
Cryptanalysis of the Tillich-Zémor hash function

Markus Grassl1, Ivana Ilić2, Spyros Magliveras2, and Rainer Steinwandt2

1 Centre for Quantum Technologies (CQT), National University of Singapore,
S15 #03-11, 3 Science Drive 2, Singapore 117543, Singapore

email: Markus.Grassl@nus.edu.sg
2 Center for Cryptology and Information Security, Department of Mathematical

Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA
email: {iilic,spyros,rsteinwa}@fau.edu

Abstract. At CRYPTO ’94, Tillich and Zémor proposed a family of
hash functions, based on computing a suitable matrix product in groups
of the form SL2(F2n). We show how to construct collisions between palin-
dromic bit strings of length 2n + 2 for Tillich and Zémor’s construction.
The approach also yields collisions for related proposals by Petit et al.
from ICECS ’08 and CT-RSA ’09.
It seems fair to consider our attack as practical: for parameters of interest,
the colliding bit strings have a length of a few hundred bits and can be
found on a standard PC within seconds.

1 Introduction

In their paper Hashing with SL2, Tillich and Zémor [12] propose a construc-
tion for obtaining a cryptographic hash function. The proposal builds on earlier
work [13, 14, 11] and received significant cryptanalytic interest. Various cryptan-
alytic results were reported [5, 3, 1, 10, 8], and in recent years, interest in Tillich
and Zémor’s construction has increased again. More specifically, in [9] Petit,
Veyrat-Charvillon, and Quisquater suggest a construction, building on param-
eter choices in [12] which are considered to be secure against known attack
techniques. This approach has been explored further in [8] and [4], and to the
best of our knowledge no collisions have been reported for the proposed pa-
rameter choices. In [4], de Meulenaer et al. conclude that a modification of the
Tillich-Zémor construction has significant advantages over dedicated and block
cipher-based hash functions including scalability, parallelism and a collision re-
sistance reducing to the hardness of a mathematical problem.

Our contribution. We establish a connection between the Tillich-Zémor proposal
and maximal length chains in the Euclidean algorithm for polynomials over
the field of two elements. After developing some results on collisions between
palindromic bit strings, we combine these facts with a result of Mesirov and
Sweet [6]. This reduces the identification of collisions for the Tillich-Zémor hash
function to a linear algebra problem which can be easily solved with a computer
algebra system. Our attack also yields collisions for the recent proposals of Petit

et al., and we demonstrate the practicability of our approach by giving collisions
for all specific parameter choices considered in [9, 4]. Standard Merkle-Damg̊ard
strengthening does not prevent the attack, as the obtained colliding messages
are of equal length.

2 Preliminaries

2.1 Notation

Throughout, we denote by V the collection of all bit strings, i. e., V := {0, 1}∗.
Further, if v ∈ V , we denote by |v| the length of the bit string v. If v = b1 . . . bm ∈
V is of length m, we denote by vr := bm . . . b1 the reversal of v, i. e., the reflection
of v which interchanges b1 with bm, b2 with bm−1, etc. In our attack we will make
use of palindromes, i. e., bit strings v ∈ V satisfying v = vr.

Let F2n be a finite field represented as F2n := F2[x]/(q(x)) with an irreducible
polynomial q(x) of degree n. We denote by α a root of q(x), and it will be
convenient to denote by G the group SL2(F2n), i. e., the group of 2× 2 matrices
of determinant 1 over F2n . If a1, a2, . . . , ar ∈ G,

∏r
i=1 ai means the 2×2 identity

matrix over F2 when r = 0, and (
∏r−1

i=1 ai) · ar when r > 0. Eventually, we need
the specific matrices

s0 :=
(

α 1
1 0

)
, s1 :=

(
α α + 1
1 1

)
∈ G.

With the above notation, according to the Tillich-Zémor proposal in [12], hashing
a bit string v = b1 . . . bm ∈ V translates into applying the function h̆ : V −→ G
defined by:

h̆(b1 . . . bm) := sb1 · · · sbm
∈ G

The goal of our attack is to find a collision for h̆, i. e., a pair (u, v) ∈ V ×V such
that u 6= v and h̆(u) = h̆(v).

Remark 1. At ICECS ’08 [9] and CT-RSA ’09 [8] Petit et al. propose vectorial
and projective variants of the Tillich-Zémor construction, and in [4] de Meulenaer
et al. combine ideas from [9, 8]. By construction, any collision for the original
Tillich-Zémor construction also yields a collision for these more recent proposals.
Hence, throughout we restrict to constructing collisions for the original proposal
from CRYPTO ’94.

2.2 Challenge parameters

Originally, Tillich and Zémor suggest a value of n ∈ {130, . . . , 170} for their con-
struction, and in view of [10] imposing n to be prime now seems to be common.
The most up-to-date suggestions we are aware of originate from [9], where the

following choices of the irreducible polynomial q(x) are proposed to define the
underlying F2n = F2[x]/(q(x)):

x127 + x + 1
x251 + x7 + x4 + x2 + 1
x509 + x8 + x7 + x3 + 1
x1021 + x5 + x2 + x + 1
x2039 + x10 + x9 + x8 + x7 + x5 + x4 + x2 + 1

We do not know if a trapdoor has been embedded in any of these polynomials
(cf. [10]), but according to [4] the above five polynomials are safe with respect to
the attacks in [5, 1, 10]. More specifically, for a collision resistance comparable to
SHA-1, de Meulenaer et al. in [4] suggest to use the polynomial x127 +x+1. For
a collision resistance comparable to SHA-256 the use of x251 + x7 + x4 + x2 + 1
is suggested.

The use of a field F2n with a prime number n close to 1024 has already been
considered in [7], but as we demonstrate below, also for such a parameter choice,
collisions can be identified efficiently.

3 Finding short palindrome collisions

To identify collisions for the Tillich-Zémor hash function, we proceed in three
steps.

3.1 Collision preserving change of generators

First, we prove that the search for collisions for the Tillich-Zémor hash function
can be transferred to the search for collisions when new, specific generators c0

and c1 are used. We set c0 = s0 and obtain the matrix c1 by conjugating s1 by
s0, i. e.,

c1 := s−1
0 s1s0.

Then, direct computation yields

c1 =
(

α + 1 1
1 0

)
.

In particular, c1 is symmetric and differs from c0 only in a single entry. Based
on these new generators, we define h : V −→ G by:

h(b1b2 . . . bm) := cb1 · · · cbm ∈ G.

The following proposition establishes that finding collisions for the Tillich-Zémor
scheme is equivalent to finding collisions for h.

Proposition 1. Let v, v′ ∈ V . Then h̆(v) = h̆(v′) if and only if h(v) = h(v′).

Proof. Suppose that v = b1b2 . . . bm and v′ = b′1b
′
2 . . . b′r are bit strings in

V . Then, h̆(v) = h̆(v′) if and only if sb1 · · · sbm = sb′
1
· · · sb′

r
. Conjugating by

s0, we see that the latter equality holds if and only if s−1
0 (sb1 · · · sbm

)s0 =
s−1
0 (sb′

1
· · · sb′

r
)s0, which in turn is equivalent to the condition

∏m
i=1(s

−1
0 sbi

s0) =∏r
i=1(s

−1
0 sb′

i
s0). Finally, because of s−1

0 s0s0 = s0 = c0 and s−1
0 s1s0 = c1, the

last equality is equivalent to
∏m

i=1 cbi =
∏r

i=1 cb′
i
. ut

Remark 2. For any element t ∈ G, the conjugating map φt : g 7−→ gt = t−1gt
will replace the two generators s0, s1 by st

0, s
t
1. Just as in Proposition 1 above,

bit string collisions for a hash function based on s0, s1 will be preserved by φt to
produce identical bit string collisions for the corresponding hash function based
on st

0, s
t
1. The specific choice t = s0 turns out to be very helpful for our purposes.

3.2 Palindromic collisions

In this section, we work inside the group SL2(F2[x]) of unimodular matrices over
the polynomial ring F2[x] rather than over a field F2n . Accordingly, we define
matrices C0, C1 ∈ SL2(F2[x]), now with polynomial entries, as follows:

C0 :=
(

x 1
1 0

)
, C1 :=

(
x + 1 1

1 0

)
∈ SL2(F2[x]),

and we define H : V −→ SL2(F2[x]) by:

H(b1b2 . . . bm) := Cb1 · · ·Cbm
∈ SL2(F2[x])

In other words, H is defined as h in Section 3.1, except that now H(v) ∈
SL2(F2[x]). We apply H to a particular subset of elements of V , namely, the set
of all palindromes in V , and obtain the following results.

Lemma 1. Let v ∈ V be a palindrome, and write H(v) =
(

a b
c d

)
. Then b = c,

i. e., H(v) is symmetric. Moreover, a has degree deg(a) = |v|, and we have
max(deg(b),deg(d)) ≤ |v|.1

Proof. The proof is by induction on the length |v| of v. For |v| ≤ 1, the statement
holds, as H(v) is the identity matrix or C0 or C1, all three of which satisfy the
property. For a palindrome w of length m, H(w) is of the form Cβ

(
a b
c d

)
Cβ where(

a b
c d

)
= H(v) for a palindrome v of length m− 2 , and where β ∈ {0, 1}. Now,

direct computation yields:

Cβ

(
a b
c d

)
Cβ =

(
ax2 + (b + c)x + d + β(a + b + c) a(x + β) + c

a(x + β) + b a

)
By the induction hypothesis, b = c, and the first part of the result follows. We
easily check that the statement about the degrees is also true. ut
1 We use the convention deg(0) = −∞.

Next, we examine the function ρ : V −→ F2[x]2×2 defined by

ρ(v) := H(0v0) + H(1v1).

We are interested in evaluating ρ modulo a given irreducible polynomial, because
ρ(v) ≡ (0 0

0 0) mod q(x) if and only if h(0v0) = h(1v1) is indeed a collision in
SL2(F2[x]/(q(x))) = G. We have the following:

Proposition 2. If v ∈ V is a palindrome of length |v|, then ρ(v) = (a a
a 0), where

a ∈ F2[x] has degree |v|. Moreover, a is the upper left entry of H(v).

Proof. Let H(v) =
(

a b
c d

)
, and consider ρ(v). Direct computation yields:

ρ(v) = C0H(v)C0 + C1H(v)C1 =
(

a + b + c a
a 0

)
Since v is a palindrome, by Lemma 1 we have that b = c, so that

ρ(v) =
(

a a
a 0

)
,

and the claim follows with the degree statement in Lemma 1. ut

For our attack we are interested in palindromes of even length, i. e., palindromes
that can be written in the form vvr for some v ∈ V . Here the following holds.

Proposition 3. If v ∈ V is a palindrome of even length, then H(v) =
(

a2 b
b d2

)
for some a, b, d ∈ F2[x].

Proof. Let v = wwr for some w ∈ V . The proof is by induction on |w|. When
|w| = 0 the hash H(wwr) is the identity matrix and the statement holds trivially.

Suppose now we extend a string w of given length by one bit, yielding a
palindrome βvβ = (βw)(wrβ) with β ∈ {0, 1}. By the induction hypothesis we

have that H(v) = H(wwr) =
(

a2 b
b d2

)
, so that:

H(βvβ) = Cβ

(
a2 b
b d2

)
Cβ =

(
(x + β)2a2 + d2 (x + β)a2 + b
(x + β)a2 + b a2

)
Consequently, both diagonal entries of H(βvβ) are squares, and the result fol-
lows. ut

Combining Propositions 2 and 3, we obtain the following corollary.

Corollary 1. Let v ∈ V be a palindrome of even length. Then ρ(v) =
(

a2 a2

a2 0

)
for some a ∈ F2[x] with deg(a) = |v|/2. More specifically, a2 is the upper left
entry of H(v).

Further, from the proof of Proposition 3 we are able to deduce the following
recurrence relation:

Corollary 2. Let bn . . . b1b1 . . . bn ∈ V be a palindrome of length 2n. Then, for
0 ≤ i ≤ n, the square root pi of the upper left entry of H(bi . . . b1b1 . . . bi) is given
by

pi =


1, if i = 0;
x + b1 + 1, if i = 1;
(x + bi)pi−1 + pi−2, if 1 < i ≤ n.

3.3 Maximal length chains in the Euclidean algorithm

Now, for the given irreducible polynomial q = q(x) ∈ F2[x] of degree n, used to
define the field F2n , we seek a palindrome v ∈ V of length 2n such that ρ(v) =
H(0v0)+H(1v1) is the zero 2×2 matrix over F2[x]/(q(x)). In view of Corollaries 1
and 2, we can accomplish this task by determining a second polynomial p(x) ∈
F2[x] of degree n − 1 such that gcd(q(x), p(x)) = 1 and the following holds:
during the execution of the Euclidean algorithm with input (q(x), p(x)), the
successive quotients are all of degree 1, and the degree of each remainder is only
one less than the degree of the respective divisor. This will ensure a “Euclidean
algorithm chain” of maximal length and adherence to the recurrence relation in
Corollary 2. The existence of such a polynomial p(x) follows from the subsequent
result by Mesirov and Sweet [6].

Proposition 4 (Mesirov and Sweet [6]). Given any irreducible polynomial
q of degree n over F2, there is a sequence of polynomials pn, pn−1, . . . , p0 with
pn = q and p0 = 1, and additionally, the degree of pi is equal to i and pi ≡
pi−2 mod pi−1.

Note that once we know a polynomial p = pn−1 as mentioned in Proposi-
tion 4 which matches our given polynomial pn = q, the Euclidean algorithm
will uniquely complete the sequence pn, pn−1, . . . , p1, p0 = 1. The linear quo-
tients x+βi (i = 1, . . . , n) occurring in Euclid’s algorithm allow us to derive the
bits bi of the palindrome in Corollary 2.

Remark 3. Note that p1 = x + b1 + 1 and therefore b1 = β1 + 1, while bi = βi

for i > 1, i. e., the bit β1 has to be inverted.

Combining this in turn with Corollary 1, we obtain the desired collision

h(0βn . . . β1 β1 . . . βn0) = h(1βn . . . β1 β1 . . . βn1),

where β1 indicates the necessary inversion of β1.
Mesirov and Sweet prove Proposition 4 by considering the field F2((x−1))

of formal power series in x−1 and continued fraction expansions of elements in
this field, and their proof actually contains an algorithm to compute p = pn−1.
More specifically, on input of an irreducible polynomial q = q(x) of degree n,
the following algorithm from [6] always produces exactly two solutions for p:

1) Construct a matrix A ∈ F(n+1)×n
2 from the n + 1 polynomials

g0 = x0 mod q(x),
gi = xi−1 + x2i−1 + x2i mod q(x), for i = 1, 2, . . . , n,

placing in the ith row of A the coefficients ai,0, ai,1, . . . , ai,n−1 of the poly-
nomial gi = ai,0 + ai,1x + · · ·+ ai,n−1x

n−1.
2) Solve the linear system Aut = (1, 0, . . . , 0, 1)t where u = (u1, u2, . . . , un).
3) Compute p(x) by multiplying q(x) by

∑n
i=1 uix

−i and taking only the non-
negative powers of x.

Before demonstrating our attack with the challenge parameters from Section 2.2,
we note that a palindrome collision immediately yields a different (non-pal-
indromic) collision with bit strings of the same length. One easily checks the
following.

Remark 4. Let v ∈ V be a palindrome. Then h(0v0) = h(1v1) if and only if
h(0v1) = h(1v0).

4 Collisions for the challenge parameters

With the attack just presented, it is a matter of seconds to derive collisions for
the challenge parameters from Section 2.2. We implemented our attack in the
computer algebra system Magma [2] on a standard PC. As expected, for each
choice of F2n = F2[x]/(p(x)) we obtain two bit strings v1, v2 ∈ {0, 1}n with

h(0viv
r
i0) = h(1viv

r
i1) (i = 1, 2),

i. e., we obtain two collisions of bit strings of length 2n+2. For simplicity, below
we restrict to listing one bit string v1 for each challenge parameter—the value
v2 can be obtained by reversing v1 followed by inverting the first and last bit. To
specify v1, we use hexadecimal notation where each hexadecimal digit represents
4 bits (0 – 0000, 1 – 0001, . . . , E – 1110, F – 1111). Spaces are for readability
only.

4.1 A collision for SL2(F2[x]/(x127 + x + 1))

Here we may choose

v1 = 8000 0000 0000 0003 0000 0000 0000 000

followed by the three bit sequence 000.

4.2 A collision for SL2(F2[x]/(x251 + x7 + x4 + x2 + 1))

Here we may choose

v1 = 4451 04E5 4DAB 26EB 91D3 5201 0EBD E579 54F7 AE10 0959 713A
EC9A B654 E411 44

followed by the three bit sequence 011.

4.3 A collision for SL2(F2[x]/(x509 + x8 + x7 + x3 + 1))

Here we may choose

v1 = 10BB E68D B808 2B84 9A1C 569C 9043 7170 8D98 E3EB C923 4CF8
44F4 552C 8B49 1D45 25C4 9689 A551 7910 F996 249E BE38 CD88
7476 1049 CB51 C2C9 0EA0 80ED 8B3E E84

followed by the single bit 1.

4.4 A collision for SL2(F2[x]/(x1021 + x5 + x2 + x + 1))

Here we may choose

v1 = 7EDE B9C6 F43F 3707 050D 36F7 0DA4 C665 CD36 41ED 101D F09A
258F 8C09 1176 82FF 42A1 6475 21B2 8901 143D DB01 10FE FD61
C4A9 C498 4005 0C28 F705 C7DA 6449 1D97 CDC4 9132 DF1D 0778
A185 0010 C91C A91C 35FB F844 06DD E144 048A 6C25 7134 2A17
FA0B 7444 818F 8D22 C87D C045 BC13 659D 3319 2D87 7B65 8507
0767 E17B 1CEB DBF

followed by the single bit 1.

4.5 A collision for
SL2(F2[x]/(x2039 + x10 + x9 + x8 + x7 + x5 + x4 + x2 + 1))

Here we may choose

v1 = 5DB1 31E2 BFD6 5D34 A98C 7FEF 8049 6043 1918 8835 7F23 1BEF
CF42 391A E5AF A211 BACE 74DF F1B3 4B0D 372F 1A17 4D0C FE33
6064 292E 790A 57C7 DF43 5E17 E424 49EA 3BE4 C978 3D58 1F53
ECDA DE3A 6B60 06DC 5EDD 8E80 E201 B9C8 23A7 0998 3521 A78D
8D49 1239 8700 9071 2D47 943F A369 C3C9 ABF7 7E05 FC66 FA4E
607C 0D22 433E 8368 42F9 8489 607C 0CE4 BECC 7F40 FDDF AB27
872D 8BF8 53C5 691C 1201 C338 9125 6363 CB09 5833 21CB 8827
3B00 8E02 E376 F476 C00D ACB8 F6B6 6F95 F035 783D 264F B8AF
2448 4FD0 F585 F7C7 D4A1 3CE9 284C 0D98 FE61 65D0 B1E9 D961
A59B 1FF6 5CE6 BB10 8BEB 4EB1 3885 E7EF B189 FD58 2231 3184
0D24 03EF FC63 2A59 74D7 FA8F 191B 7

followed by the three bit sequence 011.

5 Conclusion

The above discussion shows that neither the Tillich-Zémor hash function from
CRYPTO ’94 nor its variants from ICECS ’08 and CRT-RSA ’09 should be used
in applications where collision resistance is essential.

Acknowledgment

We thank Aaron Meyerowitz for interesting discussions.

References

1. Kanat S. Abdukhalikov and Chul Kim. On the Security of the Hashing Scheme
Based on SL2. In S. Vaudenay, editor, Fast Software Encryption – FSE ’98, volume
1372 of Lecture Notes in Computer Science, pages 93–102. Springer-Verlag, 1998.

2. Wieb Bosma, John Cannon, and Catherine Playoust. The Magma Algebra System
I: The User Language. Journal of Symbolic Computation, 24:235–265, 1997.

3. Chris Charnes and Josef Pieprzyk. Attacking the SL2 hashing scheme. In
J. Pieprzyk and R. Safavi-Naini, editors, Advances in Cryptology – ASIACRYPT
’94, volume 917 of Lecture Notes in Computer Science, pages 322–330. Springer-
Verlag, 1995.

4. Giacomo de Meulenaer, Christophe Petit, and Jean-Jacques Quisquater. Hardware
Implementations of a Variant of the Zémor-Tillich Hash Function: Can a Provably
Secure Hash Function be very efficient?, May 2009. Available at http://eprint.

iacr.org/2009/229.
5. Willi Geiselmann. A Note on the Hash Function of Tillich and Zémor. In C. Boyd,

editor, Cryptography and Coding, volume 1025 of Lecture Notes in Computer Sci-
ence, pages 257–263. Springer-Verlag, 1995.

6. Jill P. Mesirov and Melvin M. Sweet. Continued Fraction Expansions of Rational
Expressions with Irreducible Denominators in Characteristic 2. Journal of Number
Theory, 27:144–148, 1987.

7. Christophe Petit, Kristin Lauter, and Jean-Jacques Quisquater. Cayley Hashes:
A Class of Efficient Graph-based Hash Functions. Preprint, 2007. Available at
http://www.dice.ucl.ac.be/~petit/files/Cayley.pdf.

8. Christophe Petit, Jean-Jacques Quisquater, Jean-Pierre Tillich, and Gilles Zémor.
Hard and easy Components of Collision Search in the Zémor-Tillich Hash Function:
new Attacks and Reduced Variants with Equivalent Security. In M. Fischlin, editor,
Topics in Cryptology – CT-RSA 2009, volume 5473 of Lecture Notes in Computer
Science, pages 182–194. Springer-Verlag, 2009.

9. Christophe Petit, Nicolas Veyrat-Charvillon, and Jean-Jacques Quisquater. Effi-
ciency and Pseudo-Randomness of a Variant of Zémor-Tillich Hash Function. In
IEEE International Conference on Electronics, Circuits, and Systems ICECS 2008,
2008.

10. Rainer Steinwandt, Markus Grassl, Willi Geiselmann, and Thomas Beth. Weak-
nesses in the SL2(F2n) Hashing Scheme. In M. Bellare, editor, Advances in Cryp-
tology – CRYPTO 2000, volume 1880 of Lecture Notes in Computer Science, pages
287–299. Springer-Verlag, 2000.

11. Jean-Pierre Tillich and Gilles Zémor. Group-theoretic hash functions. In G. D.
Cohen, S. Litsyn, A. Lobstein, and G. Zémor, editors, Algebraic Coding, First
French-Israeli Workshop, volume 781 of Lecture Notes in Computer Science, pages
90–110. Springer-Verlag, 1994.

12. Jean-Pierre Tillich and Gilles Zémor. Hashing with SL2. In Y. Desmedt, editor,
Advances in Cryptology – CRYPTO ’94, volume 839 of Lecture Notes in Computer
Science, pages 40–49, 1994.

13. Gilles Zémor. Hash Functions and Graphs With Large Girths. In D. W. Davies,
editor, Advances in Cryptology – EUROCRYPT ’91, volume 547 of Lecture Notes
in Computer Science, pages 508–511. Springer-Verlag, 1991.

14. Gilles Zémor. Hash Functions and Cayley Graphs. Designs, Codes and Cryptog-
raphy, 4(4):381–394, October 1994.

