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Abstract

A polynomial f over a finite ring R is called a permutation polynomial if the mapping

R → R defined by f is one-to-one. In this paper we consider the problem of characterizing

permutation polynomials; that is, we seek conditions on the coefficients of a polynomial

which are necessary and sufficient for it to represent a permutation. We also present a new

class of permutation binomials over finite field of prime order.
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1 Introduction

A polynomial f(x) = a0 + a1x + a2x
2 + · · · + adx

d with integral coefficients is said to be a

permutation polynomial over a finite ring R if f permutes the elements of R. That is, f is

a one-to-one map of R onto itself. A natural question to ask is: given a polynomial f(x) =

a0 + a1x + a2x
2 + · · · + adx

d, what are necessary and sufficient conditions on the coefficients

a0, a1, . . . , ad for f to be permutation? Permutation polynomials have been extensively studied;

see Lidl and Niederreiter [7] Chapter 7 for a survey. Permutation polynomials have been used

in Cryptography and Coding [4, 8, 10]. Most studies have assumed that R is a finite field.

See, for example, the survey of Lidl and Mullen [5, 6]. It is well-known that many problems on

permutation polynomials over finite fields are still open [5, 6]. Similarly there are a few work

on permutation polynomials modulo integers [2]. Rivest [11] considered the case where R is

the ring (Zm,+, ·) where m is a power of 2: m = 2n. Such permutation polynomials have also

been used in Cryptography recently, such as in RC6 block cipher [13], a simple permutation

polynomials f(x) = 2x2 +x modulo 2d is used, where d is the word size of the machine. In this

paper, we consider the case that R is the ring (Zm,+, .) where m is a prime power: m = pn and

give an exact characterization of permutation polynomials modulo pn, for p = 2, 3, 5, in terms

of their coefficients. Although permutation polynomials over finite fields have been a subject

of study for over 140 years, only a handful of specific families of permutation polynomials of

finite fields are known so far. The construction of special types of permutation polynomials

becomes interesting research problem. Here we present a new class of permutation binomials

over finite field of prime order.

∗Department of Mathematics, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, INDIA.

Email addresses: r.pratap@iitg.ernet.in
†Department of Mathematics Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, INDIA.

Email addresses: sm@maths.iitkgp.ernet.in

1



2 Congruences to a prime-power modulus

In this section we recall some results from [2] that we need to formally present our results.

Consider the congruences

f(x) ≡ 0 mod pa (1)

and

f(x) ≡ 0 mod pa−1 (2)

where f(x) is any integral polynomial, p is prime and a > 1. Then Theorem 123 of [2] states

that

Theorem 2.1 (Hardy & Wright [2]) The number of solutions of (1) corresponding to a solu-

tion ξ of (2) is

(a) none, if f ′(ξ) ≡ 0 mod p and ξ is not a solution of (1);

(b) one, if f ′(ξ) 6≡ 0 mod p;

(c) p, if f ′(ξ) ≡ 0 mod p and ξ is a solution of (1).

The solutions of (1) corresponding to ξ may be derived from ξ, in case (b) by the solution of a

linear congruence, in case (c) by adding any multiple of pa−1 to ξ.

As a consequence of this theorem we obtain the following result. If p is a prime, then Zp

denotes the finite field with p elements.

Corollary 2.1 Let p be a prime. Then f(x) permutes the elements of Zpn, n > 1, if and only

if it permutes the elements of Zp and f ′(a) 6≡ 0 mod p for every integer a ∈ Zp.

Proof: Suppose f(x) permutes the elements of Zpn , n > 1. That is f(x) is a one-to-one map

of Zpn onto itself. Thus the congruence

f(x) ≡ 0 mod pn (3)

has exactly one root, say x. Then x satisfies

f(x) ≡ 0 mod p (4)

and is of the form ξ + sp, (0 ≤ s < pn−1), where ξ is the root of (4) for which 0 ≤ ξ < p.

Next, suppose that ξ is the root of (4) satisfying 0 ≤ ξ < p and f ′(ξ) 6≡ 0 mod p. Then,

according to Theorem 3.1, f(x) ≡ 0 mod p2 has exactly one root corresponding to the solution ξ

of (4). Repeating the argument we obtain f(x) ≡ 0 mod pn has exactly one root corresponding

to the solution ξ of (4) for every n > 1.
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3 Permutation polynomials modulo a prime-power

In this section we give necessary and sufficient conditions on the coefficients a0, a1, . . . , ad for

f(x) = a0 +a1x+a2x
2 + · · ·+adx

d to be permutation polynomial modulo pn, for p = 2, 3, 5. A

characterization of permutation polynomials modulo 2n was given in [11]. Rivest [11] proved

that f(x) is a permutation polynomial if and only if a1 is odd, (a2 + a4 + a6 + . . .) is even,

and (a3 + a5 + a7 + . . .) is even. We first give a very short and simple proof of the above

characterization. We also give new characterization of permutation polynomials modulo pn for

p = 3, 5, and n > 1.

3.1 Characterizing permutation polynomials modulo 2n

A simple characterization of permutation polynomial modulo 2n, n > 1, is presented in this

section. We need the following lemma in the proof of Theorem 3.1

Lemma 3.1 A polynomial f(x) = a0 + a1x + a2x
2 + · · · + adx

d with integral coefficients is a

permutation polynomial modulo 2 if and only if (a1 + a2 + . . . + ad) is odd.

Proof: Since 0i = 0 and 1i = 1 modulo 2 for i ≥ 1, we can write f(x) = a0 + (a1 +

a2 + · · · + ad)x mod 2. Clearly f(x) is a permutation polynomial modulo 2 if and only if

(a1 + a2 + · · · + ad) 6≡ 0 mod 2, that is, (a1 + a2 + · · · + ad) is odd.

Theorem 3.1 (Rivest [11]) A polynomial f(x) = a0 + a1x + a2x
2 + · · · + adx

d with integral

coefficients is a permutation polynomial modulo 2n, n > 1, if and only if a1 is odd, (a2 + a4 +

a6 + . . .) is even, and (a3 + a5 + a7 + . . .) is even.

Proof: The proof given here is different from that of Rivest [11] and is relevant to the proof of

theorems to follow. The theorem is proved by making use of Corollary 2.1 and Lemma 3.1. By

Corollary 2.1, f(x) is a permutation polynomial modulo 2n if and only if it is a permutation

polynomial modulo 2 and f ′(x) 6≡ 0 mod 2 for every integer x ∈ Z2 . By Lemma 3.1, f(x) is a

permutation polynomial modulo 2 if and only if (a1 + a2 + . . . + ad) is odd. It is easy to cheek

that f ′(x) = a1 + (a3 + a5 + . . .)x mod 2. The condition f ′(x) 6≡ 0 mod 2 with x = 0 gives a1

is odd. The condition f ′(x) 6≡ 0 mod 2 with x = 1 gives (a1 + a3 + a5 + . . .) is odd. Hence the

theorem follows.

Example 3.1 The following are all permutation polynomials modulo 22 of degree atmost 3

and the coefficients are from Z4: x, 3x, x + 2x2, 3x + 2x2, x + x3, 3x + 2x3, x + 2x + 2x3 and

3x + 2x2 + 2x3.

3.2 Characterizing permutation polynomials modulo 3n

This section starts with a proposition regarding permutations of Zp that is needed later on.

Proposition 3.1 [7] If d > 1 is a divisor of p−1, then there exists no permutation polynomial

of Zp of degree d.

The proof of Proposition 3.1 is given in [7]. As an easy consequence of this proposition we get,

if p is an odd prime, no permutation over Zp can have degree p − 1.
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Lemma 3.2 A polynomial f(x) = a0 + a1x + a2x
2 + · · · + adx

d with integral coefficients is a

permutation polynomial modulo 3 if and only if (a1 +a3 + . . .) 6≡ 0 mod 3 and (a2 +a4 + . . .) ≡

0 mod 3.

Proof: Since x2k+1 = x mod 3 and x2k = x2 mod 3 for k ≥ 1, we can write f(x) = a0 +

(a1 + a3 + . . .)x + (a2 + a4 + . . .)x2 mod 3. Letting A = (a1 + a3 + . . .) mod 3 and B =

(a2 + a4 + . . .) mod 3, we can write f(x) more compactly as f(x) = a0 + Ax + Bx2. Since, for

odd prime p, no permutation polynomial over Zp can have degree p−1, we have B ≡ 0 mod 3.

Thus f(x) is a permutation polynomial modulo 3 if and only if (a1 + a3 + . . .) 6≡ 0 mod 3 and

(a2 + a4 + . . .) ≡ 0 mod 3.

Theorem 3.2 A polynomial f(x) = a0 + a1x + a2x
2 + · · · + adx

d with integral coefficients is

a permutation polynomial modulo 3n, n > 1, if and only if

(a) a1 6≡ 0 mod 3,

(b) (a1 + a3 + . . .) 6≡ 0 mod 3,

(c) (a2 + a4 + . . .) ≡ 0 mod 3,

(d) (a1 + a4 + a7 + a10 + . . .) + 2(a2 + a5 + a8 + a11 + . . .) 6≡ 0 mod 3, and

(e) (a1 + a2 + a7 + a8 + . . .) + 2(a4 + a5 + a10 + a11 + . . .) 6≡ 0 mod 3.

Proof: By Corollary 2.1, f(x) is a permutation polynomial modulo 3n if and only if it is a

permutation polynomial modulo 3 and f ′(x) 6≡ 0 mod 3 for every integer x ∈ Z3. It is easy to

verify that f ′(x) = a1 + (2a2 + a4 + 2a8 + a10 + 2a14 + a16 + . . .)x + (2a5 + a7 + 2a11 + a13 +

2a17 +a19 + . . .)x2 mod 3. The condition f ′(x) 6≡ 0 mod 3 with x = 0 gives a1 6≡ 0 mod 3. The

condition f ′(x) 6≡ 0 mod 3 with x = 1 gives a1 +(2a2 +a4 +2a8 +a10 +2a14 +a16 + . . .)+(2a5 +

a7 + 2a11 + a13 + 2a17 + a19 + . . .) 6≡ 0 mod 3. The condition f ′(x) 6≡ 0 mod 3 with x = 2 gives

a1+(a2+2a4+a8+2a10 +a14+2a16 + . . .)+(2a5 +a7+2a11 +a13+2a17+a19+ . . .) 6≡ 0 mod 3.

Now the theorem directly follows by combining above conditions and Lemma 3.2.

Example 3.2 The following are some permutation polynomials modulo 9 of degree 5 and the

coefficients are from Z9: 7x + x3 + 8x5, x + x2 + 8x3 + 8x4 + 7x5, 7x + 6x2 + 8x3 + 8x5 and

x + 7x2 + 8x3 + 8x4 + 7x5. There are total 3888 permutation polynomials modulo 9 of degree

atmost 5 and the coefficients are from Z9.

3.3 Characterizing permutation polynomials modulo 5n

Let p be a prime and Fp = GF (p) be the Galois field of p elements. The following result is

from [9].

4



Theorem 3.3 (Mollin & Small [9]) Let GF (p) have characteristic different from 3. Then

f(x) = ax3 + bx2 + cx + d (a 6= 0) permutes GF (p) if and only if b2 = 3ac and p ≡ 2 mod 3.

We need the following lemma in the proof of Theorem 3.4.

Lemma 3.3 A polynomial f(x) = a0 + a1x + a2x
2 + · · · + adx

d with integral coefficients is a

permutation polynomial modulo 5 if and only if (a4 + a8 + a12 . . .) ≡ 0 mod 5 and (a2 + a6 +

a10 + . . .)2 ≡ 3(a1 + a5 + a9 + . . .)(a3 + a7 + a11 + . . .) mod 5.

Proof: Since x4k+1 = x mod 5, x4k+2 = x2 mod 5, x4k+3 = x3 mod 5, and x4k = x4 mod 5

for k ≥ 1, we can write f(x) = a0 + (a1 + a5 + . . .)x + (a2 + a6 + . . .)x2 + (a3 + a7 + . . .)x3 +

(a4 + a8 + . . .)x4 mod 5. Letting A = (a1 + a5 + . . .), B = (a2 + a6 + . . .), C = (a3 + a7 + . . .)

and D = (a4 + a8 + . . .) we can write f(x) = a0 + Ax + Bx2 + Cx3 + Dx4 mod 5. Since no

polynomial of degree 4 can be a permutation polynomial modulo 5, we have D ≡ 0 mod 5.

Now f(x) = a0 + Ax + Bx2 + Cx3 mod 5 and we are in the situation of Theorem 3.3. Hence,

f is a permutation if and only if B2 = 3AC.

Example 3.3 The permutation binomials modulo 5 of degree atmost 3 are: x, x3, 2x+x2+x3,

3x + 2x2 + x3, 3x + 3x2 + x3, and 2x + 4x2 + x3.

Theorem 3.4 A polynomial f(x) = a0 + a1x + a2x
2 + · · · + adx

d with integral coefficients is

a permutation polynomial modulo 5n if and only if

(a) a1 6≡ 0 mod 5,

(b) (a4 + a8 + a12 . . .) ≡ 0 mod 5,

(c) (a2 + a6 + a10 + . . .)2 ≡ 3(a1 + a5 + a9 + . . .)(a3 + a7 + a11 + . . .) mod 5,

(d) (a1 +a6 +a11 + . . .)+2(a2 +a7 +a12 + . . .)+3(a3 +a8 +a13 + . . .)+4(a4 +a9 +a14 + . . .) 6≡

0 mod 5,

(e) (a1 + 2a6 + 4a11 + 3a16 + a21 + . . .) + 2(2a2 + 4a7 + 3a12 + a17 + 2a22 + . . .) +3(4a3 +

3a8 + a13 + 2a18 + 4a23 + . . .) + 4(3a4 + a9 + 2a14 + 4a19 + 3a24 + . . .) 6≡ 0 mod 5,

(f) (a1 + 3a6 + 4a11 + 2a16 + a21 + . . .) + 2(3a2 + 4a7 + 2a12 + a17 + 3a22 + . . .) +3(4a3 +

2a8 + a13 + 3a18 + 4a23 + . . .) + 4(2a4 + a9 + 3a14 + 4a19 + 2a24 + . . .) 6≡ 0 mod 5, and

(g) (a1 + 4a6 + a11 + 4a16 + a21 + . . .) + 2(4a2 + a7 + 4a12 + a17 + 4a22 + . . .) +3(a3 + 4a8 +

a13 + 4a18 + a23 + . . .) + 4(4a4 + a9 + 4a14 + a19 + 4a24 + . . .) 6≡ 0 mod 5.
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Proof: By Corollary 2.1, f(x) is a permutation polynomial modulo 5n if and only if it is a

permutation polynomial modulo 5 and f ′(x) 6≡ 0 mod 5 for every integer x ∈ Z5. We obtain

f ′(x) = a1 +
∑

k

(4k + 2)a4k+2x +
∑

k

(4k + 3)a4k+3x
2 +

∑

k

(4k)a4kx3

+
∑

k

(4k + 1)a4k+1x
4

≡ a1 + (2a2 + a6 + 4a14 + 3a18 + 2a22 + . . .)x

+(3a3 + 2a7 + a11 + 4a19 + 3a23 + . . .)x2

+(4a4 + 3a8 + 2a12 + a16 + 4a24 + . . .)x3

+(4a9 + 3a13 + 2a17 + a21 + 4a29 + . . .)x4 mod 5

Observe that f ′(0) 6≡ 0 mod 5 means a1 6≡ 0 mod 5;

f ′(1) 6≡ 0 mod 5 means (a1 + a6 + a11 + . . .) + 2(a2 + a7 + a12 + . . .) + 3(a3 + a8 + a13 + . . .) +

4(a4 + a9 + a14 + . . .) 6≡ 0 mod 5;

f ′(2) 6≡ 0 mod 5 means (a1 +2a6 +4a11 +3a16 +a21 + . . .)+2(2a2 +4a7+3a12 +a17+2a22 + . . .)

+3(4a3 + 3a8 + a13 + 2a18 + 4a23 + . . .) + 4(3a4 + a9 + 2a14 + 4a19 + 3a24 + . . .) 6≡ 0 mod 5;

f ′(3) 6≡ 0 mod 5 means (a1 +3a6 +4a11 +2a16 +a21 + . . .)+2(3a2 +4a7+2a12 +a17+3a22 + . . .)

+3(4a3 + 2a8 + a13 + 3a18 + 4a23 + . . .)+ 4(2a4 + a9 + 3a14 + 4a19 + 2a24 + . . .) 6≡ 0 mod 5; and

f ′(4) 6≡ 0 mod 5 means (a1 +4a6 +a11 +4a16 +a21 + . . .)+2(4a2 +a7 +4a12 +a17 +4a22 + . . .)

+3(a3 + 4a8 + a13 + 4a18 + a23 + . . .) + 4(4a4 + a9 + 4a14 + a19 + 4a24 + . . .) 6≡ 0 mod 5. Now

the theorem directly follows by combining above conditions and Lemma 3.3. However the

situation becomes complicated for p = 7, 11, 13, . . . Thus, in the following section we consider

the problem of characterizing only permutation binomials modulo prime p.

4 A new class of permutation binomials over finite field Fp

Let p be a prime and Fp = GF (p) be the Galois field of p elements. In [5], the open problem

P2 states: Find new classes of permutation polynomials of Fq, q = pn, n is a positive integer.

Recently some classes of permutation binomials are presented in [1, 3]. Here we present a new

class of permutation binomials of Fp. We now recall the definition and some properties of

quadratic residue.

Definition 4.1 Suppose p is an odd prime and a is an integer. a is defined to be a quadratic

residue modulo p if a 6≡ 0 (mod p) and the congruence y2 ≡ a (mod p) has a solution y ∈ Fp.

a is defined to be a quadratic non-residue modulo p if a 6≡ 0 (mod p) and a is not a quadratic

residue modulo p.

Euler’s Criteria states that a is a quadratic residue modulo p if and only if a
p−1

2 ≡ 1 mod p

and a is a quadratic non-residue modulo p if and only if a
p−1

2 ≡ −1 mod p.

Theorem 4.1 Let p be a prime and f(x) = xu(x
p−1

2 + a) where u is an integer such that

(u, p − 1) = 1 and a is a non-zero element in Fp. Then f(x) is a permutation binomial over

Fp if and only if (a2 − 1)
p−1

2 = 1 mod p.
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Proof: It is known that the monomial xu is a permutation polynomial of Fp if and only if

gcd(u, p − 1) = 1. Using Euler’s criteria we can rewrite

f(x) =















0, if x = 0;

xu(a + 1), if x is quadratic residue;

xu(a − 1), if x is quadratic non-residue.

There are 1

2
(p − 1) residues and 1

2
(p − 1) non-residues of an odd prime p. The product of

two residues, or of two non-residues, is a residue, while the product of a residue and a non-

residue is a non-residue. Since u is odd, xu is residue (resp. non-residue) if x is residue (resp.

non-residue). If both a + 1 and a − 1 are residues, then f(x) maps residues to residues and

non-residues to non-residues and if both a + 1 and a − 1 are non-residues, then f(x) maps

residues to non-residues and non-residues to residues. On the other hand, if a + 1 is residue

and a − 1 is non-residue then f(x) maps all the non-zero elements to residues and if a + 1

is non-residue and a − 1 is residue then f(x) maps all the non-zero elements to non-residues.

Since xu is a permutation polynomial, therefore f(x) is a permutation polynomial if and only

if both a+1 and a− 1 are either quadratic residues or quadratic non residues. In other words,

f(x) is a permutation polynomial over Fp if and only if (a2 − 1)
p−1

2 = 1 mod p. In Theorem

4.1, if the degree u + p−1

2
of binomial f(x) is greater than p − 1 for some values of u then the

polynomial is reduced modulo xp − x. In the following, as an application of Theorem 4.1, we

give some examples of permutation binomials of Fp.

Example 4.1 Let p = 7. Then u = 1, 5. Thus x(x3 + a) and x5(x3 + a) mod x7 − x are

permutation binomials over F7 if and only if (a2 − 1)3 ≡ 1 mod 7. That is, x(x3 + a) and

x5(x3 + a) are permutation binomials over F7 for a = 3, 4. We can write x5(x3 + a) ≡

x2 +ax5 ≡ ax2(x3 +a−1) mod x7−x . Hence the permutation binomials over F7 are x(x3 +3),

x(x3 + 4), x2(x3 + 2), and x2(x3 + 5).

Example 4.2 Let p = 11. Then xu(x5 + a) is a permutation binomial of F11 for u = 1, 3, 7, 9

and a = 2, 4, 7, 9. Therefore x(x5 + 2), x(x5 + 4), x(x5 + 7), x(x5 + 9), x3(x5 + 2), x3(x5 + 4),

x3(x5 + 7), x3(x5 + 9), x2(x5 + 3), x2(x5 + 5), x2(x5 + 6), x2(x5 + 8), x4(x5 + 3), x4(x5 + 5),

x4(x5 + 6), x4(x5 + 8) are permutation binomials of F11.
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