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Abstract

Formal analysis of security protocols based on symbolic models has
been very successful in finding flaws in published protocols and prov-
ing protocols secure, using automated tools. An important question is
whether this kind of formal analysis implies security guarantees in the
strong sense of modern cryptography. Initiated by the seminal work of
Abadi and Rogaway, this question has been investigated and numerous
positive results showing this so-called computational soundness of formal
analysis have been obtained. However, for the case of active adversaries
and protocols that use symmetric encryption computational soundness
has remained a challenge.

In this paper, we show the first general computational soundness result
for key exchange protocols with symmetric encryption, along the lines of
a paper by Canetti and Herzog on protocols with public-key encryption.
More specifically, we develop a symbolic, automatically checkable crite-
rion, based on observational equivalence, and show that a key exchange
protocol that satisfies this criterion realizes a key exchange functionality
in the sense of universal composability. Our results hold under standard
cryptographic assumptions.
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1 Introduction

Formal analysis of security protocols based on symbolic models, also called
Dolev-Yao models [22], has been very successful in finding flaws in published
protocols and proving protocols secure, using fully automated or interactive
tools (see, e.g., [32, 30, 8, 9, 3, 10]). While formal analysis in symbolic models
is appealing due to its relative simplicity and rich tool support (ranging from
finite state model checking, over fully or semi-automatic special purpose tools,
to general purpose theorem provers), an important question is whether analy-
sis results obtained in the symbolic model carry over to the realm of modern
cryptography with its strong security notions. Initiated by the seminal work
of Abadi and Rogaway [2], this so-called computational soundness problem has
attracted a lot of attention in the last few years and many positive results have
been obtained (see, e.g., [2, 5, 31, 19, 18, 23, 6]).

However, as further discussed in Section 10, establishing computational
soundness results for protocols with symmetric encryption in presence of active
adversaries has turned out to be non-trivial. Most results for symmetric encryp-
tion assume passive or at most adaptive adversaries (see, e.g., [2, 23]). Con-
versely, results for active adversaries mostly consider asymmetric cryptography,
e.g., public-key encryption and digital signatures (see, e.g., [31, 19, 18, 15, 6]).
One reason that the combination of symmetric encryption and active adversaries
in computational soundness results is challenging is that, unlike private keys in
asymmetric settings, symmetric keys may “travel” between parties and some
of these keys may be dishonestly generated by the adversary. The behavior of
encryption and decryption under dishonestly generated keys is almost arbitrary,
and hence, hard to map to the symbolic settings, as cryptographic definitions
do not talk about dishonestly generated keys.

The goal of this work is therefore to obtain computational soundness results
for protocols that use symmetric keys in presence of active adversaries, with
standard cryptographic assumptions. More precisely, the contribution of this
paper is as follows.

Contribution of this Paper. We first propose a class of symbolic key ex-
change protocols based on the applied pi calculus [1], with pairing, symmetric
encryption, and nonces as well as branching via general if-then-else statements.
These symbolic protocols are given an obvious computational interpretation,
with, compared to other works, only very mild tagging requirements; basically,
only pairs and keys are tagged. In particular, we do not require ciphertexts
to carry any auxiliary information. We use the IITM model [24], a model for
simulation-based security, as our computational model. This model is close in
spirit to Canetti’s UC model [13]. However, as further discussed in Section 4,
due to some technical problems in the UC model, the IITM model is more
suitable for our purposes.

For the main result of the paper, the computational soundness result, we
develop a natural symbolic criterion for key exchange protocols. This criterion
requires i) that a symbolic key exchange protocol is observationally equivalent
[1] to its randomized version in which instead of the actual session key a new
nonce is output and ii) that all keys used within one session of the key exchange
protocol remain secret in case the session is uncorrupted. The first condition is
the natural symbolic counterpart of cryptographic key indistinguishability. The
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second condition also seems well justified from an intuitive point of view: It is
hard to imagine a reasonable key exchange protocol where in an uncorrupted
session the keys used in the session become known to the adversary. This
second condition will enable us, unlike other work (see Section 10), to deal with
dishonestly generated keys. We note that the symbolic criterion only talks about
one session of a protocol. Hence, it is particularly simple to check by automatic
tools, e.g., [10, 12] (see also [7] for related decidability results).

The main result of the paper is that if a symbolic key exchange protocol satis-
fies our symbolic criterion, then this protocol (more precisely, the computational
interpretation of this protocol), realizes a key exchange functionality in the sense
of universal composability [13, 24]. This is a very strong security guarantee. It a
priori only talks about one session of the protocol, but the composition theorems
of simulation-based security [13, 24] imply that polynomially many concurrent
copies of this protocol can be used securely as key exchange protocols in every
(probabilistic polynomial-time) environment. While the composition theorems
assume independent copies of protocols, a joint state theorem for symmetric en-
cryption with long-term keys [26] can be employed to obtain an implementation
where long-term keys are shared across sessions. Our computational soundness
result works for any symmetric encryption scheme that guarantees (standard)
authenticated encryption, i.e., IND-CPA and INT-CTXT security.

To obtain our computational soundness result, we first prove it for the case
where symmetric encryption is performed based on an ideal functionality for
symmetric encryption with short- and long-term keys, as proposed in [26]. We
then, using the composition theorem, replace this functionality by its realiza-
tion. This last step requires that the protocol does not produce key-cycles and
does not cause the so-called commitment problem (see Section 5). We propose
symbolic, automatically checkable criteria for these properties. We note that
the mentioned ideal functionality in [26] also supports public-key encryption.
Therefore it should be easy to extend the results presented in this paper to
protocols that use both symmetric and public-key encryption.

Structure of this Paper. In Section 2, we recall the applied pi calculus.
The class of symbolic key exchange protocols that we consider is introduced
in Section 3. The computational model, i.e., the IITM model, is presented in
Section 4. The mentioned ideal functionalities that we use are discussed in
Section 5. The computational interpretation of the symbolic protocol is then
introduced in Section 6. The main result is presented in Section 7, with the
proof sketched in Section 8 and the appendix. We conclude with a discussion
on related work in Section 10.

Notation and Basic Terminology. Given a bit string m ∈ {0, 1}∗ we denote
by |m| the length of m. By {0, 1}≤n we denote the set of all bit strings of length
at most n. Following [14], a function f : {1}∗×{0, 1}∗ → R≥0 is called negligible
if for all polynomials p and q there exists η0 such that for all η > η0 and all
bit strings a ∈ {0, 1}≤q(η) we have that f(1η, a) ≤ 1

p(η) . A function f is called
overwhelming if 1− f is negligible.
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2 The Symbolic Model

Our symbolic model is an instance of the applied π-calculus [1], similar to the
one in [16].

2.1 Syntax

Let Σ be a finite set of function symbols, the signature. The set of terms
T (N ,X ) over Σ and infinite sets N and X of names and variables, respectively,
is defined as usual. The set of ground terms, i.e., terms without variables, is
T (N ). In what follows, s, t, . . . and x, y, z denote terms and variables, respec-
tively. We use α, β, . . . to denote meta-variables that range over variables and
names.

In this paper, we consider the signature

Σ = {〈·, ·〉, π1(·), π2(·), {·}··,dec(·, ·), sk(·)} ,

where, as usual, 〈t1, t2〉 is the pairing of the terms t1 and t2, π1(t) and π2(t)
are the projections to the first and second component of t (in case t is a pair),
respectively, {t}rk stands for the ciphertext obtained by encrypting t under the
key k using randomness r, dec(t, k) is the plaintext obtained by decrypting t
with k (in case t is a ciphertext under k), and sk(k) is used to tag symmetric
keys. Accordingly, Σ is associated with the following equational theory E:

π1(〈x, y〉) = x , π2(〈x, y〉) = y , dec({x}zy, y) = x .

We denote by =E the congruence relation on terms induced by E. We say
that a term t is reduced or in normal form, if it is not possible to apply one
of the above equations from left to right. Obviously, every term has a unique
normal form. For example, for tex = dec(π2(〈a, {b}rsk(k)〉), sk(k)) we have that
tex =E b which is its normal form.

We also consider the following predicate symbols over ground terms, which
may be used in if-then-else statements in processes:

1. M is a unary predicate such that M(t) is true iff the normal form of t
does not contain π1(·), π2(·), and dec(·, ·), and for every subterm of t of
the form {t1}t3t2 , there exists t′2 such that t2 =E sk(t′2).

2. EQ is a binary predicate such that EQ(s, t) is true iff s =E t, M(s), and
M(t).

3. Ppair is a unary predicate such that Ppair(t) is true iff t is a pair, i.e.,
t =E 〈t1, t2〉 for some terms t1, t2.

4. Penc is a unary predicate such that Penc(t) is true iff t is a ciphertext, i.e.,
t =E {t1}t3t2 for some terms t1, t2, t3.

5. Pkey is a unary predicate such that Pkey(t) is true iff t is a key, i.e., t =E

sk(t′) for some term t′.

For example, the predicates M(tex) and EQ(tex, b) are true, while M(π1({a}rk))
is false. We remark that the above predicates can be encoded in ProVerif [10, 12].
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P,Q ::= c(x).P input
| c〈s〉.P output
| 0 terminated process
| P ‖Q parallel composition
| !P replication
| (να)P restriction
| if φ then P else Q conditional

Figure 1: Syntax of (plain) Processes

A,B ::= P (plain) process
| A ‖B parallel composition
| (να)A restriction
| {x 7→ s} active substitution

Figure 2: Syntax of extended processes

We call M(t),EQ(s, t), Ppair(t), Penc(t), Pkey(t) for terms s and t (possibly
with variables) atoms. A condition φ is a Boolean formula over atoms. For
example, φ = M(s) ∧ M(t) ∧ ¬EQ(s, t) says that s and t both satisfy the
predicate M but are not equivalent modulo E. If φ contains only ground terms,
then the truth value of φ is defined in the obvious way. If φ holds true, we write
|= φ.

Now, (plain) processes and extended processes are defined in Figure 1 and 2,
respectively. For extended processes, there should be at most one active substi-
tution for a variable and the set of active substitutions should be cycle-free, e.g.,
{x 7→ x} is not allowed. Extended processes basically extend plain processes
by what is called a frame. A frame ϕ is of the form (νn)σ, where σ denotes
a substitution, i.e., a set {x1 7→ s1, . . . , xl 7→ sl}, and n stands for a list of
names, which are restricted via ν to σ. The domain dom(ϕ) of ϕ is the domain
of σ, i.e., dom(ϕ) = {x1, . . . , xl}. A frame can also be considered as a specific
extended process where the only plain process is 0. Every extended process A
induces a frame ϕ(A) which is obtained from A by replacing every plain process
embedded in A by 0. Intuitively, a frame captures the knowledge of the attacker
(who has access to the variables xi), where the restricted names n are a priori
not known to the attacker. The domain dom(A) of A is the domain of ϕ(A).

By fn(A) and fv(A) we denote the sets of free names and free variables,
respectively, in the process A, i.e., the variables and names not bound by a ν
or an input command c(x). Note that, for example, x is free in the process
{x 7→ s}, while it is bound in (νx){x 7→ s}. We call names that occur free
in a process, excluding channel names, global constants. An extended process
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A ‖0 ≡ A
A ‖B ≡ B ‖A

(A ‖B) ‖C ≡ A ‖ (B ‖C)
(να)(νβ)A ≡ (νβ)(να)A

(να)(A ‖B) ≡ A ‖ (να)B if α /∈ fn(A) ∪ fv(A)
(νx){x 7→ s} ≡ 0

(να)0 ≡ 0

!P ≡ P ‖ !P
{x 7→ s} ‖A ≡ {x 7→ s} ‖A{x 7→ s}
{x 7→ s} ≡ {x 7→ t} if s =E t

Figure 3: Structural equivalence.

A is closed if the set fv(A) excluding variables assigned in active substitutions
in A is empty, i.e., fv(A) = dom(ϕ(A)). Renaming a bound name or variable
into a fresh name or variable, respectively, is called α-conversion. The process
A{x 7→ s} is the process A in which free occurrences of x have been replaced by
s.

An evaluation context C is an extended process with a hole, i.e., it is of
the form (να)([·] ‖A), where A is an extended process. We write C[B] for
(να)(B ‖A). A context C closes a process B if C[B] is closed.

2.2 Operational Semantics

To define the semantics of processes it is convenient to first define a structural
equivalence relation ≡ of processes, which captures basic properties of the op-
erators, such as commutativity and associativity of ‖ . We define ≡ to be the
smallest equivalence relation on extended processes closed under α-conversion
on both names and variables and closed under application of evaluation contexts
such that the equations in Figure 3 are true.

For example, given an extended process A, we always find a list of names
n and a substitution σ such that (νn)σ is structural equivalent to the frame
induced by A ((νn)σ ≡ ϕ(A)).

Internal computation steps of a process, i.e., internal communication and
evaluation of if-then-else statements, is defined by the internal reduction relation
→ which is the smallest relation on closed extended processes closed under
structural equivalence ≡ and closed under application of evaluation contexts
such that the following is true, where φ contains only ground terms:

c(x).P ‖ c〈s〉.Q → P{x 7→ s} ‖Q
if φ then P else Q → P if |= φ

if φ then P else Q → Q if 6|= φ .

By →∗ we denote the reflexive and transitive closure of →.
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c(x).P
c(s)−−→ P{x 7→ s} A

a−→ A′ α does not occur in a

(να)A a−→ (να)A′

c〈α〉.P c〈α〉−−−→ P
A

a−→ A′
bv(a) ∩ fv(B) = ∅
bn(a) ∩ fn(B) = ∅

A ‖B a−→ A′ ‖B

A
c〈α〉−−−→ A′ c 6= α

(να)A
(να)c〈α〉−−−−−→ A′

A ≡ B B
a−→ B′ B′ ≡ A′

A
a−→ A′

Figure 4: Labeled semantics.

To describe communication of a process with its environment, we use the
labeled operational semantics of a process in order to make the interaction with
the environment, which typically represents the adversary, visible through labels
and frames. The labeled operational semantics is defined by the relation a−→, see
Figure 4, over closed extended processes, where a is a label is of form a = c(s),
a = c〈α〉, or a = (να)c〈α〉 for a term s, channel name c, and variable or channel

name α. For example, c(x).P
c(s)−−→ P{x 7→ s} describes an input action. We

also have, for instance, c〈s〉.0 (νx)c〈x〉−−−−−→ {x 7→ s}, for a ground term s, since

c〈s〉.0 ≡ (νx)(c〈x〉.0 ‖ {x 7→ s}) (νx)c〈x〉−−−−−→ {x 7→ s}. In fact, since labels of the
form c〈t〉 for a term t are not allowed, one is forced to store terms to be output
into a frame, hence, make them accessible to the adversary.

Definition 1. A (symbolic) trace t (from A0 to An) is a finite derivation t =
A0

a1−→ A1 · · ·
an−−→ An where each Ai is a closed extended process and each ai

is either ε (empty label representing an internal action →) or a label as above,
with fv(ai) ⊆ dom(Ai−1), for all i ≤ n.

We call B a successor of A if there is a trace from A to B.

2.3 Deduction and Static Equivalence

We define terms that an adversary can derive from a frame and the view an
adversary has on frames, extended processes, and traces.

Definition 2. We say that a ground term s is deducible from a frame ϕ = (νn)σ
(written ϕ ` s) if σ ` s can be inferred by the following rules:

1. If there exists x ∈ dom(σ) such that xσ = s or s ∈ N \ n, then σ ` s.

2. If σ ` si for i ≤ l and f ∈ Σ, then σ ` f(s1, . . . , sl).

3. If σ ` s and s =E s′, then σ ` s′.

Let ϕ be a frame, p be a predicate (i.e., M , EQ, Ppair, Penc, or Pkey), and
s1, . . . , sl be terms. We write ϕ |= p(s1, . . . , sl) if there exists n and σ such that
ϕ ≡ (νn)σ, fn(si) ∩ n = ∅ for all i ≤ l, and |= p(s1, . . . , sl)σ. For example,
consider the frame ϕex = (νn){x1 7→ b, x2 7→ tex, x3 7→ n}, with tex as above,
then ϕex |= EQ(x1, x2), but ϕex 6|= EQ(x1, x3).
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Definition 3. Two frames ϕ and ϕ′, are statically equivalent, denoted ϕ ∼s ϕ′,
if their domains are equal and for all predicates p and terms s1, . . . , sl it holds
ϕ |= p(s1, . . . , sl) iff ϕ′ |= p(s1, . . . , sl).

Two closed extended processes A and B are statically equivalent, denoted
A ∼s B, if their frames ϕ(A) and ϕ(B) are statically equivalent.

For example, (νn1, n2, n3){x1 7→ b, x2 7→ {n1}n3
sk(n2)} ∼s (νn1, n2){x1 7→

b, x2 7→ {b}n2
sk(n1)}.

We now recall the definition of labeled bisimulation, which as shown in [1],
is equivalent to observational equivalence. Intuitively, two process are labeled
bisimilar, if an adversary cannot distinguish between them.

Definition 4. Labeled bisimilarity ∼l is the largest symmetric relation R on
closed extended processes such that (A,B) ∈ R implies:

1. A ∼s B,

2. if A→ A′, then B →∗ B′ and (A′, B′) ∈ R for some B′, and

3. if A a−→ A′ and fv(a) ⊆ dom(A) and bn(a)∩fn(B) = ∅, then B →∗ a−→→∗ B′
and (A′, B′) ∈ R for some B′.

3 Symbolic Protocols

We now define the class of key exchange protocols that we consider, called
symbolic protocols. In Section 6, these protocols are given a computational
interpretation.

We fix the following names for channels: cinnet, c
out
net , and cout

io . (Later we
also consider certain decorations of these names.) Processes receive input from
the network (the adversary) via cinnet, write output on the network via cout

net , and
output session keys on cout

io .
Symbolic protocols describe key exchange protocols and will essentially be

a parallel composition of certain processes, called symbolic roles. A symbolic
role first waits for input, then after performing some checks, by a sequence of if-
then-else statements, produces output. The role may then terminate or wait for
new input, and so on. A symbolic role R is defined by the following grammar:

R ::= 0

| cinnet(x).R′

R′, R′′ ::= if φ then cout
net〈true〉.R′ else cout

net〈false〉.R′′

| c[s].cinnet(x).R′

| c[s].0

where x ∈ X , s ∈ T (N ,X ), c ∈ {cout
net , c

out
io }, and φ may contain only the

predicates M and EQ. The expression “c[s].B” is an abbreviation for “if M(s)
then cout

net〈true〉.c〈s〉.B else cout
net〈false〉.cout

net〈⊥〉.0”, where ⊥, true, false are special
globally known names (or constants). Note that the predicates Ppair, Penc, and
Pkey may not be used by principles. However, they may be used by the adversary
to enhance his power to distinguish processes. The reason for writing true and
false on the network in if-then-else statements is that for our computational

9



soundness result to hold, a symbolic adversary should be able to tell whether
conditions in if-then-else statements are evaluated to true or to false. In other
words, we force observationally different behavior for then- and else-branches of
if-then-else statements. In protocol specifications then- and else-branches would
in most cases exhibit observationally different behavior anyway: For example,
if in the else-branch the protocol terminates but in the if-branch the protocol is
continued, then this is typically observable by the adversary.

Now, a symbolic protocol is essentially a parallel composition of symbolic
roles, specifying one session of a key exchange protocol. For example, in a
key exchange protocol with an initiator, responder, and key distribution server,
symbolic rolesR1, R2, andR3 would describe the behavior of these three entities,
respectively. Initially, a symbolic protocol expects to receive the names of the
parties involved in the protocol session. In the example, these names would be
stored in the variables x1, x2, and x3, respectively.

Formally, a symbolic (key exchange) protocol Π is a tuple

Π = (P,R,Nlt,Nst,Nrand,Nnonce) ,

with
P = (νn)(cinnet(x1). . . . .cinnet(xl).(R1 ‖ . . . ‖Rl))

where R ⊆ {x1, . . . , xl}, n is the disjoint union of the sets of names Nlt (long-
term keys), Nst (short-term keys), Nrand (randomness for encryption), and
Nnonce (nonces). As mentioned, Ri, i ≤ l, are symbolic roles. We require
that P is closed, i.e., the variables x1, . . . , xl are the only free variables in Ri,
and Ri uses the channel names cin,inet , cout,i

net , and cout,i
io , instead of cinnet, c

out
net , and

cout
io , respectively, so that the adversary can easily interact with every single

role. Other channel names are not used by Ri and the set n may not contain
channel names or the special names ⊥, true, false. For simplicity, we assume
that all bound names and variables in P that occur in different contexts have
different names (by α-conversion, this is w.l.o.g.). We often do not distinguish
between Π and P.

The set R contains the (names of the) “main roles” of a protocol session,
i.e., those roles that want to exchange a session key. We require |R| = 2 because
we consider two party key exchange; however, this restriction could easily be
lifted. For example, R would contain the initiator and responder, but not the
key distribution server. Only the roles corresponding to some xi ∈ R may at
most once output a session key on channel cout,i

io .
We assume further syntactic restrictions on P in order for P to have a rea-

sonable computational interpretation: Names in Nst, Nrand, and Nnonce should
only occur in at most one symbolic role, and names in Nlt in at most two sym-
bolic roles, as we assume that a long-term key is shared between two parties;
however, again, this restriction could easily be lifted. Since fresh randomness
should be used for new encryptions, names r in Nrand should only occur in at
most one subterm and this subterm should be of the form {s}rk. However, this
subterm may occur in several places within a symbolic role. The function sym-
bol sk(·) is meant to be used as a tag for (short- and long-term) keys. Therefore
every n ∈ Nlt ∪ Nst should only occur in P in the form sk(n), and sk(·) should
not occur in any other form. (Clearly, the adversary will not and cannot be
forced to follow this tagging policy.) Long-term keys sk(n), n ∈ Nlt, are not
meant to travel. These keys should therefore only occur as keys for encryption
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and decryption in P. For example, a subterm of the form {sk(n)}rk, for n ∈ Nlt,
is not allowed in P. We note that instead of using sk(·) we could have assumed
types for symmetric keys. However, since types are not supported by the tool
ProVerif yet, we decided to emulate such types by sk(·).

4 The IITM Model

In this section, we briefly recall the IITM model for simulation-based security
(see [24] for details). In this model, security notions and composition theorems
are formalized based on a relatively simple, but expressive general computational
model in which IITMs (inexhaustible interactive Turing machines) and systems
of IITMs are defined. While being in the spirit of Canetti’s UC model [14], the
IITM model has several advantages over the UC model, as demonstrated and
discussed in [24, 25]. In particular, as pointed out in [25], there are problems
with joint state theorems in the UC model. Since we employ joint state theorems
here, we choose the IITM model as the basis of our work. Putting these problems
aside, the results presented here would, however, also carry over to the UC
model.

4.1 The General Computational Model

Our general computational model is defined in terms of systems of IITMs.
An inexhaustible interactive Turing machine (IITM) M is a probabilistic

polynomial-time Turing machine with named input and output tapes. The
names determine how different IITMs are connected in a system of IITMs. An
IITM runs in one of two modes, CheckAddress and Compute. The CheckAddress
mode is used as a generic mechanism for addressing copies of IITMs in a system
of IITMs, as explained below. The runtime of an IITM may depend on the
length of the input received so far and in every activation an IITM may perform
a polynomial-time computation; this is why these ITMs are called inexhaustible.
However, in this extended abstract we omit the details of the definition of IITMs,
as these details are not necessary to be able to follow the rest of the paper.

A system S of IITMs is of the form S = M1 | · · · |Mk | !M ′1 | · · · | !M ′k′ where
the Mi and M ′j are IITMs such that the names of input tapes of different IITMs
in the system are disjoint. We say that the machines M ′j are in the scope of a
bang operator. This operator indicates that in a run of a system an unbounded
number of (fresh) copies of a machine may be generated. Conversely, machines
which are not in the scope of a bang operator may not be copied. Systems
in which multiple copies of machines may be generated are often needed, e.g.,
in case of multi-party protocols or in case a system describes the concurrent
execution of multiple instances of a protocol.

In a run of a system S at any time only one IITM is active and all other
IITMs wait for new input; the first IITM to be activated in a run of S is the
so-called master IITM, of which a system has at most one. To illustrate runs
of systems, consider, for example, the system S = M1 | !M2 and assume that
M1 has an output tape named c, M2 has an input tape named c, and M1 is
the master IITM. (There maybe other tapes connecting M1 and M2.) Assume
that in the run of S executed so far, two copies of M2, say M ′2 and M ′′2 , have
been generated, in this order, and that M1 just sent a message m on tape c.
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This message is delivered to a copy of M2, since M2 has an input tape named c.
The copy of M2 to which m is sent is determined as follows. First, M ′2, the first
copy of M2, runs in the CheckAddress mode with input m; this is a deterministic
computation which outputs “accept” or “reject”. If M ′2 accepts m, then M ′2 gets
to process m and could, for example, send a message back to M1. Otherwise,
M ′′2 , the second copy of M2, is run in CheckAddress mode with input m. If
M ′′2 accepts m, then M ′′2 gets to process m. Otherwise, a new copy M ′′′2 of
M2 with fresh randomness is generated and M ′′′2 runs in CheckAddress mode
with input m. If M ′′′2 accepts m, then M ′′′2 gets to process m. Otherwise, if no
IITM accepts m, the message m is dropped and the master IITM is activated,
in this case M1, and so on. The master IITM is also activated if the currently
active IITM does not produce output. A run stops if the master IITM does
not produce output (and hence, does not trigger another machine) or an IITM
outputs a message on a tape named decision. Such a message is considered to
be the overall output of the system.

We will consider so-called well-formed systems, which satisfy a simple syn-
tactic condition that guarantees polynomial runtime of a system.

Two systems P and Q are called indistinguishable (P ≡ Q) iff the differ-
ence between the probability that P outputs 1 (on the decision tape) and the
probability that Q outputs 1 (on the decision tape) is negligible in the security
parameter.

Given an IITM M , we will often use its identifier (ID) version M to be
able to address multiple copies of M . The identifier version M of M is an IITM
which simulates M within a “wrapper”. The wrapper requires that all messages
received have to be prefixed by a particular ID, e.g., a session ID (SID) or party
ID (PID); other messages will be rejected in the CheckAddress mode. Before
giving a message to M , the wrapper strips off the ID. Messages sent out by M
are prefixed with this ID by the wrapper. The ID that M will use is the one
with which M was first activated. We often refer to M by session version or
party version of M if the ID is meant to be a SID or PID, respectively. For
example, if M specifies an ideal functionality, then !M denotes the multi-session
version of M , i.e., a system with an unbounded number of copies of M where
every copy of M can be addresses by an SID. Given a system S, its identifier
(ID) version S is obtained by replacing all IITMs in S by their ID version. For
example, S = M | !M ′ for S = M | !M ′.

4.2 Notions of Simulation-Based Security

We need the following terminology. For a system S, the input/output tapes
of IITMs in S that do not have a matching output/input tape are called ex-
ternal. We group these tapes into I/O and network tapes. We consider three
different types of systems, modeling real/ideal protocols/functionalities, adver-
saries/simulators, and environments, respectively: Protocol systems and envi-
ronmental systems are systems which have an I/O and network interface, i.e.,
they may have I/O and network tapes. Adversarial systems only have a network
interface. Environmental systems may contain a master IITM. We can now de-
fine strong simulatability, other equivalent security notions, such as black-box
simulatability and (dummy) UC can be defined in a similar way [24].

Definition 5. Let P and F be protocol systems with the same I/O interface,
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the real and the ideal protocol, respectively. Then, P realizes F (P ≤ F) iff
there exists an adversarial system S (a simulator) such that the systems P
and S |F have the same external interface and for all environmental systems E ,
connecting only to the external interface of P (and hence, S |F) it holds that
E | P ≡ E | S |F .

4.3 Composition Theorems

We restate the composition theorems from [24]. The first composition theorem
handles concurrent composition of a fixed number of protocol systems. The
second one guarantees secure composition of an unbounded number of copies of
a protocol system.

Theorem 1. Let P1,P2,F1,F2 be protocol systems such that P1 and P2 as
well as F1 and F2 only connect via their I/O interfaces, P1 | P2 and F1 | F2 are
well-formed, and Pi ≤ Fi, for i ∈ {1, 2}. Then, P1 | P2 ≤ F1 | F2.

Theorem 2. Let P,F be protocol systems such that P ≤ F . Then, !P ≤ !F .
(Recall that P and F are the session versions of P and F , respectively.)

Theorems 1 and 2 can be applied iteratively, to get more and more complex
systems. For example, using that ≤ is reflexive, we obtain as a corollary of the
above theorems that P ≤ F implies Q | !P ≤ Q | !F for any protocol system Q,
i.e., Q using an unbounded number of copies of P realizes Q using an unbounded
number of copies of F .

5 Ideal Functionalities

We recall two ideal functionalities that we use in this paper, namely Fke for
ideal key exchange and Fenc for ideal symmetric encryption.

5.1 The Key Exchange Functionality

We use the key exchange functionality Fke as specified in [15], see Appendix A
for a rigorous definition. This functionality describes one session of an ideal
key exchange between two parties. It waits for key exchange requests from the
two parties and if the simulator (ideal adversary) sends a message for one party
to finish (session finish message), this party receives a session key output (SK-
output) message which contains the key generated within Fke, where the key
is chosen uniformly at random from {0, 1}η (η is the security parameter). (Of
course, other distributions for the session key could be used.) The simulator
has the ability to corrupt Fke before the first SK-output message was sent,
i.e., before one party received a key. In this case, upon completion of the key
exchange, the simulator may determine the key a party obtains. In other words,
an uncorrupted Fke guarantees that the key a party receives upon a key exchange
request is a freshly generated key that is at most known to the parties involved
in the key exchange. It is indistinguishable from random for an adversary even
if the key is output by one party before the end of the protocol. Also, if both
parties receive a key, the two keys are guaranteed to coincide. Conversely, a
corrupted Fke does not provide security guarantees; the key exchanged between
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the two parties is determined by the adversary. As usual for functionalities, the
environment may ask whether or not Fke has been corrupted.

As mentioned, Fke captures only one key exchange between any two parties.
An unbounded number of sessions of key exchanges between arbitrary parties
is described by the system !Fke (see also Section 7).

5.2 The Symmetric Encryption Functionality

We use the functionality Fenc for ideal authenticated symmetric encryption as
specified in [26]. Arbitrary many parties can employ Fenc to generate (short-
and long-term) symmetric keys and to encrypt and decrypt messages and ci-
phertexts, respectively, in an ideal way under these keys, where the messages
to be encrypted may again contain (short-term) keys. The functionality Fenc

can handle an unbounded number of encryption and decryption requests, with
messages and ciphertexts being arbitrary bit strings of arbitrary length. In what
follows, we briefly describe Fenc (see Appendix A for more details and [26] for
full details).

The functionality Fenc is parameterized by a leakage algorithm L which
determines what information about a plaintext may be leaked by the ciphertext.
We will use the leakage algorithm L which takes a message m of length at least
the security parameter as input and returns a random bit string of the same
length as m. In essence, L leaks the length of a message.

As mentioned, the functionality Fenc allows for encryption and decryption
with short- and long-term symmetric keys. We first consider the interface of
Fenc for short-term keys.

In an initialization phase, encryption and decryption algorithms, enc and
dec, respectively, are provided by the simulator.

A party can request Fenc to generate a short-term key upon which the sim-
ulator may provide a key and the party obtains a pointer to this key. The
key itself is stored in Fenc. When the simulator provides the key, it can de-
cide to corrupt the key, in which case the key is marked corrupted and known.
Otherwise, the key is marked unknown.

To encrypt a message m (an arbitrary bit string) under a short-term key,
a party provides Fenc with m and the pointer to the short-term key, say k,
under which m shall be encrypted. The message m may contain pointers to
other short-term keys. Before m is encrypted these pointers are replaced by the
corresponding short-term keys, if any, resulting in a message m′. Now, if the
short-term key k is marked unknown (see below), m′ is encrypted ideally, i.e., not
m′ but the leakage L(m′) is encrypted under k with the encryption algorithm
enc, resulting in a ciphertext c, say. Hence, by definition of L, only the length
of m′ is leaked. It is also guaranteed that the ciphertext has high entropy, i.e.,
it can be guessed only with negligible probability. The functionality Fenc stores
the pair (m′, c). In case k is marked known, not the leakage of m′ but m′ itself
is encrypted.

To decrypt a ciphertext c (an arbitrary bit string) under a short-term key, a
party provides Fenc with c and the pointer to the short-term key, say k. If k is
marked unknown, c is decrypted ideally, i.e., it is checked whether there is a pair
of the form (m′, c) stored in Fenc. In this case, m′ is returned to the party, where
keys in m′, if any, are first replaced by pointers; for keys to which the party does
not have a pointer yet, new pointers are generated. If Fenc does not contain a
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pair of the form (m′, c), an error message is returned. This models authenticated
encryption. In particular, valid ciphertexts for unknown symmetric keys can
only be generated within Fenc with the corresponding symmetric keys.

The functionality Fenc also allows a party to import symmetric keys and to
ask to reveal keys stored in Fenc using the commands store and reveal, respec-
tively. These keys are marked known in Fenc.

The environment can ask Fenc about the corruption status of single keys.
It remains to define what it means for a key to be marked unknown. A

short-term key is marked unknown if it has not been entered into Fenc by a store
command, has not been revealed by a reveal command, has not explicitly been
corrupted by the simulator, and has always been encrypted under short-term
keys marked unknown or uncorrupted long-term keys (see below).

The functionality Fenc also provides means to establish long-term symmetric
keys between parties and to use such keys for symmetric encryption in a similar
way as described above. In particular, short-term symmetric keys may be (ide-
ally) encrypted under long-term keys. However, long-term keys itself may not be
encrypted. Altogether, this provides a bootstrapping mechanism for short-term
key encryption/decryption. In [26], bootstrapping with public-key encryption
is also considered.

It has been proven in [26] that Fenc can be realized in a natural way by an
authenticated encryption scheme Σ, i.e., a symmetric encryption scheme that
is IND-CPA and INT-CTXT secure; a version of Fenc realizable by IND-CCA2
secure encryption was also considered. In the realization Penc = Penc(Σ) of
Fenc ideal encryption and decryption is simply replaced by (real) encryption
and decryption according to Σ, no extra randomness or tagging is necessary.
However, Penc(Σ) only realizes Fenc in environments that do not generate key
cycles or cause the so-called commitment problem. More precisely, environments
are required to be used-order respecting and non-committing: We say that an
unknown key has been used (for encryption) if Fenc has been instructed to use
this key for encryption. Now, an environment is used-order respecting if an
unknown key k, i.e., a key marked unknown in Fenc, used for the first time at
some point is encrypted itself only by unknown keys that have been used for the
first time later than k. An environment is non-committing if an unknown key
that has been used does not become known later on. A protocol P that uses Fenc

is used-order respecting/non-committing if E | P is used-order respecting/non-
committing for any environment E . As argued in [26, 4], protocols are typically
used-order respecting and non-committing. In fact, in most protocols once a key
has been used to encrypt a message this key is typically not encrypted anymore
in the rest of the protocol. We call such protocols standard protocols. Provided
static corruption, such protocols can easily be seen to be used-order respecting
and non-committing. Hence, such protocols can be first analyzed using Fenc.
Then, by the composition theorem, Fenc can be replaced by its realization Penc.

In [26] also a joint state realization of Fenc is provided, which guarantees
that if Fenc is used in multiple sessions, all sessions can use the same long-term
symmetric keys.
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6 Computational Interpretation of Symbolic Pro-
tocols

In this section, we briefly describe how a symbolic protocol is executed in the
IITM model. This is done in the expected way, we highlight only some aspects,
see Appendix B for details.

Let P be a symbolic protocol as in Section 3. We assume an injective map-
ping τ from global constants, i.e., free names in P, to bit strings. Then, the
protocol system [|P|]τ of P is a system of IITMs

[|P|]τ := M |M1 | . . . |Ml | Fenc

The IITMsM1, . . . ,Ml are the computational interpretations [|R1|]τ , . . . , [|Rl|]τ of
R1, . . . , Rl, respectively, as explained below. The machine M is used to provide
the same I/O interface to the environment as Fke and to initialize a session.
Similarly to Fke, it expects to receive a request for key exchange, containing the
names of the parties involved in the protocol session. Upon the first request, M
triggers the machines M1, . . . ,Ml to initialize themselves: nonces are generated,
short-term keys are generated using Fenc, and long-term keys are exchanged,
again using Fenc. In the initialization phase the adversary can corrupt keys (via
Fenc) or take over machines Mi completely (static corruption). Again similar
to Fke, if asked about the corruption status by the environment, M reports this
status to the environment: M checks the corruption status of every Mi and
every Mi in turn checks the corruption status of the keys it manages. If one Mi

or a key is corrupted, the whole session is considered corrupted.
An IITM Mi is derived from its symbolic counterpart Ri in the natural way.

It performs most of the communication with the adversary via the network in-
terface. The I/O interface is only used to receive initialization requests and to
report the corruption status, as explained above, or to output session keys after
successful completion of a session. Encryption and decryption is performed via
Fenc. We tag pairs and keys/pointers in such a way these objects cannot be
confused with other objects, and that the components of pairs can be extracted.
We do not require tags to distinguish names, nonces, or ciphertexts. The atomic
formula M(s) is interpreted as true if the computational interpretation of s does
not fail. For example, applying π1 to a bit string that is not a pair would fail.
The atomic formula EQ(s1, s2) is interpreted as true if the computational inter-
pretations of s1 and s2 do not fail and yield the same bit strings. The output of
the constants true and false after if-then-else statements is not computationally
interpreted, i.e., Mi does not produce such outputs but directly continues with
the execution after this output. In other words, the adversary is not given a
priori knowledge of the internal evaluation of if-then-else statements, although
this could be allowed without changing our results.

See Appendix B for a definition of the execution of Mi = [|Ri|]τ . Here, we
only illustrate the execution for the symbolic role

Ri = cin,inet (x) . if EQ(π1(dec(x, sk(n))), a)

then cout,i
net 〈true〉 . cout,i

net [{〈n′, a〉}rπ2(dec(x,sk(n)))] . . . else . . . ,

where n ∈ Nlt, n′ ∈ Nnonce, r ∈ Nrand, and a ∈ N is a global constant. In this
case, after Mi has finished its initialization, as explained above, Mi first waits for
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input from the network (the adversary). If Mi receives the message m, say, then,
Mi first checks whether the evaluation of π1(dec(x, sk(n))) and a is successful,
corresponding to checking M(π1(dec(x, sk(n)))) and M(a). For a, which is τ(a),
this is the case. For the former expression, Mi decrypts m (because m is assigned
to the input variable x) using Fenc with the long-term key corresponding to
sk(n). If this succeeds, this should yield a bit string tagged as a pair; otherwise
the evaluation fails, and the else-branch will be executed. Then, extracting the
first component of this pair will also succeed. For EQ(π1(dec(x, sk(n))), a) to
be true, it remains to check whether this component coincides with τ(a). If this
is the case, the then-branch will be executed. For this, cout,i

net 〈true〉 is skipped.
Then, it is first checked whether the expression s = {〈n′, a〉}rπ2(dec(x,sk(n))) can be
evaluated successfully, which corresponds to checking M(s). The most critical
part here is the evaluation of π2(dec(x, sk(n))). This is done similarly to the
case above. The evaluation should yield a pointer of the form (Key, ptr). This
pointer is then used to encrypt, using Fenc, the computational interpretation of
〈n′, a〉. Again, cout,i

net 〈true〉 is skipped. The resulting ciphertext is then output
on the network.

We note that Mi might receive keys (Key, k) in plaintext or might be asked
to output (short-term) keys in clear. Before the actual parsing, such keys are
entered into/extracted from Fenc via store and reveal commands. We remark
that storing the same key twice returns the same pointer.

Finally, we note that Fenc might fail, i.e., Fenc returns an error message, upon
an encryption or store request Fenc. We call this event an encryption/store er-
ror. In this case we define Mi to produce empty output and to terminate. For
the mapping lemma (see Section 8) to hold, there needs to be a corresponding
symbolic behavior but such errors do not occur symbolically. Still, there is a
corresponding symbolic behavior, namely, that from the point where the en-
cryption error occurred, no messages are sent to the symbolic role Ri anymore,
see Section 8.

7 Main Result

We now present the main result of our paper. As already mentioned in the intro-
duction, the symbolic criterion for our computational soundness result consists
of two parts: i) We assume the symbolic protocol to be labeled bisimilar (obser-
vationally equivalent) to its randomized version in which instead of the actual
session key a new nonce is output. ii) All keys used within one uncorrupted
session of the key exchange protocol remain secret. As mentioned in the in-
troduction, the second condition is a very natural condition to assume for key
exchange protocols. Moreover, it will allow us to deal with dishonestly gener-
ated keys, which have been problematic in other works (see also Section 10):
Intuitively, it implicitly guarantees that keys used by honest principals in a
protocol run will be honestly generated.

To formalize the first part of our symbolic criterion, we define the random-
world version of a symbolic protocol. The random-world version rand(P) of a
symbolic protocol P as in Definition 3 is the same as P, except that instead
of outputting the actual session key on channel cout

io , a random key (i.e., a new

17



nonce) is output. Formally, we define:

rand(P) := (νn∗)Pn∗

where n∗ is a name that does not occur in P and the process Pn∗ is obtained
from P by replacing “cout,i

io 〈s〉” by “cout,i
io 〈n∗〉” for every term s and i ≤ l. The

first part of our symbolic criterion will then simply be P ∼l rand(P). As already
mentioned in the introduction, this condition can be checked automatically using
existing tools, such as ProVerif [12].

To formulate the second part of our symbolic criterion, we first extend
our signature Σ by the encryption and decryption symbols encsecret(·, ·) and
decsecret(·, ·), respectively, and add the equation decsecret(encsecret(x, y), y) =
x. By adding these symbols, interference with the other encryption and decryp-
tion symbols will be prevented. We now introduce a protocol secret(P) which is
derived from P as follows: It first generates a new nonce n, used as a secret. It
now behaves just as P. However, whenever P uses a term s as a key for encryp-
tion or decryption in the evaluation of a condition in an if-then-else statement
or to output a message, then secret(P) outputs encsecret(n, s).

Now, the second part of our symbolic criterion requires that, when executing
secret(P), n can never be derived by the adversary, i.e., for every successor Q
of secret(P), it holds that ϕ(Q) 6` n. This exactly captures that all terms used
as keys in P are symbolically secret, i.e., cannot be derived by the adversary.
We say that P preserves key secrecy.

There are of course more declarative ways to formulate this condition. How-
ever, from the formulation above it is immediately clear that this condition can
be checked automatically using existing tools, such as ProVerif.

Now, we are ready to formulate the main theorem of this paper, a computa-
tional soundness result for universally composable key exchange. As explained
above, the symbolic criterion that we use can be checked automatically using
existing tools. The proof of this theorem is presented in Section 8.

Theorem 3. Let P be a symbolic protocol and let τ be an injective mapping of
global constants to bit strings. If P preserves key secrecy and P ∼l rand(P),
then [|P|]τ ≤ Fke.

Recall that [|P|]τ uses Fenc for encryption. Let [|P|]τPenc
denote the system

obtained from [|P|]τ by replacing Fenc by Penc. As explained in Section 5.2, if
[|P|]τ (without Fenc) is a used-order respecting and non-committing protocol,
then, by the composition theorem, we can replace Fenc by its realization Penc.
However, as shown in Section 9, we even get a stronger result where we do not
have to assume that [|P|]τ is non-committing:

Corollary 1. Let P and τ be as in Theorem 3. If P preserves key secrecy,
P ∼l rand(P), and [|P|]τ is used-order respecting, then [|P|]τPenc

≤ Fke.

The condition that [|P|]τ is used-order respecting is not a symbolic one.
However, there is a simple symbolic criterion which captures the notion of a
standard protocol explained in Section 5.2.

Definition 6. We call a symbolic protocol P symbolically standard if in every
symbolic trace of P no short-term key is encrypted by some other short-term
key after it has been used for encryption.
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It is not hard to see that this condition can be checked automatically using,
for example, ProVerif: The condition can be encoded as a secrecy property where
a secret is output to the adversary if the condition is violated. We note that
decidability results for detecting key cycles in symbolic protocols were presented
in [20]. We obtain the following corollary (see Section 9 for the proof).

Corollary 2. Let P and τ be as in Theorem 3. If P preserves key secrecy, is
symbolically standard, and satisfies P ∼l rand(P), then [|P|]τPenc

≤ Fke.

The above theorem and corollaries talk only about a single protocol ses-
sion. However, by the composition theorem, we immediately obtain that the
multi-session version of [|P|]τPenc

realizes multiple sessions of the key exchange
functionality, i.e., ![|P|]τPenc

≤ !Fke. However, in ![|P|]τPenc
every session of [|P|]τPenc

uses new long-term keys. This is impractical. Fortunately, as already mentioned
in Section 5.2, by a joint state theorem established in [26] (see also Appendix A),
!Penc can be replaced by its joint state realization, in which the same long-term
keys are used across all sessions. In such a realization session identifiers are
encrypted along with the actual plaintexts.

Altogether, the above results show that if a protocol satisfies our symbolic
criterion, which is concerned only with a single protocol session and can be
checked automatically, then this protocol satisfies a strong, computational com-
posability property for key exchange. In particular, it can be used as a key ex-
change protocol in every (probabilistic polynomial-time) environment and even
if polynomially many copies of this protocol run concurrently. This merely
assumes that an authenticated encryption scheme is used for symmetric encryp-
tion, which is a standard cryptographic assumption, and that session identifiers
are added to plaintexts before encryption. The latter may not be done explic-
itly in all protocol implementations, although it is often done implicitly, e.g. in
IPsec, and it is, in any case, a good design technique.

8 Proof of the Main Theorem

Throughout this section, we fix a symbolic protocol

P = (νn)(cinnet(x1) . . . cinnet(xl).(R1 ‖ . . . ‖Rl))

that preserves key secrecy and satisfies P ∼l rand(P). We also fix an injective
mapping τ of global constants to bit strings and an environment E for [|P|]τ =
M |M1 | . . . |Ml | Fenc.

We have to show that there exists a simulator Sim such that E | [|P|]τ ≡
E |Sim | Fke. We denote by S = E | [|P|]τ the real system and by S ideal =
E |Sim | Fke the ideal system.

We construct the simulator Sim as follows: Sim simulates the system [|P|]τ ,
where messages obtained from Fke (to start the key exchange for a party) are
forwarded to the I/O interface of (the simulated system) [|P|]τ and all inputs
from E are forwarded to the network interface of [|P|]τ . Network outputs of [|P|]τ
are forwarded to E and I/O outputs of [|P|]τ which are SK-output messages (see
Section 5.1), containing the exchanged session key, are forwarded as session
finish messages to Fke. If some key or party in [|P|]τ gets corrupted, then Sim
corrupts Fke. Recall that Fke is corruptible as long as no SK-output message
has been sent.
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To prove S ≡ S ideal, we first prove a so-called mapping lemma, which relates
concrete traces to symbolic traces, similar to mapping lemmas in other works
on computational soundness. The specific complication we need to deal with
in our mapping lemma, unlike other mapping lemmas, is the delicate issue of
dishonestly generated keys. For this, we use that P preserves key secrecy. (The
property P ∼l rand(P) is only used later to prove S ≡ S ideal.) We need a
mapping lemma both for the system S and S ideal.

Mapping Lemma. Roughly speaking, the mapping lemmas that we want to
prove state that, with overwhelming probability, a concrete trace t of S and
S ideal corresponds to a symbolic trace symb(t) of P and rand(P), respectively.
To state such mapping lemmas, we first need to define concrete traces. A con-
crete trace of a system is given by the definition of runs in the IITM model.
However, we provide a definition of concrete traces for S and S ideal that high-
lights the information necessary for the mapping lemma.

A (concrete) trace t for S and S ideal is a sequence of the following events,
where all events (except for the first start event, see below) contains the index
1 ≤ i ≤ l of the machine Mi which is involved in the event and the current
configuration C of the systems S and S ideal, respectively.

1. start(pid1, . . . , pid l): E sent the first message to start a key exchange with
PIDs pid1, . . . , pid l to the I/O interface of M . In the case of S ideal, this
first message is received by Fke instead of M . By the definition of M and
Fke, respectively, this is always the first event in a trace and only occurs
once.

2. in(i, y,m, C): E sent the message m to the network input tape of Mi and
Mi stored the input in variable y. In the case of S ideal, m is received by
the simulator Sim and given to the simulated Mi.

3. out(i,m, c, C): E received the message m from the network output tape of
Mi in which case c = cout,i

net or from an I/O output tape of M in which
case c = cout,i

io . In the latter case m is an SK-output message which was
sent by Mi. In the case of S ideal, if c = cout,i

net , then the simulated Mi sent
m. If c = cout,i

io , then m is an SK-output message sent by Fke.

4. if(i, b, C): Mi took an internal if-then-else step which condition was eval-
uated to b ∈ {false, true}. After such an if event, we add the output event
out(i, τ(b), cout,i

net , C′) (τ(b) is the bit string representation of the global con-
stant b.) The only difference between the configurations C and C′ is that
the process stored in the configuration of Mi in C is cout,i

net 〈b〉.B and the
process in Mi in C′ is B.

In the case of S ideal, the simulated Mi took an internal if-then-else step.

Recall that in the case of an encryption error, i.e., Fenc returned an error message
upon an encryption request, Mi terminates with empty output. In this case we
do not record any events during this activation of Mi (i.e., not the input event
and possible if events that occurred before the encryption error).

Note that according to the computational interpretation of symbolic proto-
cols (Section 6), parties do not explicitly output to the environment to what
the conditions in if-then-else statements were evaluated. We add the output
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event after an if event only to facilitate the mapping from concrete to sym-
bolic traces. However, the computational interpretation of symbolic protocols
remains unchanged and as expected.

We say that a trace is uncorrupted if no key in Fenc and no machine Mi is cor-
rupted. A trace is called non-colliding if it is uncorrupted and no collisions occur
between nonces (including the session key output by Fke in case of S ideal), global
constants, and ciphertexts which were produced with unknown/uncorrupted
keys (i.e., encryptions of the leakage of a message). Almost all uncorrupted
traces are non-colliding:

Lemma 1. The probability that a concrete trace t of S is corrupted or t is non-
colliding is overwhelming (as a function of the security parameter). The same
is true for S ideal.

Proof. Global constants do not collide with each other because τ is injective.
Since nonces are chosen independently and uniformly at random from {0, 1}η

the probability that these collide with anything else is negligible.
For a ciphertext c which has been produced with an unknown/uncorrupted

key, not the actual plaintext m but its leakage x = L(m) is encrypted. By
definition of Fenc and the leakage algorithm L, plaintexts have at least length
η and x is chosen independently and uniformly at random from {0, 1}|m|. Fur-
thermore, Fenc verifies that the (deterministic) decryption of c yields x, i.e., c
‘contains’ the complete information for x. Hence, the probability that c collides
with anything else is negligible.

Given a prefix t of a non-colliding concrete trace of S or S ideal (we consider
both cases simultaneously), we recursively define a mapping ψt from bit strings
to ground terms (not non-colliding traces are taken care of separately). To this
purpose, we fix an injective mapping Garbage : {0, 1}∗ → N of bit strings to
names such that the names are distinct from all names in P and rand(P). The
mapping ψt will be used to define the symbolic trace symb(t) corresponding to
t.

1. ψt(m) := 〈ψt(m1), ψt(m2)〉 if m is a pair of the form 〈m1,m2〉 for some
bit strings m1,m2.

2. ψt(m) := sk(n) if m = (Key, k) where k ∈ {0, 1}∗ is a short-term key in
Fenc and corresponds to the name n ∈ Nst, i.e., for this n some Mi asked
Fenc, in the initialization phase, to generate a short-term key and this key,
stored in Fenc, is k (where Mi only gets a pointer to this key). If k is not
a short-term key in Fenc, then n := Garbage(m).

3. ψt(m) := n if m is the random bit string chosen by some Mi for the nonce
n ∈ Nnonce in t or if m = τ(n) for a global constant n. In case of S ideal,
n is the name n∗ introduced by rand(P) if m is the session key chosen by
Fke.

4. ψt(m) := {ψt(m′)}rsk(n) if the plaintext/ciphertext pair (m′,m) is recorded
in Fenc for a (short-term or long-term) key and if the name corresponding
to this key is n. The name r is the symbolic randomness of the symbolic
ciphertext which was evaluated to m in t.

5. ψt(m) := Garbage(m) if none of the above cases are true.
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One verifies that ψt is well-defined and injective, using our tagging convention
and that t is non-colliding. We note that ψt maps ciphertexts not honestly
generated, i.e., not contained in Fenc, to garbage. For this to make sense, we
will use in the proof of the mapping lemmas that P preserves key secrecy.

Before we can define symb(t), we define two mappings σin
t and σout

t from
variables to terms as follows: σin

t (yi) := ψt(mi) where yi,mi are the variable
and message, respectively, in the i-th input event of t. Moreover, σin

t (xi) :=
ψt(pid i) if the event start(pid1, . . . , pid l) occurs in t. (Recall that x1, . . . , xl are
the input variables for the first l messages.) Furthermore, we fix a sequence
of pairwise distinct variables z1, z2, . . . which do not occur in P and define
σout
t (zi) := ψt(m′i) where m′i is the message contained in the i-th output event

of t. We define ϕt := (νn′)σout
t where n′ are the restricted names of P and

rand(P), respectively, i.e., n′ = n in case of P and n′ = n, n∗ in case of rand(P).
Note that ϕt will be the frame of the last process of the symbolic trace symb(t).

We say that every input in t is derivable if every input m in an input event
(including the start event) is symbolically derivable from all outputs produced
before this input. More formally, we require that ϕt′ ` σin

t (y) for every variable
y in an input event (including the start event, in which case y ∈ {x1, . . . , xl}),
where t′ is the prefix of t that contains all events before the input event for y.

Obviously, if (νn′)σ ` s, then there exists a term s′ such that fv(s′) ⊆
dom(σ), s′σ =E s, and fn(s′) ∩ n′ = ∅. By dt((νn′)σ ` s), we denote the
lexicographically smallest such s′ in normal form.

Now, given the prefix t of a non-colliding concrete trace of S (see below for
the case S ideal) such that every input in t is derivable, we inductively define the
symbolic trace symb(t):

1. If t = ε (empty sequence), then symb(t) := P.

2. If t = start(pid1, . . . , pid l), then symb(t) := P cinnet(s1)−−−−−→ P1 · · ·
cinnet(sl)−−−−−→ Pl

where, for all i ≤ l, si = ψt(pid i), σi = {x1 7→ s1, . . . , xi 7→ si} (active
substitution), and

Pi = (νn, x1, . . . , xi)(cinnet(xi+1) . . . cinnet(xl).(R1 ‖ . . . ‖Rl ‖σi)) .

3. If t = t′, e for a prefix of t and an event e which is not a start event, then
we define

symb(t) := symb(t′) a−→ (νn, x)(R′1 ‖ . . . ‖R′l ‖σin
t ∪ σout

t )

where x is the sequence of all variables in dom(σin
t ),

a :=


ε if e = if(j, b, C)
(νzr)c〈zr〉 if e = out(j,m, c, C) is the r-th output event in t

cin,jnet (s′) if e = in(j, y,m, C) ,

s′ := dt(ϕt′ ` ψt(m)), which is defined because, by assumption, every
input in t is derivable, and hence, ϕt′ ` ψt(m). The process R′i, i ≤ l, is
the process in the configuration of Mi in e which describes the remaining
process left for Mi to execute. Note that this is not necessarily the process
obtained symbolically by taking a−→. (The point of the mapping lemma is
to show that the above is in fact a symbolic transition.)
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The definition for S ideal is exactly as above if we replace P by rand(P) and n
by n, n∗.

We say that a prefix t of a concrete trace of S or S ideal is Dolev-Yao (DY) if
t is non-colliding, every input is derivable, and symb(t) is a symbolic trace (in
the sense of Definition 1) of P or rand(P), respectively.

Because of the assumption that P preserves key secrecy we obtain that short-
and long-term keys are always unknown/uncorrupted in every concrete trace of
S or S ideal that is DY.

Lemma 2. Let t be a prefix of a concrete trace of S. If t is DY, then at any
point in t every long-term key that is used is uncorrupted and every short-term
key that is used is marked unknown in Fenc. The same is true for S ideal.

Proof. Because P preserves key secrecy we have that every key that is used in
a symbolic trace of P is secret. First, we note that it is easy to show that every
key that is used in a symbolic trace of rand(P) is secret too.

Now, the proof is similar in the case for S and S ideal. Since the trace is
uncorrupted, trivially, all short- and long-term keys are uncorrupted. Hence, a
short-term key can only be marked known if i) it was send out in clear (i.e., the
reveal command is used), ii) it was received in clear (i.e., the store command is
used), or iii) it is encrypted by a known short-term key. Since every used key
is (symbolically) secret in symb(t) (P/rand(P) preserves key secrecy) we have
that: (∗) a short-term key that is used (at some point) is never output in clear
and has never been received in clear. By induction on the length of t, we can
show that all short-term keys that are used are marked unknown in Fenc. At
first, all keys are marked unknown. Because all keys are uncorrupted and by (∗),
the only way a key can be marked known is by encrypting it with a key that is
marked known but this key then is used and marked known which contradicts
the induction hypothesis.

Before we state the mapping lemma, we prove that every non-colliding con-
crete trace of S and S ideal where every input is derivable is DY.

Lemma 3. Let t be a prefix of a non-colliding trace of S such that every input
in t is derivable. Then, t is DY. The same is true for S ideal.

Proof. We concentrate on the case for S, the one for S ideal is analogous, see
below.

We prove this lemma by induction on the length of t. For t = ε nothing is
to show. Now, assume that t = t′, e for some event e and t′ is DY.

First, given t, we define the computational interpretation [|s|]t of a term s
(which may contain variables). If some machine Mi during the trace t compu-
tationally interpreted s to some bit string m, then we define [|s|]t := m′ where
m′ is obtained from m by replacing all pointers (Key, ptr) contained in m by
the corresponding keys (Key, k) stored in Fenc. We define [|s|]t := ⊥ if the inter-
pretation fails.1 Otherwise, we say that [|s|]t is undefined. Note that there is a

1The computational interpretation [|s|]τ of a term s by a machine Mi is defined more
rigorous in Appendix B. There, τ is a mapping from names and variables to bit strings which
is maintained by Mi. Furthermore, [|s|]τ maintains a state such that no encryption is done
twice, hence, the same symbolic ciphertext yields the same computational ciphertext. These
state information is all contained in t and we have that [|s|]t equals [|s|]τ except that pointers
are replaced by corresponding keys if, in the trace t, Mi computationally interpreted s with
the mapping τ .
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difference between “[|s|]t = ⊥” which holds if the computational interpretation
of s failed and “[|s|]t is undefined” which holds if there was no computational
interpretation of s at all. In the case of an encryption error, i.e., where Fenc was
requested to encrypt a plaintext but returned an error message, [|s|]t is undefined
where s is the symbolic ciphertext that raised the encryption error. Note that
in this case we do not define [|s|]t := ⊥ because we treat encryption errors as if
this activation did never happen. In particular [|s|]t = ⊥ would mean that the
interpretation failed which has no correspondence to the symbolic interpretation
which would have succeeded.

Similarly, by [|φ|]t ∈ {false, true} we denote the interpretation of a condition
φ.

Note that all terms s that have been computationally interpreted during the
trace t, i.e., where [|s|]t is defined, are subterms of the protocol P. For all these
terms s we have that:

|= M(sσin
t ) if and only if [|s|]t 6= ⊥ . (1)

ψt([|s|]t) =E sσin
t if [|s|]t 6= ⊥ . (2)

The proof (see Appendix C) is done by induction on the structure of s and based
on the induction hypothesis that symb(t′) is a symbolic trace. The main point
is to exploit that all keys are used ideally (for encryption and decryption), see
Lemma 2.

From (1) and (2) we can easily deduce (see Appendix C for a proof) that
every condition φ is computationally interpreted (by some machine Mi during
the trace t) to true iff φσin

t holds, i.e., for every condition φ where [|φ|]t is defined
it holds:

|= φσin
t if and only if [|φ|]t = true . (3)

Next, we prove that symb(t) is a symbolic trace (of P). In the case t =
start(pid1, . . . , pid l), one easily verifies that symb(t) is a symbolic trace. Other-
wise, t = t′, e where e is an input, output, or if event. By definition of symb(t′),
the last process of symb(t′) is

P ′ = (νn, x′)(R′1 ‖ . . . ‖R′l ‖σin
t′ ∪ σout

t′ )

where x′ is the sequence of all variables in dom(σin
t′ ). The process R′i, i ≤ l, is

the process in the configuration of Mi in the last event of t′ (if this is the start
event then R′i = Ri). By definition of symb(t), the last process of symb(t) is

P ′′ = (νn, x)(R′′1 ‖ . . . ‖R′′l ‖σin
t ∪ σout

t )

where x is the sequence of all variables in dom(σin
t ). The process R′′i , i ≤ l, is

the process in the configuration of Mi in the event e. To prove that symb(t) is
a symbolic trace it is left to show that P ′ a−→ P ′′ where

a =


ε if e = if(j, b, C)
(νzr)c〈zr〉 if e = out(j,m, c, C) is the r-th output event in t

cin,jnet (s′) if e = in(j, y,m, C); where s′ = dt(ϕt′ ` ψt(m)) .

Depending on the event e, we distinguish the following cases:
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1. e = in(j, y,m, C): Mj received the input m from the network, hence,
R′j = cin,jnet (y).R′′j . Furthermore, R′i = R′′i for all i 6= j, σout

t = σout
t′ , and

σin
t = σin

t′ ∪ {y 7→ ψt(m)}. We conclude

P ′ c
in,j
net (s′)−−−−−→ (νn, x)(R′′1 ‖ . . . ‖R′′l ‖σin

t′ ∪ {y 7→ s′} ∪ σout
t ) ≡ P ′′ .

The process P ′′ and the process obtained from taking the transition only
differ in the substitution which is σin

t ∪ σout
t and σin

t′ ∪ {y 7→ s′} ∪ σout
t ,

respectively. The frame of P ′ is ϕt′ = (νn)σout
t′ = (νn)σout

t . Recall that
s′ = dt(ϕt′ ` ψt(m)), hence, s′σout

t = s′ϕt′ =E ψt(m). Thus, the sub-
stitutions are structural equivalence. From this it follows easily that the
above processes are structural equivalent.

2. e = if(j, b, C): Mj took an if-then-else branch and evaluated its condition
to b ∈ {false, true}, hence, R′j = if φ then Rtrue else Rfalse where Rb =
R′′j . Furthermore, R′i = R′′i for all i 6= j, σout

t = σout
t′ , and σin

t = σin
t′ . By

(3), |= φσin
t iff b = true. We conclude P ′ → P ′′.

3. e = out(j,m, c, C): Either Mj produced output m to the network or I/O

interface (depending on c) or Mj executed2 cout,j
net 〈b〉 directly after an if-

then-else statement. In any case R′j = c〈s〉.R′′j for some term s such
that [|s|]t = m. Furthermore, R′i = R′′i for all i 6= j, σin

t = σin
t′ , and

σout
t = σout

t′ ∪ {zr 7→ ψt(m)} where r ∈ N such that e is the r-th output
event in t. We conclude

P ′ (νzr)c〈zr〉−−−−−−→ (νn, x)(R′′1 ‖ . . . ‖R′′l ‖σin
t ∪ σout

t′ ∪ {zr 7→ s}) ≡ P ′′ .

As in case 1., the processes only differ in the substitution. The structural
equivalence holds because, by (2), we have that ψt(m) = ψt([|s|]t) =E sσin

t .
Note that m 6= ⊥; by definition of Mj , all outputs are distinct from ⊥.

The proof in the case for S ideal is similar. We basically only have to replace P
and n by rand(P) and n, n∗, respectively. Note that [|n∗|]t is undefined because
no party actually generates a nonce for n∗. Recall that n∗ occurs only in I/O
outputs. In particular, (1), (2), and (3) hold in the case for S ideal by the
same arguments. Furthermore, the cases for the input event and if event are
proven exactly as above. The case for the output event where the output is
on the network is proven exactly as above too. Finally, the case for an output
event out(j,m, cout,j

io , C) is even simpler: By definition of Fke and because Fke

is uncorrupted, m is the session key chosen by Fke. By definition of ψt we have
that ψt(m) = n∗. Since (the simulated) machine Mj produced I/O output,

we have that the process in the configuration of Mj is R′j = cout,j
io 〈s〉.R′′j for

some term s and process R′′j . By definition of rand(·), s = n∗ and, hence, the
transition as defined by symb(t) is a valid transition.

Now, we state the mapping lemma for S and S ideal.
2In fact, Mj did not execute this output instruction because it is an output directly after an

if-then-else statement only used for the symbolic criteria. Instead Mj skipped this instruction
but, nevertheless, it is recorded in the trace.
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Lemma 4 (Mapping Lemma). The probability that a concrete trace t of S is
corrupted or t is DY is overwhelming (as a function of the security parameter).
The same is true for S ideal.

Proof. We concentrate on the case for S, the one for S ideal is analogous, see
below.

Because almost every uncorrupted trace is non-colliding (Lemma 1) and by
Lemma 3, it is left to show that in almost every non-colliding trace every input is
derivable. More formally, we define the event B to be the set of all traces t of S
which are non-colliding and where there exists an input event, say in(j, y,m, C),
in t such that this input is not derivable, i.e., ϕt′ 6` ψt′(m) where t′ is the prefix
of t up to this input event. Recall that ϕt′ = (νn)σout

t′ is the frame that contains
all outputs in t′. Before we show that the probability of B is negligible (in the
security parameter) we prove the following statement. Given a bit string m, by
PT(m) we denote the set of all plaintext components of m, i.e., all bit strings
that occur in m only under pairing. More formally, we recursively define PT(m):
If m = 〈m1,m2〉 for some bit strings m1,m2, then PT(m) := PT(m1)∪PT(m2).
Otherwise, PT(m) := {m}.

(∗) Let t′, in(j, y,m, C) be a prefix of a non-colliding trace t of S, i.e. a prefix
that ends with an input event, and let m′ ∈ PT(m). Furthermore, assume
that in t′ every input is derivable and that the term ψt(m′) is not derivable,
i.e., ϕt′ 6` ψt(m′). Then, there exists m′′ ∈ PT(m′) such that ϕt′ 6` ψt(m′′)
and ψt(m′′) is either

1. a nonce, i.e. ψt(m′′) ∈ Nnonce, or

2. a ciphertext, i.e. ψt(m′′) = {s}rsk(n) for some term s, (short- or long-
term) key n ∈ Nst ∪Nlt, and randomness r ∈ Nrand.

The term ψt(m′′) is called the underivable subterm of ψt(m′).

We prove (∗) by induction on the structure of ψt(m′). By definition of ψt we
only need to consider the following cases:

(a) ψt(m′) is a nonce, a global constant, or garbage (i.e., Garbage(m′)): Since
ϕt′ 6` ψt(m′), we have that ψt(m′) ∈ Nnonce. Hence, with m′′ := m′ we
are done.

(b) ψt(m′) = {s′}rsk(n) for some term s′, (short- or long-term) key n ∈ Nst ∪
Nlt, and randomness r ∈ Nrand: We can choose m′′ := m′.

(c) ψt(m′) = sk(n) for some short-term key n ∈ Nst or n = Garbage(m′): We
show that this case cannot occur.

Since ϕt′ 6` ψt(m′), we have that n ∈ Nst and that sk(n) has never been
sent out in clear. Hence, n corresponds to a short-term key k in Fenc

and the reveal command has never been executed on it. Thus, the only
way k can be marked known in Fenc is because k is encrypted by a known
or corrupted key. By Lemma 3, t′ is DY. Hence, by Lemma 2, all used
keys are uncorrupted or marked unknown and we obtain that k is marked
unknown too. Now, because m′ is the plaintext component of an input, by
definition of Mj , the store command of Fenc is called with the short-term
key k. Upon this Fenc would have returned an error message because k
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is marked unknown. Hence, Mj would terminate and by the definition of
traces this input event would not occur in the trace t. We conclude that
this case does not occur.

(d) ψt(m′) = 〈ψt(m1), ψt(m2)〉 for some bit strings m1,m2 ∈ PT(m′): Since
ϕt′ 6` ψt(m′) we have that ϕt′ 6` ψt(m1) or ϕt′ 6` ψt(m2). Hence, we can
apply the induction hypothesis to m1 or m2, respectively, and obtain m′′.

Now, given an environment E ′ (for [|P|]τ ) and a ground term s, we consider
the following game:

ExpE
′

guess,s : Run the system E ′ | [|P|]τ . (Recall that S = E | [|P|]τ .) Let t be the
trace of this run and let m be the final output of E ′. If t is DY, ψt(m) = s,
and ϕt 6` s, then E ′ wins, otherwise, E ′ looses.

We construct an environment E ′ as follows: Let p be a polynomial (in the
security parameter) that bounds the maximal number of output messages that E
sends. First, E ′ chooses i ∈ {1, . . . , p} uniformly at random and, then, simulates
E up to the i-th output message, say m. Then, E ′ chooses a plaintext component
m′ ∈ PT(m) uniformly at random and outputs m′.

By (∗) and Lemma 3, it is easy to see that if the probability of B is not
negligible (in the security parameter), then there exists a term s ∈ Nnonce ∪
{{s′}rsk(n) | s

′ ∈ T (N ), n ∈ Nst ∪ Nlt, r ∈ Nrand} such that E ′ wins the game

ExpE
′

guess,s with non-negligible probability (in the security parameter).
Finally, we show that for any environment E ′ and any such term s the

probability that E ′ wins ExpE
′

guess,s is negligible (in the security parameter).
Note that if s is not in the range of ψt, then E ′ looses anyway. Hence, we

assume that s is in the range of ψt, i.e., there exists a bit string m′ such that
ψt(m′) = s. Let m be the bit string output by E ′. Note that if m′ 6= m,
then s = ψt(m′) 6= ψt(m) and, hence, E ′ looses. Since ϕt 6` s, by definition of
symb(t), m′ has never been output in clear in t. Furthermore, since t is DY,
by Lemma 2, every encryption of a plaintext that contains m′ is independent of
(the actual bits of) m′ (it only depends on the length of m′). Hence, it is easy
to see that the view of E ′ is independent of m′. If s ∈ Nnonce, then m′ is chosen
uniformly at random from {0, 1}η, hence, the probability that m = m′ is at most
1/2η. On the other hand, if s is a (symbolic) ciphertext, then m′ is a ciphertext
which has been produced with an unknown/uncorrupted key (Lemma 2), not the
actual plaintext, say m′′, but its leakage x = L(m′′) is encrypted. By definition
of Fenc and the leakage algorithm L, plaintexts have at least length η and x
is chosen independently and uniformly at random from {0, 1}|m|. Furthermore,
Fenc verifies that the (deterministic) decryption of m′ yields x, i.e., m′ ‘contains’
the complete information for x. Hence, the probability that m = m′ is at most
1/2η.

We conclude that the probability that E ′ wins the game is at most 1/2η. In
particular, it is negligible. Hence, the probability that B occurs is negligible.

The proof in the case for S ideal is similar. In the definition of the event B we
only have to replace S by S ideal and n by n, n∗. (Recall that n∗ is the restricted
name added by rand(P).) In the statement (∗) in case 1. we have to add that
ψt(m′) ∈ Nnonce ∪ {n∗}. The proof of (∗) is similar. In the game ExpE

′

guess,s

we have to replace the system E ′ | [|P|]τ by E ′ |Sim | Fke. (Recall that S ideal =
E |Sim | Fke.) but the construction of E ′ remains the same. Also, the proof that
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for any s ∈ Nnonce ∪{n∗}∪ {{s′}rsk(n) | s
′ ∈ T (N ), n ∈ Nst ∪Nlt, r ∈ Nrand} the

probability that E ′ wins the game ExpE
′

guess,s is negligible is similar. It is easy
to see that also in this case if the event B has non-negligible probability, then
E ′ wins the game with non-negligible probability.

Proof of Theorem 3. We can now prove that S ≡ S ideal by defining a
correspondence relation between (almost) all concrete trace of S to the concrete
traces of S ideal, where the final output of E is the same in corresponding traces.

The case when a concrete trace t of S is corrupted is trivial, since then Sim
can corrupt Fke and mimic the concrete trace of S exactly. The case where in
t no session key is output is also trivial.

If t is not a trace of the above form, then, by Lemma 4, it is almost certain
DY, and hence, symb(t) is a symbolic trace of P.

Now, we first observe:

(∗) There exists a bit string m0 ∈ {0, 1}η such that in t whenever an SK-
output message is sent to the environment, then this message contains
m0 as the session key and ψt(m0) = n0 for some n0 ∈ Nnonce, i.e., m0

corresponds to a nonce in symb(t).

In traces of rand(P) the nonce n∗ is always output as the session key. So,
because symb(t) is a trace of P and P ∼l rand(P), it is not hard to show
that the session key output in symb(t) has to be a nonce too and it has to be
always the same nonce; otherwise, using the predicates EQ, Ppair, Penc, and
Pkey, symb(t) could be distinguished from all traces of rand(P). Now since ψt
is injective, (∗) follows.

Given some value of a nonce m∗ ∈ {0, 1}η, we define a trace t∗ of S ideal

that will correspond to the trace t of S. The randomness used in t and t∗

exactly coincide for all system components, except that for the nonce n0 (which
is output as the session key, see above) used in [|P|]τ the bit string m∗ instead
of m0 is chosen, and in Fke the bit string m0 is chosen as the session key. More
formally, the randomness of the environment E , the functionality Fke, and the
simulator Sim in t∗ is defined such that i) the randomness of E is the same in t
and t∗, ii) Fke chooses m0 as the session key, iii) Sim simulates [|P|]τ such that
Fenc uses the same randomness in t and t∗, and iv) Sim simulates [|P|]τ such
that for every nonce n 6= n0 the same value is chosen in t and t∗ and for the
nonce n0 the value m∗ is chosen in t∗ (by some simulated Mi).

Note that t∗ is uncorrupted because this only depends on the randomness
of E (static corruption), t is uncorrupted, and E uses the same randomness in t
and t∗. By definition, the probability of ρ is 2η times the probability of ρ∗. By
Lemma 4, we may assume that t∗ is DY, since this is true with overwhelming
probability, given that t∗ is uncorrupted.

Finally, we prove that the view of E is the same in t and t∗. In particular,
this implies that the final output of E is the same in both traces. More precisely,
we prove by induction on the length of t:

(a) The event sequence of t coincides with the one of t∗ (in particular, input
and outputs, i.e., the view of E , are the same), except for the configurations
in the events: The configurations ofM1, . . . ,Ml in t and t∗ are equal except
for the value of nonce n0 which is m0 in t and m∗ in t∗. The configuration
of E is the same in both t and t∗.
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(b) If Pt denotes the last process of symb(t) and Pt∗ the last process of
symb(t∗), then Pt ∼l Pt∗ .

For t = ε or t = start(pid1, . . . , pid l) the above is obvious. We now consider the
possible events that can occur.

Input event: Assume that t = t̄, in(j, y,m, C) and (a) and (b) hold for t̄
and t̄∗. From (a) it follows that t∗ = t̄∗, in(j, y,m, C′) for some C′ (note that
the view and randomness of E is the same in t and t∗). Now, clearly (a) is
satisfied for t and t∗. It remains to prove (b) for t and t∗. Because Pt̄ ∼l Pt̄∗ ,
it suffices to show that the same labels (module E, see below) are produced
in the last step of symb(t) and symb(t∗). The label produced by symb(t) is
cin,jnet (sm) where sm = dt(ϕt̄ ` ψt(m)) and the one for symb(t∗) is cin,jnet (s∗m)
where s∗m = dt(ϕt̄∗ ` ψt∗(m)). Next, we show that sm and s∗m are basically the
same terms.

First, we note the following which holds in general. The relation a−→ is closed
under structural equivalence and structural equivalence allows for replacement

of terms by equivalent terms w.r.t. E, hence, it is easy to prove that if A
c(s)−−→ B

where fn(s) ∩ bn(A) = ∅ and fv(s) ⊆ dom(A), then A
c(s′)−−−→ B for every term s′

that satisfies fn(s′) ∩ bn(A) = ∅, fv(s′) ⊆ dom(A), and sϕ(A) =E s′ϕ(A).
Recall that by definition of dt we have that both sm and s∗m are in normal

form, smϕt̄ =E ψt(m), and s∗mϕt̄∗ =E ψt∗(m). Hence, to prove (b) for t and t∗

it remains to prove that smϕt̄∗ =E s∗mϕt̄∗ because then we can replace s∗m by
sm in t∗. For this, we prove a more general statement:

(∗∗) For every term s in normal form such that fn(s) ∩ {n, n∗} = ∅, fv(s) ⊆
dom(ϕt̄), and s does not contain {·}·· and dec(·, ·) and for every bit string
m ∈ {0, 1}∗ such that sϕt̄ =E ψt(m), it holds that sϕt̄∗ =E ψt∗(m).

First we note that, by definition of ψt and dt , sm does not contain any restricted
names (n, n∗). In particular sm does not contain symbolic randomness and,
hence, sm does not contain the function symbol {·}·· because ψt(m) does contain
{s}rk only if r is a restricted name. Furthermore, because all used keys in symb(t)
are secret, it is easy to show that sm does not contain the function symbol
dec(·, ·): By the definition of ψt, ψt(m) contains dec(s, k) only for honest keys
k (i.e. where k = sk(n) for some restricted name n ∈ Nst ∪ Nlt). Therefore,
because all used keys in symb(t) are secret, the derivation of ψt(m) from the
frame ϕt̄ does not use decryption. Hence, because sm is in normal form, it
does not contain dec(·, ·). Now, it is easy to see that sm and m satisfy the
precondition of (∗∗), so, we obtain that smϕt̄∗ =E ψt∗(m) =E s∗mϕt̄∗ .

Next, we prove (∗∗) by induction on the structure of s:

1. If s ∈ N \ {n, n∗}, then s is a global constant (i.e., s ∈ dom(τ)) or
s = Garbage(m). Hence, ψt∗(m) = ψt(m) = s.

2. If s ∈ X , then s ∈ dom(ϕt̄). Hence, m is the i-th output message in t̄
for some i. By (a), m is the i-th output message in t̄∗ too. Hence, by
definition, sϕt̄∗ = σout

t̄∗ (s) = ψt̄∗(m) = ψt∗(m).

3. If s = sk(s′): Recall that s does not contain restricted names. We have
that s′ = Garbage(m) because no name from Nst ∪ Nlt is derivable due
to (symbolic) tagging with sk(·). (At most sk(n) with n ∈ Nst ∪ Nlt is
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derivable but not n itself.) We conclude that m = (Key, k) for some bit
string k that is not a (short- or long-term) key in Fenc in t. Because the
keys in t and t∗ are the same (by (a)), k is not a key in Fenc in t∗ too.
Hence, ψt∗(m) = ψt(m) = s.

4. If s = 〈s1, s2〉: We have that sϕt̄ =E ψt(m), hence, m = 〈m1,m2〉 for
some bit strings m1,m2 and siϕt̄ =E ψt(mi) for i = 1, 2. By induc-
tion hypothesis (IH), we obtain siϕt̄∗ =E ψt∗(mi) for i = 1, 2. Hence,
〈s1, s2〉ϕt̄∗ =E 〈ψt∗(m1), ψt∗(m2)〉 = ψt∗(m).

5. If s = πb(s′): It is easy to see that there exist bit strings m′,m1,m2 such
that m′ = 〈m1,m2〉, s′ϕt̄ =E ψt(m′), and mb = m. By IH, we obtain
s′ϕt̄∗ =E ψt∗(m′) = 〈ψt∗(m1), ψt∗(m2)〉. Hence, πb(s′)ϕt̄∗ =E ψt∗(mb).

Output event: Assume that t = t̄, out(j,m, c, C) and (a) and (b) hold for
t̄ and t̄∗. Furthermore, assume that out(j,m, c, C) is not an output event that
follows directly an if event (this is considered in the case for the if event).
From (a) it follows that t∗ = t̄∗, out(j,m′, c, C′) for some bit string m′ and some
C′. Now, it is easy to see that (b) is satisfied for t and t∗. To prove (a) it
remains to show that m = m′. If c = cout,j

io (i.e., the session key is output on
the I/O interface) then, by (∗), m = m0. In t∗, m′ is the session key output
by Fke, which, by definition of t∗, is m0. Now, consider the case c = cout,j

net :
By (a), we know that Mj performs the same operations to produce the output.
More formally, there exists a term s such that m = [|s|]t and m′ = [|s|]t∗ . We
can show that sσin

t does not contain n0 in clear (i.e., not encrypted) because
otherwise P 6∼l rand(P). To prove this, assume that sσin

t contains n0 in clear.
Then there exists a variable z such that zϕt = sσin

t (because sσin
t is output and

therefore accessible in the frame) and, hence, a term s′ such that s′ϕt =E n0

and fn(s′) ∩ {n, n∗} = ∅. Furthermore, let z′ be a variable in the frame ϕt that
corresponds to the first output on a I/O channel. Such a z′ exists and, by (∗),
we have that z′ϕt = n0. Now, the adversary can distinguish between symb(t)
and symb(t∗) by using the predicate EQ(s′, z′) which is always true in symb(t)
(by construction) and never true in symb(t∗) because z′ϕt∗ = n∗ 6=E s′ϕt∗ .

Furthermore, all ciphertexts are obtained from ideal encryption (Lemma 2)
and, thus, only depend on the length of the plaintext. Hence, the actual bit
strings of the ciphertexts depend only on the random coins of Fenc (and the
length of the plaintext which is the same in t and t∗). From this it is easy to
deduce that m = m′.

If event: Assume that t = t̄, if(j, b, C), out(j, τ(b), cout,j
net , C′) and (a) and (b)

hold for t̄ and t̄∗. By (a), we have that t∗ = t̄∗, if(j, b′, C′′), out(j, τ(b′), cout,j
net , C′′′)

for some b′ ∈ {false, true} and some C′′, C′′′. From (b) it follows that Pt̄ ∼l Pt̄∗
and, hence, b = b′. Now, it is easy to show that (a) and (b) hold for t and t∗.

This concludes the proof of Theorem 3.

9 Proof of Corollaries 1 and 2

We only prove Corollary 2, the argument for Corollary 1 is similar.
By [26], we find a simulator SimFenc such that for every used-order respect-

ing and non-committing environment E , as explained in Section 5.2, it holds
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that (i): E | Penc ≡ E |SimFenc | Fenc. By definition of Fenc it follows, with over-
whelming probability, that SimFenc corrupts keys in Fenc only if instructed by
E . By Theorem 3, we find a simulator SimFke such that for every environment
E we have that (ii): E | [|P|]τ ≡ E |SimFke | Fke. Now, we define a simulator
Sim as follows: If the environment corrupts a key or party, then Sim corrupts
Fke and simulates [|P|]τPenc

. Otherwise, Sim simulates SimFenc |SimFke . (Note
that because of static corruption, Sim knows whether it is in the corrupted or
uncorrupted case.)

Now, let E be any environment. We need to show E | [|P|]τPenc
≡ E |Sim | Fke.

The cases in which E corrupts are trivial. Hence, it remains to show that
E ′ | [|P|]τPenc

≡ E ′ |Sim | Fke is true, where E ′ simulates E but outputs 1 and halts
if E wants to corrupt. Since E ′ does not corrupt, by definition of Sim we have
that E ′ |Sim | Fke ≡ E ′ |SimFenc |SimFke | Fke ≡ E ′ |SimFenc | [|P|]

τ , where the
latter equivalence follows with (ii) (and taking E = E ′ |SimFenc).

Now, we know that (almost) all traces t of the system E ′ |SimFenc | [|P|]
τ

are uncorrupted because E ′ does not corrupt and SimFenc only corrupts if E ′
corrupts, and hence, by Lemma 4, are DY. Now, since P preserves key se-
crecy it follows with Lemma 2 (all used keys are always unknown/uncorrupted)
that the commitment problem does not occur. Hence, the environment E ′′ :=
E ′ |M |M1 | . . . |Ml is non-committing. Moreover, the used-order can only be
violated if a used short-term key is later encrypted by another short-term key.
Assume that this happens, i.e., that there exist bit strings k, k′ which are short-
term keys in Fenc such that k has been used for encryption and is later en-
crypted by k′. Then, by definition of the Mi’s, there exist terms s1, s2, r, s

′
1, s
′
2, r
′

such that [|s2|]t = (Key, k), [|s′2|]t = (Key, k′), and [|s′1|]t contains (Key, k). Fur-
thermore, some Mi computed the computational interpretation of {s1}rs2 , i.e.,
[|{s1}rs2 |]t, and later some Mi′ computed the computational interpretation of
{s′1}r

′

s′2
, i.e., [|{s′1}r

′

s′2
|]
t
. Let n, n′ ∈ Nst be the names corresponding to the short-

term keys k and k′, respectively. By (1) and (2) in the proof of Lemma 3 and
by the definition of ψt we have that

s2σ
in
t =E ψt([|s2|]t) = ψt((Key, k)) = sk(n) ,

s′2σ
in
t =E ψt([|s′2|]t) = ψt((Key, k′)) = sk(n′) , and

s′1σ
in
t =E ψt([|s′1|]t) .

Furthermore, because [|s′1|]t contains (Key, k), by definition of ψt, we have that
ψt([|s′1|]t) contains sk(n) in clear (i.e., only under pairing). By definition of
symb(t) we can conclude that in symb(t) the short-term key n was used for en-
cryption (in the term {s1}rs2) before n was encrypted by n′ (in the term {s′1}r

′

s′2
).

This contradicts our assumption that P is symbolically standard, hence, used-
order violations never occur in t.

Thus, E ′′ is used-order respecting. Now, we obtain E ′ | [|P|]τPenc
= E ′′ | Penc

(i)
≡

E ′′ |SimFenc | Fenc = E ′ |SimFenc | [|P|]
τ (ii)
≡ E ′ |Sim | Fke. This concludes the

proof of Corollary 2.
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10 Related Work

The general approach of this paper follows the one by Canetti and Herzog [15].
However, they consider only the simpler case of public-key encryption. Also,
their symbolic criterion is based on patterns [2], which is closely related to static
equivalence, but more ad hoc.

Comon-Lundh and Cortier [16] show that observational equivalence implies
computational indistinguishability for a class of protocols similar to the one
considered here, but with more restricted if-then-else statements. The main
drawback of their result is that it makes the unrealistic assumption that the
adversary cannot fabricate keys, except for honestly running the key genera-
tion algorithm. In other words, dishonestly generated keys are disallowed, an
assumption that we do not make. This is one of the reasons why their result
does not imply our computational soundness result. Also, the approaches are
different in that Comon-Lundh and Cortier consider a game-based setting, while
we use simulation-based security and make intensive use of composability.

In [4], Backes and Pfitzmann proposed a Dolev-Yao style abstraction of
symmetric encryption within their cryptographic library [5]. In the full version
of the work by Comon-Lundh and Cortier [17], the authors pointed out that
they do not know how the problem with dishonestly generated keys that they
encountered is solved in the cryptographic library by Backes and Pfitzmann.
Indeed it turns out that dishonestly generated keys also have to be forbidden for
the cryptographic library, in case symmetric encryption is considered. Moreover,
the realization of this library requires an authenticated encryption scheme which
is augmented with extra randomness as well as identifiers for symmetric keys.

Mazaré and Warinschi [29] presented a mapping lemma for protocols that
use symmetric encryption in a setting with adaptive, rather than only static cor-
ruption. However, the protocol class is very restricted: symmetric keys may not
be encrypted, and hence, may not “travel”, and nested encryption is disallowed.

In [21], a formal logic that enjoys a computational, game-based semantics
is used to reason about protocols that use symmetric encryption. In [28, 11],
automated methods for reasoning about cryptographic protocols are proposed
that are based on transformation of programs and games, and hence, are close to
cryptographic reasoning. However, these works do not provide computationally
sound symbolic criteria for reasoning about protocols.

As already mentioned in the introduction, computational soundness results
for passive or adaptive adversaries have been obtain, for example, in [2, 23].
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A Ideal Functionalities

A.1 The Key Exchange Functionality

In this section we give a rigorous presentation of the functionality Fke for ideal
key exchange, see Section 5.1 for an informal description. The functionality is
similar to the one by Canetti and Herzog [15].

The description of Fke in Figure 5 is divided into four parts: Tapes, State,
ChkAddr and Compute. The first two parts are used to describe the tapes
and the variables that describe the state of Fke and also the initial state while
the others describe the behavior of Fke in mode CheckAddress and Compute,
respectively.

Tapes, State, and CheckAddress. The functionality Fke is parameterized
by a set of tape names Tusers and a tape name Tadv. These tape names define
the interface (i.e., tapes) of Fke: For every T ∈ Tusers Fke has an enriching I/O
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Fke(Tusers, Tadv)

Tapes: in: T in for T ∈ Tusers (I/O tapes), T in
adv (network tape)

out: T out for T ∈ Tusers (I/O tapes), T out
adv (network tape)

State: id , pid1, pid2, key ∈ {0, 1}∗ ∪ {⊥} (initially ⊥)
state1, state2 ∈ ({init, ok} ∪ ({wait} × Tusers)) (initially init)
corrupted ∈ {false, true} (initially false)

ChkAddr: Accept all messages.

Compute:

1. Key exchange: Upon receiving (id ′, pid ,KeyExchange) from T ∈ Tusers

where id ′ = (pid ′1, pid ′2, param) for some pid ′1, pid ′2, param ∈ {0, 1}∗,
pid ′1 6= pid ′2, pid = pid ′i for some i ∈ {1, 2}, statei = init, and
id ∈ {⊥, id ′} do: Set id := id ′, pid1 := pid ′1, pid2 := pid ′2, and
statei := (wait, T ). Send (id , pid ,KeyExchange) to Tadv.

2. Complete: Upon receiving (id ′,Complete, pid , k) from Tadv where
id ′ = id , pid = pid i for some i ∈ {1, 2}, statei = (wait, T ), and
k ∈ {0, 1}η do: Set statei := ok. If corrupted , then send
(id , pid ,Completed, k) to T . Otherwise, if key = ⊥, then key←R{0, 1}η;
send (id , pid ,Completed, key) to T .

3. Corruption: Upon receiving (id ′,Corrupt) from Tadv where id ′ = id ,
statei 6= init for some i ∈ {1, 2}, statei 6= ok for all i ∈ {1, 2}, and
corrupted = false do: Set corrupted := true. Send (id ,Corrupted) to Tadv.

4. Corruption request: Upon receiving (id ′,Corrupted?) from T ∈ Tusers

where id ′ = id and statei = ok for some i ∈ {1, 2} do: Send
(id ,CorruptionState, corrupted) to T .

5. Upon receiving any other message do: Produce empty output.

Figure 5: Key Exchange Functionality Fke.
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input tape T in and an I/O output tape T out. Furthermore, Fke has a consuming
network input tape T in

adv and a network output tape T out
adv.

The state of Fke is given by the variables id , pid1, pid2, key , state1, state2,
and corrupted . In mode compute, see below, Fke will produce empty output,
i.e., stop this activation without writing to an output tape, if the input message
is not prefixed by the specific identifier id which is set in the first activation. In
pid1 and pid2 the party identifiers (PIDs) of the parties that exchange a key are
stored and state1 and state2 record their state. The variable corrupted records
whether the functionality is corrupted.

In mode CheckAddress all messages are accepted.

Compute. The description in mode Compute, consists of a sequence of blocks
where every block is of the form 〈condition〉 do: 〈actions〉. Upon activation,
the conditions of the blocks are checked one after the other. If a condition is
satisfied the corresponding actions are carried out. If no condition is satisfied,
Fke produces empty output, i.e., it stops in this activation without writing to
an output tape, so, the master machine will be triggered, see Section 4.

The condition “Upon receiving m from T .” denotes that m is received on
tape T in in this activation. By “Send m to T .” we denote that the machine
stops in this activation and outputs the message m on tape T out.

A party starts a key exchange by sending the message (id , pid ,KeyExchange)
to Fke where pid is its PID. Then, Fke records that this party is willing to
exchange a key and forwards this request to the adversary. The first such
message determines id which binds the parameters for this key exchange. The
bit string id has to be of shape id = (pid1, pid2, param) for some bit strings
pid1, pid2, param. The bit strings pid1 and pid2 are the PIDs of the parties
that use this functionality to exchange a key. Of course, it is required that
pid ∈ {pid1, pid2}. The bit string param may contain additional data that is
relevant for the key exchange protocol, e.g. the name of a key distribution server
that is involved. In this paper, param will be interpreted as a list of PIDs of all
parties that are involved in the key exchange, i.e., param = pid ′1, . . . , pid ′l and
pid ′i is the PID of the party executing Mi, see Appendix B. All further messages
have to be prefixed with id , otherwise, Fke will produce empty output.

The adversary can corrupt Fke by sending the message (id ,Corrupt) to Fke.
This is possible only before a party has completed, see below.

Then, the adversary can complete the key exchange for a recorded party
pid by sending the message (id ,Complete, pid , k) to Fke. This message is called
session finish message. Then, Fke sends the message (id , pid ,Completed, k′)
to the party. This message is called session key output (SK-output) message.
If Fke is corrupted, then k′ = k, i.e., the key provided by the adversary is
output. Otherwise, if Fke is uncorrupted, k′ = key where key is chosen uniformly
at random from {0, 1}η (η is the security parameter). (This could easily be
generalized to other distributions.)

The environment (via I/O tapes) can ask whether Fke is corrupted; security
notions otherwise would not make sense: Any key exchange protocol would
realize Fke. A simulator could corrupt Fke at the beginning and then mimic the
behavior of the real protocol.
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Remarks. The functionality does not guarantee authentication, i.e., the ad-
versary might complete the key exchange for one party even though the other
party did not start the key exchange. If the functionality is uncorrupted it is
guaranteed that i) the key in the SK-output message is independent from all
network messages and ii) if both parties complete, the same key is output to
both parties. If Fke is corrupted nothing is guaranteed except that the key is of
length η. (This could easily be generalized.)

As mentioned, Fke captures only one key exchange between any two parties.
An unbounded number of sessions of key exchanges between arbitrary parties
is described by the system !Fke.

A.2 The Symmetric Encryption Functionality

In this section we give a more detailed presentation of the functionality Fenc for
ideal authenticated symmetric encryption. See [26] for full details. We remark
that there also a variant for unauthenticated symmetric encryption has been
considered.

The functionality consists of two parts Fenc(L) = Fsenc(L) | !Fltsenc(L) and
is parameterized by a leakage algorithm L. The functionality !Fltsenc allows
every pair of two parties to establish a shared symmetric key and to encrypt
and decrypt messages in an ideal way using this key. This keys, which we call
long-term keys, cannot be encrypted by other keys and send around. On the
other hand, parties can use Fsenc to generate short-term keys and encrypt and
decrypt messages in an ideal way using these keys. The distinguishing feature
of Fsenc compared to Fltsenc is that short-term keys may be part of the messages
to be encrypted (under other short-term keys or long-term keys). This allows
short-term keys to travel (securely). In [26], encrypting short-term keys under
public keys is also considered. However, the users of Fsenc (or its realization)
do not get their hands on the actual short-term keys, but only on pointers to
keys stored in the functionality, since otherwise no security guarantees could
be provided. These pointers may be part of the messages given to Fsenc for
encryption. They take the form (Key, ptr), where Key is a tag and ptr is the
actual pointer to a key. The tag is used to identify the bit string ptr as a pointer.
Before a message is actually encrypted, the pointers are replaced by the keys
they point to. Keys are written in the form (Key, k), where k is the actual key.
Again, the tag Key is used to identify the bit string k as a key. Upon decryption
of a ciphertext, keys embedded in the plaintext are first turned into pointers
before the plaintext is given to the user.

Next, we first describe Fltsenc and then Fsenc in more detail.

A.2.1 The Ideal Functionality for Long-Term Keys

The functionality Fltsenc allows two parties to establish a shared symmetric key
and to encrypt and decrypt messages in an ideal way using this key. The
key is meant to model a long-term shared key which is never given to the
parties, but rather stays in the functionality. In [26], an authenticated and an
unauthenticated version of Fltsenc have been considered. Here, we only consider
the authenticated version of Fltsenc.

Initialization. Each party declares that it is willing to exchange a key with
the other party. This information is forwarded to the (ideal) adversary who is
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required to provide encryption and decryption algorithms, enc and dec (which
implicitly contain the long-term symmetric key). These algorithms are later ap-
plied to process encryption and decryption requests without further involvement
of the adversary. Upon providing the algorithms, the adversary also decides
whether or not it wants to corrupt the functionality (static corruption).

Encryption request. If the functionality is requested by one of the two
parties to encrypt a message m (which may be an arbitrary bit string), it will, in
case the functionality is not corrupted, encrypt the leakage L(1η,m) ofm instead
of m itself, using enc. This results in some ciphertext c. The functionality
then stores the pair (m, c) and returns c to the calling party. Note that, by
construction, c leaks at most L(1η,m) (e.g., the length of m).

In case the functionality is corrupted, the message m (not its leakage) is
encrypted using enc and the resulting ciphertext is returned to the calling party.
There is no need to store the ciphertext. In other words, in the corrupted case,
the functionality does not provide security guarantees.

Decryption request. Upon a decryption request by one of the two parties
for a ciphertext c (which again may be an arbitrary bit string), an uncorrupted
functionality performs the following actions: If the functionality has stored ex-
actly one pair (m, c) for some plaintext m, this plaintext is returned. In case
there is more than one such pair or none such pair, an error is returned.

In case the functionality is corrupted, c is decrypted using dec and the result
is returned to the calling party.

Corruption? The environment can ask whether or not the functionality is
corrupted.

Remarks. The functionality Fsenc for symmetric encryption under short-term
keys will use the multi-party version !Fltsenc of Fltsenc as part of their bootstrap-
ping mechanism. This multi-party version provides functionalities for symmetric
encryption with long-term keys for an unbounded number of pairs of parties,
with one instance of Fltsenc per pair.

Realizing Fltsenc. In [26] it has been shown that Fltsenc exactly captures the
standard notion of security for authenticated symmetric encryption schemes.

A symmetric encryption scheme Σ = (gen, enc,dec) induces a realization
Pltsenc(Σ) of Fltsenc. The realization Pltsenc(Σ) relies on the ideal functionality
Fkeysetup(gen), which provides pairs of parties with the same symmetric key,
generated according to gen. The functionality Fkeysetup(gen) is considered to
be a sub-protocol of Pltsenc(Σ) and does not have a network interface, and
hence, the environment cannot interact with it. This models that long-term
symmetric keys are, for example, manually stored on the respective systems
of the parties or provided by smart cards. Alternatively, one could use a key
exchange functionality Fke.

The following theorem has been proven in [26].

Theorem 4. Let Σ = (gen, enc,dec) be a symmetric encryption scheme and
L be a leakage algorithm, which leaks exactly the length of a message. Then,
we obtain the following equivalence, where the directions from left to right hold
for any length preserving leakage algorithm L. The encryption scheme Σ is
IND-CPA and INT-CTXT secure iff !Pltsenc(Σ) | Fkeysetup(gen) ≤ !Fltsenc(L).
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We obtain a multi-session version of !Fltsenc(L) by applying ‘ · ’ and ‘ !’
to !Fltsenc(L), resulting in the system !( !Fltsenc(L)), which is the same as
!Fltsenc(L). In every run of this system there is (at most) one instance of
Fltsenc(L) per session and pairs of parties. Using Theorem 2, we obtain as
a direct consequence of the above theorem that !Pltsenc(Σ) | !Fkeysetup(gen) ≤
!Fltsenc(L), i.e., the multi-session version of Fltsenc(L) is realized by the multi-
session version of !Pltsenc(Σ) | Fkeysetup(gen). However, this realization is im-
practical: If two parties use the functionality in different sessions, they have to
use freshly generated long-term keys for each session, since each session uses a
new instance of Fkeysetup(gen). Therefore, in [26], the following joint state the-
orem for Fltsenc has been proven. The purpose of P js

ltsenc is explained following
the theorem.

Theorem 5. For every leakage algorithm L we have that

!P js
ltsenc | !Fltsenc(L′) ≤ !Fltsenc(L) ,

where L′(1η, (sid ,m)) = (sid , L(1η,m)) for all SIDs sid and messages m, and
!Fltsenc(L′) is a sub-protocol of !P js

ltsenc.

The idea behind this theorem is as follows, where for simplicity we ignore the
leakage algorithms for now. In !Fltsenc one instance of Fltsenc per session and
pair of parties can be generated. In particular, every pair of parties (p1, p2) uses
a new instance of Fltsenc for every session. In the realization !P js

ltsenc | !Fltsenc

there is only one instance of Fltsenc per pair of parties. This instance of Fltsenc

handles all sessions of this pair. The purpose of P js
ltsenc is to act as a multiplexer

between these sessions; there is only one instance of P js
ltsenc per pair of parties.

The multiplexer P js
ltsenc, say for the pair of parties (p1, p2), works as follows: If

the instance of P js
ltsenc for (p1, p2) receives an encryption request for message m

(from p1 or p2) in a session with SID sid , then P js
ltsenc prefixes sid to m and

forwards (sid ,m) to the instance of Fltsenc associated with (p1, p2). If P js
ltsenc

receives a decryption request in session sid , P js
ltsenc first forwards the ciphertext

to the instance of Fltsenc associated with (p1, p2) and then checks whether the
resulting plaintext is of the form (sid ,m), for some m. Intuitively, prefixing
messages by SIDs in this way guarantees that different sessions do not interfere,
even though they are handled by one instance of Fltsenc.

Together with Theorem 1 and Theorem 4, we immediately obtain from The-
orem 5:

!P js
ltsenc | !Pltsenc(Σ) | Fkeysetup(gen) ≤ !Fltsenc(L) .

This realization is practical in the sense that two parties use the same long-term
symmetric key across all sessions, as all these sessions use the same instance of
Fkeysetup(gen).

A.2.2 The Ideal Functionality for Short-Term Keys

The ideal functionality Fsenc handles the key generation, encryption, and de-
cryption requests of an unbounded number of parties. It also provides an inter-
face to Fltsenc, for bootstrapping symmetric key encryption (see above). Just
as Fltsenc, Fsenc is parameterized by a leakage algorithm L. We remark that
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Fsenc also provides an interface to an ideal functionality Fpke for public key
encryption, see [26], which is not needed in this paper.

The functionality Fsenc has to keep track of which party has access to which
keys (via pointers) and which keys are known to the environment/adversary,
i.e., have been corrupted or have been encrypted under a known key, and as a
result became known. For this purpose, Fsenc maintains a set K of all short-
term keys stored within the functionality, a set Kknown ⊆ K of known keys, a set
Kunknown := K\Kknown of unknown keys, and a set of corrupted keys Kcorrupt ⊆
Kknown. A partial function key yields the key key(p, ptr) ∈ K pointer ptr points
to for party p. For ideal encryption and decryption, a table decTable(k) is kept
for every key k ∈ Kunknown. It records pairs of the form (m, c), for a ciphertext
c and its plaintext m. With these data structures, Fsenc works as follows.

Obtain encryption and decryption algorithm. Before encryption and
decryption can be performed, Fsenc expects to receive an encryption and de-
cryption algorithm from the (ideal) adversary, say enc and dec, respectively.

(Short-term) key generation. A party p can ask Fsenc to generate a key.
This request is forwarded to the adversary, who is expected to provide such a
key, say k. The adversary can decide to corrupt k right away (static corruption),
in which case k is added to Kknown and Kcorrupt. In case the key is not marked
corrupted, the functionality Fsenc only accepts k if k does not belong to K,
modeling that k is fresh. In case k is corrupted, k still may not belong to
Kunknown (no key guessing). We emphasize that the difference between Kknown

and Kunknown is not whether or not an adversary knows the value of a key; the
adversary knows this value anyway, since he provides these values in the ideal
world. The point is that if k ∈ Kunknown, messages encrypted under k will be
encrypted ideally, i.e., the leakage of these messages is encrypted instead of the
messages itself. Conversely, if k ∈ Kknown, the actual messages are encrypted
under k. So, no security guarantees are provided in this case. In the realization
of Fsenc, however, keys corresponding to keys in Kunknown will of course not be
known by the adversary.

After the key k has been provided by the adversary, a pointer to this key
is created for party p, if there does not exist such a pointer already, and this
pointer is given to p. (The value of the pointer does not need to be secret. In
fact, new pointers are created by increasing a counter.)

Key generation requests for long-term symmetric keys are simply forwarded
to (instances of) Fltsenc.

Encryption request. We first consider encryption with short-term keys.
Such a request is of the form (p,Enc, ptr ,m), where m is the message to be
encrypted, p is the name of the party who wants to encrypt m, and ptr is a
pointer to the key under which p wants to encrypt m. Upon such a request, Fsenc

first checks whether ptr is associated with a key, i.e., whether k = key(p, ptr)
is defined. Also, this is checked for all pointers (Key, ptr ′) in m. If these checks
are successful, these pointers are replaced by their corresponding keys (Key, k′),
resulting in a message m′. Then, if k ∈ Kunknown, the leakage L(1η,m′) of
m′ is encrypted under k using enc (the encryption algorithm provided by the
adversary). If c denotes the resulting ciphertext, the pair (m′, c) is added to
decTable(k) and c is given to p. If k ∈ Kknown, m′ itself is encrypted, resulting
in some ciphertext c. All keys in m′ are then added to Kknown, as they have
been encrypted under a known key. The ciphertext c is given to p.
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Encryption requests for long-term symmetric key encryption are handled
similarly. The main difference is that the encryption of m′ is handled by (an
instance of) Fltsenc. If such an instance is corrupted (this can be checked by
simply asking about the corruption status), the keys stored in m′ are marked
as known in Fsenc.

Decryption requests. For brevity, we only describe decryption requests
under short-term keys here; the cases of long-term symmetric keys are handled
similarly using (instances of) Fltsenc (see [27] for full details). A decryption
request for a short-term key is of the form (p,Dec, ptr , c), where c is a ciphertext,
p is the name of the party who wants to decrypt c, and ptr is a pointer to the key
with which p wants to decrypt c. Similarly to the case of encryption, it is first
checked whether k = key(p, ptr) is defined. Then, two cases are distinguished:

i) If k ∈ Kunknown, it is checked whether there exists exactly one m′ such
that (m′, c) ∈ decTable(k). If so, the keys (Key, k′) in m′ are turned into point-
ers (Key, ptr ′) for p; for new keys, new pointers are generated. The resulting
message m is given to p. If there is more than one m′ with (m′, c) ∈ decTable(k)
or none such m′, an error is returned.

ii) If k ∈ Kknown, c is decrypted under k with dec. Then, if the resulting
plaintext m′ contains a key (Key, k′) with k′ ∈ Kunknown, an error message is
given to p, modeling that this should not happen (no key guessing). Otherwise,
the keys (Key, k′) in m′ are turned into pointers (Key, ptr ′) for p; for new keys,
new pointers are generated and these keys are marked as known. The resulting
message m is given to p.

Store and reveal requests. A party p can ask Fsenc to store some bit
string k as a key. If k belongs to K \Kknown, Fsenc will return an error message
(no key guessing). Otherwise, Fsenc creates a pointer to k for party p, if there
does not exist such a pointer already, and this pointer is given to p. (Note that
there might already exist a pointer to k in Fsenc if k ∈ Kknown.) The key k is
added to Kknown.

A party p can ask Fsenc to reveal the bit string corresponding to some pointer
in which case Fsenc will return this bit string to p and add it to Kknown.

Corrupted keys? The environment can ask, for a party p and a pointer ptr ,
whether the corresponding key, if any, is corrupted, i.e., belongs to Kcorrupt.
Similar questions for long-term symmetric keys are forwarded by Fsenc to (in-
stances of) Fltsenc.

Realizing Fsenc. A symmetric encryption scheme Σ = (gen, enc,dec) induces
a (potential) realization Psenc(Σ) of Fsenc in the obvious way: Upon key gener-
ation, the adversary is asked whether he wants to corrupt the key, in which case
he provides the key. Otherwise, the key is generated honestly within Psenc(Σ)
using gen(1η). Upon a request for encryption under a short-term key of the
form (p,Enc, ptr ,m), it is first checked whether there is a key k corresponding
to ptr , then pointers in m are replaced by keys (just as in Fsenc). Unlike Fsenc,
the resulting message, say m′, is then encrypted under k by running enc, i.e.,
enc(k,m′) is returned to p as ciphertext. (Note that no extra randomness or
tagging is added.) Requests for encryption under long-term symmetric keys are
forwarded by Psenc(Σ) to (instances of) Fltsenc. Note that while Psenc(Σ) still
makes use of these ideal functionalities, using the composition theorem, these
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functionalities can be replaced by their realizations. Requests for decryption
of ciphertexts under short-term keys, which are of the form (p,Dec, ptr , c), are
answered by decrypting c under the key k corresponding to ptr (if any), i.e.,
dec(k, c) is computed. If the decryption is successful and returns the message
m, then keys in m are replaced by pointers (with possibly new pointers gener-
ated). The resulting message is returned to p. Requests for decryption under
long-term symmetric keys are forwarded to (instances of) Fltsenc.

As discussed in [26], Psenc(Σ) does not realizes Fsenc under standard crypto-
graphic assumptions about the symmetric encryption scheme Σ (namely IND-
CPA and INT-CTXT security) because the environment may produce key cycles
or cause the commitment problem. Therefore, [26] restricts the class of envi-
ronments as follows: i) The environment has to be used-order respecting which
means that runs of the following form occur only with negligible probability:
An unknown key k used for the first time at some point is encrypted itself by
an unknown key k′ used for the first time later than k. It is clear from this
definition that used-order respecting environments produce key cycles (among
unknown keys) only with negligible probability. (We do not need to prevent
key cycles among known keys.) ii) It is required that the environment does
not cause the commitment problem, i.e., runs of the following form occur only
with negligible probability: After an unknown key k has been used to encrypt
a message, k does not become known later on in the run, i.e., is not added to
Kknown.

Instead of explicitly restricting the class of environments described above,
we introduce a functionality F∗ that provides exactly the same I/O interface
as Fsenc (and hence, Psenc), but before forwarding requests to Fsenc checks
whether the used-order is still respected and the commitment problem is not
caused. Otherwise, F∗ raises an error flag and from then on blocks all messages,
i.e., effectively stops the run.

Now, in [26] the following theorem is proven.

Theorem 6. Let Σ be a symmetric encryption scheme and L be a leakage
algorithm which leaks exactly the length of a message. Then, we have that Σ is
IND-CPA and INT-CTXT secure iff F∗ | Psenc(Σ) | !Fltsenc(L) ≤ F∗ | Fsenc(L) |
!Fltsenc(L).

We note that, by Theorems 1 and 2, !Fltsenc on the left-hand side of ≤ can
be replaced by its realization, see above.

Theorem 6 yields the following corollary, which gets rid of the functional-
ity F∗, assuming that Fsenc is used by what we call a non-committing, used-
order respecting protocol. A protocol system P that uses Fsenc is called non-
committing, used-order respecting if the probability that in a run of E | P |F∗ |
Fsenc(L) | !Fltsenc(L) the functionality F∗ raises the error flag, is negligible for
any environment E , connecting to both I/O and network interfaces.

Corollary 3. Let Σ and L be given as in Theorem 6. Let P be a non-committing,
used-order respecting protocol system. Then, we have that if Σ is IND-CPA and
INT-CTXT secure, then P |Psenc(Σ) | !Fltsenc(L) ≤ P |Fsenc(L) | !Fltsenc(L).
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B Computational Interpretation of Symbolic Roles

The machine M is used to provide the same I/O interface to the environment as
Fke and to initialize a session. Similarly to Fke, it expects to receive a request
for key exchange (id , pid ,KeyExchange) where id is of shape (pid1, pid2, param)
where param = pid ′1, . . . , pid ′l is a list of party identifiers (PIDs). The PID of
the party executing Mi is pid ′i, i ≤ l. Upon the first request, M triggers the
machines M1, . . . ,Ml to initialize themselves: nonces are generated, short-term
keys are generated using Fenc, and long-term keys are exchanged, again using
Fenc. In the initialization phase the adversary can corrupt keys (via Fenc) or
take over machines Mi completely (static corruption). Again similar to Fke, if
asked about the corruption status by the environment, M reports this status to
the environment: M checks the corruption status of every Mi and every Mi in
turn checks the corruption status of the keys it manages. If one Mi or a key is
corrupted, the whole session is considered corrupted.

Let Ri be a symbolic role and τ ′ be an injective mapping from global con-
stants to bit strings. We define the IITM Mi = [|Ri|]τ

′
. The state of Mi consists

of a symbolic role R and a (partial) mapping τ from names and variables to
bit strings. Initially, τ = τ ′. Mi first waits for activation from M and then
computes τ(n)←R{0, 1}η for every n ∈ Nnonce which occurs in Ri. For every
n ∈ Nlt which occurs in Ri, Mi requests Fenc to exchange a long-term key for the
parties belonging to n. For every n ∈ Nst which occurs in Ri, Mi requests Fenc

to generate a new short-term key. The pointer ptr returned by Fenc is stored
in τ , i.e., τ(n) := ptr . After this initialization, the execution of Mi proceeds as
follows:

1. Mi sends the message (Init) to the network and waits for receiving a mes-
sage (Corrupt, b) where b ∈ {false, true} from the network. If b = true, Mi

checks if all keys generated above are corrupt. If this is the case, Mi is
considered corrupted and sets R := cin,inet (x).cout,i

io 〈x〉.0. Furthermore, Mi

is considered corrupted if a key generated above is corrupted. If b = false,
Mi sets R := Ri.

Then, Mi sends the message (Ack) to M , indicating that it completed
initialization.

2. Mi waits for receiving a message m from the network.

3. Mi translates all keys that occur in plaintext in m to pointers using the
store command of Fenc, i.e., for every (Key, k) in m, Mi stores the key k in
Fenc and obtains a pointer ptr . Then, Mi replaces (Key, k) by (Key, ptr)
in m.

4. Since R is a symbolic role, R = 0 or R = cin,inet (x).R′ for some variable x
and process R′. If R = 0, then Mi terminates, i.e., produces empty output
in this and every following activation. Otherwise, Mi sets τ(x) := m and
computes (R′′,m′, c′)← [|R′|]τ (see below). Then, Mi sets R := R′′.

5. Mi translates all pointers that occur in plaintext in m′ to keys using the
reveal command of Fenc, i.e., for every (Key, ptr) in m′, Mi obtains the key
k corresponding to pointer ptr . Then, Mi replaces (Key, ptr) by (Key, k)
in m′.
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6. Mi outputs m′ to the network if c′ = cout,i
net and outputs m′ to M if

c′ = cout,i
io . (Note that in the latter case M will send a SK-output message

to the environment where the session key is m′.)

7. Mi proceeds with 2.

We recursively define the algorithm [|R|]τ :

1. If R = if φ then cout
net〈true〉.Rtrue else cout

net〈false〉.Rfalse, compute b← [|φ|]τ
(see below) and (R′,m, c)← [|Rb|]τ . Then, return (R′,m, c).

2. If R = c〈s〉.R′, compute m← [|s|]τ (see below). Then, return (R′,m, c).

Note that by the definition of symbolic roles we do not need to consider the
case of inputs (i.e., R = c(s).R′) or other if-then-else statements because the
algorithm [|R|]τ is never called with such processes. Furthermore, we note that
the returned process R′ is always a symbolic role.

Next, we recursively define the algorithm [|s|]τ for a term s. Of course, the
computational interpretation of a symbolic ciphertext {t}rk has to be the same
if we apply [|{t}rk|]τ twice. Typically, this is defined by assigning the symbolic
randomness r a random bit string τ(r). Then, τ(r) is used as the randomness
for the encryption algorithm. However, here we use Fenc to perform the encryp-
tion and we cannot fix the randomness of this machine. Hence, the algorithm
[|·|]τ maintains some state, namely it records for every symbolic ciphertext which
ciphertext was returned by Fenc. If a symbolic ciphertext is interpreted a sec-
ond time, Fenc is not called again but the stored ciphertext is returned. This
guarantees that [|·|]τ evaluated twice on the same term produces the same bit
string. Note that this state is not captured in the notation because we did not
want to make the notation needlessly complicated.

1. If s is a name or variable, return τ(s). By our definition of symbolic
protocols, τ(s) is always defined.

2. If s = 〈t, t′〉, compute m ← [|t|]τ and m′ ← [|t′|]τ . If m = ⊥ or m′ = ⊥
then return ⊥. Otherwise, return 〈m,m′〉.

3. If s = πb(t) where b ∈ {1, 2}, compute m ← [|t|]τ . Return mb if m =
〈m1,m2〉 for some bit strings m1,m2, otherwise, return ⊥.

4. If s = {t}rk for some name r and terms t, k, compute m← [|t|]τ . If m = ⊥,
return ⊥.

If k is a long-term key, i.e. k = sk(n) for some n ∈ Nlt, then encrypt m with
the long-term key corresponding to n using Fenc, receive the ciphertext c
from Fenc, and return c.

Otherwise, compute k′ ← [|k|]τ . If k′ 6= (Key, ptr) for any pointer ptr ,
return ⊥. If k′ = (Key, ptr) for some pointer ptr , then encrypt m with the
short-term key pointer ptr using Fenc, receive the ciphertext c from Fenc,
and return c.

5. If s = dec(t, k) for some terms t, k, compute c← [|t|]τ . If c = ⊥, return ⊥.

If k is a long-term key, i.e. k = sk(n) for some n ∈ Nlt, then decrypt c with
the long-term key corresponding to n using Fenc, receive the plaintext m
from Fenc, and return m. (Note that m might be ⊥.)
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Otherwise, compute k′ ← [|k|]τ . If k′ 6= (Key, ptr) for any pointer ptr ,
return ⊥. If k′ = (Key, ptr) for some pointer ptr , then decrypt c with the
short-term key pointer ptr using Fenc, receive the plaintext m from Fenc,
and return m. (Note that m might be ⊥.)

6. If s = sk(s′) for some term s′, return (Key, τ(s′)) if s′ ∈ Nst. The case
s′ /∈ Nst cannot occur because of our assumptions on symbolic protocols.

We recursively define the algorithm [|φ|]τ for a condition φ:

1. If φ = M(s) for some term s, compute m ← [|s|]τ . If m 6= ⊥, return true,
otherwise, return false.

2. If φ = EQ(s, t) for some terms s, t, compute m ← [|s|]τ and m′ ← [|t|]τ ′ .
If the bit strings m and m′ are identical and distinct from ⊥, then return
true, otherwise, return false.

3. If φ = φ1 ∧ φ2, compute b1 ← [|φ1|]τ and b2 ← [|φ2|]τ . Return true if
b1 = b2 = true, otherwise, return false.

4. If φ = ¬φ′ then compute b′ ← [|φ′|]τ . Return true if b′ = false, otherwise,
return false.

Remarks. Note that the messages received from the network are stored in the
state of Mi. Because the network input tape is consuming, the length of these
message have to be bound by a polynomial in the security parameter plus the
length of messages received from M so far. (Recall that the messages received
from M are received on enriching tapes.) This aspect has not been discussed in
the description above. We can allow the environment to send resources (through
the I/O interface of M) to Mi. This way it is possible that network inputs of
arbitrary length can be processed. This mechanism has been first used in [25].

In the interaction with Mi, Fenc might return an error message (see below).
In such a case, Mi will abort the current computation, produce empty output,
and, from then on, produce empty output upon every activation. Fenc produces
an error message if (i) Mi tries to store a key which is marked unknown in Fenc

or (ii) Mi tries to encrypt a plaintext m (with some short- or long-term key) but
the length of m is less than the security parameter η or dec(k, enc(k,m)) = m
is not satisfied for the algorithms enc/dec given by the environment (see [26]).

C Rest of Proof of Lemma 3

In this section we prove the statements (1), (2), and (3) which are used in the
proof of Lemma 3.

Under the preconditions of Lemma 3, for all terms s and conditions φ where
[|s|]t and [|φ|]t, respectively, is defined it holds

|= M(sσin
t ) if and only if [|s|]t 6= ⊥ . (1)

ψt([|s|]t) =E sσin
t if [|s|]t 6= ⊥ . (2)

|= φσin
t if and only if [|φ|]t = true . (3)
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Proof of (1) and (2). We prove the lemma by induction on the structure of s.
First we note that, by definition of P and [|P|]τ , all variables and names in s are
in the domain of τt (except maybe for names of randomness and keys).

1. s ∈ N : Names for randomness and keys are never computationally in-
terpreted, hence, s is a nonce (i.e., s ∈ Nnonce) or a global constant, i.e.,
s ∈ dom(τt) and we have [|s|]t 6= ⊥. Also, |= M(s) = M(sσin

t ).

Furthermore, ψt([|s|]t) = s = sσin
t .

2. s ∈ X : Because s ∈ dom(τt) we have [|s|]t 6= ⊥ and ψt(τt(s)) = sσin
t . Also,

|= M(sσin
t ) because M(s′) holds for any s′ produced by ψt.

Furthermore, ψt([|s|]t) = ψt(τt(s)) = sσin
t .

3. s = sk(s′): By definition of P we have that s′ is a short-term key, i.e.,
s′ ∈ Nst. Note that long-term keys are never computationally interpreted
and that only keys are tagged as keys. Hence, [|s|]t = (Key, k) for some bit
string k which is a short-term key in Fenc. On the other hand, |= M(s)
because s′ ∈ Nst. Furthermore, by definition of ψt, ψt([|s|]t) = s = sσin

t .

4. s = 〈s1, s2〉: By induction hypotheses (IH), (1) and (2) hold for both s1

and s2. We have that [|s|]t 6= ⊥ iff [|s1|]t, [|s2|]t 6= ⊥ iff (IH) |= M(s1σ
in
t )

and |= M(s2σ
in
t ) iff M |= M(s).

Furthermore, if [|s|]t 6= ⊥ then ψt([|s|]t)
def. of [|·|]t= ψt(〈[|s1|]t, [|s2|]t〉)

def. of ψt=

〈[|s1|]t, [|s2|]t〉
IH=E 〈s1σ

in
t , s2σ

in
t 〉 = sσin

t .

5. s = πb(s′) (b ∈ {1, 2}): By IH, (1) and (2) hold for s′.

Assume that [|s|]t 6= ⊥. Then [|s′|]t = 〈m1,m2〉 for some m1,m2 ∈ {0, 1}∗.
By IH, |= M(s′σin

t ) and s′σin
t =E ψt([|s′|]t) = 〈ψt(m1), ψt(m2)〉. Hence,

|= M(sσin
t ).

Furthermore, [|s|]t = mb and, hence, we have that ψt([|s|]t) = ψt(mb) =E

πb(〈ψt(m1), ψt(m2)〉) =E sσin
t .

Assume that |= M(sσin
t ). Then |= M(s′σin

t ) and s′σin
t =E 〈s1, s2〉 for

some terms s1, s2. By IH, ψt([|s′|]t) =E s′σin
t =E 〈s1, s2〉. By definition

of ψt we have that ψt([|s′|]t) = 〈s′1, s′2〉 for some terms s′1, s
′
2. Hence,

[|s′|]t = 〈m1,m2〉 for some bit strings m1,m2. Hence, [|s|]t = mb 6= ⊥.

6. s = {s1}s3s2 : By definition of P we have that s3 is randomness, i.e., s3 ∈
Nrand.

First, we consider the case where s2 is a long-term key, i.e., s2 = sk(n) for
some name n ∈ Nlt. Because P preserves key secrecy and by Lemma 2,
the long-term key (associated with) n is uncorrupted in Fenc. By IH, (1)
and (2) hold for s1.

Assume that [|s|]t 6= ⊥. Then, [|s1|]t 6= ⊥ and the plaintext/ciphertext pair
([|s1|]t, [|s|]t) is stored in Fenc for the long-term key (associated with) n. By

IH, |= M(s1σ
in
t ) and, hence, |= M(sσin

t ). Furthermore, ψt([|s|]t)
def. of ψt=

{ψt([|s1|]t)}s3s2
IH=E {s1σ

in
t }s3s2 = sσin

t .

Now, assume that [|s|]t = ⊥. By definition of [|·|]t we have that [|s1|]t = ⊥.
Recall that if Fenc returned an error message upon encryption then [|s|]t is
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undefined and not [|s|]t = ⊥. This case does not need to be considered here
because we only consider terms s where [|s|]t is defined. By IH, 6|= M(s1σ

in
t )

and, hence, 6|= M(sσin
t ).

Next, we consider the case where s2 is not a long-term key.

Assume that [|s|]t 6= ⊥. Then, [|s2|]t = (Key, k) for some bit string k
which is a short-term key in Fenc and [|s1|]t 6= ⊥. Because P preserves
key secrecy and by Lemma 2, k is marked unknown in Fenc. Hence,
the plaintext/ciphertext pair ([|s1|]t, [|s|]t) is stored in Fenc for the short-
term key k. By definition of ψt, ψt([|s2|]t) = sk(n) for some short-term
key n ∈ Nst. By IH, (1) and (2) hold for both s1 and s2, hence, |=
M(s1σ

in
t ), ψt([|s1|]t) =E s1σ

in
t , |= M(s2σ

in
t ), and sk(n) = ψt([|s2|]t) =E

s2σ
in
t . We conclude that |= M(sσin

t ). Furthermore, ψt([|s|]t)
def. of ψt=

{ψt([|s1|]t)}
s3
sk(n)

IH=E {s1σ
in
t }

s3
s2σin

t
= sσin

t .

Now, assume that [|s|]t = ⊥. By definition of [|·|]t we have that [|s1|]t = ⊥
or [|s2|]t 6= (Key, k) for any bit string k which is a short-term key in Fenc.
As above, recall that if Fenc returned an error message upon encryption
then [|s|]t is undefined and not [|s|]t = ⊥. This case does not need to be
considered here because we only consider terms s where [|s|]t is defined.
In fact, if [|s2|]t 6= (Key, k) for any such k, then [|s2|]t 6= (Key, k) for any
bit string k. This follows from the way pointers are handled. If [|s2|]t 6=
(Key, k) for any k, then ψt([|s2|]t) 6= sk(s′) for any term s′. By IH, (1)
and (2) hold for s2, hence, 6|= M(s2σ

in
t ) or s2σ

in
t =E ψt([|s2|]t) 6= sk(s′)

for any term s′. In both cases we conclude 6|= M(sσin
t ). Otherwise, if

[|s2|]t = (Key, k) for some bit string k which is a short-term key in Fenc,
then [|s1|]t = ⊥. By IH, (1) and (2) hold for s1 and, hence, 6|= M(s1σ

in
t ).

In particular, 6|= M(sσin
t ).

7. s = dec(s1, s2): First, we consider the case where s2 is a long-term key,
i.e., s2 = sk(n) for some name n ∈ Nlt. Because P preserves key secrecy
and by Lemma 2, the long-term key (associated with) n is uncorrupted in
Fenc. By IH, (1) and (2) hold for s1.

Assume that [|s|]t 6= ⊥. Then, the plaintext/ciphertext pair ([|s|]t, [|s1|]t)
is stored in Fenc for the long-term key (associated with) n. Hence, there
exists a name r ∈ Nrand and a term s′ such that [|·|]t had been called
with the term {s′}rsk(n), [|s′|]t = [|s|]t, and [|{s′}rsk(n)|]t = [|s1|]t. By IH,
|= M(s1σ

in
t ) and ψt([|s1|]t) =E s1σ

in
t . By definition of ψt, {ψt([|s|]t)}rsk(n) =

ψt([|s1|]t) =E s1σ
in
t . Hence, |= M(sσin

t ). Furthermore, we have that
ψt([|s|]t) = ψt([|s′|]t) =E dec({ψt([|s′|]t)}rsk(n), sk(n)) =E dec(s1σ

in
t , sk(n)) =

sσin
t .

Now, assume that [|s|]t = ⊥. By definition of [|·|]t we have that [|s1|]t = ⊥ or
[|s1|]t is not stored as a ciphertext in Fenc for the long-term key (associated
with) n. If [|s1|]t = ⊥, then, by IH, 6|= M(s1σ

in
t ) and, hence, 6|= M(sσin

t ).
Otherwise, ψt([|s1|]t) 6=E {s′}s

′′

sk(n) for any terms s′ and s′′. On the other
hand, by IH, ψt([|s1|]t) =E s1σ

in
t . Hence, 6|= M(sσin

t ).

Next, we consider the case where s2 is not a long-term key.

Assume that [|s|]t 6= ⊥. Then, [|s2|]t = (Key, k) for some bit string k
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which is a short-term key in Fenc and [|s1|]t 6= ⊥. Because P preserves
key secrecy and by Lemma 2, k is marked unknown in Fenc. Hence, the
plaintext/ciphertext pair ([|s|]t, [|s1|]t) is stored in Fenc for the short-term
key k and there exists a name r ∈ Nrand and terms s′, s′′ such that [|·|]t
had been called with the term {s′}rs′′ , [|s′|]t = [|s|]t, [|s′′|]t = (Key, k), and
[|{s′}rs′′ |]t = [|s1|]t. Because k is marked unknown in Fenc, by definition
of Fenc (only honestly generated keys are marked unknown), k corre-
sponds to some short-term key n ∈ Nst. By definition of ψt, ψt([|s2|]t) =
sk(n). By IH, (1) and (2) hold for both s1 and s2, hence, |= M(s1σ

in
t ),

ψt([|s1|]t) =E s1σ
in
t , |= M(s2σ

in
t ), and sk(n) = ψt([|s2|]t) =E s2σ

in
t . We

conclude s1σ
in
t

IH=E ψt([|s1|]t)
def. of ψt= {ψt([|s′|]t)}rsk(n)

IH=E {ψt([|s′|]t)}rs2σin
t

.
Hence, |= M(sσin

t ). Furthermore, we have that ψt([|s|]t) = ψt([|s′|]t) =E

dec({ψt([|s′|]t)}rs2σin
t
, s2σ

in
t ) =E dec(s1σ

in
t , s2σ

in
t ) = sσin

t .

Now, assume that [|s|]t = ⊥. By definition of [|·|]t we have that [|s2|]t 6=
(Key, k) for any bit string k which is a short-term key in Fenc, [|s1|]t = ⊥,
or [|s1|]t is not stored as a ciphertext in Fenc for the short-term key k
where [|s2|]t = (Key, k). In fact, if [|s2|]t 6= (Key, k) for any bit string k
which is a short-term key in Fenc, then [|s2|]t 6= (Key, k) for any bit string
k. This follows from the way pointers are handled. If [|s2|]t 6= (Key, k) for
any bit string k, then, by IH for s2 and definition of ψt, s2σ

in
t 6= sk(s′)

for any term s′ and, hence, 6|= M(sσin
t ). Otherwise if [|s1|]t = ⊥, then,

by IH for s1, 6|= M(s1σ
in
t ) and, hence, 6|= M(sσin

t ). Otherwise, because P
preserves key secrecy and by Lemma 2, k is marked unknown in Fenc and,
by definition of Fenc (only honestly generated keys are marked unknown), k
corresponds to some short-term key n ∈ Nst. By IH for s2 and definition of
ψt, s2σ

in
t =E ψt([|s2|]t) = sk(n). Because [|s1|]t is not stored as a ciphertext

in Fenc for the short-term key k, ψt([|s1|]t) 6=E {s′}s
′′

sk(n) for any terms s′

and s′′. On the other hand, by IH for s1, ψt([|s1|]t) =E s1σ
in
t . Hence,

6|= M(sσin
t ).

Next, we prove (3) using (1) and (2):

Proof of (3). First, we note that the machines Mi in fact do not compute [|s|]t for
a term s because we replace pointers by the corresponding keys. For example,
consider the case where Mi evaluates EQ(s1, s2) and [|s1|]t = [|s2|]t = (Key, k)
for some short-term key k in Fenc. In fact, Mi evaluates s1 and s2 to some
pointers (Key, ptr1) and (Key, ptr2), respectively, which are both associated with
the short-term key k. Since Fenc guarantees that no party has more than one
pointer to a key, we can conclude that ptr1 = ptr2 and, hence, EQ(s1, s2) is
interpreted to true by Mi, i.e., [|EQ(s1, s2)|]t = true. In general, we can prove
that [|EQ(s1, s2)|]t = true iff [|s1|]t = [|s2|]t 6= ⊥. Similarly, we obtain that
[|M(s)|]t = true iff [|s|]t 6= ⊥.

We prove the lemma by induction on the structure of φ:

1. φ = M(s): We have [|M(s)|]t = true iff [|s|]t 6= ⊥ which, by (1), holds iff
|= M(sσin

t ).

2. φ = EQ(s1, s2): First, assume that [|EQ(s1, s2)|]t = true. Then, [|s1|]t =
[|s2|]t 6= ⊥ and, hence, by (1), |= M(s1σ

in
t ) and |= M(s2σ

in
t ). Fur-
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thermore, by (2), s1σ
in
t =E ψt([|s1|]t) = ψt([|s2|]t) =E s2σ

in
t . Hence,

|= EQ(s1σ
in
t , s2σ

in
t ).

On the other hand, assume that |= EQ(s1σ
in
t , s2σ

in
t ). Then, |= M(s1σ

in
t ),

|= M(s2σ
in
t ), and s1σ

in
t =E s2σ

in
t . By (1) and (2), s1σ

in
t =E ψt([|s1|]t)

and s2σ
in
t =E ψt([|s2|]t). By definition of ψt, this implies that ψt([|s1|]t) =

ψt([|s2|]t). Because ψt is injective, we conclude [|s1|]t = [|s2|]t 6= ⊥ and,
hence, [|EQ(s1, s2)|]t = true.

3. φ = φ1 ∧ φ2: We have that |= φσin
t iff |= φ1σ

in
t and |= φ2σ

in
t iff (induction

hypotheses) [|φ1|]t = [|φ2|]t = true iff [|φ|]t = true.

4. φ = ¬φ′: We have that |= φσin
t iff 6|= φ′σin

t iff (induction hypotheses)
[|φ′|]t 6= true iff [|φ|]t = true.
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