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Abstract

A polynomial f over a finite ring R is called a permutation polynomial if the mapping
R — R defined by f is one-to-one. In this paper we consider the problem of characterizing
permutation polynomials; that is, we seek conditions on the coefficients of a polynomial
which are necessary and sufficient for it to represent a permutation. We also present a new
class of permutation binomials over finite field of prime order.
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1 Introduction

A polynomial f(z) = ag + a1z + asz® + - - + agz? with integral coefficients is said to be a
permutation polynomial over a finite ring R if f permutes the elements of R. That is, f is
a one-to-one map of R onto itself. A natural question to ask is: given a polynomial f(x) =
ag + a1z + agx?® + - - + agx?, what are necessary and sufficient conditions on the coefficients
ag,ai,...,aq for f to be permutation? Permutation polynomials have been extensively studied;
see Lidl and Niederreiter [7] Chapter 7 for a survey. Permutation polynomials have been used
in Cryptography and Coding [4, 8, 10]. Most studies have assumed that R is a finite field.
See, for example, the survey of Lidl and Mullen [5, 6]. It is well-known that many problems on
permutation polynomials over finite fields are still open [5, 6]. Similarly there are a few work
on permutation polynomials modulo integers [2]. Rivest [11] considered the case where R is
the ring (Z,, +, ) where m is a power of 2: m = 2". Such permutation polynomials have also
been used in Cryptography recently, such as in RC6 block cipher [13], a simple permutation
polynomials f(x) = 222 4+ z modulo 2% is used, where d is the word size of the machine. In this
paper, we consider the case that R is the ring (Z,,, +, .) where m is a prime power: m = p™ and
give an exact characterization of permutation polynomials modulo p”, for p = 2, 3,5, in terms
of their coefficients. Although permutation polynomials over finite fields have been a subject
of study for over 140 years, only a handful of specific families of permutation polynomials of
finite fields are known so far. The construction of special types of permutation polynomials
becomes interesting research problem. Here we present a new class of permutation binomials

over finite field of prime order.
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2 Congruences to a prime-power modulus

In this section we recall some results from [2] that we need to formally present our results.

Consider the congruences
f(z) =0 mod p* (1)
and
f(@) = 0 mod p*~ (2)

where f(z) is any integral polynomial, p is prime and a > 1. Then Theorem 123 of [2] states
that

Theorem 2.1 (Hardy & Wright [2]) The number of solutions of (1) corresponding to a solu-
tion & of (2) is

(a) none, if f'(£) =0 mod p and £ is not a solution of (1);
(b) one, if f'(§) # 0 mod p;
(c) p, if f/(€) =0 mod p and £ is a solution of (1).

The solutions of (1) corresponding to & may be derived from &, in case (b) by the solution of a

linear congruence, in case (c) by adding any multiple of p*~' to €.

As a consequence of this theorem we obtain the following result. If p is a prime, then Z,

denotes the finite field with p elements.

Corollary 2.1 Let p be a prime. Then f(x) permutes the elements of Zyn, n > 1, if and only
if it permutes the elements of Z, and f'(a) # 0 mod p for every integer a € Z,.

Proof: Suppose f(z) permutes the elements of Z,n, n > 1. That is f(z) is a one-to-one map

of Zy» onto itself. Thus the congruence

f(z) =0 mod p" (3)
has exactly one root, say . Then x satisfies

f(z) =0 mod p (4)

and is of the form & + sp, (0 < s < p"~!), where ¢ is the root of (4) for which 0 < ¢ < p.

Next, suppose that £ is the root of (4) satisfying 0 < ¢ < p and f/(§) # 0 mod p. Then,
according to Theorem 3.1, f(z) = 0 mod p? has exactly one root corresponding to the solution &
of (4). Repeating the argument we obtain f(z) = 0 mod p™ has exactly one root corresponding

to the solution & of (4) for every n > 1.



3 Permutation polynomials modulo a prime-power

In this section we give necessary and sufficient conditions on the coefficients ag, a1, ..., aq for
f(x) = ap+ a1z +asx®+ - - - + agz? to be permutation polynomial modulo p?, for p = 2,3,5. A
characterization of permutation polynomials modulo 2" was given in [11]. Rivest [11] proved
that f(x) is a permutation polynomial if and only if a; is odd, (as + a4 + ag + ...) is even,
and (a3 + a5 + a7 + ...) is even. We first give a very short and simple proof of the above
characterization. We also give new characterization of permutation polynomials modulo p™ for
p=3,5, and n > 1.

3.1 Characterizing permutation polynomials modulo 2"

A simple characterization of permutation polynomial modulo 2", n > 1, is presented in this

section. We need the following lemma in the proof of Theorem 3.1

Lemma 3.1 A polynomial f(z) = ag + a1z + asx® + - - + agx?® with integral coefficients is a
permutation polynomial modulo 2 if and only if (a1 +as + ...+ aq) is odd.

Proof: Since 0° = 0 and 1° = 1 modulo 2 for i > 1, we can write f(z) = ag + (a1 +
as + -+ 4+ ag)r mod 2. Clearly f(z) is a permutation polynomial modulo 2 if and only if
(a1 + a2+ -+ aq) Z0 mod 2, that is, (a1 +ag + - -+ + ag) is odd.

Theorem 3.1 (Rivest [11]) A polynomial f(x) = ap + a1z + agz® + - + agz? with integral
coefficients is a permutation polynomial modulo 2™, n > 1, if and only if a1 is odd, (az + a4 +

ag + ...) is even, and (a3 + a5 + a7 + ...) is even.

Proof: The proof given here is different from that of Rivest [11] and is relevant to the proof of
theorems to follow. The theorem is proved by making use of Corollary 2.1 and Lemma 3.1. By
Corollary 2.1, f(x) is a permutation polynomial modulo 2" if and only if it is a permutation
polynomial modulo 2 and f'(x) # 0 mod 2 for every integer z € Zs . By Lemma 3.1, f(z) is a
permutation polynomial modulo 2 if and only if (a1 + a2 + ...+ ag) is odd. It is easy to cheek
that f'(z) = a1 + (ag + a5+ ...)x mod 2. The condition f’(z) #Z 0 mod 2 with z = 0 gives a;
is odd. The condition f/(x) # 0 mod 2 with x = 1 gives (a1 + a3+ a5+ ...) is odd. Hence the

theorem follows.

Example 3.1 The following are all permutation polynomials modulo 22 of degree atmost 3
and the coefficients are from Z;: x, 3z, « + 222, 3z + 222, x + 22, 3z + 223, « + 22 + 223 and
3z + 222 + 223

3.2 Characterizing permutation polynomials modulo 3"

This section starts with a proposition regarding permutations of Z,, that is needed later on.

Proposition 3.1 [7] Ifd > 1 is a divisor of p—1, then there exists no permutation polynomial
of Z,, of degree d.

The proof of Proposition 3.1 is given in [7]. As an easy consequence of this proposition we get,

if p is an odd prime, no permutation over Z, can have degree p — 1.



Lemma 3.2 A polynomial f(z) = ag + a1z + asx® + - - + agx® with integral coefficients is a
permutation polynomial modulo 3 if and only if (a1 +as+...) Z0 mod 3 and (as+ag+...) =
0 mod 3.

Proof: Since z2kt!

= 2 mod 3 and 2?* = 22 mod 3 for k > 1, we can write f(z) = ag +
(a1 +ag + ...)z + (ag + a4 + ...)2%> mod 3. Letting A = (a; + ag + ...) mod 3 and B =
(az +aq+...) mod 3, we can write f(x) more compactly as f(x) = ag + Az + Bz?. Since, for
odd prime p, no permutation polynomial over Z, can have degree p —1, we have B = 0 mod 3.
Thus f(x) is a permutation polynomial modulo 3 if and only if (a; + asz+...) Z 0 mod 3 and

(ag +ag+...) =0 mod 3.

Theorem 3.2 A polynomial f(x) = ag + a1x + asx? + - - - + agx® with integral coefficients is

a permutation polynomial modulo 3", n > 1, if and only if

(a) a1 #Z 0 mod 3,

(b) (a1 +as+...)Z0 mod 3,

(c) (ag+as+...) =0 mod 3,

(d) (a1 +aq4+a7+ap+...)+2(as +as+ag+aj; +...) Z0 mod 3, and

(e) (a1 +as+ar+ag+...)+2(as+ a5+ ap+ a1 +...) Z0 mod 3.

Proof: By Corollary 2.1, f(z) is a permutation polynomial modulo 3" if and only if it is a
permutation polynomial modulo 3 and f/(z) #Z 0 mod 3 for every integer z € Z3. It is easy to
verify that f'(z) = a1 + (2a2 + a4 + 2as + a0 + 2a14 + a16 + .. )z + (2a5 + a7 + 2a11 + a1z +
2a17+a1g+...)z%2 mod 3. The condition f/(x) #Z 0 mod 3 with = 0 gives a; #Z 0 mod 3. The
condition f’(x) # 0 mod 3 with z = 1 gives a1 + (2as + a4 +2ag+a19+2a14+ais+- . .) + (2a5 +
a7+ 2a11 + a1z + 2a17 + ayg+ .. .) Z 0 mod 3. The condition f/(z) # 0 mod 3 with z = 2 gives
a1+(ag+2a4+a8+2a10+a14+2a16+. . .)+(2a5+a7+2a11+a13+2a17+a19+. ..) Z 0 mod 3.
Now the theorem directly follows by combining above conditions and Lemma 3.2.

Example 3.2 The following are some permutation polynomials modulo 9 of degree 5 and the
coefficients are from Zg: Tx + x° + 82°, x + 22 + 823 + 8z* + 72, Tz + 622 4 822 + 82° and
x + Tx? + 823 4 8x* + 725, There are total 3888 permutation polynomials modulo 9 of degree

atmost 5 and the coefficients are from Zy.

3.3 Characterizing permutation polynomials modulo 5"

Let p be a prime and F, = GF(p) be the Galois field of p elements. The following result is
from [9].



Theorem 3.3 (Mollin & Small [9]) Let GF(p) have characteristic different from 3. Then
f(x) = az® +bx? + cx +d (a #0) permutes GF(p) if and only if b*> = 3ac and p = 2 mod 3.

We need the following lemma in the proof of Theorem 3.4.

Lemma 3.3 A polynomial f(z) = ag + a1 + agx® + - - - + agx?® with integral coefficients is a
permutation polynomial modulo 5 if and only if (ay + ag + a12...) =0 mod 5 and (ag + ag +
a10+...)2 =3(a1 +as+ag+...)(a3+ar+a +...) mod 5.

4k+1 4k+2 4k+3

Proof: Since z =z mod 5, x = 22 mod 5, x = 23 mod 5, and z** = z* mod 5
for k > 1, we can write f(z) = ap + (a1 + a5+ ...)z + (ag + ag + ... )z* + (a3 + a7 +...)2° +
(a4+ag+...)x4 mod 5. Letting A = (a1+a5+...), B = (a2+a6+...), C = (a3+a7+...)
and D = (a4 + ag + ...) we can write f(z) = ag + Az + Bx? + Cz® + Dz* mod 5. Since no
polynomial of degree 4 can be a permutation polynomial modulo 5, we have D = 0 mod 5.
Now f(z) = ag + Az + Bx? + Cz® mod 5 and we are in the situation of Theorem 3.3. Hence,

f is a permutation if and only if B? = 3AC.

Example 3.3 The permutation binomials modulo 5 of degree atmost 3 are: x, 3, 2u+x> 423,
3z 4 222 + 23, 3z + 322 + 22, and 2z + 42% + 23.

Theorem 3.4 A polynomial f(x) = ag + a1x + asx? + - - + agx® with integral coefficients is
a permutation polynomial modulo 5" if and only if

(a) a1 # 0 mod 5,

(b) (as +ag+aiz...) =0 mod 5,

(c) (ag +ag+aw+...)2=3(a1 +as+ag+...)(az +ar +a +...) mod 5,

(d) (a1+a6+a11+...)—1—2(a2+a7—|—a12+...)+3(a3+a8+a13+...)—1—4(a4+a9+a14+...) 7‘é
0 mod 5,

(e) (a1 + 2a6 + 4a11 + 3a16 + a2 +...) + 2(2a2 + 4a7 + 3a12 + a17 + 2a22 + .. .) -/-3(4@3 +
3ag + a13 + 2a18 + 4ags + . ..) + 4(3a4 + ag + 2a14 + 4a1g + 3ags + ...) Z 0 mod 5,

(f) (a1 + 3ag + 4a11 + 2a16 + a1 +...) + 2(3@2 + 4a7 + 2a12 + a17 + 3ag + .. .) -/-3(4@3 +
2ag + a13 + 3a1s + 4assz + .. ) + 4(2&4 + ag + 3a14 + 4a19 + 2a94 + .. ) §é 0 mod 5, and

(g) (a1 + dag + a11 +4a16—|—a21—|—...)+2(4a2 —|—a7+4a12—|—a17+4a22—|—...) +3(a3+4a8+
a13+4a18+a23+...)+4(4a4+a9+4a14+a19+4a24+...)§éO mod 5.



Proof: By Corollary 2.1, f(z) is a permutation polynomial modulo 5" if and only if it is a

permutation polynomial modulo 5 and f’(x) #Z 0 mod 5 for every integer x € Z5. We obtain

fl@) = ar+ > (Ak +2agoz + Y (Ak + 3)ag32® + Y (4k)agz®
k k k

+ Z (4k + 1)a4k+1$4

= a —kk (2a2 + ag + 4a14 + 3a1g + 2a22 + .. .)x
+(3as + 2a7 + a1 + 4arg + 3azs + .. .):E2
+(4ay + 3ag + 2a12 + ai + 4agy + .. .)2?
+(4ag + 3a13 + 2a17 + ag1 + 4agg + .. .)ac4 mod 5

Observe that f'(0) # 0 mod 5 means a; #Z 0 mod 5;

/(1) 20 mod 5 means (a1 +ag+a11 +...) +2(as+ar+aia+...)+3(as+as+ajs+...)+
4(ag + ag + ajg + ...) # 0 mod 5;

f'(2) # 0 mod 5 means (ay +2ag+4a11 +3a16+az1 +- . .) +2(2a2 +4a7 +3a12 + a7+ 2a22+ . . .)
+3(4as + 3ag + a13 + 2a18 + 4ass + ...) + 4(3a4 + ag + 2a14 + 4arg + 3azy + ...) Z 0 mod 5;
f/(3) # 0 mod 5 means (a1 +3ag+4a1 +2a16+a +...) —|—2(3a2 +4a7+2a12+a17+3a+. . .)
+3(4a3 +2ag 4+ a13+ 3a1g +4asz + .. .) +4(2a4 + ag + 3a14 + 4arg + 2a24 + . . ) % 0 mod 5; and
f'(4) # 0 mod 5 means (a1 +4ag + a11 +4aig + ag1 + . ..) + 2(4das + a7 +4ais + a7 +4asg + . . )
+3(as + 4ag + a13 + 4asg + agg + .. .) + 4(4day + ag + 4ar4 + ar9 + 4agg + ...) # 0 mod 5. Now
the theorem directly follows by combining above conditions and Lemma 3.3. However the
situation becomes complicated for p = 7,11,13,... Thus, in the following section we consider

the problem of characterizing only permutation binomials modulo prime p.

4 A new class of permutation binomials over finite field F),

Let p be a prime and F, = GF(p) be the Galois field of p elements. In [5], the open problem
P2 states: Find new classes of permutation polynomials of Fy, ¢ = p", n is a positive integer.
Recently some classes of permutation binomials are presented in [1, 3]. Here we present a new
class of permutation binomials of F,. We now recall the definition and some properties of

quadratic residue.

Definition 4.1 Suppose p is an odd prime and a is an integer. a is defined to be a quadratic
residue modulo p if @ # 0 (mod p) and the congruence y?> = a (mod p) has a solution y € F,,.
a is defined to be a quadratic non-residue modulo p if @ # 0 (mod p) and a is not a quadratic
residue modulo p.

-1
Euler’s Criteria states that a is a quadratic residue modulo p if and only if a"T =1 mod P

-1
and a is a quadratic non-residue modulo p if and only if "= = —1 mod p.

Theorem 4.1 Let p be a prime and f(z) = x“(x% + a) where u is an integer such that
(u,p—1) =1 and a is a non-zero element in F,. Then f(x) is a permutation binomial over
F, if and only if (a® — 1)% =1 mod p.



Proof: It is known that the monomial z* is a permutation polynomial of F), if and only if

ged(u,p — 1) = 1. Using Euler’s criteria we can rewrite

0, if x =0;
f(x) =14 z%(a+1), if z is quadratic residue;

x%(a — 1), if x is quadratic non-residue.

There are 3(p — 1) residues and 3(p — 1) non-residues of an odd prime p. The product of
two residues, or of two non-residues, is a residue, while the product of a residue and a non-
residue is a non-residue. Since u is odd, 2" is residue (resp. non-residue) if z is residue (resp.
non-residue). If both a + 1 and a — 1 are residues, then f(x) maps residues to residues and
non-residues to non-residues and if both @ + 1 and a — 1 are non-residues, then f(z) maps
residues to non-residues and non-residues to residues. On the other hand, if a + 1 is residue
and a — 1 is non-residue then f(x) maps all the non-zero elements to residues and if a + 1
is non-residue and a — 1 is residue then f(z) maps all the non-zero elements to non-residues.
Since z" is a permutation polynomial, therefore f(x) is a permutation polynomial if and only
if both a+1 and a — 1 are either quadratic residues or quadratic non residues. In other words,

f(z) is a permutation polynomial over F,, if and only if (a? — 1)% = 1 mod p. In Theorem
4.1, if the degree u + p—gl of binomial f(x) is greater than p — 1 for some values of u then the
polynomial is reduced modulo 2P — z. In the following, as an application of Theorem 4.1, we

give some examples of permutation binomials of F.

Example 4.1 Let p = 7. Then u = 1,5. Thus x(23 + a) and 25(x® + a) mod 27 — x are
permutation binomials over Fy if and only if (a> —1)> = 1 mod 7. That is, x(x® + a) and
25(x® 4 a) are permutation binomials over Fy; for a = 3,4. We can write 2°(x3 4 a) =
2?2+ ax’ = ar?(x3+a~ ') mod 27 —x . Hence the permutation binomials over Fr are x(z3+3),
z(z3 +4), 22(23 + 2), and 2%(2® + 5).

Example 4.2 Let p = 11. Then z%(z° + a) is a permutation binomial of F11 foru=1,3,7,9
and a = 2,4,7,9. Therefore x(z° +2), z(z® +4), (2 +7), z(2® +9), 23(2® +2), 23(2® + 4),
2325 +7), 23(2° +9), 2%(2 + 3), 22(2° +5), 22(2° +6), 2%(x® +8), 2t (x5 + 3), 24(2® +5),
(2% +6), 24(z° + 8) are permutation binomials of Fy.
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