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Abstract. This paper explains how to design fully secure RSA-type
cryptosystems from schemes only secure against passive attacks, in the
standard model. We rely on instance-independence assumptions, which,
roughly speaking, conjecture that for certain problems, an interactive
access to a solver for another problem does not help the challenger. Pre-
viously, instance-independence assumptions were used in a “negative”
way, to prove that certain schemes proven in the random oracle model
were not provable in the standard model.
Our paradigm applies virtually to all (weakly secure) RSA-type encryp-
tion schemes for which public-key RSA exponent can be arbitrarily cho-
sen. As an illustration, we present a chosen-ciphertext secure variant of
the Naccache-Stern encryption scheme.
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1 Introduction

1.1 Chosen-ciphertext security

Building on the seminal work of Goldwasser and Micali [24], the commonly
accepted security notion for public-key encryption is that of indistinguishability
under adaptive chosen-ciphertext attacks (IND-CCA2, or IND-CCA for short) [40]
(see also [33] for a weaker notion considering non-adaptive adversaries). To reach
this security notion, there has been an extensive body of work on public-key
encryption, a recent survey of which can be can be found in [17].

Two-key paradigm. The first attempt to get security against chosen-ciphertext
attacks was given by Naor and Yung [33]. This paradigm consists in providing two
independent encryptions of the same plaintext together with a non-interactive
zero-knowledge (NIZK) proof that the two plaintexts are the same. Unfortu-
nately, this technique suffers from a certain inefficiency.



Random oracles. To overcome the inefficiency of first techniques to achieve
IND-CCA-security, Bellare and Rogaway formalized the notion of the random
oracle methodology [4]. The random oracle model assumes that a hash function
behaves as a random function. This assumption allows one to design very ef-
ficient schemes (e.g., [5]). Indeed, in the random oracle model, security proofs
are much simpler to design, since the random oracle gives an extra power to the
reduction algorithm. Generic transformations to turn a weakly secure encryption
scheme into a fully secure encryption scheme are also known (e.g., [20]).

Smooth hash proof systems. It is hard to write a paper on chosen-ciphertext
security without citing [15], where Cramer and Shoup proposed the first prov-
ably (efficient) secure scheme in the standard model. They later generalized the
underlying technique with the notion of smooth hash-proof systems [16], which
are very efficient non-interactive zero-knowledge proof for certain languages. The
current state-of-the-art scheme is due to Kurosawa and Desmedt [28].

Identity-based encryption. More recently, in [10], Canetti, Halevi and Katz pro-
posed a different way to get chosen-ciphertext security (see also [7, 6, 2]) . They
observe how to turn an IND-ID-CPA identity-based encryption (IBE) scheme into
an IND-CCA public-key encryption scheme, by using a strongly unforgeable one-
time signature scheme. The construction in [7] considers the same paradigm but
uses a MAC rather than a one-time signature, leading to some efficiency im-
provements. Further efficiency improvements are achieved in [2] by considering
partitioned IBE schemes.

1.2 Instance-independence assumptions

In [35, 34], Paillier and Villar considered several assumptions in order to show
that several RSA-based schemes were unprovable (under a black-box reduction)
in the standard model while provably secure in the random oracle model. They
refer to these assumptions as non-malleability assumptions, but to avoid any
confusion with the classical notion of non-malleability of an encryption scheme
(as proposed by Dolev, Dwork, and Naor [18]), we use the term of instance-
independence assumptions throughout this paper.

Let P be a cryptographic problem. An access (possibly with certain restric-
tions on entries) to an oracle solving a problem Q may be a way to find more
easily a solution to problem P. More precisely, the oracle solving Q is an inter-
active resource that is given to the adversary. For a pair (P,Q), the problem
consisting in solving P with an access to a Q-solver oracle is called the (P,Q)
assisted problem. Even if the problem Q is expected to be computationally hard
(and thus, even if the Q-solver oracle gives a lot of extra power to the attacker),
the (P,Q) assisted problem may remain hard. These are the cases that are con-
sidered in [35, 34] (see also [23, 29] for non-adaptive versions) and in this paper:
The assumption that solving the (P,Q) assisted problem is only negligibly easier
than solving the P problem is called the (P,Q) instance-independence assump-
tion. See also [1].



The first example given in [35, 34] is the assisted factorization: with an oracle
solving factorization of n ∕= n0 (with the restriction that n ∕= 0 mod n0 for
obvious reasons), it should remain hard to factor modulus n0. Another example
is the assisted e-th root computation: with an oracle returning e-th roots modulo
n (for (e, n) ∕= (e0, n0)) — where (e, n) is a possible output of some RSA key
generator3), it should remain hard to compute an e0-th root modulo n0.

Remark 1. We stress that instance-independence assumptions should not be con-
fused with one-more assumptions. In a one-more-P problem, one is given access
to two oracles, OGen and OSolve, and needs to solve (n+1) independent instances
of the P challenge (these challenges being given by OGen), using at most n ac-
cesses to OSolve, which is an oracle that solves any chosen instance of problem
P. Examples of one-more problems include the one-more RSA, the one-more DL
and the one-more CDH [3].

The assisted (P,Q)-problems, which are supposedly as hard as their primitive
problem P under instance-independence assumptions, are of different nature.
Indeed, they consist in solving only one instance of the P-problem, using a
possibly very large number of queries to an oracle solving the Q-problem. What
makes these assisted problems non-trivial is the fact that, in contrast with one-
more problems, the entries of the Q-problem solver are supposed to be “not too
related” to the P-challenge (hence the name of instance-independence). As a
consequence, assisted problems and one-more problems can hardly been linked
or compared together.

1.3 Our contributions

Instance-independence assumptions were used in [35, 34] to prove that security
proofs of several classical cryptosystems proven in the random oracle were im-
possible to achieve in the standard model, under a black-box reduction. On the
contrary, this paper considers positive applications of instance-independence as-
sumptions. Namely, we consider some simple and known IND-CPA primitives
with certain properties (we refer to these primitives as public-key encryptions
with ephemeral key), and show how to transform them into fully secure en-
cryption schemes. We provide a proof that, under clearly defined instance-
independence assumptions, the so-obtained schemes are as secure as their under-
lying primitives, in the standard model. Interestingly, RSA primitives we consider
in this paper corresponds — under some instance-independence assumptions —
to cryptographic objects named as adaptive one-way functions in [36]. Our prim-
itives are more efficient than the general constructions given in [36] but, being
specific, they rely on stronger assumptions.

For the sake of illustration, we will present an application of our paradigm
from the knapsack encryption scheme of Naccache and Stern [32]. Further ap-
plications of our paradigm can be found in Appendix A: one is based on the

3 For example, it should be supposed that n is not a multiple of n0, or that e does not
share common factors with e0. Therefore, to hope to achieve the assumption, one
may assume that e is prime, and that n has a certain fixed-length ℓn.



dependent-RSA problem [38] and another one is based on the decisional small
e-th residues problem [11].

1.4 Relation to IBE technique

Our technique shares many common features with the identity-based construc-
tion in [6]. Very roughly, the idea behind the identity-based encryption (IBE)
paradigm can be sum up as follows. For each new encryption, the user generates
a fresh key pair (pk, sk) for a certain signature scheme, and encrypts a message
by using an IND-ID-CPA secure IBE scheme (the result being noted c), using
the public key pk as the identity in the IBE scheme. The resulting ciphertext is
then made of pk, c, appended with a signature of c under private key sk. The
IND-CCA security of the so-obtained encryption scheme is achieved since access
to the decryption oracle is useless for an attacker: indeed, there is no way for
this latter to gain information about the challenge from the oracle since it does
not know the secret key sk∗, and thus, cannot create ciphertexts corresponding
to identity pk∗ of the challenge. The IND-ID-CPA security of the underlying IBE
scheme suffices to conclude the proof.4

Our scheme uses in a way the same kind of strategy. Imagine one starts
from an IND-CPA RSA-type encryption primitive, where additionally the user
can decide the value of the public exponent e for each ciphertext (the public
exponent being thus ephemeral). If the user proves that it has generated e by
himself (by exhibiting a proof of knowledge on something closely related to e),
such an exponent would not be anymore reusable by an attacker, i.e., an attacker
would not be able to submit to a decryption oracle a valid ciphertext with the
ephemeral public exponent e∗ appearing in the challenge. In this way, we forbid
the attacker to learn information from the decryption oracle in a way similar
to the IBE setting: the signature corresponding to public key pk makes that no
valid ciphertext with same identity pk∗ as in the challenge can be queried.

Unfortunately, there is an additional important issue to address in our set-
ting: we have to provide the attacker with the decryption queries.. In the IBE
setting, decryption queries are answered using the IND-ID-CPA security of the un-
derlying identity-based encryption. In our context, the underlying IND-CPA RSA-
type encryption primitive is insufficient. This is where instance-independence
assumptions come into play in order to assume that our reduction has an access
to an oracle answering decryption queries.

One may finally remark that the [6] transformation has been modified by
Kiltz in [26], who proposed an efficient conversion from a tag-based encryption
to form a chosen-ciphertext secure encryption scheme. This transformation is
more general than the IBE based one since any identity-based encryption scheme
can be turned into a tag-encryption scheme.

4 We refer the reader to [10] for a more precise security proof.



1.5 Outline of the paper

The rest of this paper is organized as follows. Section 2 reviews standard defini-
tions and security notions for public-key encryption, as well as the paradigm of
chameleon hashing. Section 3 introduces new cryptographic problems, and de-
fines instance-independence assumptions. Section 4 describes our main construc-
tion, including a complete chosen-ciphertext secure scheme. Finally, Section 5
concludes the paper.

2 Preliminaries

In this section, we introduce some background on public-key encryption. We also
review some ingredients that will be used in our constructions.

2.1 Public-key encryption

A public-key encryption scheme, ℰ = (Gen,Enc,Dec), can be described as a
tuple of probabilistic polynomial-time algorithms. By default, the message space
is {0, 1}∗.

Key Generation. Given a security parameter �, Gen(1�) produces a pair
(pk, sk) of matching public and private keys.

Encryption. Given a message m in message space ℳ and public key pk,
Encpk(m) produces a ciphertext c ← Encpk(m). If x denotes the random
coins used by Enc, we equivalently write c = Encpk(m,x).

Decryption. Given a ciphertext c and private key sk, Decsk(c) returns a plain-
text m or a special symbol ⊥ denoting that the ciphertext is invalid.

We require that if c← Encpk(m), then Decsk(c) returns m for all (pk, sk)←
Gen(1�) and messages drawn in the message space.

2.2 Security notions for encryption schemes

Semantic security. The notion of semantic security (IND) [24], also known
as indistinguishability of encryptions, captures a strong notion of privacy: The
attacker should not learn any information whatsoever about a plaintext given
its encryption. The adversary A = (A1,A2) is said to (�, ", �)-break IND when

AdvINDℰ (A) = 2×Pr
b,x

[
(pk, sk)← Gen(1�), (m0,m1, s)← A1(pk),
c← Encpk(mb) : A2(m0,m1, s, c) = b

]
−1 ≥ " , (1)

where the probability is taken over the random coins of the experiment according
to the distribution induced by Gen(1�) as well as the ones the adversary, where
b ∈ {0, 1} and m0,m1 ∈ ℳ. A must run in at most � steps and it is imposed
that ∣m0∣ = ∣m1∣. An encryption scheme is said to be semantically secure (or



IND secure) if no probabilistic algorithm can (�, ", �)-break IND for � ≤ poly (�)
and " ≥ 1/poly (�).

As we are in the public-key setting, it is worth noting that adversary A =
(A1,A2) is given the public-key pk and so can encrypt any message of its choice.
In other words, the adversary can mount chosen-plaintext attacks (CPA). Hence,
we write IND-CPA the security level offered by an IND-secure encryption scheme,
emphasizing the fact that A has access to an encryption oracle (for free).

Chosen-ciphertext attacks. IND-CPA security offers an adequate security
level in the presence of a passive adversary. In a number of situations however
(e.g., see [41]), this may reveal insufficient in the presence of a more powerful
adversary that can do more than merely eavesdropping the exchanged messages.

The “right” security level against active attacks is that of IND-CCA security,
or security against chosen-ciphertext attacks [40, 18] (see also [33]). The definition
of the adversary’s advantage as given by Eq. (1) readily extends to the IND-CCA
model but the adversary A = (A1,A2) now is given an adaptive access to a
decryption oracle to which it can submit any ciphertext of its choice with the
exception that A2 may not query the decryption oracle on challenge ciphertext c.

2.3 Chameleon hashing

Chameleon hash functions [27] (see also [8]) are hash functions associated with a
pair (hk, tk) of hashing/trapdoor keys. The name chameleon refers to the ability
of the owner of the trapdoor key to modify the input without changing the
output.

A chameleon hash function is defined by a triple of probabilistic polynomial-
time algorithms (ChamGen,ChamHash,ChamColl). ChamGen, on input
1�, produces a pair of hashing/trapdoor keys: (hk, tk)← ChamGen(1�). Given
a message m and a random string r, chameleon hash algorithm with hashing
key hk

ChamHashhk : {0, 1}∗ × {0, 1}∗ → {0, 1}∗, (m, r) 7→ ℎ = ChamHashhk(m, r)

generates a hash value ChamHashhk(m, r). Moreover, a chameleon hash function
should satisfy the properties that

(i) there exists no probabilistic polynomial-time algorithm that, on input ran-
dom hashing key hk, can find two pairs of message/random string, (m1, r1)
and (m2, r2) with m1 ∕= m2, such that the relation ChamHashhk(m1, r1) =
ChamHashhk(m2, r2) is satisfied, except with negligible probability;

(ii) on input trapdoor key tk, given (m1, r1,m2), algorithm ChamColl can find
a string r2 = ChamColltk(m1, r1,m2) such that ChamHashhk(m1, r1) =
ChamHashhk(m2, r2).

(iii) all messages m induce (computationally) indistinguishable probability dis-
tributions on chameleon hash function ChamHashhk(m, r) for r chosen uni-
formly at random.



Example 1. Consider the group G = ⟨g⟩ generated by an element g ∈ ℤ∗n, where
n is an RSA modulus. Suppose that ℋ : G → {0, 1}ℓℎ is a second-preimage
resistant hash function. It is easy to see that function ℱv given by

ℱv : ℤ∣G∣ × ℤ∣G∣ → {0, 1}ℓℎ , (m, r) 7→ ℱv(m, r) := ℋ(gr vm mod n)

is a chameleon hash function where hashing key is hk = {n, g, v} while trapdoor
key is tk = {y}, with gy ≡ v (mod n). Given a triple (m1, r1,m2), a colliding
value can be found using trapdoor key y as r2 = r1 + y(m1 −m2) mod ∣G∣.

Example 2. Suppose now that the order of G is unknown but that its order of
magnitude is known: ∣G∣ ≈ 2ℓg . We then restrict the range of messages in ℱv
to {0, 1}ℓc and allow for larger random strings r ∈ {0, 1}ℓg+ℓc+2� (where � is
some security parameter); trapdoor key y is chosen in {0, 1}ℓg+�.5 Since ∣G∣ is
unknown, trapdoor key y cannot be recovered as y = (r2− r1)/(m1−m2), as in
Example 1. Two different colliding pairs (m1, r1) and (m2, r2) will only yield a
multiple of ∣G∣:

L := (r1 − r2) + y(m1 −m2) ∝ ∣G∣ .

For random strings r1 ← {0, 1}ℓg+ℓc+2�, the statistical zero-knowledge property
guarantees that L is non-zero with overwhelming probability (see e.g. [39]). Sup-
pose further that n is a strong RSA modulus (i.e., n = (2p′+1)(2q′+1) for some
primes p′ and q′) and that G is the set of quadratic residues modulo n. In this
case, the value of 4L is a multiple of �(n), which, using Miller’s algorithm [31],
leads to the factorization of n.

3 Complexity Assumptions

3.1 Decision RSA short encrypted-prime problem

We start with the definition.

Definition 1 (Decision RSA Short Encrypted-Prime Problem (D-RSA-
SEP)). Let (ℓe, ℓn, ℓk) be security parameters. The challenger is given a triple
(e0, n0, z0), where n0 is an ℓn-bit RSA modulus, e0 is an ℓe-bit random prime,
and z0 ← ℤ∗n0

. Its goal is to decide whether or not z0 is of the form ke0 mod n0,
for some k ∈ Primes({2ℓk−1, 2ℓk}).

We have no proof that D-RSA-SEP problem is hard. Yet, we try to list some
key points which are needed to assess its difficulty. We also relate it to other
classical and close problems that appeared in the literature.

First, parameter ℓk is important, as it codes for the number of possible primes:
there are around 2ℓk/ℓk primes of ℓk bits. Thus, we want this latter quantity to be
larger than the expected security limit of 2�, where � is the security parameter.
For example, for a 112-bit security level, one needs ℓk ≥ 119.

5 Such a setting is sufficient to ensure that the discrete logarithm of v in base g (i.e.,
y mod ∣G∣) is statistically indistinguishable from a random integer modulo ∣G∣.



Second, exponent e cannot be too small. Indeed, if e is too small, i.e., if
e⋅ℓk < ℓn, the value ke mod n is actually equal to ke over the integers. Therefore,
it is easy for the challenger to solve the D-RSA-SEP problem by computing e-th
roots over the integers. The same holds true when e ⋅ ℓk ≈ ℓn as the challenger
can then first guess the quotient ke

n . Hence, typically, ℓk = 119 and e = 3 is a
bad setting. All in all, it is necessary for the problem to be hard that e ⋅ ℓk ≫ ℓn.
Note that this is also imposed by Coppersmith’s algorithm [13].

It is very simple to see that D-RSA-SEP⇐ RSA⇐ FACT, where ⇐ denotes
polynomial reductions. Apart from these easy reductions, we do not see any way
to prove the relative security of the new problem we present. This may therefore
be the subject of future research.

RSA-type problems. We review below in this section some problems that
were proposed in the literature, that are more or less related to D-RSA-SEP.

Relationship with dependent-RSA problem. The dependent-RSA problem (DRSA)
was introduced by Pointcheval in [38]: it was one of the first decisional RSA-
type problems proposed in the literature. The idea consists in trying to mount
an RSA equivalent of the ElGamal pair (gr, yr). Notably, one of the proposed
mode is the pair (re mod n, (r+1)e mod n). The Dependent-RSA problem, in its
computational version, is defined as computing (r+1)e mod n from (e, n, re mod
n), while its decisional version consists in distinguishing (r + 1)e mod n from a
random element in ℤ∗n, being given (e, n, re mod n).

Essentially, Dependent-RSA and D-RSA-SEP problems feature in common
that their hardness requires e to be large enough.

Relationship with decisional small e-th residues problem. In [11], Catalano, Gen-
naro, Howgrave-Graham and Nguyen proposed the (computational/decisional)
small e-th roots problem (DSeR being the notation of the decisional version). It
arises from a variant of Paillier scheme they proposed.

The decisional small e-roots problem is by definition to decide whether an
input is of the form re mod n2 (with r ∈ ℤ∗n) or not, being given (e, n). This
problem is close to D-RSA-SEP in the sense that it basically requires to distin-
guish small values raised to a power e (a small prime in D-RSA-SEP, an half-size
integer in DSeR) from random values.

Relationship with Micali-Schnorr pseudo-random bit generator. The pseudo-
random bit generator designed by Micali and Schnorr [30] is based on the hypoth-
esis that the distribution of ke mod n for random ℓk-bit integers is indistinguish-
able from the distribution of elements of ℤ∗n. This is clearly an assumption that
is very close to ours: in our case, we only added that the k that are considered
are primes.



3.2 Instance-independence assumption

In [35, 34], Paillier and Villar conjectured that the RSA(e0, n0) problem (that
is, the computation of e0-th roots modulo n0) is not significantly simpler when
one was given an interactive oracle returning e-th roots modulo n, for any pair
(e, n) ∕= (e0, n0) of adversary’s choice. They refer to this kind of hypothesis as
non-malleability assumptions, in the sense that an RSA challenge should not
be transformed into another challenge, so that the oracle would help. To avoid
confusion with the classical security notion of non-malleability [18], we rename in
this paper the [35, 34]-style assumptions as instance-independence assumptions.

Intuitively, in this paper, we consider an instance-independence variant about
the D-RSA-SEP problem, conjecturing that D-RSA-SEP(e0, n0) is not signifi-
cantly simpler when given an RSA(e, n) oracle, where we restrict even more the
control of the adversary than in [35, 34]: this latter can only have access to an
oracle returning e-th roots modulo n0, with e prime and where modulus is fixed
to n0.

More formally, this gives the following definition.

Definition 2 (Assisted Decision RSA Short Encrypted-Prime Problem
(A-D-RSA-SEP)). Let (ℓe, ℓn, ℓk) be some security parameters. The challenger
is given (e0, n0, z0), where n0 is an RSA ℓn-bit modulus, e0 is a ℓe-bit random
prime, and z0 ∈ ℤ∗n0

. The challenger has qD adaptive accesses to an oracle On0
,

which returns an e-th root of a chosen element � modulo n0, for a chosen ℓe-bit
prime e ∕= e0:

�← On0
(e, �) such that �e = � mod n0 .

The challenger’s goal is to decide whether or not z0 is of the form ke0 mod n0,
for some k ∈ Primes([2ℓk−1, 2ℓk [).

We conjecture that the assisted decision RSA short encrypted-prime problem
is at most negligibly easier than the (standard) decision RSA short encrypted-
prime problem. Indeed, we suppose that the RSA(e, n0) problems are sufficiently
independent for different prime exponents e, so that the access to the (limited)
RSA oracle does not “dramatically” simplify the task of the challenger. In other
words, because of this supposed independence, we believe that the A-D-RSA-SEP
problem, which is interactive by nature, is almost as hard as its plain version (see
Definition 1). This assumption is what we call the (D-RSA-SEP,RSA) instance-
independence assumption. We remark that this latter assumption is stronger than
the ones used in [35, 34], because the problems to solve in our constructions are
decisional.

4 New RSA-type Schemes

4.1 An IND-CPA encryption scheme

We describe a semantically secure RSA-type encryption scheme derived from the
multiplicative knapsack cryptosystem Naccache-Stern [32].



Key Generation. Some parameters are defined, namely a bit-length ℓn, a bit-
length ℓk and a maximum index I so that

� :=

I∏
i=1

pi ≤ 2ℓn−ℓk−1 and pI < 2ℓk−1 ,

where pi’s denote the first primes sorted in increasing order. The message
space is {0, 1}I . Let n = pq be an ℓn-bit RSA modulus, made of two equal-
length primes p and q. Define � = lcm(p− 1, q − 1) and for an integer e > 1
with gcd(e, �) = 1, compute d = e−1 mod �.

The public key is pk = {n, e} while the private key is sk = {d}.

Encryption. To encrypt a message m = {mi}i ∈ {0, 1}I , one picks a ran-

dom ℓk-bit prime k, computes w =
∏I
i=1 pi

mi and c = (w ⋅ k)e mod n. The
ciphertext is c.

Decryption. To decrypt a ciphertext c, the legitimate receiver calculates t =
cd mod n and decomposes it into the base of primes allowing a maximal
valuation of 1 for each prime pi, i.e.,

t =

I∏
i=1

pi
mi ⋅ k′ with mi ∈ {0, 1} .

Message m is then recovered bit-by-bit as mi =

{
1 if t mod pi = 0,

0 otherwise .

It is easy to show that the above scheme achieves IND-CPA security under
the assumption that the D-RSA-SEP problem is hard (see Definition 1).

4.2 Making it chosen-ciphertext secure

As for most RSA-type schemes, public exponent e can be “freely” chosen in the
key generation of the previous scheme, subject to the condition that gcd(e, �) =
1. In other words, this scheme can be modified into a public-key encryption
scheme with ephemeral key. Namely, the public key pk can be split into two
parts: a fixed part n and a variable (ephemeral) part e. If the private key is
defined as �, the private exponent corresponding to e can be computed from �
as d = e−1 mod �.

Suppose for a moment that the ciphertexts are formed by pairs (c, e) obtained
from the previous IND-CPA encryption scheme from a random ephemeral key e.
Now, in the security proof, when adversary A = (A1,A2) requests the decryption
of (c, e), we simply call the RSA-oracle and get back corresponding plaintext m
(or ⊥). This however supposes that e ∕= e∗, where (c∗, e∗) denotes the challenge
ciphertext, because of the restriction on the oracle in the A-D-RSA-SEP problem.
First, we note that the probability that A1 queries on a ciphertext (c, e) with



e = e∗ is negligible as A1 has no a priori knowledge on the value of e∗. For
this, we assume that the set from which the ephemeral key e is drawn from is
sufficiently large.

For A2, things are more complicated: A2 knows e∗ from the challenge cipher-
text (c∗, e∗). The limitation on the oracle in the A-D-RSA-SEP problem prevents
to obtain the corresponding plaintext from the RSA oracle (remember that only
primes e ∕= e∗ can be submitted). Therefore we adopt another strategy: in some
sense we “forbid” A2 to submit ciphertexts of the form (c, e∗) by making “infea-
sible” for anyone to reuse a prior ephemeral key picked by someone else. To this
end, we append a “proof”, say �, to the ciphertexts and modify the generation
of e accordingly. The ciphertexts of are now represented by tuples (c, e, �). There
are several possible realizations of this idea ([6]).

One-time mappable chameleon hash function. Our proof � relies on a
special kind of chameleon hash functions. As will become apparent, chameleon
hash functions will be used so that the value of e can be recovered from (c, �).
Their salient feature is that it is infeasible to find a second pair (c′, �′) ∕= (c, �)
that will yield the same e, unless some trapdoor information on the generation
of e is given. Since A2 has no such information about e∗, the probability that
A2 requests the decryption of a ciphertext (c, e∗, �) with (c, �) ∕= (c∗, �∗) is
negligible.

The attentive reader will observe there is a last technical complication: e∗,
the ephemeral key used in the ciphertext challenge, is an input to the reduction
algorithm and so it is unclear how to get a pair (c∗, �∗) that will lead to the
value of e∗.

6 This problem is alleviated through the use of one-time mappable
chameleon hashing. Basically, a one-time mappable hash function is a keyed hash
function that can be controlled for one given pair of input/output.

Definition 3 (One-time mappable hash function). Given a family of hash
functions {ℋ(i)}j, a one-time mappable hash function ℋ(a) is a hash function
such that on input (x∗, ℎ∗), it is easy to find an index a such that ℋ(a)(x∗) = ℎ∗.

It turns out that it is straightforward to construct a one-time mappable hash
function from a regular hash function. Let ℋ be a function mapping strings
of arbitrary length to strings of ℓℎ bits. From ℋ, we define the family of hash
functions {ℋ(i)}i, 0 ≤ i < 2ℓℎ , given by

ℋ(i) : {0, 1}∗ → {0, 1}ℓℎ , x 7→ ℋ(i)(x) := (ℋ(x) + i) mod 2ℓℎ . (2)

Now given a pair (x∗, ℎ∗), if we set a := (ℎ∗ − ℋ(x∗)) mod 2ℓℎ , we obviously
have ℋ(a)(x∗) = ℎ∗.

The above construction can be composed with chameleon hash functions so
as to obtain one-time mappable chameleon hash functions. Moreover, it is easy to
see that doing so, Properties (i)–(iii) for chameleon hash functions (cf. § 2.3) are

6 This technical complication appears clearly in the security analysis; see § 4.3.



still satisfied, provided that function ℋ in Eq. (2) is second pre-image collision
resistant.

In order to satisfy the instance-independence assumption, ephemeral keys e
are required to be ℓe-bit primes. Hence, we need to modify the output of the
hash function to accommodate this additional requirement.7 We give below an
example of such a function that maps integers (of length at most ℓℎ bits) to
ℓe-bit primes:

Jℓe : {0, 1}ℓℎ → Primes([2ℓe−1, 2ℓe [),

x 7→ Jℓe(x) := NextPrimeℓe [T (x)] with T (x) := x ⋅ 2ℓe−ℓℎ−1 + 2ℓe−1 .

For an integer t, function NextPrimeℓe(t) returns the first prime larger than t,
provided that this prime is smaller than 2ℓe ; if no such prime exists, it returns the
first prime larger than 2ℓe−1. For any x1, x2 ∈ {0, 1}ℓℎ , T (x1) = T (x2) implies
x1 = x2 and thus function T is injective. In our construction, ℓe and ℓℎ satisfy
ℓe ≫ ℓℎ so that there always8 exists an ℓe-bit prime in a range of 2ℓe−ℓℎ−1

consecutive ℓe-bit integers, which in turn implies that function Jℓe is injective
too.

Putting all together, the one-time mappable chameleon hash to be used,
obtained from chameleon hash function of Example 2, is given by:9

ChamHash(a)
v : {0, 1}ℓc × {0, 1}ℓn+ℓc+2� → Primes([2ℓe−1, 2ℓe [),

(m, r) 7→ ChamHash(a)
v (m, r) := Jℓe

(
ℋ(a)(gr vm mod n, v)

)
. (3)

Our scheme. We are now ready to present our IND-CCA-secure RSA-type
scheme. The security analysis is presented in the next section.

Key Generation. On input security parameter �, bit-lengths ℓn, ℓk, and index
I are defined as in the basic scheme (see § 4.1). The message space is {0, 1}I .
Let n = (2p′ + 1)(2q′ + 1) be a strong RSA modulus and let QR(n) denote
the set of quadratic residues modulo n. Let also ℋ : QR(n) → {0, 1}ℓℎ
be a second pre-image resistant hash function, for some bit-length ℓℎ ≥ �.
Select a parameter a ← {0, 1}ℓℎ and define ℋ(a)(x) := (ℋ(x) + a) mod 2ℓℎ .
For some bit-length ℓc ≥ �, let G : ℤn → {0, 1}ℓc be a second pre-image
resistant hash function. Finally, let the one-time mappable chameleon hash
function given by Eq. (3) for some g ← QR(n) and bit-length ℓe satisfying
(�+ log �) ≤ ℓe < ℓn/2 and ℓℎ ≪ ℓe.

10

7 Actually, so-called division-intractable hash functions [21] would suffice for our pur-
poses; but as pointed out in [14], the easiest way to meet the requirement of division-
intractability is to construct hash functions mapping strings to prime numbers.

8 Unless a breaking, surprising fact on the distribution of prime numbers.
9 The pair (gr vm mod n, v) is viewed as a bit-string in the definition of ChamHash

(a)
v .

10 Typical values for the different parameters are ℓn = 2048, ℓk = 160, I = 216,
ℓℎ = ℓc = 128, and ℓe = 256.



The public key is pk = {n, g, a} while the private key is sk = {�} with
� = 2p′q′.

Encryption. To encrypt a message m = {mi} ∈ {0, 1}I , do the following:
1. choose a random integer y ← {0, 1}ℓn+� and compute v = gy mod n;
2. choose a random pair (c, r)← {0, 1}ℓc×{0, 1}ℓn+ℓc+2� and obtain prime

e = ChamHash(a)
v (c, r);

3. pick a random ℓk-bit prime k and compute c′ = (w ⋅ k)e mod n with

w =
∏I
i=1 pi

mi ;
4. compute � = r + y(c− G(c′)).

The ciphertext is C = (c′, v, �).

Decryption. To decrypt a ciphertext C = (c′, v, �), the legitimate user does
the following:
1. recover e = ChamHash(a)

v (G(c′), �);
2. compute d = e−1 mod �;
3. compute t = c′d mod n and derive bit-by-bit corresponding message m

as in the basic scheme.

Observe that there is no validity test in the decryption: any ciphertext is
considered as valid. This is not the first time that an encryption scheme which
always decrypts is adaptively secure (e.g., [37]).

4.3 Security analysis

We prove that the scheme is IND-CCA under the (D-RSA-SEP,RSA) assumption
(see § 3.2).

We have the following theorem:

Theorem 1. Let A be an adversary which can break the IND-CCA security with
success probability " under a chosen-ciphertext attack within time � . Assume
that ℋ and G are second pre-image resistant hash functions. Then the (D-RSA-
SEP,RSA) problem can be solved with success probability "

2 and within time � +
qD ⋅ TOn

+ poly(�), where TOn
is the time of an RSA-oracle execution and qD is

the number of decryption queries.

In other words, assuming the RSA(e, n0) instances are independent for dif-
ferent prime exponents e, our scheme is as secure as the regular (i.e., non-
interactive) version of the decision RSA short encrypted-prime problem.

Proof (of Theorem 1). We give a proof that our scheme achieves IND-CCA se-
curity, namely indistinguishability under adaptive chosen-ciphertext attacks, in
the standard model. As stated in the theorem, we consider ℋ and G to be second
pre-image resistant hash functions, being said that if the adversary breaks this
property, the scheme becomes insecure.

We use the following notation. Letters with stars (e∗) correspond to the ad-
versary challenge, letters with zeros (e0) correspond to the reduction challenges,
and letters with j index (ej) correspond to j-th decryption queries.



We suppose that there exists an adversary A able to break the scheme in
the sense of IND-CCA. We will use A to devise a reduction algorithm ℛ solving
the D-RSA-SEP problem. On input (e0, n0, z0, ℓk0), ℛ is given access to an RSA-
oracle On0

and has to say whether or not z0 is of the form k0
e0 (mod n0) for

some ℓk0-bit prime k0.

Setup. The adversary’s environment is simulated. We set strong RSA modulus
n = n0 and prime e∗ = e0, and pick a random element g ← QR(n). We
choose a random integer y∗ ← {0, 1}ℓn+� and compute v∗ = gy∗ mod n.
We also choose a random pair (c∗, r∗) ← {0, 1}ℓc × {0, 1}ℓn+ℓc+2�. Finally,

parameter a ∈ {0, 1}ℓℎ is selected so that ChamHash(a)
v∗ (c∗, r∗) = e∗ — this

is where the one-time mappability feature is used. To start the simulation,
the public key {n, g, a} is given to A = (A1,A2).

Decryption queries. When A1 requests the decryption of Cj = (c′j , vj , �j),

we compute ej = ChamHash(a)
vj (G(c′j), �j). If ej ∕= e∗, we forward (c′j , ej) to

On0
and get back tj = c′j

1/ej mod n. From tj , we recover the corresponding
plaintext and return it to A1. If ej = e∗, we abort the simulation.

Challenge. At some point,A will issue two plaintexts m0 andm1. For a random
bit b← {0, 1}, we produce the challenge ciphertext corresponding to message
mb (written as {(mb)i} in binary form), C∗ = (c′∗, v∗, �∗), where{

c′∗ =
(∏

1≤i≤I pi
(mb)i

)e∗ ⋅ z0 mod n

�∗ = r + y∗(c★ − G(c′∗))
.

The challenge corresponds to ephemeral public exponent e∗ and is valid as
soon as z0 is of the form k0

e0 mod n0 for some ℓk0 -bit prime k0. On the
contrary, if z0 is a random of ℤ∗n0

, the challenge is independent of mb.

Additional decryption queries. Upon receiving the challenge ciphertext, A2

is allowed to make further decryption queries (c′j , vj , �j) ∕= (c′∗, v∗, �∗). We
proceed as before (i.e., as for A1).

Outcome. Eventually, provided that the simulation is perfect, A will return
b with success probability " and within time � . Let b′ denote the output
of A. If b = b′, we return 1 as the output (meaning that we suppose that
z0 = k0

e0 mod n0 for some ℓk0 -bit prime k0). On the contrary, if b ∕= b′ (or if
A does not return an output), we return a random answer to the challenge.

There is one case for which the simulation is not perfect, the challenge phase
excepted (this is addressed just after): when A1 or A2 queries on a ciphertext
(c′j , vj , �j) leading to ej = e∗. This yields

ChamHash(a)
vj (G(c′j), �j) = ChamHash(a)

v∗ (G(c′∗), �∗)

⇒ ℋ(a)(g�j vj
G(c′j) mod n, vj) = ℋ(a)(g�∗ v

G(c′∗)
∗ mod n, v∗) since J is injective

⇒ v∗ = vj and g�j v
G(c′j)
j ≡ g�∗ v

G(c′∗)
∗ (mod n) since ℋ is supposed second-

preimage resistant



⇒ (�j − �∗) + y∗(G(c′j)− G(c∗)) ∝ p′q′

which leads to the factorization of n as soon as the multiple of p′q′ is non zero,
and so to the solution to the (D-RSA-SEP,RSA) assisted problem. To conclude,
it is sufficient to see that it happens only negligibly that the multiplier is zero, as,
since G is second pre-image resistant, finding such pair (c′j , �j) for the adversary
is harder than writing y∗ as

y∗ =
�j − �∗

G(c′j)− G(c∗)
.

As the view of the adversary on y∗ is limited to y∗ mod p′q′ (by v∗, since r
statistically hides y∗ in �∗), such recovery for the attacker is only possible with
probability 2−�. Thus, simulation aborts are not harmful, as they allow to solve
the reduction problem.

Concerning the challenge phase, there are two cases:

1. First, if z0 is not of the form k0
e0 mod n0, i.e., if z0 is a random of ℤ∗n0

.
Then, the challenge ciphertext is malformed, and the simulation is imperfect
because of this. However, one can conclude, as the advantage of the adversary
is necessarily 0, since the ciphertext is independent of mb. Therefore, our
answer is right with a probability 1

2 .

2. Second, if z0 = k0
e0 mod n0 for some ℓk0-bit prime k0. In this case, the

adversary view is normal, and it should have its classical advantage ". Then,
we have an advantage of " against the decisional problem.

In conclusion, we have an advantage "
2 over the A-D-RSA-SEP problem; or equiv-

alently, "ℛ = "
2 . ⊓⊔

4.4 Further schemes

Typically, for a 2048-bit modulus, the previous scheme allows one to encrypt 216-
bit messages. The message bandwidth can however be significantly increased by
deriving an RSA-type scheme from the recent scheme presented in [12] (rather
than the basic Naccache-Stern scheme). The above conversion applies in the same
way.

There exist other IND-CPA-secure RSA-type schemes allowing to freely ex-
ponent e, under various assumptions. These include by Pointcheval scheme [38]
(based on dependent-RSA problem) or CGHN scheme [11] by Catalano, Gennaro,
Howgrave-Graham and Nguyen (based on decisional small e-th residues prob-
lem). Again, the above conversion applies in the same way to get corresponding
IND-CCA-secure RSA-type encryption schemes. Moreover, there are several pos-
sible constructions of one-time mappable chameleon hash functions. We refer the
reader to Appendix A for a description of the so-obtained schemes.



5 Conclusion

In the context of RSA-based cryptography, instance-independence assumptions
were used in the literature as a way to provide evidence that some schemes
provably attaining a certain level of security in the random oracle would never
be proved to achieve the same level in the standard model (in the black-box
setting). In contrast, in this paper, we have shown positive applications of
instance-independence assumptions in order to construct (simple) new encryp-
tion schemes with security reductions to some decisional problems. Among the
possible instances of our technique, we pointed out a chosen-ciphertext secure
encryption scheme of the Naccache-Stern knapsack, as well as schemes based on
the dependent-RSA problem and decisional small e-th residues problem.
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A Further IND-CCA-Secure RSA-type Schemes

We present here further applications. The underlying decisional problems we
consider are the dependent-RSA problem and small e-th residues problem. We
refer to the reader to the original papers [38, 11] for a complete description. This
shows the generic nature of our paradigm. This also shows that the security
can be based on more classical problems than the newly introduced D-RSA-SEP
problem.

A.1 Dependent-RSA variant

Here, we describe an application with the dependent-RSA problem chameleon
hash sE ⋅ vm mod n.

Key Generation. An RSA modulus n = pq as well as a prime public exponent
E are generated (so that � = lcm(p−1, q−1) and gcd(E, �) = 1). A one-time
mappable hash function family ℋ(a) is selected, as well as a parameter a.
The public key is {n,E, a} while the private key is �.

Encryption. To encrypt a message m ∈ ℤ∗n, one picks k, y ← ℤ∗n, computes
v = kE mod n, u = vy mod n, and e = ℋ(a)(u, v). Then, one picks a
random r ← ℤ∗n, computes c1 = re mod n, c2 = (r + 1)e ⋅ m mod n, and
s = ky−G(c1,c2) mod n.

The ciphertext is (c1, c2, s, v).

Decryption. To decrypt a ciphertext (c1, c2, s, v), the legitimate user first com-
putes u = sE ⋅ vG(c1,c2) mod n. Next, he computes e = ℋ(a)(u, v) and re-
covers the private key d = e−1 mod �. The plaintext is obtained as m =
((c1

d mod n) + 1)−e ⋅ c2 mod n.



Intuitively, the proof of § 4.3 can be adapted to this scheme, as an adversary
colliding on sE ⋅ vm mod n can be used to find an E-th root modulo n, which is
a stronger problem that the dependent-RSA problem.

A.2 Decisional small e-th residues variant

In this section, we use the decisional small e-th residue problem and replace
the strict chameleon by a non-interactive variant of �-protocol using the Fiat-
Shamir heuristic [19], which, following the terminology of [9], is called a signature
of knowledge.

Encryption. To encrypt a message m ∈ ℤ∗n, one computes u = gx mod n and
v = gy mod n for two large random integers x and y. After, one hashes
e = ℋa(u, v). Finally, one picks a random r ← ℤ∗n and computes c = re ⋅
(1 +mn) mod n2 and s = x+ G(c) ⋅ y.

The ciphertext is (c, s, v).

Decryption. To decrypt a ciphertext (c, s, v), the legitimate user first computes
u = gs ⋅ v−G(c) mod n. Next, he calculates e = ℋ(a)(u, v) and recovers the
private key d = e−1 mod �. The corresponding plaintext is then given by

m = ((cd mod n))−e⋅c mod n2−1
n .

Again, the proof of § 4.3 can be easily adapted to this scheme, as the used
signature of knowledge (which is the GPS signature scheme [22, 39]) is very close
to the chameleon used in § 4.2.


