver.
Receive (SI,Verified, b) on SIver.
Send (Verified, b) to ASI.

B.8 The Key Store Functionality FKS

Tapes: KS ←←→ SI, KS ←←→ C, KS ←←→ S, KS L9999K AKS, KSsig ←→→ Sig, KSver ←→→ Sig,
Esig ←→→ Sig, Ever ←→→ Sig

Initialization: k = ε, LToDo = [ ]
Steps: loop

Request to get the key:
if (GetKey) received from T ∈ {C, S, SI}

Insert T into LToDo.
Send (GetKey, T ) to AKS.

Execute request to get the key:
if (GetKey, T ) received from AKS

If T /∈ LToDo, abort.
If k = ∗, send (Init) on KSsig and stop.
Delete T from LToDo.
Send (PublicKey, k) to T .

Store a generated key and notify the adversary:
if (PublicKey, k′) received on KSsig

Let k = k′.
Send (PublicKey, k) to AKS.

Is the signature functionality corrupted?
if (Corrupted?) received from T ∈ {C, S, SI}

Send (Corrupted?) on Esig.
Receive (x) on Esig.
Send (Corrupted, x) to T .

Is the verification functionality corrupted?
if (id,Corrupted?) received from T ∈ {C, S, SI}

Send (id,Corrupted?) on Ever.
Receive (id, x) on Ever.
Send (id,Corrupted, x) to T .

B.9 The Local Clock Functionality FLC

Tapes: LC←←→ C, LC←←→ S, LC L9999K ALC
Steps: loop

Forward resources:
if (GetTime) received from T ∈ {C, S}

Send (GetTime) to ALC.
Recv (Time, t) from ALC.
Send (Time, t) to T .



B.10 The Modified Corruption Macro Corr

The following corruption macro is a modified version of the one defined in [KT08a];
we added a simple addressing mechanism.

Macro Corr(corrupted ∈ {true, false}, corruptible ∈ {true, false}, initialized ∈ {true, false},
corrMsg, Tadv, Tuser, Tenv, id1, . . . , idn)

Initialization: res = 0
Steps: loop

Corruption Request:
if (id1, ..., idn,Corrupted?) received from Tenv

If intialized, send (corrupted) to Tenv.
Corruption:
if (id1, ..., idn,Corrupt) received from Tadv

If corruptible, initalized, and not corrupted:
Let corrupted = true.
Send (id1, ..., idn,Corrupted, corrMsg) to Tadv.

Forward to A (this rule takes precedence over all other rules):
if (id1, ..., idn, ...) = m received from T ∈ Tuser and corrupted

Let res = 0 and send (id1, ..., idn,Recv,m, T ) to Tadv.
Forward to user:
if (id1, ..., idn, Send,m, T ) received from Tadv, T ∈ Tuser, corrupted, 0 < |m| ≤ res, and

m = (id1, ..., idn, ...)
Send m to T .

Ressources:
if (id1, ..., idn,Resources, r) received from Tenv and corrupted

Let res = |r| and send (id1, ..., idn,Resources, r) to Tadv.
CheckAddress: Check for id1, ..., idn.

C Simulator

Tapes: SI L99L9999K ASI, C L99L9999K AC, KS L99L9999K AKS, LC L99L9999K ALC, sig L99L9999K Asig, ver L99L9999K
Aver, S L99L9999K AS, ÂEI L9999K EI, ÂC L9999K C, ÂS L9999K S

Initialization: c = s = r = ε, n = 0, state = Init, cor = false
Steps: loop

Initialization of the server:
if (s, (Server), Init, n) received from S

If state[s] 6= Init,
Run processServerInit(s, n) concurrently.

Receive a request from the client:
if (c, (Client, s, r),Request, pc, n) received from C

Run processClientSend(c, s, r, pc, n) concurrently.
Deliver a request to the server:
if (mc, σc) received from AS with mc = (From : c,To : s,MsgID : r,Time : tc,Body : pc)

Cancel any concurrent runs of processServerReceive or processServerSend with server
identity s.

Run processServerReceive(mc, σc) concurrently.
Receive response from the server:
if (s, (Server, c, r),Response, ps) received from S

Cancel any concurrent runs of processServerReceive or processServerSend with server
identity s.

Run processServerSend(s, c, r, ps) concurrently.
Deliver a response to the client:
if (ms, σs) received from AC with ms = (From : s,To : c,Ref : r,Body : ps)

Run processClientReceive(ms, σs) concurrently.
Reset the server:
if (s,Reset) received from AS

Cancel any concurrent runs of processServerReceive or processServerSend with server
identity s.

Run processServerReset(s) concurrently.
Corruption Request:
if (id1, ..., idn,Corrupt) received from AC, AS, Asig, or Aver

processCorruptionRequest(id1, ..., idn, T ).



Corrupted forward to the adversary:
if (id1, ..., idn,Recv,m, T ) received from C or S

Send (id1, ..., idn,Recv,m, T ) to AC or AS.

Corrupted forward to the user:
if (id1, ..., idn, Send,m, T ) received from AC or AS

Send (id1, ..., idn, Send,m, T ) to C or S.

Ressources for Signing:
if (pid, sid,Resources, 1n) received from EI

Send (pid, sid,Resources, 1n) to SI.

In addition, simulate !FSig | !PSI | !FKS | !FLC and answer internal requests as well as request

from the adversary to these machines.

Functions:

Initialization of the server:
processServerInit(s, n)

If state[s] = ε,
Send (s, (Server),GetParameters) to AS.

Recv (s, (Server),Parameters, cap, tol+) from AS.

If cap ≤ 0 or tol+ ≤ 0, abort.
Let t = getTime(s, (Server, c, r)).

Let state[s] = OK, cap[s] = cap, and tol+[s] = tol+.

Let t[s] = t, tmin[s] = t[s] + tol+[s], and R[s] = L[s] = [ ].
Let state[s] = Init.

Append n to R[s].
If cor [Server, s],

corruptServer(s)
Let state[s] = OK.

Send (s, (Server), Init,OK) to S.

Receive a request from the client:
processClientSend(c, s, r, pc, n)

Let state[c, s, r] = OK and n[c, s, r] = n.
Let k = getKey(c, (Client, s, r)).
Let t = getTime(c, (Client, s, r)).
Let mc = (From : c,To : s,MsgID : r,Time : t,Body : pc).
Let σc = sign(c, (Client, s, r),mc).
Send (mc, σc) to AC.

Deliver a request to the server:
processServerReceive(mc, σc)

Decode mc into (From : c,To : s,MsgID : r,Time : tc,Body : pc).
If state[s] 6= OK, cor [Server, s], or R[s] is empty, abort.
Let n be the first item of R[s]. If |pc| > n, abort. Remove n from R[s].
Let k = getKey(c, (Client, s, r)).
Let t′ = getTime(s, (Server, c, r)).
If t′ ≥ t[s], let t[s] = t′.
Let b = verify(c, (Client, s, r), Server,mc, σc, k).

If b 6= 1, tc ≤ tmin[s] or tc > t[s] + tol+s , or (t′, r, c′) ∈ L[s] for some t′, c′, abort.
While |L[s]| ≥ caps:

Let tmin[s] = min{t′ | (t′, r′, c′) ∈ L[s]}.
Let L[s] = {(t′, r′, c′) ∈ L[s] | t′ > tmin[s]}.

Insert (t, r, c) into L[s].
Send (c, (Client, s, r),Request, Send) to C.

Receive response from the server:
processServerSend(s, c, r, ps)

If state[s] 6= OK, abort.
If (t′, r, c) /∈ L[s] for any t′,

Send (s, (Server, c, r),Response, Error) to S and abort.
Let k = getKey(s, (Server, c, r)).
Let ms = (From : c,To : s,Ref : r,Body : ps).
Let σs = sign(s, (Server, c, r),ms).
Update (t, r, c) to (t, r, ε) in L[s].
Send (ms, σs) to AS.



Deliver a response to the client:
processClientReceive(ms, σs)

Decode ms into (From : c,To : s,Ref : r,Body : ps).
If state[c, s, r] 6= OK, cor [Client, c, (Client, s, r)], or |ps| > n[c, s, r], abort.
Let n[c, s, r] = n[c, s, r]− |ps|, abort.
Let k = getKey(s, (Server, c, r)).
Let b = verify(s, (Server, c, r), Server,ms, σs, k).
If b 6= 1, abort.
Let state[c, s, r] = Stopped.
Send (s, (Server, c, r),Response, Send) to S.

Reset of the server:
processServerReset(s)

If state[s] 6= OK or cor , abort.
Let state[s] = Reset.
Let t = getTime(s, Server).
If t ≥ t[s], let t[s] = t.

Let state[s] = OK, tmin[s] = t[s] + tol+[s] and R[s] = L[s] = [ ].
Corrupt a machine and if necessary, note which one was corrupted:
processCorruptionRequest(id1, ..., idn, T )

If T = AS, let cor [Server, id1] = true.
If T = AC, let cor [Client, id1, id2] = true.
If T = Asig, let cor [Sig, id1, id2] = true.
If T = Aver, let cor [Sig, id1, id2, id3] = true.
Send (id1, ..., idn,Corrupt) to C, S, or Sig.

Corrupt a Server:
corruptServer(pid)

Let cor [Server, s] = true.
Send (pid, (Server),Corrupt) to S
Receive (pid, (Server),Corrupted, x) from S.

Get the time of a principal:
getTime(pid, sid)

Send (pid, sid,GetTime) to LC.
Recv (pid, sid,Time, t) from LC.
Return t.

Get a key from the keystore:
getKey(pid, sid)

Send (pid, sid,GetKey) to KS.
Recv (pid, sid,PublicKey, k) from KS.
Return k.

Get a signature:
sign(pid, sid,m)

If cor [Sig, pid, sid], abort.
Send (pid, sid, Sign,m) to Sig.
Recv (pid, sid, Signature, σ) from Sig.
Return σ.

Verify a signature:
verify(pid, sid, ssid,m, σ, k)

Send (pid, sid, ssid, Init) to Sig.
Recv (pid, sid, ssid, Init) from Sig.
If cor [Sig, pid, sid, ssid], abort.
Send (pid, sid, ssid,Verify,m, σ, k) to Sig.
Recv (pid, sid, ssid,Verified, b) from Sig.
Return b.


