
Computational Indistinguishability Amplification:

Tight Product Theorems for System Composition∗

Ueli Maurer Stefano Tessaro

Department of Computer Science
ETH Zurich

8092 Zurich, Switzerland
{maurer,tessaros}@inf.ethz.ch

Abstract

Computational indistinguishability amplification is the problem of strengthening crypto-
graphic primitives whose security is defined by bounding the distinguishing advantage of an ef-
ficient distinguisher. Examples include pseudorandom generators (PRGs), pseudorandom func-
tions (PRFs), and pseudorandom permutations (PRPs).

The literature on computational indistinguishability amplification consists only of few iso-
lated results. Yao’s XOR-lemma implies, by a hybrid argument, that no efficient distinguisher
has advantage better than (roughly) n2m−1δm in distinguishing the XOR of m independent
n-bit PRG outputs S1, . . . , Sm from uniform randomness if no efficient distinguisher has advan-
tage more than δ in distinguishing Si from a uniform n-bit string. The factor 2m−1 allows for
security amplification only if δ < 1

2 : For the case of PRFs, a random-offset XOR-construction
of Myers was the first result to achieve strong security amplification, i.e., also for 1

2 ≤ δ < 1.
This paper proposes a systematic treatment of computational indistinguishability amplifi-

cation. We generalize and improve the above product theorem for the XOR of PRGs along
five axes. First, we prove the tight information-theoretic bound 2m−1δm (without factor n) also
for the computational setting. Second, we prove results for interactive systems (e.g. PRFs or
PRPs). Third, we consider the general class of neutralizing combination constructions, not just
XOR. As an application, this yields the first indistinguishability amplification results for the
cascade of PRPs (i.e., block ciphers) converting a weak PRP into an arbitrarily strong PRP,
both for single-sided and two-sided queries. Fourth, strong security amplification is achieved
for a subclass of neutralizing constructions which includes as a special case the construction of
Myers. As an application we obtain highly practical optimal security amplification for block
ciphers, simply by adding random offsets at the input and output of the cascade. Fifth, we show
strong security amplification also for weakened assumptions like security against random-input
(as opposed to chosen-input) attacks.

A key technique is a generalization of Yao’s XOR-lemma to (interactive) systems, which is
of independent interest.

∗An extended abstract of this paper appears in the proceedings of CRYPTO 2009. This is the full version.
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1 Introduction

1.1 Security Amplification

The security of all computationally secure cryptographic systems, even of those called “provably
secure” in the literature, relies on unproven assumptions about the underlying cryptographic primi-
tives. Typical assumptions are that a certain construction is a one-way function (OWF), a collision-
resistant hash function, a pseudorandom generator (PRG), a pseudorandom function (PRF), a pseu-
dorandom permutation (PRP), etc. To weaken these assumptions is both a fundamental challenge
in the theory of cryptography and a major goal for the cautious and prudent design of practical
cryptographic systems. Many reductions of strong primitives to weak primitives are known. For
example, one of the outstanding results is the construction of a PRG from any OWF [14]. However,
this reduction, like many other reductions, is highly inefficient and, while of high theoretical value,
not of practical relevance.

A specific way to weaken an assumption is to require only that the security property is mildly
true. For instance, a δ-OWF can be efficiently inverted with probability at most δ (rather than a
negligible quantity for a regular OWF). Similarly, for a δ-PRG no efficient distinguisher has an ad-
vantage more than δ in distinguishing its output from a uniform random string. The corresponding
definitions of a δ-PRF, a δ-PRP, etc., are straight-forward. Such a weakened assumption is more
likely to be true. For example, it is more conservative to only assume that AES is a 0.99-PRP
rather than a fully secure PRP.

The natural question is whether several weak primitives can be efficiently combined to obtain
a stronger version of the primitive, ideally one with the full-fledged security property.1 This is
called security amplification, in some cases hardness amplification. The classical result on security
amplification due to Yao [37] is that the parallel composition of m δ-OWFs (where δ < 1) results
in a (δm + ν)-OWF, where ν is some negligible quantity and δm can be made negligible for large
enough m. Security amplifications of a wide range of cryptographic primitives has subsequently
been considered, including for example regular OWFs and OWPs [10, 12], two-party protocols [1, 31,
32, 36, 13], key-agreement and public-key encryption [7, 17, 18], collision-resistant hash functions [4],
and watermarking schemes [19].2

The term indistinguishability amplification refers to security amplification when the relevant
security quantity is the distinguishing advantage for the best distinguisher from a certain class of
distinguishers, typically the class of efficient distinguishers.

1.2 The XOR-Lemma and Amplification for PRGs

Before we discuss the XOR-lemma, let us compare the prediction advantage and the distinguishing
advantage of a biased bit, in an information-theoretic setting, i.e., allowing arbitrary computing
power. A bit with bias ε takes on the two values with probabilities 1

2 − ε and 1
2 + ε. When such a

bit must be guessed, one would choose the more likely value and be correct with probability 1
2 + ε.

To calibrate the guessing advantage, between 0 (when ε = 0) and 1 (when the bit is fixed, i.e.,
ε = 1

2), one defines the advantage to be 2ε. In contrast, the distinguishing advantage is defined as

1Typically one considers several independent instantiations of the same weak primitive, but most results actually
hold for several different instantiations.

2So-called combiners [15] are another method for relaxing security assumptions: They guarantee that a construc-
tion involving several instantiations of a primitive is (fully) secure if at least one (or several, but not all) of them are
(fully) secure. However, they do not amplify the security of the underlying primitives.
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ε (with no factor 2) since it is naturally defined for general random variables (not only bits) as the
distance of the probability distribution from the uniform one.

As an example, consider two independent bits with biases ε1 and ε2. It is easy to see that the
bias of the XOR is 2ε1ε2. For instance, the XOR of a 0.1-biased bit (40/60) and a 0.2-biased bit
(30/70) is a 0.04-biased bit (46/54), where 0.04 = 2 · 0.01 · 0.02. More generally, the bias of the
XOR of m bits is 2m−1 times the product of the biases. For the XOR of m bit-strings S1, . . . , Sm
of length n, where Si has distance δi from a uniform n-bit string, the distance from uniform of the
XOR of the strings, S1 ⊕ S2 ⊕ · · · ⊕ Sm, is bounded by 2m−1

∏m
i=1 δi. This bound is tight, as for

example the case n = 1 discussed above illustrates.
Let us now move to the computational setting, i.e., to Yao’s XOR-lemma [37, 11], which is

much more involved and is another seminal security amplification result. One typically considers
a predicate B(x) of the input of a OWF f which is hard to guess when given the output f(x), for
uniformly chosen x. But the setting of the XOR-lemma is more general. It states3 that if for bits
B1, . . . , Bm the advantage in guessing Bi given some correlated information Xi is at most αi for
any algorithm with complexity t′, then no algorithm with complexity t has advantage more than∏m
i=1 αi+γ in guessing their XOR-sum, i.e., B1⊕· · ·⊕Bm, given X1, . . . , Xm, where γ can be made

arbitrarily small, at the cost of making t smaller with respect to t′.4 In terms of distinguishing
advantages δi, the bound is 2m−1

∏m
i=1 δi + γ (for the reasons described above).

Moreover, a standard hybrid argument, to use the unpredictability of bits to prove the indistin-
guishability of bit-strings, implies an indistinguishability amplification result for PRGs. Consider
m independent PRG outputs, S1, . . . , Sm, each an n-bit string. If no distinguisher with complexity
t′ has advantage more than δi in distinguishing Si from a uniform random n-bit string, then no
distinguisher with complexity (roughly) t has advantage more than n(2m−1

∏m
i=1 δi + γ) in distin-

guishing S1 ⊕ S2 ⊕ · · · ⊕ Sm from a uniform random n-bit string.5 The factor n comes from the
hybrid argument over the individual bits of the bit-string.

As explained, the factor 2m−1 is unavoidable, since it holds even in the information-theoretic
setting. Unfortunately, it means that an amplification can be achieved only if the component
constructions are better than 1

2 -secure, i.e., if δi < 1
2 .

1.3 Natural Questions and Previous Results

The above discussion suggests a number of natural questions:

(1) Can the factor n in the bound for the XOR of PRGs be eliminated, to obtain a tight bound,
namely the equivalent of the information-theoretic counterpart?

(2) Can the result be extended to the XOR of PRFs, i.e., primitives for which the security is defined
by an interactive game, not by the (static) indistinguishability of random variables?

(3) If the answer is “yes”, can such a result be extended to other constructions, most importantly
the cascade of PRPs?

3In fact, one needs a “tight” version of the XOR-lemma for this statement to hold, such as the one by Levin [22, 11],
or one obtained from a tight hard-core lemma (e.g. [17]) via the techniques of [20].

4As usual in complexity-theoretic hardness amplification, we experience an unavoidable [33] trade-off between the
choice of γ (the tightness of the bound) and the complexity of the reduction.

5It is not clear to us whether this fact has been published, or is unpublished but well-known folklore, or not so
well-known (see also [6] for a similar statement about security amplification for the XOR of PRGs).

3



(4) Can the factor 2m−1 be eliminated so that security amplification from arbitrarily weak compo-
nents can be achieved?

We will answer all these questions positively.
In the information-theoretic setting, questions 2 and 3 were answered by Maurer, Pietrzak,

and Renner [26], whose abstract approach we follow, and the special case of permutations had
previously been solved by Vaudenay [34, 35]. In contrast, there are only a few isolated results on
computational indistinguishability amplification, which we now discuss. Myers [29] was the first to
consider security amplification for PRFs. Interestingly, he did not solve question 2 above, which
remained open, but he actually solved part of question 4. More precisely, he showed for the XOR
of PRFs, with the modification that for each PRF a random (secret) offset is XORed to the input,
that the stronger bound (without the factor 2m−1) can be achieved. However, his treatment is
specific for his construction and does not extend to other settings like the cascade of PRPs. Dodis
et al. [6] addressed question 2 and gave a positive answer using techniques originating from the
setting of hardness amplification of weakly verifiable puzzles [3, 21]. However, their focus is on
general interactive cryptographic primitives, including for example message authentication codes
(MACs), and the resulting bound for the case of PRFs depends on the number of queries the
distinguisher is allowed to ask and is thus far from the (tight) information-theoretic bound shown
in [26].

Little is known about the cascade of weak PRPs, which is perhaps the case of highest practical
interest as it addresses security amplification for block ciphers.6 Luby and Rackoff [23] proved an
amplification result for the cascade of two weak PRPs. This result was extended by Myers [28] to
the cascade of a small number of PRPs, but he notes that this result falls short of constructing a
(regular) PRP from a weak PRP and states this as an open problem, which we solve.

1.4 Contributions of this Paper

In our attempt at solving the different open questions explained above, we take a very general
approach, not targeted at specific constructions. The goal is to develop a deeper and more general
understanding and to prove results of a generality that can be useful for other applications.

A first result is a generalization of the XOR-lemma to interactive systems. If a system (as
opposed to a random variable for the standard XOR-lemma) of a general type depends on a bit,
and no efficient algorithm with access to the system can predict the bit better than with a certain
advantage, then the advantage in predicting the XOR of several such bits is bounded by the product
of the individual advantages, even if the predictor has complete and arbitrary independent access
to all the involved systems.

The XOR of strings or (of the output) of systems, as well as the cascade of systems implement-
ing permutations, are both special cases of a more general concept which was called neutralizing
construction in [26]. Intuitively, a construction involving several component systems is neutralizing
if it is equivalent to an ideal system whenever one component is ideal. For example, the XOR of
several PRFs is equivalent to a truly random function if (any) one of the PRFs is replaced by a
truly random function.

6Cascades of block ciphers were considered by Even and Goldreich [8] and Maurer and Massey [25], but those
results only prove that the cascade is as secure as the strongest component (with no amplification), i.e., that the
cascade is a combiner for encryption. Bellare and Rogaway [2] showed a certain security amplification (of a different
type) for cascade encryption in the ideal cipher model, which is a purely information-theoretic consideration.
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We prove two tight general product theorems. The first theorem relies on the XOR-lemma and
shows that for all neutralizing constructions the distinguishing advantage of the combined system
is 2m−1 times the product of the individual advantages, which is optimal. The second theorem gets
rid of the factor 2m−1 by considering a special class of randomized neutralizing constructions. The
applications mentioned in the abstract and the previous sections follow directly from these general
theorems.7 In particular, one application is a highly practical construction for optimal security
amplification for block ciphers, simply by adding random offsets at the input and output of the
cascade.

This paper adopts a concrete approach, i.e. we do not use asymptotics and statements are
inherently non-uniform. Still, all results can be extended to the uniform setting by using standard
techniques, and we informally comment on the necessary changes in order to derive a uniform
version of the given statements.

1.5 Outline of This Paper

This paper is organized as follows. Section 2 introduces the tools needed throughout this paper.
In particular, we review the notions of interactive systems and constructions, and provide a formal
definition of the central concept of a neutralizing construction.

Section 3 presents the first main result of this paper, i.e., a generalization of Yao’s XOR-lemma
to the setting of interactive systems. This result is subsequently used in Section 4 to derive a
general product theorem for arbitrary neutralizing constructions. We also present applications of
this result, including the first security amplification result for the cascade of (possibly two-sided)
PRPs, as well as improved bounds for the XOR of PRFs.

Moreover, Section 5 presents a strong product theorem for a general class of randomized neu-
tralizing constructions. Finally, we discuss some applications of this result. In particular, we prove
strong security amplification result for PRPs, as well as strong security amplification for PRFs
which are secure when evaluated at random inputs.

2 Preliminaries

2.1 Notational Preliminaries and Computational Model

Throughout this paper, we use calligraphic letters X ,Y, . . . to denote sets, upper-case letters
X,Y, . . . to denote random variables, and lower-case letters x, y, . . . denote the values they take.
Moreover, P[A] denotes the probability of an event A, while we use the shorthands PX(x) :=
P[X = x], PX|Y (x, y) := P[X = x|Y = y], PXA|Y B(x, y) := P[A ∧ X = x|B ∧ Y = y], etc. Also,
PX , PX|Y , PAX|BY denote the corresponding (conditional) probability distributions,8 and x← PX
is the action of sampling a concrete value x according to the distribution PX . Finally, E[X] is the
expected value of the (real-valued) random variable X.

We consider interactive randomized stateful algorithms in some a-priori fixed (but otherwise
unspecified) RAM model of computation. In particular, such an algorithm keeps a state (consisting,
say, of the contents of the memory space it employs), and answers each query depending on the

7For each application of the second theorem, one also needs an information-theoretic indistinguishability proof
based on the conditional equivalence of two systems, conditioned on an event that must be proved to be unlikely to
occur.

8In particular, PX|Y and PAX|BY take two arguments corresponding to all possible values of X and Y , respectively.
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input of this query, some coin flips, the current state (which is possibly updated), and (possibly)
one or more queries to an underlying system. It is also convenient to denote by A[σ] the algorithm
obtained by setting the state of A to σ (provided σ is a compatible state), and then behaving
according to A’s description. Additionally, we say that the algorithm A has time complexity tA
(where tA is a function N× N→ N) if the sum of the length of the description of A and the total
number of steps of A is at most tA(q, s) for all sequences of q queries, all compatible initial states
with size s, and all compatible interactions with an underlying system. We use the shorthand
tA(q) := tA(q, 0).

2.2 Discrete Systems and Constructions

Discrete Systems, Constructions, and Distinguishers. This paper deals with the gen-
eral notion of a (single-interface) discrete system F taking inputs X1, X2, . . . and returning out-
puts Y1, Y2, . . ., where the i-th output Yi depends (probabilistically) on the first i inputs Xi =
[X1, . . . , Xi] as well as on all previous i − 1 outputs Y i−1 = [Y1, . . . , Yi−1]. (If all inputs and out-
puts are in sets X and Y, respectively, we call F an (X ,Y)-system.) Its input-output behavior is
minimally described (see e.g. [24]) by the (infinite) sequence of conditional probability distributions
pF
Yi|XiY i−1 (for all i ≥ 1).9 In general, we use the name “system” (as well as F) interchangeably to

denote both the input-output behavior determined by conditional probability distributions and an
actual discrete system realizing this behavior. It thus makes sense to say that two systems F and
G are equivalent (denoted F ≡ G) if they have the same input-output behavior. A random variable
X is the simplest type of system, which answers its first query with the value X (and ignoring any
given input), and ignores any further query.10

With C(·) we denote a construction invoking one or more underlying compatible subsystems,
whereas C(F), C(F,G), etc denote the systems obtained when C is instantiated with F (and
G). The shorthand C(F, ·) indicates the construction that behaves as C(F,G) given access to the
subsystem G. (All notations extend naturally to constructions with more than two subsystems.)
A distinguisher D is a system interacting with another system F giving inputs X1, X2, . . . and
obtaining outputs Y1, Y2, . . ., outputting a decision bit after a certain number q of queries depending
on the transcript (Xq, Y q): In particular, we denote as P[D(F) = 1] the probability that it outputs 1.

In a broader context (such as within the pseudocode description of a random experiment), the
notation D(F) (or D(C(F))) is the binary random variable which consists of the binary output of
an independent copy of D run on a fresh independent instance of F (or C(F)). However, if F is
an understood given system (for instance in the description of a reduction), then the bit D(F) (or
D(C(F))) is sampled by letting a new independent copy of D (and possibly C(·)) interact with the
same instance of the given system.

We say that an interactive algorithm A implements a system F or a construction C(·) if it has
the same input-output behavior as F and C(·), respectively. In particular, we use A (rather than
F) whenever we want to stress that we use the particular implementation A of F.

9We use lower-case p, rather than P, in order to stress that these conditional probability distributions alone do
not define a random experiment.

10However, in order to render the presentation of this paper more homogenous, we usually take the convention that
the random variable answers infinely many queries by returning the same value as in its first query.
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Distinguishing Advantages. The distinguishing advantage of a distinguisher D in distinguishing
two systems F and G is the quantity

∆D(F,G) := |P[D(F) = 1]− P[D(G) = 1]| .

We denote as ∆t(F,G), ∆q(F,G), and ∆t,q(F,G) the best distinguishing advantages ∆D(F,G)
taken over all distinguishers with time complexity at most t, issuing at most q queries, or both,
respectively.11

System Composition. Given m systems F1, . . . ,Fm, we use the shorthand F1‖ . . . ‖Fm to de-
note their parallel composition, i.e., the system allowing parallel concurrent interaction with the
(independent) m systems.12 Moreover, for (X ,Y)-systems F and G, and for a random bit B (with
distribution PB), the system 〈F,G〉B samples the bit B and acts as the system F if B = 0, and
G otherwise. Additionally, for any quasi-group operation13 ? on Y the (X ,Y)-system F ? G on
input x invokes both F and G with input x, obtaining y and y′, and returns y ? y′.14 Also, for an
(X ,Y)-system F and a (Y,Z)-system G we denote with F B G the cascade of F and G, i.e., the
system which on input x first invokes F on this input, and the resulting output is fed into G to
obtain the final output.

Stateless Systems. We say that a system F is stateless if there exists a conditional probability
distribution pF

Y |X such that pF
Yi|XiY i−1(yi, xi, yi−1) = pF

Y |X(yi, xi) for all yi, xi = [x1, . . . , xi], and
yi−1 = [y1, . . . , yi−1]. Moreover, the system F is convex-combination stateless (cc-stateless, for
short) if there exists a random variable S and a construction F(·) such that F(S) ≡ F (note that we
use the same letter to denote both the system itself as well as the corresponding construction), and
F(s) is stateless for all values s taken by S. Depending on the context, S may e.g. be a seed, a key, or
an internal function table. A non-trivial example of a cc-stateless system is a randomized encryption
scheme, which takes a secret key and encrypts each message with independent randomness. Note
that 〈F,G〉B is cc-stateless if both F,G are cc-stateless.

Random Functions. A random function F : X → Y is an (X ,Y)-system which answers consis-
tently, i.e. Xi = Xj implies Yi = Yj . It is called a random permutation if additionally Yi = Yj
implies Xi = Xj . For a cc-stateless random function F : X → Y with F ≡ F(S), it is easy to see
that the system F(s) is a (deterministic) function X → Y for all s. (This is sometimes called a
keyed function family, but we also consider the case where s is huge and is hence not a key.) Special
cases are a uniform random function (URF) R : X → Y and a uniform random permutation (URP)
P : X → X that realize a uniformly chosen function X → Y and permutation X → X , respectively.
For simplicity, but with some abuse of notation, we denote as F(s, x) the evaluation of F(s) with
input x.

Informally, in an asymptotic setting, it is convenient to say that an efficient F(·) is a δ-
pseudorandom function (PRF) if ∆t,q(F(S),R) ≤ δ + negl for a (short) key S, a URF R, all
polynomially bounded t and q, and some negligible15 function negl. Analogously, if an efficient

11Despite notational overloading, the considered advantage notion will be always clear from the context.
12The systems do not interact with each other, and each query to the parallel composition is addressed to one of

the systems.
13That is, given a, c ∈ Y (or b, c ∈ Y) there exists a unique b (a) such that a ? b = c. An example is bit-wise XOR
⊕ for Y = {0, 1}n, but any group operation is a quasi-group operation as well.

14We denote as F1 ? · · · ? Fm the system (· · · ((F1 ? F2) ? F3) · · · ) ? Fm.
15Recall that a function ν : N→ R≥0 is negligible if it vanishes faster than the inverse of any polynomial.
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Q(·) implements a permutation for all keys, it is called a δ-pseudorandom permutation (PRP) if
∆t,q(Q(S),P) ≤ δ + negl for a URP P and for all polynomially bounded t and q.

The inverse Q−1 of a cc-stateless random permutation Q is well-defined, and 〈Q〉 is the system
accepting forward queries (x,+) (answered by Q(s, x) on key s) and backward queries (y,−) (an-
swered as Q−1(s, y)). In particular 〈Q〉B 〈Q′〉 stands for the system 〈Q B Q′〉. An efficient Q(·) is
called a δ-two-sided PRP16 if ∆t,q(〈Q(S)〉, 〈P〉) ≤ ε + negl for all polynomial q and t. (Of course,
one assumes that backward queries can be computed efficiently given s.)

Neutralizing Constructions. A construction C(·) is called neutralizing [26] for system classes
F1, . . . ,Fm and ideal systems I1 ∈ F1, . . . , Im ∈ Fm, if for all Si ∈ Fi (i = 1, . . . ,m) we have
C(S1, . . . ,Sm) ≡ C(I1, . . . , Im) whenever there exists some i with Si = Ii.17 In particular, neu-
tralizing constructions capture the notion of a combiner [15] for computational indistinguishability
properties: Whenever at least one system Si ∈ Fi is computationally indistinguishable from Ii,
then C(S1, . . . ,Sm) is computationally indistinguishable from C(I1, . . . , Im). Typical examples for
the classes Fi are the classes of random variables, random functions, and random permutations.
Without loss of generality, we assume that each such system class F satisfies the natural property
that if F ∈ F then fixing (even partially) the random choices in some implementation of F yields a
system in F as well. In particular, it is convenient to say that C(·) is neutralizing for F1, . . . ,Fm

and I1, . . . , Im if it is neutralizing for some classes F1, . . . ,Fm with F1, I1 ∈ F1, . . . ,Fm, Im ∈ Fm.
Every quasi-group operation ? on a set Y induces a construction C(·) such that C(F,G) := F?G

which is neutralizing for any two random functions F,G : X → Y and ideal systems I,J being
independent URFs. In particular, I?J is also a URF. As a special case, this result holds for random
variablesX,Y over Y, the ideal systems being uniform random elements of Y. Moreover, the cascade
operator B induces a construction C′(·) with C′(Q1,Q2) := Q1 B Q2 which is neutralizing for any
two cc-stateless random permutations Q1,Q2 : X → X (in fact Q1 can possibly be stateful) where
the ideal systems I,J are both URPs X → X . In particular, IBJ is also a URP. If Q1 is cc-stateless,
then the same result holds even in the two-sided case for 〈Q1〉 and 〈Q2〉 (with ideal system 〈P〉 for
a URP P). Both constructions extend naturally to an arbitrary number of subsystems.

2.3 Indistinguishability Proofs

This section provides a self-contained introduction to some specific tools from the random systems
framework [24, 26] which are used in the second part of this paper.

Monotone Event Sequences and Indistinguishability. Given a system F, a monotone
event sequence (MES) A = A0, A1, . . . on F is a sequence of events where Ai is defined after the
i’th query has been answered by F and such that A0 initially holds (i.e., before the first query is
issued). Furthermore, if Ai does not hold for some i > 0 (i.e. the complement Ai holds), then Aj
does not hold for all j ≥ i.

Definition 1. Let F,G be systems, and let A be a MES on F. We write F|A ≡ G if for all i ≥ 1
and for all yi, xi, yi−1,

pF
Yi|XiY i−1Ai

(yi, xi, yi−1) = pG
Yi|XiY i−1(yi, xi, yi−1).

16In the literature the name strong PRP is commonly used, but this term is slightly confusing in the context of
this paper.

17This definition differs from the one given in [26] and in the proceedings version of this paper, but captures more
naturally the concept of a neutralizing construction as a combiner.
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Furthermore, if the MES B is additionally defined on G, we write F|A ≡ G|B if for all i ≥ 1 and
for all yi, xi, yi−1,

pF
Yi|XiY i−1Ai−1

(yi, xi, yi−1) = pG
Yi|XiY i−1Bi−1

(yi, xi, yi−1).

The shorthand νD(F, Aq) stands for the probability that the distinguisher D makes A fail within
q queries while interacting with F. The following lemma [24, 26] shows the connection between the
probability of making a MES fail and the distinguishing advantage.18

Lemma 1. Let F and G be systems, let D be a q-query distinguisher, and let A and B be monotone
event sequences on F and G, respectively.

(i) If F|A ≡ G, then ∆D(F,G) ≤ νD(F, Aq).

(ii) If F|A ≡ G|B and pF
Ai|XiY i−1Ai−1

(xi, yi−1) ≤ pG
Bi|XiY i−1Bi−1

(xi, yi−1) for all (compatible)

xi, yi−1, then ∆D(F,G) ≤ νD(F, Aq).

Upper Bounding νD(F, Aq). We present two lemmas which simplify the problem of upper bound-
ing νD(F, Aq). The first one is, to our knowledge, new and considers the setting where a MES
A = A0, A1, . . . is defined on a system F ≡ F(S) (i.e., where S is some internal variable of F)
such that the behavior of F is independent of S (i.e., F(s) ≡ F for all values s taken by S). We
show that if A only depends on the input-output behavior and the value of S, we can equivalently
consider a game where the distinguisher D interacts with F, generating a transcript XqY q, and
only subsequently we sample an independent S, and check whether (Xq, Y q, S) implies Aq.

Lemma 2. Let F = F(S) be such that F(s) ≡ F for all s. Let A be a MES such that for all i ≥ 1
there exists a set Bi with the property that Ai holds if and only if (Xi, Y i, S) ∈ Bi. Then we have

νD(F, Aq) ≤ max
xq ,yq

PS [(xq, yq, S) ∈ Bq],

where the maximum is taken over all xq, yq which are compatible with an interaction of D with F,
and the probability on the right-hand side is taken over the choice of S.

Proof. Let D be a given distinguisher interacting with F. Then we have (with PDF being probabil-
ities in the random experiment where D interacts with F, and pF being (conditional) probabilities
defined by the input-output behavior of F)

νD(F, Aq) =
∑
xq ,yq ,s

PDF
XqY qSAq

(xq, yq, s) =
∑
xq ,yq ,s

PS(s) · PDF
XqY q |S(xq, yq, s) · pF

Aq |XqY qS
(xq, yq, s)

=
∑
xq ,yq ,s

PS(s) · PDF
XqY q(x

q, yq) · pF
Aq |XqY qS

(xq, yq, s)

=
∑
xq ,yq

PDF
XqY q(x

q, yq) ·
∑
s

PS(s) · pF
Aq |XqY qS

(xq, yq, s)︸ ︷︷ ︸
=PS [(xq ,yq ,S)∈Bq ]

,

and the claim follows from the fact that the maximum is at least as large as the average.
18In fact [24] states these results in terms of ∆q(F,G) and the best νD(F, Aq) for a q-query D, but it is easy to see

that this more concrete version also holds. (This allows us to apply the results to special subclasses of distinguishers.)
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The following lemma [24] gives a simple condition under which it suffices to consider non-
adaptive strategies to upper bound νD(F, Aq).

Lemma 3. Let F be a system with a MES A and assume that

pF
Ai|XiY i−1Ai−1

(xi, yi−1) = pF
Ai|XiAi−1

(xi)

for all sequences of inputs xi and all possible sequences of i − 1 outputs yi−1. Then, we have
νD(F, Aq) ≤ maxxq pF

Aq |xq
, where the maximum is taken over all sequences xq of inputs which can

ever be output by D.

3 The Generalized XOR-Lemma

3.1 System-Bit Pairs and Theorem Statement

System-Bit Pairs. A system-bit pair is a system of the form (F, B), where B ∈ {0, 1} is a bit
value, which is (generally) correlated with the system F. This can formally be described by the
distribution PB of B and the two systems F0 and F1 conditioned on the value taken by B, i.e.
(F, B) = (〈F0,F1〉B, B). An example of a possible system-bit pair is a URF R : {0, 1}m → {0, 1}
and the parity of its function table.

The following quantity characterizes the performance of an adversary19 A in guessing the bit
B when given access to F only.

Definition 2. The guessing advantage of an adversary A in guessing B for a system-bit pair (F, B)
is the quantity

ΓA(F, B) := 2 · P[A(F) = B]− 1.

Additionally, we denote as Γt,q(F, B) the maximal guessing advantage ΓA(F, B) taken over all
q-query adversaries A with complexity at most t.

Note that ΓA(F, B) ∈ [−1, 1], where 1 means that A is able to perfectly predict B by interacting
with F, while −1 means that A is never correct.20 The following connection between the guessing
and the distinguishing advantages is well known (cf. e.g. [26]).

Lemma 4. For all F, G, and D, and a uniform bit B,

∆D(F,G) =
∣∣ΓD(〈F,G〉B, B)

∣∣ .
Finally, note that if (Gi, Bi) is cc-stateless, then Gi is cc-stateless, but the converse is not

always true: Consider the system-bit pair (F, B) such that B is a uniform random bit, and F has
one-bit inputs and outputs: It answers the first query x1 with a random bit y1, and the second
query x2 is answered by x1 ⊕B. All remaining queries are answered by independent random bits.
Clearly, F by itself is (cc-)stateless (all answers are random and independent), but (F, B) is not
cc-stateless since y2 := x1 ⊕B must hold.

19We stress that distinguishers and adversaries are objects of the same type. The name adversary is used to stress
the fact that we are not exclusively considering a distinguishing scenario.

20In particular, flipping the output bit of such an A yields one which is always correct.
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The XOR-Lemma. Given m system-bit pairs (G1, B1), . . . , (Gm, Bm), we are interested in the
advantage Γt,q1,...,qm(G1‖ · · · ‖Gm, B1 ⊕ · · · ⊕ Bm) of guessing the bit B1 ⊕ · · · ⊕ Bm given parallel
access to the systems G1, . . . ,Gm, where at most qi queries to each system Gi are allowed. That is,
we consider the most general attack where the adversary can query each subsystem Gi individually
at most qi times, adaptively depending on the answers of queries to other subsystems. We show
that the advantage is upper bounded by the product of the individual advantages Γt′,q′(Gi, Bi)
for i = 1, . . . ,m (for appropriate t′, q′), with an extra additive term γ > 0 which can be made
arbitrarily small (but influences the efficiency of the reduction). The result holds provided that all
but one of the system-bit pairs are cc-stateless. Our result generalizes the original XOR-lemma by
Yao [37, 11], which considered the special case of system-bit pairs (Xi, Bi), where Xi is a random
variable.

We stress that our result only requires the ability to efficiently implement the cc-stateless system-
bit pairs (Gi, Bi) = (Gi(S), Bi(S)). This may be possible, for instance by using a stateful algorithm,
even if G(·) and B(·) themselves are not efficiently computable: In fact, S may even be exponentially
large. As an example, the aforementioned system-bit pair (R, B), where R : {0, 1}n → {0, 1} is
a URF, and B is the parity of its function table, is clearly cc-stateless, and can efficiently be
implemented by first sampling a random B, and then answering queries to R with independent
random bits, with the exception of the last one, which is answered so that the parity equals B.

In the following, we define the quantity ϕ := 2
(

24m
γ

)2
· ln
(

7m
γ

)
for understood m and γ. Also,

tGi and sGi are the time and space21 complexities of some implementation Gi of the system Gi,
whereas t(Gi,Bi) is the time-complexity of an implementation of the pair (Gi, Bi). (Note that an
efficient implementation of the latter implies one for the former, but we allow for this distinction.)
For all i, we denote li := sGi(qi · ϕ) and l<i :=

∑i−1
j=1 lj (for understood q1, . . . , qm−1).

Theorem 5 (XOR-Lemma). Let (G1, B1), . . . , (Gm−1, Bm−1) be cc-stateless system-bit pairs, and
let (Gm, Bm) be an arbitrary system-bit pair. For all t, q1, . . . , qm, γ > 0,

Γt,q1,...,qm(G1‖ . . . ‖Gm, B1 ⊕ · · · ⊕Bm) ≤
m∏
i=1

Γt′i,q′i(Gi, Bi) + γ,

where t′i := l<i+ϕ·
[
t+O

(∑i−1
j=1 tGj (qj , lj) +

∑m
j=i+1 t(Gj ,Bj)(qj)

)]
and q′i := ϕ·qi for i = 1, . . . ,m−

1, whereas tm := l<m + t+O
(∑m−1

j=1 tGj (qj , lj)
)

and q′m := qm.

The asymmetry of our proof technique allows (Gm, Bm) to be fully stateful.22 Furthermore,
both t′m and q′m are much smaller then the corresponding terms t′i and q′i for i = 1, . . . ,m − 1.
The following paragraph provides a proof sketch for the case m = 2. The full proof is deferred to
Section 3.2.

Proof Idea for m = 2. The proof follows similar lines as Levin’s proof of the XOR-lemma [22,
11], but with some major differences due to the peculiarities of reactive systems. For simplicity,
we let (G1, B1) = (F, B) and (G2, B2) = (G, C). Let A be an adversary with ΓA(F‖G, B ⊕ C) >

21i.e. the maximal size of the state after the given number of queries
22An incomparable generalization of the XOR-lemma for stateful interactive systems was proposed by Halevi and

Rabin [13]. However, it relies on sequential (rather than parallel) access to the systems G1, . . . ,Gm, which is not
sufficient for the applications of this paper.
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δ · ε+ γ. We show that either there exists an adversary A′ such that ΓA′(F, B) > δ or there exists
an adversary A′′ such that ΓA′′(G, C) > ε, contradicting the assumed hardness of (F, B) and/or
(G, C). The time complexities of A′ and A′′ are strictly related to that of A. Recall that the pair
(F, B) = (F(S), B(S)) is cc-stateless, and for all values s taken by the random variable S we define

α1(s) := ΓA(F(s)‖G, 1⊕ C) and α(s) := ΓA(F(s)‖G, B(s)⊕ C).

By definition, E[α(S)] > δ · ε + γ. Moreover α(s) = α1(s) if B(s) = 1, and α(s) = −α1(s)
otherwise. This implies that α1(S) has good correlation with B(S), as an adversary A′ outputting
1 with probability 1

2 + α1(s)
2 (when given access to F(s)) has advantage at least δ · ε + γ. If

|α1(s)| = |α(s)| ≤ ε holds for all s, then the advantage can be amplified to be larger than δ by
outputting 1 with probability 1

2 +α1(s)
2ε . Of course, A′ does not know α1(s), but a statistical estimate

can be obtained by repeated interaction with F(s), as it is stateless: The term γ compensates the
possible estimation error.

Note that the existence of a single value s with the property that |α1(s)| > ε implies that there
exists a bit b such that the adversary A′′ := A(F(s)‖·)⊕ b has advantage larger than ε in guessing
C from G, i.e., A′′ is the adversary that simulates the execution of A with the parallel composition
of F(s) and the given system G, and outputs A’s output XORed with b. But such an adversary A′′

is not necessarily efficient because an efficient implementation of F(s) may not exist. To overcome
this problem, we show that for the above adversary A′ to succeed, it is sufficient that the probability
over the choice of S that |α1(S)| > ε + γ/4 is smaller than γ/4. Furthermore, if this probability
is at least γ/4, a probabilistic argument yields a (sufficiently) small state σ for the (efficient)
implementation F of F and a (fixed) bit b such that the efficient adversary A′′ := A(F [σ]‖·) ⊕ b
achieves advantage at least ε.

3.2 Proof of Theorem 5

The Isolation Lemma. The proof of Theorem 5 relies on the so-called isolation lemma, which
was previously used in a number of hardness amplification results, including Levin’s proof of the
XOR-lemma [22, 11], Myers’ indistinguishability amplification result for PRFs [29], and hardness
amplification of weakly-verifiable puzzles [3]. The isolation lemma reduces the situation where an
adversary obtains an advantage ε ·δ in guessing the XOR of the bits Bi⊕· · ·⊕Bm for m− i system-
bit pairs to either an adversary guessing Bi from Gi with advantage at least δ, or to the situation
where an adversary guesses Bi+1 ⊕ · · · ⊕Bm for the system-bit pairs (Gi+1, Bi+1), . . . , (Gm, Bm).

In contrast to previous isolation lemmas in the literature, we give a more concrete statement
which allows to considerably simplify the concrete analysis of the resulting adversaries in the re-
duction; this is a key step in order to prove some of the later results of this paper.

For the remainder of this section, we fix interactive algorithms G1, . . . , Gm implementing the
systems G1, . . . ,Gm. Also, for a given parameter γ we define, for an understood parameter γ > 0,

ϕ = 2
(

24
γ

)2

· ln
(

7
γ

)
.

Note that the value ϕ used above corresponds to the special case where γ := γ/m for the understood
parameter γ. The values l1, l2, . . . are defined as above (before the statement of Teorem 5) with
respect to ϕ.
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Lemma 6 (Isolation Lemma). Let i ∈ {1, . . . ,m − 1}, let γ > 0, and let A be an adversary with
complexity t making qj queries to Gj for j = 1, . . . ,m. Moreover, let σ1, . . . , σi−1 be valid states
for G1, . . . , Gi−1, respectively, with |σj | ≤ lj (for j = 1, . . . , i − 1), and let b[1,i−1] ∈ {0, 1} be such
that

ΓA(G1[σ1]‖ · · · ‖Gi−1[σi−1]‖Gi‖ · · · ‖Gm, b[1,i−1] ⊕Bi ⊕ · · · ⊕Bm) > ε · δ + γ.

Then, at least one of the following two statements is true:

(i) There exists a valid state σi for Gi with |σi| ≤ li and a bit b[1,i] ∈ {0, 1} such that

ΓA(G1[σ1]‖ · · · ‖Gi[σi]‖Gi+1‖ · · · ‖Gm, b[1,i] ⊕Bi+1 ⊕ · · · ⊕Bm) > ε;

(ii) There exists an adversary A′i with running time t′i making q′i queries such that ΓA′i(Gi, Bi) >
δ, and

t′i = l<i + ϕ ·

t+O

 i−1∑
j=1

tGj (qj , lj) +
m∑

j=i+1

t(Gj ,Bj)(qj)


and q′i = ϕ · qi.

The proof of the isolation lemma is postponed to Section 3.3. The next paragraph shows how
the full XOR-lemma can be obtained from the isolation lemma. Note that we do not put priority on
optimizing values (such as the function ϕ defined above), but rather on having simpler expressions,
which are in particular independent of the upper bounds on the underlying advantages.

From the Isolation Lemma to the XOR-Lemma. In the following, fix some t, q1, . . . , qm, γ > 0
and set γ := γ/(m− 1). Define t′i, q

′
i as in the statement of Theorem 5, and let δi := Γt′i,q′i(Gi, Bi).

From now on, let A be the adversary with running time t making q1, . . . , qm queries to the
respective systems, and such that

ΓA(G1‖ · · · ‖Gm, B1 ⊕ · · · ⊕Bm) ≥ δ1 · · · δm + γ.

Define γi := (m− 1− i) · γ for i = 0, . . . ,m− 1 and consider the statements STATi(σ1, . . . , σi, b) for
a bit b ∈ {0, 1} and valid states σ1, . . . , σi of G1, . . . , Gi respectively, with |σj | ≤ lj for j = 1, . . . , i
which holds if and only if

ΓA(G1[σ1]‖ · · · ‖Gi[σi]‖Gi+1‖ · · · ‖Gm, b⊕Bi+1 ⊕ · · · ⊕Bm) ≥ δi+1 · · · δm + γi

≥ δi+1 · (δi+2 · · · δm + γi+1) + γ,

where we have used the facts that γi := γi−1 + γ and δi+1 ≤ 1. In particular, by our assumption
STAT0(0) holds. Furthermore, given STATi(σ1, . . . , σi−1, b) holds for some i we apply the Isolation
Lemma (Lemma 6). Note that condition (ii) cannot hold, as otherwise there exists an adversary
A′i such that ΓA′i(Gi, Bi) > δi, but this contradicts the assumed hardness of (Gi, Bi), as we have
defined δi with respect to the maximal running time of a constructed adversary A′i. Therefore,
condition (i) must hold: In other words, we have shown that for all i = 0, . . . ,m− 2

STATi(σ1, . . . , σi, b) =⇒ ∃σi+1, b
′ : STATi(σ1, . . . , σi, σi+1, b⊕ b′),
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where all the states σ1, σ2, . . . are valid for their respective implementations and are such that
|σi| ≤ li. Iterating the argument we obtain that there exist σ1, . . . , σm−1 and a bit b such that

ΓA(G1[σ1]‖ · · · ‖Gm−1[σi]‖Gm, b⊕Bm) > δm + γ̃m−1 = δm.

However, we can now consider the adversary A′ := A(G1[σ1]‖ · · · ‖Gm−1[σi]‖·) ⊕ b which, given
access to Gm, simulates A interacting with G1[σ1]‖ · · · ‖Gm−1[σi]‖Gm, obtaining output b′, and
finally outputs b ⊕ b′. Such an adversary has advantage larger than > δm, contradicting the
assumed hardness of (Gm, Bm).

3.3 Proof of the Isolation Lemma

Setup. Throughout the proof, let (Gi(·), Bi(·)) and S ∈ S be such that (Gi(S), Bi(S)) ≡ (Gi, Bi).
Note that such a representation of (Gi, Bi) exists since the system-bit pair is assumed to be cc-
stateless (as i ≤ m− 1). In particular, Bi(s) depends (without loss of generality) deterministically
on the input s. For the remainder of this proof, it is convenient to define γ′ := γ

4 , and for the
system-bit pairs (Gi+1, Bi+1), . . . , (Gm, Bm) (and the given states σ1, . . . , σi−1 in the statement of
the isolation lemma) we use the notation

B[i+1,m] := Bi+1 ⊕Bi+2 ⊕ · · · ⊕Bm,
M(·) := G1[σ1]‖ · · · ‖Gi−1[σi−1]‖ · ‖Gi+1‖ · · · ‖Gm.

Note that these are only notational shorthands. In particular, the system Gj is correlated with
the corresponding bit Bj for j ≥ i + 1 as in the system-bit pair (Gj , Bj). Moreover, we define
α1, α : S → [−1, 1] such that for all s ∈ S

α1(s) := 2 · P[A(M(Gi(s)))⊕ b[1,i−1] ⊕B[i+1,m] = 1]− 1,

α(s) := 2 · P[A(M(Gi(s)))⊕ b[1,i−1] ⊕B[i+1,m] = Bi(s)]− 1.

By rearranging terms in the definition of α (i.e. by moving b[1,i−1]⊕B[i+1,m] to the right hand side)
we see that E[α(S)] > ε · δ+ γ by the assumption of the lemma, and also α(s) = α1(s) if Bi(s) = 1,
and α(s) = −α1(s) if Bi(s) = 0.

The remainder of the proof of the isolation lemma is subdivided into the following two technical
lemmas.

Lemma 7. If P[|α1(S)| > ε + γ′] > γ′, then there exists σi for Gi with |σi| ≤ li and bi ∈ {0, 1}
such that

ΓA(M(Gi[σi]), b[1,i−1] ⊕ bi ⊕B[i+1,m]) > ε.

Lemma 8. If P[|α1(S)| > ε+ γ′] ≤ γ′, then there exists an adversary A′i with running time t′i and
making q′i queries such that ΓA′i(Gi, Bi) > δ.

The isolation lemma is implied by these two lemmas, since either P[|α1(S)| > ε+ γ′] > γ′ holds
(and in this case Lemma 7 implies statement (i)), or P[|α1(S)| > ε + γ′] ≤ γ′ holds, which yields
statement (ii).

The remainder of this section is devoted to proving the above two lemmas.
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Process SAMPLE:
b := 0;
σ0 := initial state of Gi;
for j := 1 to ϕ do
oj := A(M(Gi[σj−1]))⊕ b[1,i−1] ⊕B[i+1,m];
σj := final state of Gi;

α1 := 2 · 1
ϕ ·
∑ϕ

j=1 oj − 1;
if α1 > ε+ (2/3)γ′ then
b := 1

else if α1 < −ε− (2/3)γ′ then
b := 0;

output (σ, b).

Process SAMPLE′:
b := 0
s← PSi

;
for j := 1 to ϕ do
oj := A(M(Gi(s)))⊕ b[1,i−1] ⊕B

(j)
[i+1,m];

α1 := 2 · 1
ϕ ·
∑ϕ

j=1 oj − 1;
if α1 > ε+ (2/3)γ′ then
b := 1

else if α1 < −ε− (2/3)γ′ then
b := 0;

output (s, b).

Figure 1: Sampling processes SAMPLE and SAMPLE′ used in the proof of Lemma 7.

Proof of Lemma 7. We define a random process SAMPLE (which is depicted on the left-hand-side
of Figure 1) outputting a pair (σ, b), where σ is a valid state forGi and b ∈ {0, 1} is a bit. The process
SAMPLE lets ϕ independent instances of A(·) := A(M(·))⊕b[1,i−1]⊕B[i+1,m]

23 sequentially interact
with the same instance of Gi, producing outputs o1, . . . , oϕ (and denote by o their average). The
instance of Gi is simulated using Gi by letting, for j = 1, . . . , ϕ, the j’th independent instance of A
interact with Gi[σj−1], and setting σj to be the final state of Gi after such interaction (and σ0 := ⊥ is
the empty, initial state for Gi). Also, it sets σ := σϕ. The process SAMPLE computes α1 := 2 ·o−1.
If α1 is higher than ε, we expect ΓA(M(Gi[σ]), b[1,i−1] ⊕ 1 ⊕ B[i+1,m]) > ε (and the process hence
outputs (σ, 1)), whereas if it is lower than −ε, we expect ΓA(M(Gi[σ]), b[1,i−1] ⊕ 0 ⊕ B[i+1,m]) > ε
(and SAMPLE outputs (σ, 0)).

We consider a random experiment where SAMPLE samples a pair (σ, b), and we subsequently
compute A(M(Gi[σ]))⊕b[1,i−1]⊕B[i+1,m]. We define the event T that one of the if-statements within
process SAMPLE is executed, and we show that under the assumption that P[|α1(S)| > ε+ γ′] > γ′

we have

π1 := P[(σ, b)← SAMPLE : A(M(Gi[σ]))⊕ b[1,i−1] ⊕B[i+1,m] = b | T ] ≥ 1 + ε

2
, (1)

as well as P[T ] > 0. Note that this is sufficient to obtain the statement of Lemma 7, as we
can choose a pair (σ, b) output by SAMPLE conditioned on the event T (note that this yields
a well-defined distribution of pairs (σ, b)) maximizing the above probability, and set σi := σ,
b[1,i] := b[1,i−1] ⊕ b. Since A issues at most qi queries, and the above process is repeated ϕ times,
we have |σi| ≤ sGi(qi · ϕ) = li.

In order to prove inequality (1), we consider a second sampling process (called SAMPLE′ and
depicted on the right-hand side of Figure 1) which samples s according to PS and subsequently
computes the values o1, . . . , oϕ by letting ϕ independent instances of A interact with Gi(s). The
process finally outputs the pair (s, b) with b being computed as in SAMPLE. In particular, we also
denote here as T the event that one of the two conditions in the if-statement is satisfied, and we
define

π2 := P[(s, b)← SAMPLE′ : A(M(Gi(s)))⊕ b[1,i−1] ⊕B[i+1,m] = b | T ].

23i.e. the adversary which for new independent instances of (Gi+1, Bi+1), . . . , (Gm, Bm) (with B[i+1,m] := Bi+1 ⊕
· · ·⊕Bm) simulates an interaction of A with G1[σ1]‖ · · · ‖Gi−1[σi−1]‖S‖Gi+1‖ · · · ‖Gm, where S is the given system,
and adds b[1,i−1] ⊕B[i+1,m] to its output to obtain the actual output
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A crucial observation is that the sampling processes SAMPLE and SAMPLE′ compute the values
o1, . . . , oϕ by letting multiple, independent, instances of A interact with the same instance of Gi, and
furthermore, we are interested in the probabilities π1 and π2 that a further, independent, instance
of A is successful in guessing the bit b when interacting (once again) with the same instance of
Gi. In the first random experiment, the instance of Gi is simulated by using the algorithm Gi. In
the second case, this is done by choosing a random s and running Gi(s). However, in both cases,
all probabilities (including the event T ) only depend on the input-output behavior of Gi, and not
on the way this instance is simulated, and hence we have π1 = π2, and T occurs with the same
probability in both experiments.24

In the remainder of the proof we thus show that π2 ≥ 1+ε
2 , which is much simpler than working

with the original random experiment, as for each value s the system Gi(s) is stateless and we can
conveniently upper-bound the error in the estimate of α1 (using e.g. Hoeffding’s inequality) due to
the fact that the random variables o1, . . . , oϕ, conditioned on some fixed value s, are statistically
independent. More formally, we denote the values α1 and oj associated with a particular choice of
s as α1(s) and oj(s), respectively. We additionally define (for every η ≥ 0) the set

Gη :=
{
s ∈ S

∣∣ |α1(s)| > ε+ η
}
.

Note that Gη ⊆ Gη′ for all η > η′ and P[s ∈ Gγ′ ] > γ′ by the above assumption. Furthermore,
with a slight abuse of notation, we denote by Gη the event s ∈ Gη. In the following, we show that
P[Gγ′/3 | T ] is overwhelming.

Note that for a fixed s (because of the fact that Gi(s) is stateless) the random variables oj(s)
(which here we exceptionally denote by lower-case letters) are independent binary variables, with

E[oj(s)] = p1(s) = P[A(M(Gi(s)))⊕ b[1,i−1] ⊕B[i+1,m] = 1]

for all j = 1, . . . , ϕ. First, by Hoeffding’s bound, and because of the factor two in the definition of
α1, we have for every fixed s ∈ S,

P
[
|α1(s)− α1(s)| > γ′/3

]
≤ P

[∣∣∣∣∣ 1ϕ
ϕ∑
i=1

oi(s)− p1(s)

∣∣∣∣∣ > γ′/6

]
≤ 2 · e−ϕ(γ′/6)2 .

This in particular implies that for the randomly chosen s,

P
[
Gγ′/3 ∧ T

]
≤ P

[
T | Gγ′/3

]
≤ P

[
|α1(s)− α1(s)| > γ′/3 | s /∈ Gγ′/3

]
≤ 2 · e−ϕ(γ′/6)2 .

This yields

P[Gγ′/3 | T ] =
P[Gγ′/3 ∧ T ]

P
[
Gγ′/3 ∧ T

]
+ P[Gγ′/3 ∧ T ]

≥
P[Gγ′/3 ∧ T ]

P[Gγ′/3 ∧ T ] + 2 · e−ϕ(γ′/6)2
. (2)

As the function x 7→ x
c+x is non-decreasing over [0, 1] for every constant c ∈ [0, 1], it is now sufficient

to find a non-trivial lower bound for P[Gγ′/3 ∧ T ]: Since Gγ′ ⊆ Gγ′/3, we have

P[Gγ′/3 ∧ T ] ≥ P[Gγ′ ∧ T ] = P[Gγ′ ] · P[T | Gγ′ ] ≥ γ′ · (1− 2 · e−ϕ(γ′/6)2) ≥ γ′ − 2 · e−ϕ(γ′/6)2 ,

24Informally, this means that if we simulate a system G = G(S) which is used only through black-box access, and
we do this by means of an algorithm G, we implicitly sample a corresponding S during the interaction even though
such S does not actually exist.
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Adversary A′i: // given access to Gi

for j := 1 to ϕ do
oj := A(M(Gi))⊕ b[1,i−1] ⊕B[i+1,m];

α1 := 2 · 1
ϕ ·
∑ϕ

j=1 oj − 1;
output 1 with probability min{max{1

2 + α1
2(δ+γ′) , 0}, 1}.

Figure 2: Adversary A′i in the proof of Lemma 8.

since P[T | Gγ′ ] ≤ P[|α1(S) − α1(S)| > γ′/3 | s ∈ Gγ′ ]. (Note that the above inequality implies in
particular P[T ] > 0.) Plugging this into (2) yields P[Gγ′/3 | T ] ≥ 1 − 2

γ′ · e
−ϕ(γ′/6)2 , and thus we

conclude

π1 = π2 ≥ P[Gγ′/3 | T ] · P[A(M(Gi(S))) = b[1,i−1] ⊕ b⊕B[i+1,m] |S ∈ Gγ′/3 ∧ T ]

≥
(

1− 2
γ′
· e−ϕ(γ′/6)2

)
·
(

1 + ε+ γ′/3
2

)
≥ 1 + ε

2
+
γ′

6
− 2
γ′
· e−ϕ(γ′/6)2 >

1 + ε

2
,

by the definition of ϕ.

Proof of Lemma 8. We construct the adversary A′i for predicting the bit Bi given access to
Gi as described in Figure 2: It estimates the value α1 by repeatedly simulating the execution of
A(M(·))⊕ b[1,i−1]⊕B[i+1,m] with the system Gi, and finally outputs 1 with probability 1

2 + α1
2(δ+γ′)

As above, we assume that (Gi, Bi) is instantiated by first sampling s ∈ S according to PS and
then behaving as (Gi(s), Bi(s)). This allows us to analyze the behavior of A′i conditioned on each
value s ∈ S. In particular, we denote by α1(s) the value obtained when run on G(s).

We first consider the event E that for the chosen S = s we have
∣∣∣α1(s)− α1(s)

∣∣∣ > γ′. Note
that the individual runs of the independent instances give independent outputs because Gi(s) is
stateless. Hence, by Hoeffding’s bound P[E ] ≤ 2 · e−ϕ(γ/8)2 (as similar argument was given above).
Also as above, we let Gγ′ the set of values s ∈ S such that |α1(s)| ≤ ε+γ′. (In particular, P[Gγ ] ≤ γ′,
by the assumption of the lemma.)

For all s ∈ Gγ′ , we have

P[A′i(Gi(s)) = Bi(s)] ≥ P[A′i(Gi(s)) = Bi(s) ∧ E ] = P[E ] · P[A′i(Gi(s)) = Bi(s) | E ] (3)

as well as

P[A′i(Gi(s)) = Bi(s) | E ] ≥ 1
2

+
α(s)− γ′

2(ε+ γ′)
. (4)

Moreover,∑
s∈Gγ′

PS(s) · α(s) =
∑
s∈S

PS(s) · α(s)−
∑
s/∈Gγ′

PS(s) · α(s) ≥ E[α(s)]− P[Gγ′ ] ≥ ε · δ + γ − γ′, (5)
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which finally yields

P[A′i(Gi(S)) = Bi(S) ∧ S ∈ G | E ] =
∑
s∈G

PS(s) · P[A′i(Gi(s)) = Bi(s) | E ]

(4)

≥ 1
2

+
∑

s∈G PS(s) · α(s)− γ′

2(ε+ γ′)
(5)

≥ 1
2

+
ε · δ + γ − 2γ′

2(ε+ γ′)

=
1
2

+
δ · (ε+ γ′) + γ − ε · γ′ − 2γ′

2(ε+ γ′)

≥ 1
2

+
δ

2
+

γ′

2(ε+ γ′)
≥ 1

2
+
δ

2
+
γ′

4
.

Hence, using Equation 3 we conclude that

P[A′i(Gi) = Bi] ≥
1 + δ

2
+
γ′

4
− 2e−ϕ(γ/8)2 =

1 + δ

2

for the given value of ϕ.
As for the complexity of the adversary, we note that the adversary A’ needs to hard-code

a description of the states σ1, . . . , σi−1 (needing at most l<i bits, which are hence counted only
once in the time-complexity) and runs ϕ copies of A, making each time qi queries to Gi, and we
additionally need to simulate Gj [σj ] for all j = 1, . . . , i− 1 (which takes time tGj (qj , lj)), and need
to simulate new instances of (Gj , Bj) for j = i+ 1, . . . ,m (which takes time t(Gj ,Bj)(qj)).

3.4 Obtaining a Uniform Reduction

The results of this paper are presented in the concrete (non-asymptotic) setting. The result can be
translated directly in the asymptotic setting by letting all quantities be functions of the considered
security parameter, but our proof is inherently non-uniform. However, it can easily be extended to
the uniform setting using standard techniques (cf. e.g. [11]). We only discuss the main modifications.
Note that the asymptotic setting is mostly used in the case (G1, B1) = · · · = (Gm, Bm) = (G, B),
especially because the number of instances m grows with the security parameter, and we restrict
ourselves to this case in the following discussion.

Given black box access to the adversary A, the new adversary SA for predicting B given access
to G proceeds as follows:

(1) Initially, it sets b[1,0] := 0.

(2) For each i = 1, . . . ,m − 1, given states σ1, . . . , σi−1, it repeatedly and independently runs
process SAMPLE, without the final output statement. We consider two cases:

(a) If the if-statement is satisfied in some run of SAMPLE (which would have output (σ, b)),
then we set σi := σ and b[1,i] := b⊕ b[1,i−1], and move to the next index i+ 1.

(b) If after a number itmax := −κ/ log(1 − λ′(κ)) (where κ is the security parameter) of runs
with the same index i of SAMPLE the if-statement was never satisfied, we run the adversary
A′i with the found states σ1, . . . , σi−1 and b[1,i−1] as above against the given system G to
guess B.
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(3) If the for loop is terminated (i.e. Case (b) was never met, and we end up with i = m), then
states σ1, . . . , σm−1 and a bit b[1,m−1] have been found. We use them to run the adversary
A(G[σ1]‖ · · · ‖G[σm−1]‖·) on G and add b[1,m−1] to the resulting output.

The main idea is that for given i, in the case where |α1(S)| > ε + γ′ holds with probability at
least γ′, then a good state σi is found with overwhelming probability within the given number of
iterations itmax, and we can move to the next i. If for some i the if-statement is never satisfied,
then with overwhelming probability |α1(S)| ≤ ε+ γ′, and thus the attacker A′i is successful.

4 A General Product Theorem for Neutralizing Constructions
from the XOR-Lemma

4.1 Setting and Theorem Statement

Throughout this section, let C(·) be a neutralizing construction for the real systems F1, . . . ,Fm

and the corresponding ideal I1, . . . , Im, of which all but Fm and Im have to be cc-stateless. We
prove a general product theorem upper bounding ∆t,q(C(F1, . . . ,Fm),C(I1, . . . , Im)) in terms of
the individual advantages ∆t′i,q

′
i
(Fi, Ii) (for some related t′i, q

′
i). The theorem is a computational

version of the information-theoretic product theorem from [26]: In particular, we inherit the same
bounds, with an unavoidable additive term.

The theorem relies on the canonical implementation 〈Fi, Ii〉Bi of 〈Fi, Ii〉Bi which chooses a
random bit Bi ∈ {0, 1} and answers each query using the implementations Fi and Ii (with re-
spective complexities tFi and tIi) of Fi or of Ii, respectively, depending on the value of Bi.
(Bi is in particular part of the state.) It can be implemented with complexity t〈Fi,Bi〉Bi

(q, s) =
max{tFi(q, s), tIi(q, s)}+O(1). This also yields an implementation of (〈Fi, Ii〉Bi , Bi) with the same
complexity (by additionally outputting the bit Bi). Finally, we let li and l<i as above be defined
with respect to 〈Fi, Ii〉Bi , and let tC be the time complexity of an efficient implementation of C(·).

Theorem 9 (Product Theorem). Let C(·) be as above, and let q > 0 be such that C(·) makes qi
queries to its i-th subsystem when invoked q times. Then, for all t, γ > 0, if ∆t′i,q

′
i
(Fi, Ii) ≤ 1

2 for
all i = 1, . . . ,m− 1,

∆t,q(C(F1, . . . ,Fm),C(I1, . . . , Im)) ≤ 2m−1 ·
m∏
i=1

∆t′i,q
′
i
(Fi, Ii) + 2γ,

where t′i := l<i + ϕ ·
[
t + tC(q) + O

(∑i−1
j=1 t〈Fj ,Ij〉Bj

(qj , lj) +
∑m

j=i+1 t〈Fj ,Ij〉Bj
(qj)

)]
and q′i := ϕ · qi

for all i = 1, . . . ,m− 1, whereas t′m := l<m + t+ tC(q) +O
(∑m−1

j=1 t〈Fj ,Ij〉Bj
(qj , lj)

)
and q′m := qm.

The remainder of this section provides a simple proof sketch of Theorem 9. A full proof is given
in the next section (Section 4.2), whereas Section 4.3 presents some applications of the product
theorem.

Proof Sketch. We present a proof sketch of the above theorem for the case m = 2. For simplicity,
let F1 = F, F2 = G, I1 = I, and I2 = J. The core of the proof is a generic argument (i.e. it holds
for all distinguishers, regardless of their computing power) reducing the task of upper bounding
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the distinguishing advantage for a neutralizing construction to the setting of the XOR-lemma.25 It
is easy to verify that (also cf. [26])

∆D(C(F,G),C(I,J)) = 2 ·∆D(〈C(F,G),C(I,J)〉B,C(I,J))

= 2 ·
∣∣ΓD(〈〈C(F,G),C(I,J)〉B,C(I,J)〉B′ , B′)

∣∣ ,
where B and B′ are independent uniformly distributed random bits. Note that conditioned on
B′ = 0, the system 〈〈C(F,G),C(I,J)〉B,C(I,J)〉B′ behaves as C(F,G) with probability 1

2 , and
as C(I,J) otherwise. On the other hand, conditioned on B′ = 1 it always behaves as C(I,J). In
particular, this implies that (for independent uniform random bits B1, B2)(

〈〈C(F,G),C(I,J)〉B,C(I,J)〉B′ , B′
)
≡
(
C(〈F, I〉B1 , 〈G,J〉B2), B1 ⊕B2

)
,

because of the neutralizing property. We thus obtain

ΓD(〈〈C(F,G),C(I,J)〉B,C(I,J)〉B′ , B′) = ΓD(C(〈F, I〉B1 , 〈G,J〉B2), B1 ⊕B2)

and we conclude the proof by “absorbing” the computation of C(·) into D, clearly without modifying
the advantage. Using the XOR-lemma (Theorem 5) for m = 2 we obtain

∆t,q(C(F,G),C(I,J)) ≤ 2 · Γt+tC(q),q1,q2(〈F, I〉B1‖〈G,J〉B2 , B1 ⊕B2)

≤ 2 · Γt′1,q′1(〈F, I〉B1 , B1) · Γt′2,q′2(〈G,J〉B2 , B2) + 2γ.

for appropriate t′1, q
′
1 and t′2, q

′
2. It is not hard to extend this argument to constructions C(·)

which are “splittable”, i.e., one can write C(F1, . . . ,Fm) as C(F1,C(F2, . . . ,Fm)). However, ex-
tending the proof to arbitrary neutralizing constructions for m > 2 requires some extra care, as
we explain in the next section. In particular, the above argument can be extended to show that
∆D(C(F1, . . . ,Fm),C(I1, . . . , Im)) = 2m−1 ·

∣∣ΓD(〈F1, I1〉B1‖ . . . ‖〈Fm, Im〉Bm , B1 ⊕ · · · ⊕Bm)
∣∣, but

this is not sufficient due to the extra term γ appearing in the upper bound given by the XOR-lemma.

4.2 Proof of the Product Theorem

The key technique used in the proof of Theorem 9 is the extension of the isolation lemma (Lemma 6)
to the setting of computational indistinguishability amplification. While this follows the same lines
as the proof sketch given above, we rely on the stronger statement given by the isolation lemma
(Lemma 6) in order to prove the result for the most general setting where no structural requirements
are made on the construction C(·).

Isolation Lemma. In order to simplify notation, we denote as G1, G2, . . . the implementations
〈F1, I1〉B1 , 〈F2, I2〉B2 , . . . of the systems 〈F1, I1〉B1 , 〈F2, I2〉B2 , . . . for uniform random bitsB1, B2, . . ..
It is also occasionally convenient to write C(F1‖ . . . ‖Fm) instead of C(F1, . . . ,Fm), i.e., we see the
construction as accessing one system (namely, the parallel composition of all subsystems), rather
than the individual subsystems. Furthermore, we define the shorthands F[i,j] := Fi‖ . . . ‖Fj and
I[i,j] := Ii‖ . . . ‖Ij .

25A similar argument was implicitly used in the information-theoretic product theorem of [26].
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Lemma 10. Let i ∈ {1, . . . ,m− 1}, let γ > 0, and let D be a distinguisher with complexity t and
making q queries to C(·), resulting in q1, . . . , qm queries to the respective subsystems. Moreover,
let σ1, . . . , σi−1 be valid states for the systems 〈F1, I1〉B1 , . . . , 〈Fi−1, Ii−1〉Bi−1, respectively, with
|σj | ≤ lj (for j = 1, . . . , i− 1), and let b[1,i−1] ∈ {0, 1} be a binary value with the property that

ΓD(C(G1[σ1]‖ · · · ‖Gi−1[σi−1]‖〈F[i,m], I[i,m]〉B), b[1,i−1] ⊕B) > 2 · ε · δ + 2γ.

Then, at least one of the following two statements is true:

(i) There exists a valid state σi for Gi with |σi| ≤ li and a bit b[1,i] ∈ {0, 1} such that

ΓD(C(G1[σ1]‖ · · · ‖Gi[σi]‖〈F[i+1,m], I[i+1,m]〉B), b[1,i] ⊕B) > ε;

(ii) There exists a distinguisher D′i with running time t′i making q′i queries such that ∆D′i(Fi, Ii) ≥
ΓD′i(〈Fi, Ii〉Bi , Bi) > δ, and

t′i = l<i + ϕ ·

t+O

 i−1∑
j=1

t〈Fj ,Ij〉Bj
(qj , lj) +

m∑
j=i+1

t〈Fj ,Ij〉Bj
(qj)


and q′i = ϕ′ · qi.

Proof. Using the shorthand G = G1[σ1]‖ · · · ‖Gi−1[σi−1], a straightforward calculation yields (for
an additional uniform random bit B′ independent of B)

ΓD(C(G‖〈F[i,m], I[i,m]〉B), b[1,i−1] ⊕B) = 2 · ΓD(C(G‖〈〈F[i,m], I[i,m]〉B′ , I[i,m]〉B), b[1,i−1] ⊕B). (6)

Furthermore, we observe that the fact that C(·) is neutralizing for F1, . . . ,Fm and I1, . . . , Im implies
that C(·) is neutralizing for 〈F1, I1〉B1 , . . . , 〈Fi−1, Ii−1〉Bi−1 ,Fi, . . . ,Fm and I1, . . . , Im. In turn, be-
cause 〈F1, I1〉B1 , . . . , 〈Fi−1, Ii−1〉Bi−1 are cc-stateless systems, the construction C(·) is neutralizing
for G1[σ1], . . . , Gi−1[σi−1],Fi, . . . ,Fm and I1, . . . , Im as well. This in particular implies that

C(G‖Fi‖I[i+1,m]) ≡ C(G‖Ii‖F[i+1,m]) ≡ C(G‖I[i,m]) ≡ C(I1, . . . , Im),

and this yields the equivalence

(C(G‖〈〈F[i,m], I[i,m]〉B′ , I[i,m]〉B), b[1,i−1] ⊕B) ≡
≡ (C(G‖〈Fi, Ii〉Bi‖〈F[i+1,m], I[i+1,m]〉B′′), b[1,i−1] ⊕Bi ⊕B′′) (7)

for independent uniform random bitsBi andB′′, since both system-bit pairs behave as C(I1, . . . , Im)
whenever the bit is 1 − b[1,i−1], whereas otherwise they behave as C(I1, . . . , Im) or C(G‖F[i,m])
with probability 1/2 each. Therefore, combining (6) and (7), the assumption of the lemma can
equivalently be reformulated as

2 · ΓD(C(G‖〈Fi, Ii〉Bi‖〈F[i+1,m], I[i+1,m]〉B′′), b[1,i−1] ⊕Bi ⊕B′′) > 2εδ + 2γ,

which is equivalent to

ΓDC(G‖〈Fi, Ii〉Bi‖〈F[i+1,m], I[i+1,m]〉B′ , Bi ⊕B′) > εδ + γ,

where DC is the distinguisher which, given a system S, simulates the interaction between D and
C(S), outputting D’s decision bit. We can now apply the isolation lemma (Lemma 6) to obtain the
desired statement, and note that the running time to implement (〈F[i+1,m], I[i+1,m]〉B′ , B′) when
accessed by D is roughly

∑m
j=i+1

t〈Fj ,Ij〉Bj
(qj) by construction of 〈Fj , Ij〉Bj .
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From the Isolation Lemma to the Product Theorem. For given t, q, λ > 0 (with γ :=
γ/(m − 1), q1, . . . , qm such that q queries result in q1, . . . , qm queries of C(·) to the respective
subsystems, we let t′1, . . . , t

′
m and q′1, . . . , q

′
m be as in the statement of Theorem 9, and define

δi := ∆t′i,q
′
i
(Fi, Ii). Furthermore, recall that δi ≤ 1

2 for all i = 1, . . . ,m− 1.
From now on, let D be the distinguisher with running time t making q queries to C(·) such that

∆D(C(F1, . . . ,Fm),C(I1, . . . , Im)) = ΓD(C(〈F[1,m], I[1,m]〉B), B) ≥ 2m−1 · δ1 · · · δm + 2γ

for a uniform random bit B. Define γi := (m − 1 − i) · γ for i = 0, . . . ,m − 1 and consider
the statements STATi(σ1, . . . , σi, b) for a bit b ∈ {0, 1} and valid states σ1, . . . , σi of G1, . . . , Gi
respectively, with |σj | ≤ lj for j = 1, . . . , i which holds if and only if

ΓD(C(G1[σ1]‖ · · · ‖Gi[σi]‖〈F[i+1,m], I[i+1,m]〉B′), b⊕B′) ≥ 2m−1−i · δi+1 · · · δm + γi

≥ 2 · δi+1 · (2m−1−(i+1) · δi+2 · · · δm + γi+1) + γ,

where we have used the facts that γi := γi−1 + γ and 2 · δi+1 ≤ 1. In particular, by our assumption
STAT0(0) holds. Furthermore, given STATi(σ1, . . . , σi−1, b) holds for some i we apply the isolation
Lemma (Lemma 10). Note that condition (ii) cannot hold, as otherwise there exists a distinguisher
D′i such that ∆D′i(Fi, Ii) > δi, but this contradicts the assumed indistinguishability of Fi and Ii,
as we have defined δi with respect to the maximal running time of a constructed distinguisher D′i.
Therefore, condition (i) must hold: In other words, we have shown that for all i = 0, . . . ,m− 2

STATi(σ1, . . . , σi, b) =⇒ ∃σi+1, b
′ : STATi(σ1, . . . , σi, σi+1, b⊕ b′),

where all the states σ1, σ2, . . . are valid for their respective implementations and are such that
|σi| ≤ li. Iterating the argument we obtain that there exist σ1, . . . , σm−1 and a bit b such that

ΓD(C(G1[σ1]‖ · · · ‖Gm−1[σm−1]‖〈Fm, Im〉Bm), b⊕Bm) > δm + γ̃m−1 = δm.

However, we can now consider the distinguisher D′ := D(C(G1[σ1]‖ · · · ‖Gm−1[σi]‖·)) ⊕ b which
given access to S ∈ {Fm, Im} simulates D interacting with C(G1[σ1]‖ · · · ‖Gm−1[σi]‖S), obtaining
output b′. Finally, D′ outputs b ⊕ b′. The distinguisher D′ obtains advantage larger than > δm,
contradicting the assumed indistinguishability of Fm and Im.

4.3 Applications of the Product Theorem

Sums of PRFs. Let F1, . . . ,Fm : X → Y be cc-stateless random functions (in fact, Fm can
possibly be stateful), and let ? be a quasi-group operation on Y. The operator ? is neutralizing, as
discussed in Section 2.2, for F1, . . . ,Fm and ideal systems I1 = · · · = Im = R, where R : X → Y
is a URF. In order to simplify the time complexity statements, we assume that there exist efficient
algorithms implementing Fi(·) such that Fi(s, x) is computed in time tFi given s and x (this holds
in the interesting case where we apply the result to PRFs) and elements of Y can be encoded
using ` ≈ log |Y| bits. Note that the canonical implementation of R keeps a linearly-growing state
of size s = O(q · `) after q queries, and answers each query in time O(log(s)). Therefore, with
t〈Fi,R〉Bi

(q, s) = O(q ·max{tFi , log(s+ q`)}) and l<i = O((i−1)ϕq`), we apply Theorem 9 to obtain
the following result (we tacitly assume that all advantages are bounded by 1

2):
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Corollary 11. For all t, q, γ > 0,

∆t,q(F1 ? · · · ? Fm,R) ≤ 2m−1 ·
m∏
i=1

∆t′i,q
′
i
(Fi,R) + 2γ.

We remark that the analogous result for PRGs follows as a special case, since a PRG can be
seen as a one-input PRF.

A weaker version of this result was shown by Dodis et al. [6] for the special case ? = ⊕:
Their bounds depend in particular on the number of queries, and is hence far away from the tight
information-theoretic bound which is matched (up to the term γ) by our result.

Cascade of PRPs. Let P : {0, 1}n → {0, 1}n be a URP and let Q1, . . . ,Qm : {0, 1}n → {0, 1}n
be cc-stateless random permutations. Recall that the B operator is neutralizing for Q1, . . . ,Qm (all
with ideal system P), as well as for 〈Q1〉, . . . , 〈Qm〉 (all with ideal system 〈P〉). As above, we assume
that both Qi(s, x) and Q−1

i (s, y) are computable in time tQi . Furthermore, simulating the URP P
(as well as the two-sided URP 〈P〉) requires the same complexity as implementing a URF. Therefore,
with t〈Qi,P 〉Bi

(q, s) = t〈〈Qi〉,〈P 〉〉Bi
(q, s) = O(q · max{tQi , log(s + qn)}) and l<i = O((i − 1)ϕqn),

Theorem 9 yields the following corollary:

Corollary 12. For all t, q, γ > 0,

∆t,q(Q1 B · · ·B Qm,P) ≤ 2m−1 ·
m∏
i=1

∆t′i,q
′
i
(Qi,P) + 2γ,

and

∆t,q(〈Q1〉B · · ·B 〈Qm〉, 〈P〉) ≤ 2m−1 ·
m∏
i=1

∆t′i,q
′
i
(〈Qi〉, 〈P〉) + 2γ.

Furthermore, we note that Q1 is allowed to be stateful in the one-sided case, as Theorem 9
allows one system to be stateful: In fact, B is not necessarily neutralizing whenever at least two
permutations are stateful.

We remark that this is the first result considering two-sided PRPs, and even in the one-sided
setting only the case m = 2 was considered by Luby and Rackoff [23], and subsequently extended
to any constant m by Myers [28]. (Also, a slightly weaker result for the case m = O(log log n) is
given in [28].) However, all of these results fall short of achieving security amplification, as they
are not able to transform a δ-PRP for a non-negligible δ into a fully secure PRP.

Asymptotic Interpretation. In the asymptotic setting, Corollary 11 can be interpreted as
follows. If F(·) is a δ-PRF (for some δ < 1

2), it follows that F(S1) ? · · · ? F(Sm), for independent
keys S1, . . . , Sm, is a 2m−1 · δm-PRF: For t, q polynomially bounded in n, we have ∆t,q(F(S1) ? · · · ?
F(Sm),R) ≤ 2m−1 · δm + ν(n) + 1/p(n) for all polynomials p (and some negligible function ν), as
both t′i and q′i are polynomial as well. Moreover, Corollary 12 implies a similar statement for the
cascade of δ-(two-sided)-PRPs.
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5 A Strong Product Theorem for Randomized Neutralizing Con-
structions

5.1 A Product Theorem from Self-Independence

Since Theorem 9 holds for arbitrary neutralizing constructions, one cannot avoid the factor 2m−1

in the bound. This section shows that a subclass of neutralizing constructions satisfying a simple
information-theoretic property yield a strong product theorem, i.e., the obtained upper bound is
roughly the product of the individual advantages.

Self-Independence. The notion of self-independence of an ideal system I under a construction
C(·) captures the property that a computationally unbounded distinguisher cannot tell apart the
scenario where the same instance of I is accessed through independent instances of C(·) from the
setting where each instance of C(·) accesses an independent instance of I.

Definition 3. The system I is η-self-independent under C(·) for a function η : N × N → R≥0, if
for all q, λ > 0, the best (information-theoretic) distinguishing advantage when allowing q queries
to each subsystem satisfies

∆q,...,q(C1(I)‖ . . . ‖Cλ(I),C1(I1)‖ . . . ‖Cλ(Iλ)) ≤ η(q, λ),

where C1(·), . . . ,Cλ(·) and I1, . . . , Iλ are independent copies of C(·) and I, respectively.

As an example, consider the construction C(·) which generates a (secret) random n-bit offset
Z, and given access to a random function F : {0, 1}n → {0, 1}n, C(F) returns F(x⊕Z) upon each
query x. It is not hard to show, e.g. using the tools from [24], that a URF R : {0, 1}n → {0, 1}n

is η-self-independent under C(·) for η(q, λ) ≤ q2λ2

2 · 2
−n, i.e., the probability that for some distinct

i 6= j the instances Ci(·) and Cj(·) invoke R with the same input.

Restricted Attacks on Cryptographic Functions. Indistinguishability-based security def-
initions can also be weakened by restricting the distinguisher’s access to the given system. For
instance, the standard PRF notion considering an (adaptive) chosen-input attack can be weakened
to non-adaptive chosen-input attacks or even (known) random-input attacks. (Keyed functions
which are secure under the latter notion are usually called weak PRFs [30] in the literature.26)
This is conveniently modeled by letting the distinguisher access either of E(F) and E(G), where
the construction E(·) enforces a particular type of access, and F and G are the systems to be
distinguished. For a chosen-input attack, E would just give full access to the underlying system
(i.e. E(·) is the identity), and the following are two additional examples:

• Random-input attacks against an (X ,Y)-system are modeled by K(·) that, upon each invo-
cation (with some dummy input), generates a fresh uniformly-chosen element r ∈ X , makes
a query with input r to the given subsystem, obtaining y ∈ Y, and returns (r, y).

• For a quasi-group operation ∗ on X (usually ⊕), a random-offset attack is modeled by a
construction Z(·) which initially generates a random offset Z ∈ X , and upon each invocation
with input x ∈ X , makes a query to the given subsystem with input x ? Z, and outputs
the returned value y. (To our knowledge, this notion was not previously considered in the
literature.)

26The name is slightly misleading within the context of this paper, as it can been used [29] to describe an ε-PRF
for a non-negligible ε < 1.
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A feature of the product theorem of this section is that it is easily applicable also to the restricted-
access case.

The Strong Product Theorem. In the following, let C(·) be a neutralizing construction for
systems F1, . . . ,Fm and ideal system I1, . . . , Im, all of which (with the possible exception of Fm

and Im) are cc-stateless. Furthermore, we assume that Fi(·) is efficiently implementable for all
i = 1, . . . ,m − 1,27 and the corresponding (short) random variable Si is drawn from the set Si.
Also, we let E(·) be a construction restricting access to Fi and Ii. Finally, for i = 1, . . . ,m, and
for s1 ∈ S1, . . . , si−1 ∈ Si−1 we define

C(i)
s1,...,si−1

(·) := C(F1(s1), . . . ,Fi−1(si−1), · ,Fi+1, . . . ,Fm)

and consider the following two properties:

(i) For all i = 1, . . . ,m− 1 (the property is not necessary for i = m) and all s1 ∈ S1, . . . , si−1 ∈
Si−1, the ideal system Ii is η-self-independent under the construction C(i)

s1,...,si−1(·) for some
small function η.

(ii) For all i = 1, . . . ,m and s1 ∈ S1, . . . , si−1 ∈ Si−1, there exists a construction T(i)
s1,...,si−1(·)

with the property that for independent instances T1(·), . . . ,Tλ(·) and C1(·), . . . ,Cλ(·) of
T(i)
s1,...,si−1(·) and C(i)

s1,...,si−1(·), respectively, and all compatible systems S,

T1(E(S))‖ · · · ‖Tλ(E(S)) ≡ C1(S)‖ · · · ‖Cλ(S).

We define tTi as the maximal complexity (taken over all s1, . . . , si−1) for implementing the
construction T(i)

s1,...,si−1(·).

In the following, we define λ :=
(

4m
γ

)2
· ln
(

4m
γ

)
, for understood m and γ.

Theorem 13 (Strong Product Theorem). Let q > 0, C(·), and E(·) be as above satisfying con-
ditions (i) and (ii), and assume that upon q queries, C(·) makes at most qi queries to the i-th
subsystem. Then, for all t, γ > 0,

∆t,q(C(F1, . . . ,Fm),C(I1, . . . , Im)) ≤
m∏
i=1

∆t′i,q
′
i
(E(Fi),E(Ii)) +

m−1∑
i=1

η(qi, λ) + γ,

where t′i := λ · (t+O(tTi(qi))) and q′i := λ · qi for all i = 1, . . . ,m− 1, whereas t′m := t+O(tTm(q))
and q′m := qm.

We first give a proof sketch for the case m = 2 (and E(·) being the identity) to illustrate the
main ideas used in the proof. The full proof of Theorem 13 is deferred to Section 5.2. It abstracts
and generalizes the proof technique used by Myers [29] (which was in turn based on Levin’s proof
of the XOR-lemma [22, 11]).

27While the same techniques as in the proof of Theorem 5 could be used to address general cc-stateless systems
where F(·) is not necessarily efficient, this will not be necessary for our applications.
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Proof Idea for m = 2. For convenience we set F1 = F = F(S),F2 = G, I1 = I, I2 = J, and we
omit E(·), as it is the identity, We assume that S is drawn (according to some distribution) from
a set S. Let D be a distinguisher contradicting Theorem 13, i.e., such that

P[D(C(F,G)) = 1]− P[D(C(I,J)) = 1] > δ · ε+ η + γ.

We show that there exist distinguishers D′ and D′′ with complexities close to that of D such that
∆D′(F, I) > δ or ∆D′′(G,J) > ε holds.

For all s ∈ S, we define

α(s) := P[D(C(F(s),G) = 1]− P[D(C(I,J)) = 1].

We note that, on the one hand, if there existed some s with α(s) > ε, we would be able to
distinguish G from J by means of a distinguisher D′′ := D(C(F(s), ·)), since using the fact that
C(·) is neutralizing we have

∆D′′(G,J) ≥ P[D(C(F(s),G)) = 1]− P[D(C(F(s),J)︸ ︷︷ ︸
≡C(I,J)

) = 1] = α(s) > ε.

On other hand, if α(s) ≤ ε, a simple averaging argument implies the existence of a set G ⊆ S such
that P[S ∈ G] > δ + η and α(s) > γ for all s ∈ G.

Let now π := P[D(C(I,J) = 1]: We consider a distinguisher D′ which given access to S ∈ {F, I}
computes the outputs o1, . . . , oλ ∈ {0, 1} obtained by letting λ independent instances of D(C(·,G))
sequentially interact with the given system S. Finally, it outputs 1 if and only if the average o of
these bits is larger than π + γ/2, and 0 otherwise.

On the one hand, if S = F(s) for some fixed s ∈ S, the system S is stateless and hence the
variables o1, . . . , oλ are independent with E[oj ] = P[D(D(F(s),G)) = 1] > π + γ (since α(s) > γ):
By Hoeffding’s inequality (cf. Appendix A) the average o of o1, . . . , oλ ∈ {0, 1} is larger than π+γ/2,
except with negligible probability, and thus 1 is output with overwhelming probability by D′. On
the other hand, the variables o1, . . . , oλ are in general not independent if S = I. However, we can
exploit self-independence under C(·,G) to show that the probability that o < π+γ/2 is at most an
additive term η larger than the probability that the same happens for the average o′ of the outputs
o′1, . . . , o

′
λ of λ independent instances of D(C(I,G)). Due to independence, this last probability is

again negligible by Hoeffding’s inequality, and thus D′ outputs 1 with probability bounded by η
plus a negligible term. Approximating overwhelming and negligible by 1 and 0, respectively, the
final advantage of D′ is hence at least P[S ∈ G] · 1− η ≥ δ + η − η = δ.

The full proof is obtained by a careful analysis of the involved quantities and extending this
argument (in an inductive way) to m systems.

5.2 Proof of the Strong Product Theorem

This section presents a proof of Theorem 13. As in the cases of Theorems 5 and 9, the proof is
based on the isolation technique. At the end of this section we briefly mention the main changes
to be done in order to obtain a uniform reduction.

The Isolation Lemma. In the following, we let I := C(I1, . . . , Im) and define λ = λ(m, γ) :=(
4
γ

)2
· ln
(

4
γ

)
. Also, in the following, let λ be defined as above with respect to some understood γ,

whereas with respect to γ we define λ :=
(

4
γ

)2
· ln
(

4
γ

)
.
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Lemma 14. Let i ∈ {1, . . . ,m − 1} and γ > 0. Assume that D makes q queries to C(·) resulting
in qj queries to each of the m sub-systems Fj, and that for values s1 ∈ S1, . . . , si−1 ∈ Si−1 we have

P[D(C(F1(s1), . . . ,Fi−1(si−1),Fi, · · · ,Fm)) = 1]− P[D(I) = 1] > ε · δ + ζ + γ,

then at least one of the two following statements holds:

(i) There exists a value si ∈ Si such that

P[D(C(F1(s1), . . . ,Fi(si),Fi+1, · · · ,Fm)) = 1]− P[D(I) = 1] > ε+ ζ − η(qi, λ).

(ii) There exists a distinguisher D′i such that ∆D′i(E(Fi),E(Ii)) > δ which makes q′i := λ · qi
queries and has time complexity t′i := λ · (t+ tTi(q)).

From the Isolation Lemma to Theorem 13. Similarly to the cases of Theorems 5 and 9, we
apply the isolation lemma iteratively to obtain Theorem 13. Fix t, q, γ > 0 (and let γ := γ/(m−1))
such that upon q queries C(·) makes q1, . . . , qm queries to its subsystems. For all i = 1, . . . ,m, let
t′i, q

′
i as in the statement of Theorem 13, and let δi := ∆t′i,q

′
i
(Fi, Bi).

Assume towards a contradiction that there exists a distinguisher D with running time t making
q queries to C such that

∆D(C(F1, . . . ,Fm), I) ≥ P[D(C(F1, . . . ,Fm)) = 1]− P[D(I) = 1] ≥ δ1 · · · δm +
m−1∑
i=1

η(qi, λ) + γ.

and define γi := (m− 1− i) · γ for i = 0, . . . ,m− 1 and consider the statements STATi(s1, . . . , si)
which holds if and only if

P[D(C(F1(s1), . . . ,Fi(si),Fi+1, . . . ,Fm)) = 1]− P[D(I) = 1] ≥ δi+1 · · · δm +
m−1∑
j=i+1

η(qj , λ) + γi

≥ δi+1 · (δi+2 · · · δm + γi+1) +
m−1∑
j=i+1

η(qj , λ) + γ.

In particular, by our assumption STAT0 holds. By the Isolation Lemma (Lemma 14) and the
fact that ∆t′i+1,q

′
i+!

(Fi+1, Ii+1) ≤ δi+1, given STATi(s1, . . . , si) holds for some s1, . . . , si, then con-
dition (ii) cannot hold, and hence condition (i) must hold, i.e., there must exists si+1 such that
STATi+1(s1, . . . , si+1) holds. In other words, we have shown that for all i = 0, . . . ,m− 2

STATi(s1, . . . , si) =⇒ ∃si+1 : STATi+1(s1, . . . , si+1).

Iterating the argument we obtain that there exist s1, . . . , sm−1 such that STATm−1(s1, . . . , sm−1)
holds, i.e.

P[D(C(F1(s1), . . . ,Fm−1(sm−1),Fm) = 1]− P[D(I) = 1] ≥ δm.

This, however, gives rise to a distinguisher D′m := D(Tm−1,s1,...,sm−1(·)) with advantage δm and the
given complexity t′m, contradicting the indistinguishability assumption on Fm and Im.
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Distinguisher D′i: // for S ∈ {E(Fi),E(Ii)}
for j := 1, . . . , λ do
oj := D(T(i)

s1,...,si−1(S));
o := 1

λ ·
∑λ

j=1 oj ;
if o− π > γ/4 then

output 1
else

output 0;

Distinguisher D′′i : // for S ∈ {Fi, Ii}
for j := 1, . . . , λ do
oj := D(C(i)(S));

o := 1
λ ·
∑λ

j=1 oj ;
if o− π > γ/4 then

output 1
else

output 0;

Figure 3: Distinguishers D′i and D′′i in the proof of Lemma 14. In both cases, π equals P[D(I) = 1].

Proof of the Isolation Lemma (Lemma 14). We fix i ∈ {1, . . . ,m} as in the statement of the
lemma. It is convenient to denote η := η(qi, λ), as well as C(i)(·) := C(i)

s1,...,si−1(·). Note that since
C(·) is neutralizing, we have C(i)(Ii) ≡ I. Furthermore, we also define the function α : Si → [−1, 1]
such that

α(s) := P[D(C(i)(F(s))) = 1]− P[D(I) = 1].

Clearly, by the assumption of the lemma, we have E[α(Si)] > ε · δ + ζ + γ. Furthermore, if there
existed an si such that α(si) > ε+ ζ − η, the first statement of the lemma would be directly true.
Therefore, we assume in the following that α(s) ≤ ε+ ζ − η for all s ∈ Si. Furthermore, we define
the set

G := {s ∈ Si |α(s) > γ/2}.

The following claim gives a lower bound on the probability that Si is in the set G.

Claim 1. P[Si ∈ G] > δ + η + γ/2.

Proof. Assume, towards a contradiction, that P[Si ∈ G] ≤ δ + γ/2 + η. Then,

E[α(Si)] = P[Si ∈ G] · E[α(Si)|Si ∈ G] + P[Si /∈ G] · E[α(Si)|Si /∈ G]
≤ (δ + η + γ/2) · (ε+ ζ − η) + γ/2 ≤ δε+ ζ − η + η + γ/2 + γ/2 = δε+ ζ + γ.

which is in contradiction with the assumption on D.

We construct the distinguisher D′i for distinguishing E(Fi) from E(Ii) as specified on the
left-hand-side of Figure 3: With π := P[D(I) = 1], D′i simulates λ independent instances of
D(T(i)

s1,...,si−1(·)) sequentially interacting with the given system S, and computes the average o of
the λ bits output by these instances, and finally outputs 1 if o > π + γ/2, and 0 otherwise. Note
that by the property of T(i)

s1,...,si−1 we can equivalently consider a distinguisher D′′i for Fi and Ii (de-
picted on the right-hand-side of Figure 3) which computes the bits o1, . . . , oλ by letting independent
instances of D(C(i)(·)) interact with the given system. Clearly, ∆D′i(E(Fi),E(Ii)) = ∆D′′i (Fi, Ii),
and we thus focus on the latter advantage.

The remainder of the proof consists of the following two lemmas.

Lemma 15. P[D′′i (Fi(s)) = 1] > 1− e−λ(γ/4)2 for all s ∈ G.

Lemma 16. P[D′′i (Ii) = 1] ≤ e−λ(γ/4)2 + η(qi, λ).

28



Before we turn to the proofs of the two lemmas, we note that they suffice to obtain the isolation
lemma, since by Claim 1

∆D′′i (Fi, Ii) ≥ P[Si ∈ G] · P[D′′i (Fi(Si)) = 1|Si ∈ G]− P[D′′i (Ii) = 1]

> (δ + γ/2 + η)(1− e−λ(γ/4)2)− e−λ(γ/4)2 − η

≥ δ + γ/2 + η − e−λ(γ/4)2 − e−λ(γ/4)2 − η = δ + γ/2− 2e−λ(γ/4)2 = δ

for the chosen value of λ.

Proof of Lemma 15. Since the system Fi(s) is stateless, note that for a fixed s ∈ G the random
variables o1, . . . , oλ are independent binary variables with

p(s) := P[oj = 1] = P[D(C(i)(Fi(s))) = 1],

and thus E[o] = p(s). We know that p(s)−π > γ/2, since s ∈ G, and thus o−π ≤ γ/4 implies that
o < p(s)− γ/4. Therefore, by Hoeffding’s bound, we have

P[D′′i (Fi(s)) = 0] = P[o− π ≤ γ/4] ≤ P[o < p(s)− γ/4] < e−λ(γ/4)2 .

Proof of Lemma 16. Consider a distinguisher D′′i which given access to the parallel composition
S1‖ . . . ‖Sλ of λ systems S1, . . . ,Sλ, computes oj := D(Sj) for all j = 1, . . . , λ, and then outputs
its decision bit as D′′i . Clearly, for independent instances C(i)

1 (·), . . . ,C(i)
λ (·) of C(i)(·) we have

P[D′′i (Ii) = 1] = P[D′′i (C
(i)
1 (Ii)‖ . . . ‖C(i)

λ (Ii)) = 1],

i.e., where every system in the parallel composition accesses the same instance Ii. Note that because
of the η-self-independence of Ii under C(i) we have, for independent instances Ii,1, . . . , Ii,λ of Ii

∆D
′′
i (C(i)

1 (Ii)‖ . . . ‖C(i)
λ (Ii),C

(i)
1 (Ii,1)‖ . . . ‖C(i)

λ (Ii,λ)) ≤ η(qi, λ),

from which we directly infer

P[D′′i (Ii) = 1] ≤ η(qi, λ) + P[D′′i (C
(i)
1 (Ii,1)‖ . . . ‖C(i)

λ (Ii,λ)) = 1]. (8)

We hence upper bound the probability on the right-hand side. Note that, in this case, the variables
o1, . . . , oλ are assigned independent equally-distributed values, with P[oj = 1] = π all j = 1, . . . , λ
(by the neutralizing property of C(·)), and thus E[o] = π holds as well. Then, by Hoeffding’s
inequality,

P[D′′i (C
(i)
1 (Ii,1)‖ . . . ‖C(i)

λ (Ii,λ)) = 1] = P[o− π > γ/4] < e−λ·(γ/4)2 ,

which combined with (8) yields the desired upper bound.

Obtaining a Uniform Reduction. We can adapt the above proof to obtain a uniform reduction,
similarly to Section 3.4. Obviously, the main difference is that we cannot fix values s1, s2, . . . as in
the above proof, but we have to be able to sample such values. An additional requirement is thus
that there exists a uniform algorithm which (on input i and s1, . . . , si−1) implements T(i)

s1,...,si−1(·).
For increasing i, we attempt to sample a good si for which α(si) > ε+

∑m−1
j=i+1 η(qj , λ) + γ′ (for

some extra term γ′ < γ) by repeated sampling and testing, and if we fail, we have the guarantee
that α(si) ≤ ε +

∑m−1
j=i+1 η(qj , λ) + γ′ with good probability over the choice of Si, and we run the

distinguisher D′i. The only difference is that the probability π must be estimated as well. Also, if
states s1, . . . , sm−1 are found, then we conclude as in the non-uniform case.

The computation has to be modified to take into account the extra error term γ′
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5.3 Applications of the Strong Product Theorem

This section presents a number of new results which follow as simple applications of Theorem 13.
Let Q1, . . . ,Qm : {0, 1}n → {0, 1}n be cc-stateless random permutations, and let F1, . . . ,Fm :
{0, 1}n → {0, 1}` be cc-stateless random functions. In particular, we let Qi ≡ Qi(Si) for some
random variable Si over a set Si, for all i = 1, . . . ,m, and analogously we have Fi ≡ Fi(Si).
Furthermore, let P : {0, 1}n → {0, 1}n and R : {0, 1}n → {0, 1}` be a URP and URF, respectively.
Assume that Qi(s, x) (and Q−1

i (s, y)) and Fi(s, x) can be computed in time tQi and tFi , respectively,
for all s, x, and y.

5.3.1 Randomized Cascade of PRPs

The perhaps most surprising application is a strong product theorem for (two-sided) PRPs. We
modify the (two-sided) cascade 〈Q1〉 B · · · B 〈Qm〉 by choosing two independent random offsets
that are added to the inputs and the outputs, i.e., we consider 〈⊕Z1〉B 〈Q1〉B · · ·B 〈Qm〉B 〈⊕Z2〉
for two independent uniform n-bit strings Z1, Z2, where for some z ∈ {0, 1}n the system 〈⊕z〉 is
the bi-directional mapping which answers a forward query (x,+) with x⊕ z and a backward query
(y,−) with y ⊕ z. The computational overhead is minimal compared to the regular cascade, and
requires only additional storage for two n-bit strings (which are to be seen as part of the secret
key).28 Clearly the neutralizing property of the original cascade is preserved.

The central observation is that the two additional random offsets ensure property (i) and allow
for applying Theorem 13. More formally, for some i ∈ {1, . . . ,m} and s1 ∈ S1, . . . , si−1 ∈ Si−1 we
define (for a system S implementing a two-sided permutation from n bits to n bits) the construction
N(·) as choosing two offsets Z1, Z2 independently and uniformly at random, as well as Si+1, . . . , Sm,
and such that

N(S) := 〈⊕Z1〉B 〈Q1(s1)〉B · · ·B 〈Qi−1(si−1)〉B S B 〈Qi+1(Si+1)〉B · · ·B 〈Qm(Sm)〉B 〈⊕Z2〉.

The following lemma states the self-independence of a (bi-directional) URP 〈P〉 under N(·).

Lemma 17. Let N1(·), . . . ,Nλ(·) be independent instances of N, and let P1, . . . ,Pλ,P : {0, 1}n →
{0, 1}n be independent URPs. Then

∆q,...,q(N1(〈P〉)‖ · · · ‖Nλ(〈P〉),N1(〈P1〉)‖ · · · ‖Nλ(〈Pλ〉)) ≤ λ2 · q2 · 2−n.

In other words, 〈P〉 is η-self-independent under N(·) for η(q, λ) := λ2q22−n.

Proof. For notational simplicity, we define

H0 := N1(〈P〉)‖ · · · ‖Nλ(〈P〉) and H1 := N1(〈P1〉)‖ · · · ‖Nλ(〈Pλ〉).

For both systems and all t = 1, . . . , λ, let X (t)
i contain those n-bit strings x for which when

processing the first i queries Nt(·) has issued a forward query (x,+), or alternatively a backward
query (y,−) of Nt(·) was answered with the value x by the given permutation. Analogously, let
Y(t)
i contain those n-bit strings y for which when processing the first i queries Nt(·) has issued a

backward query (y,−), or alternatively a forward query (x,+) of Nt(·) was answered by y.
28The idea of adding random offsets at both ends of a permutation was already used by Even and Mansour [9],

though in a completely different context.
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We define on both systems H0 and H1 the respective MES A = A0, A1, . . . and B = B0, B1, . . .

where Ai (Bi) fails after query i if for some t 6= t′ we have X (t)
i ∩X

(t′)
i 6= ∅ or Y(t)

i ∩Y
(t′)
i 6= ∅. Then,

we can easily show that H0|A ≡ H1|B. Furthermore, we have for all i

pH0

Ai|XiY i−1Ai−1
≥ pH1

Bi|XiY i−1Bi−1

because for system H0 X (t)
i ∩X

(t′)
i = ∅ holds for all t 6= t′ if and only if Y(t)

i ∩Y
(t′)
i = ∅ for all t 6= t′.

Therefore, by Lemma 1 (ii) we obtain

∆D(H0,H1) ≤ νD(H1, Bλq)

for any distinguisher D issuing at most q queries to each subsystem (and thus making totally at
most λ · q queries).

We thus focus on upper bounding the probability νD(H1, Bλq) in the following. More specifi-
cally, let Z(t)

1 , Z
(t)
2 , S

(t)
i+1, . . . , S

(t)
m be the values taken by Z1, Z2, Si+1, . . . , Sm in Nt(·) for t = 1, . . . , λ.

Note that for all values z(t)
1 , z

(t)
2 and s(t)i+1, . . . , s

(t)
m taken by these variables, the system H1 behaves

as the parallel composition of λ independent (bi-directional) random permutations. We can thus
apply Lemma 2: We assume that we are given some possible interaction with input-output pairs
(u(t)

1 , v
(t)
1 ), . . . , (u(t)

q , v
(t)
q ) for Nt(〈Pt〉) for t = 1, . . . , λ, i.e., the i’th query to Nt(〈Pt〉) either is a

forward query u
(t)
i with output v(t)

i or is a backward query v
(t)
i with output u(t)

i . Moreover, we
define for all i = 1, . . . , q and t = 1, . . . , λ

P
(t)
i :=

(
Q1(s1) B · · ·B Qi−1(si−1)

)
(u(t)
i ⊕ Z

(t)
1 )

Q
(t)
i :=

(
Q−1
m (S(t)

m ) B · · ·B Q−1
i+1(S(t)

i+1)
)
(v(t)
i ⊕ Z

(t)
2 ),

i.e., these are the corresponding input-output pairs for the underlying permutations 〈P1〉, . . . , 〈Pλ〉.
Note that all of these random variables are (individually) uniformly distributed and furthermore,
given t 6= t′, i, j we have P[P (t)

i = P
(t′)
j ] = 2−n and P[Q(t)

i = Q
(t′)
j ] = 2−n. Therefore, Bλq implies

that there exist distinct t, t′ and (not necessarily distinct) i, j such that P (t)
i = P

(t′)
j or Q(t)

i = Q
(t′)
j .

By the union bound we conclude that

νD(H1, Bλq) ≤ 2 ·
(
λ

2

)
· q2 · 2−n ≤ λ2 · q2 · 2−n.

Therefore, we can combine Theorem 13 (with E(·) being the identity) and Lemma 17 to obtain
the following result.

Corollary 18. For all t, q, γ > 0, and independent uniform n-bit strings Z1, Z2,

∆t,q(〈⊕Z1〉B 〈Q1〉B · · ·B 〈Qm〉B 〈⊕Z2〉, 〈P〉) ≤
m∏
i=1

∆t′i,q
′
i
(〈Qi〉, 〈P〉) + mq2λ2

2n + γ,

where t′i := λ ·
(
t + O(q ·

∑
j 6=i tQj )

)
and q′i := λ · q for all i = 1, . . . ,m − 1, whereas t′m :=

t+O(q ·
∑m−1

j=1 tQj ) and q′m := q.

The result can be used to obtain a δm-two-sided PRP from any δ-two-sided PRP. (Note that the
η-dependent term is negligible for polynomial t, q and any γ which is the inverse of a polynomial.)
It can be shown that the second random offset Z2 is superfluous in the one-sided case.
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5.3.2 Sum of Random-Input PRFs

The construction K(F1⊕· · ·⊕Fm) (i.e. the XOR of the functions accessed in a random-input attack)
is clearly neutralizing (the ideal system being K(R)). However, the fact that F1 ⊕ · · · ⊕ Fm and
R are invoked on random inputs only allows for proving a much stronger result using Theorem 13,
since it satisfies property (i) needed by the theorem.

More precisely, let us fix i ∈ {1, . . . ,m} and s1 ∈ S1, . . . , si−1 ∈ Si−1, and define for a random
function S : {0, 1}n → {0, 1}` the construction W(·) as

W(S) := K(F1(s1)⊕ · · · ⊕ Fi−1(si−1)⊕ S⊕ Fi+1 ⊕ · · · ⊕ Fm).

Then, we can show the following.

Lemma 19. Let R,R1, . . . ,Rλ : {0, 1}n → {0, 1}` be independent URFs, and let W1(·), . . . ,Wλ(·)
be independent instances of W(·), then

∆q,...,q(W1(R)‖ · · · ‖Wλ(R),W1(R1)‖ · · · ‖Wλ(Rλ)) ≤ q2λ2

2
2−n.

In other words, the URF R is η-self-independent under W for η(q, λ) ≤ q2λ2

2 · 2−n.

Proof. Query i to the sub-system t is associated with a random input ri,t at which the XOR is
evaluated. Consider the MES A := A0, A1, . . . such that Ai holds as long as within the first i
queries there exists no two random inputs rj,t = rk,t′ for distinct t 6= t′: As long as A holds, the
random function R is never evaluated at the same input by two constructions Wt(·) and Wt′(·),
and thus

(W1(R)‖ · · · ‖Wλ(R))|A ≡W1(R1)‖ · · · ‖Wλ(Rλ),

from which we infer by Lemma 1 (i) that for all distinguishers D issuing at most q queries to each
of the λ subsystems we have

∆D(W1(R)‖ · · · ‖Wλ(R),W1(R1)‖ · · · ‖Wλ(Rλ)) ≤ νD(W1(R)‖ · · · ‖Wλ(R), Aλ·q)

≤
(
λ

2

)
q22−n.

Moreover, for all i and keys s1 ∈ S1, . . . , si−1 ∈ Si−1, the appropriate construction T(i)
s1,...,si−1(·)

generates random keys Si+1, . . . , Sm and whenever invoked, it issues a query to K(S), obtaining
(r, y), and outputs the pair (

r,

i−1⊕
j=1

Fj(sj , r)⊕ y ⊕
m⊕

j=i+1

Fj(Sj , r)
)
.

It is easy to see that these constructions satisfy property (ii), since K(·) evaluates the given function
at a fresh random input upon each invocation. Therefore, Theorem 13 yields the following result.

Corollary 20. For all t, q, γ > 0,

∆t,q(K(F1 ⊕ · · · ⊕ Fm),K(R)) ≤
m∏
i=1

∆t′i,q
′
i
(K(Fi),K(R)) + (m−1)q2λ2

2n+1 + γ,

where t′i := λ
(
t +O(q ·

∑
j 6=i tFj )

)
and q′i := λ · q for all i = 1, . . . ,m − 1, whereas t′m := t +O(q ·∑m−1

j=1 tFj ) and q′m := q.
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The result holds for any other quasi-group operation. It is remarkable that XOR satisfies
much stronger indistinguishability amplification properties under random-input attacks than under
chosen-input attacks. This is particularly interesting, as a wide number of applications, such as
secure symmetric message encryption, can efficiently be based on this weaker PRF notion (cf. [5,
27]).

5.3.3 Randomized XOR of PRFs

The first product theorem for PRFs, due to Myers [29], considered the neutralizing composition
Z1(F1) ⊕ · · · ⊕ Zm(Fm) for independent instances of Z(·) (which we assume to be instantiated
with ⊕, but any other quasi-group operation would work). We show that this result is implied by
Theorem 13. In fact, the same result holds for the construction Z(F1 ⊕ · · · ⊕ Fm) using the same
offset for all invocations.

More precisely, fix i ∈ {1, . . . ,m} and s1 ∈ S1, . . . , si−1 ∈ Si−1, and define the constructions
M(·) and M′(·) such that for any random function S : {0, 1}n → {0, 1}`,

M(S) := Z
(
F1(s1)⊕ · · · ⊕ Fi−1(si−1)⊕ S⊕ Fi+1 ⊕ · · · ⊕ Fm

)
.

and

M′(S) := Z1(F1(s1))⊕ · · · ⊕ Zi−1(Fi−1(si−1))⊕ Zi(S)⊕ Zi+1(Fi+1)⊕ · · · ⊕ Zm(Fm)
)
,

Lemma 21. Let R,R1, . . . ,Rλ : {0, 1}n → {0, 1}` be independent URFs, and let M1(·), . . . ,Mλ(·)
be independent instances of M(·), then

∆q,...,q(M1(R)‖ · · · ‖Mλ(R),M1(R1)‖ · · · ‖Mλ(Rλ)) ≤ q2 · λ2

4
· 2−n

and

∆q,...,q(M1(R)‖ · · · ‖Mλ(R),M1(R1)‖ · · · ‖Mλ(Rλ)) ≤ q2 · λ2

4
· 2−n.

In other words, the URF R is η-self-independent under M(·) and M′(·) for η(q, λ) ≤ q2λ2

2 · 2−n.

Proof. We just prove the statement for M(·), as the proof for M′(·) is fully analogous. Let
Z1, . . . , Zλ be the random offsets chosen by Z(·) in M1, . . . ,Mλ, respectively, and consider the
MES A := A0, A1, . . . such that Ai holds as long as within the first i queries there exists no two
queries Xj , Xk, j 6= k to distinct sub-systems t, t′ ∈ {1, . . . , λ} such that Xi⊕Zt = Xj⊕Zt′ . Clearly,
as long as this does not hold, every query (regardless of the systems) returns an independent random
output, i.e.,

(M1(R)‖ · · · ‖Mλ(R))|A ≡M1(R1)‖ · · · ‖Mλ(Rλ),

from which we infer by Lemma 1 (i) that for all distinguishers D issuing at most q queries to each
of the λ subsystems we have

∆D(M1(R)‖ · · · ‖Mλ(R),M1(R1)‖ · · · ‖Mλ(Rλ)) ≤ νD(M1(R)‖ · · · ‖Mλ(R), Aλ·q).

Clearly, A is independent of the output values, and by Lemma 3 we can restrict ourselves to non-
adaptive strategies for making A fail. For each valid sequence of λ · q queries and for each pair of
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systems t 6= t′ there are at most q2 pairs of possibly colliding queries Xi ⊕ Zt, Xj ⊕ Zt′ , and the
probability that they collide is exactly 2−n. By the union bound we have

νD(M1(R)‖ · · · ‖Mλ(R), Aλ·q) ≤
(
λ

2

)
· q2 · 2−n.

However, a major advantage of Myers’ original construction (which was unobserved so far)
is that independent instances of the construction can be simulated even when only given access
to Z(S) (with S ∈ {Fi,R}). The relevance of this observation is due to the fact that the best
advantage under Z(·) can be significantly smaller than under direct access: Consider e.g. a good
PRF which is modified to have the additional property of outputting the zero string when evaluated
at some fixed known input, regardless of the key.

In order to apply Theorem 13, the corresponding construction T(i)
s1,...,si−1(·) chooses independent

instances Fi+1, . . . ,Fm, Z1(·), . . . ,Zi−1(·),Zi+1(·), . . . ,Zm(·), and a random n-bit string Z, and on
input x queries x⊕ Z to Z(S), obtaining y ∈ {0, 1}`, and outputs

y ⊕
i−1⊕
j=1

Zj(Fj(sj))(x)⊕
m⊕

j=i+1

Zj(Fj)(x),

where Zj(Fj)(x) is the result of invoking the system Zj(Fj) on input x.
Once again, condition (ii) is easily verified by the fact that access through Z(·) can be re-

randomized by simply adding a fresh random offset to all inputs. Thus, Theorem 13 yields the
following strengthened version of the main result of [29].

Corollary 22. For all t, q, γ > 0, and for independent instances Z1(·), . . . ,Zm(·) of Z(·),

∆t,q(Z1(F1)⊕ · · · ⊕ Zm(Fm),R) ≤
m∏
i=1

∆t′i,q
′
i
(Z(Fi),Z(R)) + (m−1)q2λ2

2n+1 + γ,

where t′i := λ
(
t +O(q ·

∑
j 6=i tFj )

)
and q′i := λ · q for all i = 1, . . . ,m − 1, whereas t′m := t +O(q ·∑m−1

j=1 tFj ) and q′m := q.
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[27] U. Maurer and J. Sjödin, “A fast and key-efficient reduction of chosen-ciphertext to known-
plaintext security,” in Advances in Cryptology — EUROCRYPT 2007, vol. 4515 of Lecture
Notes in Computer Science, pp. 498–516, 2007.

[28] S. Myers, “On the development of block-ciphers and pseudo-random function generators using
the composition and XOR operators.” Master’s thesis, University of Toronto, 1999.

[29] S. Myers, “Efficient amplification of the security of weak pseudo-random function generators,”
Journal of Cryptology, vol. 16, pp. 1–24, 2003.

[30] M. Naor and O. Reingold, “Synthesizers and their application to the parallel construction of
pseudo-random functions,” Journal of Computer and System Sciences, vol. 58, no. 2, pp. 336–
375, 1999.

36



[31] R. Pass and M. Venkitasubramaniam, “An efficient parallel repetition theorem for Arthur-
Merlin games,” in STOC ’07: Proceedings of the 39th Annual ACM Symposium on Theory of
Computing, pp. 420–429, 2007.

[32] K. Pietrzak and D. Wikström, “Parallel repetition of computationally sound protocols re-
visited,” in Theory of Cryptography — TCC 2007, vol. 4392 of Lecture Notes in Computer
Science, pp. 86–102, 2007.

[33] R. Shaltiel and E. Viola, “Hardness amplification proofs require majority,” in STOC ’08:
Proceedings of the 40th Annual ACM Symposium on Theory of Computing, pp. 589–598, 2008.

[34] S. Vaudenay, “Provable security for block ciphers by decorrelation,” in STACS ’98, vol. 1373
of Lecture Notes in Computer Science, pp. 249–275, 1998.

[35] S. Vaudenay, “Adaptive-attack norm for decorrelation and super-pseudorandomness,” in Se-
lected Areas in Cryptography — SAC ’99, vol. 1758 of Lecture Notes in Computer Science,
pp. 49–61, 1999.

[36] J. Wullschleger, “Oblivious-transfer amplification,” in Advances in Cryptology — EURO-
CRYPT 2007, vol. 4515 of Lecture Notes in Computer Science, pp. 555–572, 2007.

[37] A. C. Yao, “Theory and applications of trapdoor functions,” in FOCS ’82: Proceedings of the
23rd IEEE Annual Symposium on Foundations of Computer Science, pp. 80–91, 1982.

A Hoeffding’s Inequality

The following well-known result from probability theory [16] is repeatedly used throughout this
paper.

Lemma 23 (Hoeffding’s Inequalities). Let X1, . . . , Xϕ be independent random variables with range
[0, 1], and let X := 1

t

∑ϕ
i=1Xi. Then, for all ε > 0 we have

P[X ≥ E[X] + ε] ≤ e−ϕε2 and P[X ≤ E[X]− ε] ≤ e−ϕε2 .

In particular,
P
[∣∣X − E[X]

∣∣ ≥ ε] ≤ 2 · e−ϕε2 .
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