
Linear Cryptanalysis of Reduced-Round PRESENT

Joo Yeon Cho

Helsinki University of Technology,
Department of Information and Computer Science,

P.O. Box 5400, FI-02015 TKK, Finland
joo.cho@tkk.fi

Abstract. PRESENT is a hardware-oriented block cipher suitable for resource con-
strained environment. In this paper we analyze PRESENT by the multidimensional
linear cryptanalysis method. We claim that our attack can recover the 80-bit secret
key of PRESENT up to 25 rounds out of 31 rounds with around 262.4 data complex-
ity. Furthermore, we showed that the 26-round version of PRESENT can be attacked
faster than key exhaustive search with the 264 data complexity by an advanced key
search technique. Our results are superior to all the previous attacks. We demon-
strate our result by performing the linear attacks on reduced variants of PRESENT.
Our results exemplify that the performance of the multidimensional linear attack is
superior compared to the classical linear attack.

Keywords : Block Ciphers, Lightweight Cryptography, PRESENT, Multidimen-
sional Linear Cryptanalysis.

1 Introduction

PRESENT [3] is a lightweight SPN block cipher proposed by Bogdanov et al. at CHES
2007. PRESENT is designed for resource restricted applications such as RFID and sensor
networks. Due to the impressive hardware performance and the strong security, PRESENT
has drawn a lot of attention from the lightweight cryptographic community.

On the other hand, the cryptanalysis on PRESENT has been also actively performed so far.
In [15], Wang presented a differential cryptanalysis that could attack the 16-round variant
with 264 chosen texts and 265 memory accesses. In [1], Albrecht et al. presented a differential
attack using algebraic techniques that can recover a 80-bit key of the 16-round variant with
similar complexity to [15] and a 128-bit key of the 19-round variant by 2113 computations.
In [4], Collard et al. presented a statistical saturation attack that can recover the key of the
24 round variant with 257 chosen texts and 257 time complexity under the condition that
the parts of plaintexts are fixed to a constant value. More recently, Ohkuma presented a
linear attack on 24-round variant using weak keys with 263.5 known texts [13].

In this paper, we analyze PRESENT by a multidimensional linear attack method. We ob-
serve that PRESENT has a large number of linear approximations that hold with the same
order of magnitude of correlations due to the simple structure of the round function 1.
As shown in [7], a multidimensional linear attack can be efficiently applied to such cipher.
According to our analysis, the 25-round variant of PRESENT using the 80-bit key can be
attacked faster than key exhaustive search with around 262.4 data complexity. Furthermore,
an advanced key search technique enables us to attack the 26-round version of PRESENT
with 264 data complexity. Our results are superior to all the previous attacks presented in

1 Similar observation was independently presented in [13].
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the open literature. We demonstrate our claim by performing the multidimensional linear
attacks on reduced variants of PRESENT.

This paper is organized as follows. In Section 2, the structure of PRESENT is briefly de-
scribed and the framework of multidimensional linear attack is presented. In Section 3,
linear characteristics are derived and their capacities are computed. In Section 4, the attack
algorithm using linear characteristics is described. In Section 5, our attacks are applied to re-
duced variants of PRESENT and the experimental results are presented. Section 6 concludes
this paper.

2 Preliminaries

2.1 Brief Description of PRESENT

PRESENT is a SPN block cipher that consists of 31 rounds. The encryption block length
is 64 bits and the key lengths is 80 bits or 128 bits. Each of the 31 rounds consists of three
layers: addRoundKey, SboxLayer and pLayer. The AddRoundKey is a 64-bit eXclusiveOR
operation with a round key. The SboxLayer is a 64-bit nonlinear transform using a single
S-box 16 times in parallel. The S-box is a nonlinear bijective mapping S : F

4
2 7→ F

4
2 given

in Table 4. The pLayer is a bit-by-bit permutation P : F
64
2 7→ F

64
2 given in Table 5. The

design idea of SboxLayer and pLayer is adapted from Serpent [2] and DES block cipher [10],
respectively. The structure of PRESENT is illustrated in Figure 1.

The key scheduling algorithm has two versions depending on whether the key size is 80 bits
or 128 bits. Since the key schedule is not directly relevant to out attack, we do not describe
the key schedule algorithm here. For complete description of PRESENT we refer to the
paper [3].
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Key Register
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...
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sBoxLayer

pLayer
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Round key 32✛

Ciphertext

Fig. 1. Overview of PRESENT

2.2 Multidimensional Linear Cryptanalysis using χ
2 Method

Multidimensional linear cryptanalysis is an extension of Matsui’s classical linear cryptanal-
ysis [9] in which multiple linear approximations are optimally exploited. The general frame-
work of the multidimensional linear cryptanalysis adapting Matsui’s algorithm 2 was pre-
sented by Hermelin et al. in [8]. In their paper, Hermelin et al. studied two statistic methods:



Linear Cryptanalysis of Reduced-Round PRESENT 3

the log-likelihood ratio (LLR) and the χ2. We apply the χ2 statistic method to PRESENT
since the LLR method is not proper to PRESENT-like structure. The detailed explanation
will be given in Section 4.4.

The brief framework of the χ2 method is as follows. Let Vn denote the space of n-dimensional
binary vectors. A function f : Vn → Vm with f = (f1, · · · , fm) where fi is a linear approxi-
mation is called a vectorial linear approximation of the dimension m. The correlation of fi

is defined as c(fi) = 2−n [#(fi(a) = 0) − #(fi(a) = 1)] where a ∈ Vn.

Let p be the probability distribution of m-dimensional linear approximations. The capacity

of p = (p0, . . . , p2m−1) is defined by Cp =
∑2m−1

i=0
(pi−ui)

2

ui
where u = (u0, . . . , u2m−1) is

the uniform distribution. It is well known that the Cp is equal to the sum of the square of
correlations of all 2m − 1 linear approximations.

Suppose l is the length of the target key. For all values of k ∈ [0, 2l − 1], one obtains the
empirical probability distributions Qk = (qk,0, . . . , qk,2m−1) by measuring the frequency of
m-dimensional vectors which are Boolean values of m linear independent approximations.
Then the candidate keys are sorted according to their χ2-statistics defined as

D(k) = 2m
M∑

i=0

(qk,i − 2−m)2, M = 2m − 1 (1)

which represents the l2-distance of the Qk from the uniform distribution.

If the right key is ranked in the position of d from the top out of 2l key candidates, we say
that the attack has the advantage of (l− log2 d) [14]. The advantage of the χ2-method using
statistic (1) is derived in Theorem 1 in [8] by

advantage =
(NCp − 4Φ−2(2Ps − 1))2

8M
, Φ(x) =

∫ x

−∞

1√
2π

e−t2/2dt (2)

where Ps is the success probability, N is the amount of data and C is the capacity.

2.3 Notations

Let Si denote the i-th S-box in the SboxLayer and P denote the permutation in the pLayer.

Let Kr denote the r-th round key and K
[i]
r denote the i-th bit of the Kr. The K

[i..j]
r denote

the bit string from K
[i]
r to K

[j]
r . We use EK(X) for representing the average value of X

over all possible values of K. In our notation of the bit masks, we identify F
4
2 with Z16. We

use the little endian for bit notation through the paper, that is, the least significant bit is
counted at the rightmost.

3 Linear Characteristics of PRESENT

We define a linear trail as a single path of linear approximations concatenated over multiple
rounds. It is a common belief that the linear characteristic with multiple linear trails has a
larger correlation than one with a single linear trail due to the linear hull effect [11]. In this
section, we derive a linear characteristic of PRESENT that has multiple linear trails. Each
linear trail exploits the linear approximations of S-boxes which have a single active bit in
the input and output masks. The linear masks having more than one active bits affect at
least two S-boxes in the consecutive round due to the permutation layer, which yield much
less correlations in the multiple rounds of PRESENT.
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Definition 1. A single-bit linear trail is a linear trail where the input and output masks of
linear approximations of all intermediate S-boxes are of Hamming weight one.

We call a single-bit linear trail as just a linear trail unless specified otherwise.

3.1 Single Bit Linear Trails

Let π(α, β) denote a linear approximation of S-box S where α, β ∈ F
4
2 are an input and

output mask of S, respectively. The correlation of π(α, β) is denoted by ρ(α, β). We observe
that the S-box has the following properties:

S1. For α, β ∈ {2, 4, 8}, ρ(α, β) = ±2−2 except that ρ(8, 4) = 0;

S2. For α ∈ {1, 2, 4, 8}, ρ(α, 1) = ρ(1, α) = 0.

According to Property S1 and S2, the S-box holds eight linear approximations which has a
single active bit in both the input and output linear masks.

Let us define S = {S5, S6, S7, S9, S10, S11, S13, S14, S15} and B = {4i + 1, 4i + 2, 4i + 3|0 ≤
i ≤ 15, Si ∈ S}. Then, the permutation P of the pLayer has the following properties:

P1. If x ∈ B, then P (x) ∈ B;

P2. All the outputs of S0, S4, S8 and S12 turn into the least significant bits of the inputs of
S-boxs next round by the permutation. Also, the outputs of S1, S2 and S3 turn into the
input of S0, S4, S8 and S12 next round.

Due to Property S2 and P2, the linear trails passing any bit position that does not included
in B do not have correlations. Hence, by Property S1 and P1, any r-round linear trail with
an input mask α and an output mask β takes the following path:

π(α, 2v1 ) → π(2u2 , 2v2) → · · · → π(2ur−1 , 2vr−1) → π(2ur , β)

where ui, vi ∈ {1, 2, 3} and (ui, vi) 6= (3, 2) for 1 ≤ i ≤ r.

3.2 n-Round Linear Characteristic

Let Ω(1) denote the 1-round linear characteristic which has all the single bit linear trails of
nine S-boxes of S, as shown in Figure 2. Due to Property S1, the Ω(1) contains 9 × 8 = 72
linear trails, each of which has ±2−2 correlation. Since x 7→ P (x) is an one-to-one mapping,
Property P1 implies that {P (x)|x ∈ B} = B. Hence, we can construct the n-round linear
characteristic, which is denoted by Ω(n), by concatenating Ω(1) iteratively n times as follows:

Ω(n) = Ω(1) ◦ · · · ◦ Ω(1)
︸ ︷︷ ︸

n times

.

We can expect that the number of linear trails grows exponentially according to the in-
crement of the number of rounds. Let ζ(r)(x, y) denote a bundle of linear trails which start
from the x-th bit of input and end up at the y-th bit of output over Ω(r). Each ζ(r)(x, y) is
extended to ζ(r+1)(x, ν) for some ν ∈ B via two or three single-bit linear approximations of
the S-box.
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⊕

S15 S14 S13 S11 S10 S9 S7 S6 S5

S15 S14 S13 S11 S10 S9 S7 S6 S5

Fig. 2. Linear trails in the 1-round linear characteristic

Suppose K is a user-supplied key. Let θ(r)(x, y; K) denote the correlation of ζ(r)(x, y), given
K. The actual value of θ(r)(x, y; K) depends on the round keys involved in each linear trail.
For any x, y ∈ B, the θ(r)(x, y; K) is recursively expressed as

θ(r)(x, y; K) =

3∑

i=1

(−1)K[ν]
r ρ(2i, 2P−1(y) mod 4)θ(r−1)(x, ν; K), ν = 4⌊P−1(y)/4⌋ + i (3)

where P−1 is an inverse mapping of P .

The average value of θ(r)(x, y; K) over all possible values of K is recursively computed by
the following algorithm:

1. Initialize θ(0)(x, y) = 1 for all j ∈ B. Set r = 1.
2. For each x, y ∈ B,

(a) compute θ(r)(x, y; K) using (3) for all possible values of K ∈ F
27
2 ;

(b) assign θ(r)(x, y) = EK(|θ(r)(x, y; K)|) = 2−27
∑

K |θ(r)(x, y; K)|.
3. Repeat Step 2 for r = 2, 3, . . . , n.

Above algorithm can be much simplified by the following theorem: (In this theorem, the
correlation potential means the square of the correlation.)

Theorem 1. (Theorem 7.9.1 in ”Design of Rijndael” [6] and Fundamental Theorem by
Nyberg [11]) The average correlation potential between an input and an output selection
pattern is the sum of the correlation potentials of all linear trails between the input and
output selection patterns.

By Theorem 1, the average value of (θ(n)(x, y))2 is obtained by summing the square values
of correlations of all linear trails in the ζ(r)(x, y) for all x, y ∈ B. Hence, the average value
of (θ(n)(x, y))2 can be computed simply by the following algorithm:

1. Initialize θ(0)(x, y) = 1 for all x, y ∈ B. Set r = 1.
2. For each x, y ∈ B, compute

EK [(θ(r)(x, y; K))2] =
∑

i=1,2,3

ρ(2i, 2P−1(y) mod 4)2EK [(θ(r−1)(x, ν; K))2], ν = 4⌊P−1(y)/4⌋+i

3. Repeat Step 2 for r = 2, 3, . . . , n.



6 J. Y. Cho

Theorem 1 concerns a single linear approximation that has multiple linear trails. For the
multidimensional linear cryptanalysis, Theorem 1 can be extended as follows:

Proposition 1. The expected capacity of an m-dimensional linear approximation is the
sum of the square of the expected correlations of all the linear trails that each of the 2m − 1
one-dimensional linear approximations are composed of.

3.3 (n + 4)-Round Linear Characteristic

Let us define U as the 2-round characteristic which starts from S5, S9 and S13 and ends
with nine S-boxes of S. Each input S-box of U takes arbitrary value from 1 to 15 as the
input mask and each output S-box takes a single-bit output mask only. We also define V
as the 2-round characteristic which starts from nine S-boxes of S and ends up at S5, S6

and S7. Each input S-box of V takes a single-bit linear mask and each output S-box takes
arbitrary value from 1 to 15 as the output mask. For a positive integer n, the n + 4 round
linear characteristic is constructed by adding U and V to Ω(n) at the top and the bottom
respectively as shown in Figure 3.

.

.

.

.

.

.

Ω
(n)

U

V

α13 α9 α5

❄ ❄ ❄

S13 S9 S5

S15 S14 S13 S11 S10 S9 S7 S6 S5

pLayer

S15 S14 S13 S11 S10 S9 S7 S6 S5

pLayer
❄❄❄ ❄❄❄ ❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄

S15 S14 S13 S11 S10 S9 S7 S6 S5

S7 S6 S5

❄❄❄

β5β6β7

Fig. 3. (n + 4) rounds linear characteristic

Let C
(n+4)
p denote the capacity of U ◦Ω(n) ◦V . By the definition of the capacity and due to

Theorem 1, the average value of C
(n+4)
p is the sum of the square of correlations of all linear

trails over the U ◦ Ω(n) ◦ V , which is calculated by the following theorem:
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Theorem 2. Let us assume that the round keys of PRESENT are statistically independent.
For a positive integer n, the expected capacity of U ◦ Ω(n) ◦ V over the secret key K is

2−8 · EK




∑

x∈B

∑

y∈B

(

θ(n)(x, y; K)
)2





Proof. Let αi be an input mask of Si ∈ {S5, S9, S13} of the U and βj be an output mask
of Sj ∈ {S5, S6, S7} of the V . For a fixed αi, the U has nine linear trails holding with
correlations of ρ(αi, 2

u) · 2−2 for some u ∈ {1, 2, 3}. Similarly, for a fixed βj , the V has nine
linear trails with the correlations of ρ(2v, βj) · 2−2 for some v ∈ {1, 2, 3}. We define B[αi]
and B[βj ] as the sets of input and output bit positions where Ω(n) is linked with U and V
for fixed αi and βj , respectively. Obviously, #B[αi] = #B[βj ] = 9 for any αi and βj.

Let c(n+4)(αi, βj) denote the correlation of the linear approximation with the input mask
αi and the output mask βj over U ◦ Ω(n) ◦ V . Then, for a fixed key K, we can write

c(n+4)(αi, βj ; K) =
∑

x∈B1

∑

y∈B2

(−1)k · ρ(αi, 2
u) · 2−2 · θ(n)(x, y; K) · 2−2 · ρ(2v, βj)

where k denotes a parity of the relevant round key bits. Since

EK

[
(−1)ks(−1)kt

]
=

{

1 if s = t,

0 if s 6= t

under the assumption that the round key bits are statistically independent,2 we get

EK

[(

c(n+4)(αi, βj ; K)
)2

]

= EK



2−8
∑

x∈B1

∑

y∈B2

ρ(αi, 2
u)2 ·

(

θ(n)(x, y; K)
)2

· ρ(2v, βj)
2



 .

Parseval’s theorem says that
∑15

αi=0 ρ(αi, 2
u)2 =

∑15
βj=0 ρ(2v, βj)

2 = 1 for any u, v ∈
{1, 2, 3}. Hence, the average value of C

(n+4)
p (αi, βj ; K) is obtained by computing

EK [C(n+4)
p (αi, βj ; K)] =

15∑

αi=0

15∑

βj=0

EK

[(

c(n+4)(αi, βj; K)
)2

]

= 2−8 · EK




∑

x∈B1

∑

y∈B2

(

θ(n)(x, y; K)
)2



 .

The C
(n+4)
p (K) is the sum of C

(n+4)
p (αi, βj ; K) for all pairwise combinations of {αi, βj}

where αi ∈ {α5, α9, α13} and βj ∈ {β5, β6, β7}. Since B[α5] ∪ B[α9] ∪ B[α13] = B and
B[β5] ∪ B[β6] ∪ B[β7] = B, we conclude that

EK [C(n+4)
p (K)] =

∑

i∈{5,9,13}

∑

j∈{5,6,7}

EK [C(n+4)
p (αi, βj ; K)]

= 2−8 · EK




∑

x∈B

∑

y∈B

(

θ(n)(x, y; K)
)2





⊓⊔
2 The statistical behavior of ks ⊕ kt was experimentally verified to follow unbiased binomial distri-

bution by a summer school student.
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Theorem 2 implies that the expected capacity of U ◦ Ω(n+4) ◦ V is the sum of the square
of correlations of all linear trails starting from the second round and ending to the second
last round. We calculated the average capacities of (n + 4)-round linear characteristics for
2 ≤ n ≤ 25 by Theorem 2. The results are displayed in Table 1.

In the next section, we present the multidimensional linear attacks using the (n + 4)-round
linear characteristics.

round capacity round capacity

6 2−8.42 18 2−39.71

7 2−11.00 19 2−42.32

8 2−13.61 20 2−44.94

9 2−16.22 21 2−47.55

10 2−18.82 22 2−50.16

11 2−21.43 23 2−52.77

12 2−24.04 24 2−55.38

13 2−26.66 25 2−57.99

14 2−29.27 26 2−60.61

15 2−31.88 27 2−63.22

16 2−34.49 28 2−65.83

17 2−37.10 29 2−68.44

Table 1. Evaluation of capacities of n + 4 round characteristics

4 Multidimensional Linear Attacks on PRESENT

4.1 Selection of linear independent approximations

Suppose n is a positive integer. The dimension of input and output masks of the U◦Ω(n)◦V is
4×3 = 12 each. As mentioned before, the linear trails passing more than one S-boxes at each
round have much less correlations than single-bit linear trails. Thus, it is sufficient to take
nine linear characteristics individually, each of which has 8-dimensional linear characteristic
with 4-bit input and 4-bit output. Then, the number of linear approximations spanned for
our attack is 9 × (28 − 1) in total.

We use eight unit vectors as the linear independent approximations. Even though each
unit vector does not have any correlation, all linear approximations can be obtained by
spanning these unit vectors. The merit of this approach is that the evaluation of Boolean
values of linear approximations is not needed; The probability distribution of the linear
approximations can be obtained by just measuring the frequencies of the concatenated value
of input and output of the linear characteristic. Hence, the time complexity of the attack can
be reduced by at least a factor of m where m is the dimension of the linear approximations.

4.2 Attack Algorithm

We target to attack the n-round version of PRESENT. Our attack uses the (n − 2)-round
linear characteristic U ◦Ω(n−6) ◦ V from the second round to (n− 1)-th round and recovers
the 32 bits of the round key in the first round and the last round. The inputs of the U are
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connected to S4, S5, S6 and S7 of the first round and the outputs of the V are connected
to S1, S5, S9 and S13 of the n-th round. Thus, we target to recover the 16 bits of the

K1, which are K
[16..19]
1 ||K [20..23]

1 ||K [24..27]
1 ||K [28..31]

1 , and the 16 bits of the Kn, which are

P (K
[4..7]
n )||P (K

[20..23]
n )||P (K

[36..39]
n )||P (K

[52..55]
n ).

Let ke and kd be the targeted 16 bits of K1 and Kn, respectively. Then, we recover the ke

and kd in the following way:

1. Prepare 9 · 232 · 28 counters and initialize them by zero.
2. Collect N plaintext-ciphertext pairs.
3. For K = 0, . . . , 232−1,

(a) Partially encrypt each plaintext one round by the 16 bits of ke and decrypt the
corresponding ciphertext one round by the 16 bits of kd where K = kd||ke.

(b) Extract three input values α5, α9, α13 of U and three output values β5, β6, β7 of V .
(c) Obtain nine 8-bit values by pairwise concatenating αi and βj for i = 5, 9, 13 and

j = 5, 6, 7.
(d) increment nine counters indicated by K and (αi||βj).

4. Repeat Step 3 for all N text pairs.
5. Compute l2 distance using (1) between the probability distribution for each K and

uniform distribution.
6. Sort out the candidate keys according to their l2 distances.
7. Search the right key from the top of the sorted keys.

4.3 Attack Complexity

The amount of data required for χ2 statistic method is obtained from (2) as follows:

N =
(√

advantage · 8 · M + 4Φ−2(2Ps − 1)
)

/C(r)

where Ps is the success probability and C(r) is the capacity. Since the number of linear
approximations available for the attack is 9 × (28 − 1), the full advantage (32 bits) of
the attack with the success probability 0.95 is achieved by the data complexity of N =(√

32 · 8 · 9 · (28 − 1) + 4Φ−2(2 · 0.95 − 1)
)

/C(r) ≈ 29.6/C(r).

According to the Step 3 and 4 of the attack algorithm, we needs to perform both 1-round
encryption and decryption for each plaintext-ciphertext pair and each guessed key. A naive
implementation of these steps requires N · 232 operations. We can reduce the computational
complexity greatly by removing the repeated computations.

Let x and y be a 16-bit plaintext and a 16-bit ciphertext used for our attack. The Step 3-(a)
of the attack algorithm is to compute zk = (P (S(x ⊕ ke))||(S−1(P−1(y ⊕ kd))) where ke

and kd denote the guessed 16-bit keys of the first round and the last round, respectively.
Thus, the probability distribution Qk of zk is obtained by mapping (x ⊕ ke)||(y ⊕ kd) 7→ zk

for all k = (ke||kd) ∈ F
32
2 with N pairs of data. This step can be divided into two sub-steps

for efficient computations: First, the table Q∗ is obtained by measuring the frequency of
(x||y) ∈ F

32
2 . Next, the mapping (Q∗, k) 7→ Qk can be done by 232 times access of Q∗ for

each candidate k. Hence, the Step 3 can be done by 232 · 232 operations in total. 3 Since
computing the l2 distance requires 9 · 28 operations for each candidate key, the total time
complexity of the attack is 264 + 9 · 28 · 232 ≈ 264. For the memory complexity, the Q∗ needs

3 The computational complexity may be further reduced by applying Fast Fourier Transform at
the cost of the increased memory complexity. [5]
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232 ·4 = 234 bytes of memory and some additional memory is required for storing temporary
values of computations.

Without increasing the amount of data complexity, we can recover another 32 bits of the
round key by changing the input S-boxes of U and the output S-boxes of V over the U ◦
Ω(n) ◦ V ; if the attack uses the linear characteristic starting with S7, S11, S15 and ending

with S13, S14, S15, we recover the K
[48..63]
1 and the K

[12..15]
n , K

[28..31]
n , K

[44..47]
n , K

[60..63]
n . In

this manner, we can recover 32 · 2 bits of the round keys in the first and the last round key
in total. The remaining 80 − 64 = 16 bits of key can be obtained by exhaustive key search.
Hence, the time complexity of the attack is around 2 · 264 + 216 ≈ 265 in total.

Attack on 26-round PRESENT Our attack can be extended to 26-round version of
PRESENT with the 24-round characteristic holding with the capacity of 2−55.38. If the
attack uses the full range of text pairs, which is 264, the theoretical advantage of attack
is expected to be 8 by (2). This means that the right key is possibly ranked within the
position of 232−8 = 224 out of 232 candidates with the probability of 0.95. Hence, we apply
the following attack scenario to the 26-round PRESENT: First, the multidimensional linear
attack targeting 32 bits of the round key is performed with 264 text pairs. As a result, the
224 candidate keys are obtained. Second, the remained secret key bits (80 − 32 = 48) are
combined with the 224 candidate keys from the top in order and the key exhaustive search
is performed.

From this scenario, the secret key can be found within the time complexity of 264 + 248 ·
224 ≈ 272. Note that the theoretical estimation is always the lower bound since we use the
correlations of only single linear trails. We compare our attacks with previous attacks against
various rounds versions of PRESENT in Table 2.

round data time source

16 264CP 265 Differential [15]

19 - 2113 Differential + Algebraic [1]

24 257CP 257 Saturation [4]

24 263.5KP - Linear [13]

25 262.4KP 265 Linear (this paper)

26 264KP 272 Linear (this paper)

Table 2. Comparison of data and time complexity of the attacks against PRESENT (CP: Chosen
Plaintext, KP: Known Plaintext)

4.4 Discussion

Weakness of bit permutation Our attack is mainly based on the observation that
PRESENT has a large number of linear approximations with the same magnitude of cor-
relations. It seems that this weakness is caused by the lack of diffusion property of the
bit permutation. Even though the bit permutation is desirable for efficient hardware im-
plementation, it has a potential weakness that input bits and output bits have one-to-one
correspondence. Hence, a single-bit linear approximations of an S-box of any round can be
connected to another single-bit linear approximation of next round through the permuta-
tion layer. Since the S-box of PRESENT has multiple linear approximations of which linear
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masks have a single active bit, one can construct multiple single-bit linear trails over arbi-
trary rounds. Note that this weakness does not appear in the linear transformation functions
of Serpent [2] or AES [6] since any single output bit of the linear transformation is expressed
as a boolean function of at least two input bits.

A simple remedy to prevent our attack is to revise the S-box in such a way that a single-bit
linear approximations of S-box do not have significant correlations. However, we did not
investigate how this remedy affects the other aspects of the security of PRESENT.

Correlation and Piling Up Lemma The designers of PRESENT proved in Theorem 2 of
[3] that the maximum correlation of a linear approximation of four rounds of PRESENT is
2−6. As a result, the maximal correlation of a 28-round linear approximation was estimated
to be (2−6)7 = 2−42 by Piling Up lemma [3]. Thus, the linear attack using the 28-round
linear approximation would require more than 284 data [3]. On the other hand, according to
our analysis, the capacity of the 28 round PRESENT is estimated to be around 2−65.8 by
the correlation theorem [12] so that 30 round of PRESENT can be (theoretically) attacked
by around 275 data.

The difference between the designers’ estimation and our result is originated from the fact
that the designers considered a single linear approximation using a single linear trail holding
with the strongest correlation, whereas our attack takes into account multiple linear ap-
proximations, each of which has multiple linear trails holding with strong correlations. Due
to the existence of large amount of linear trails in PRESENT, the data complexity of the
attack is reduced significantly compared to the estimate by a correlation of a single linear
approximation.

The χ2 and LLR method Finally, we justify the reason why the LLR method is not used
for the attack on PRESENT even if the LLR method showed a better performance than the
χ2 method in the attacks on SERPENT [7]. As described in [7], the LLR method is more
advantageous compared to the χ2 method if the pre-computed profile of the probability
distribution is accurate. However, the distribution of linear approximations in PRESENT
heavily depends on the key values so that the space for the profile of the probability distri-
bution becomes too large. On the other hand, the χ2 method does not need to know the
distribution accurately; We only need to detect a large deviation of the probability distri-
bution from the uniform distribution. It is an open problem whether there is a way to apply
the LLR method efficiently for the attacks against PRESENT.

5 Experiments

We performed the multidimensional linear attacks on the reduced-round PRESENT by ex-
periments in order to verify our theoretical analysis. We chose r = 6, 7, 8, 9 rounds version
of PRESENT and applied our attack algorithm. We targeted to recover the 16 bits of the
last round key by using (r − 1)-round linear characteristics. The plaintexts were randomly
generated and encrypted by r-round PRESENT. The experiments were repeated with the
randomly chosen 200 secret keys and the average values of advantage were calculated. Fig-
ure 4 illustrates the relationship between the advantage of the attacks and the required
amount of plaintexts for each experiments. The dashed lines represent theoretically estima-
tions drawn by (2) and the solid lines are empirical results. We can see that the estimation
of the full advantage of the attack is well matched with empirical results up to 9 rounds
PRESENT. Due to the restriction of computational resources, we could not perform the



12 J. Y. Cho

attack algorithm which recovers 32 bits of the round key of the r-round version by the
(r − 2)-round characteristic. However, based on our experimental results, we can conclude
that our estimates of attack complexity against further rounds PRESENT are reasonable.
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Fig. 4. Empirical evaluation of linear attacks on reduced variants of PRESENT

6 Conclusion

Modern block ciphers often prove the resistance of linear cryptanalysis by counting the
minimum number of the active S-boxes involved in the best linear approximation. Even
though PRESENT provides a provable security against linear cryptanalysis according to
this rule, our attack shows that the resistance of the classical linear cryptanalysis does not
always thwart the multidimensional linear attacks. Even though a simple, iterative structure
of the cipher is desirable for the hardware-oriented block ciphers, such ciphers may have
possibility to retain a large number of linear approximations by which a multidimensional
linear attack can be applied efficiently. It is interesting to see that our attack can be applied
to some other ciphers that have simple structures, like AES.
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A Correlation Table of S-box of PRESENT

Given an input mask α and an output mask β where α, β ∈ F
4
2, the correlation of the linear

approximation α · x ⊕ β · S(x) = 0 of the S-box is measured as follows:

c(α, β) = 2−4(#(α · x ⊕ β · S(x) = 0) − #(α · x ⊕ β · S(x) = 1))

where the · notation stands for the standard inner product. The correlation table of the
S-box is given in Table 3.
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α\β 1 2 3 4 5 6 7 8 9 a b c d e f

1 0 0 0 0 −2−1 0 −2−1 0 0 0 0 0 −2−1 0 2−1

2 0 2−2 2−2 −2−2 −2−2 0 0 2−2 −2−2 0 2−1 0 2−1 −2−2 2−2

3 0 2−2 2−2 2−2 −2−2 −2−1 0 −2−2 2−2 −2−1 0 0 0 −2−2 −2−2

4 0 −2−2 2−2 −2−2 −2−2 0 2−1 −2−2 −2−2 0 −2−1 0 0 −2−2 2−2

5 0 −2−2 2−2 −2−2 2−2 0 0 2−2 2−2 −2−1 0 2−1 0 2−2 2−2

6 0 0 −2−1 0 0 −2−1 0 0 −2−1 0 0 2−1 0 0 0
7 0 0 2−1 2−1 0 0 0 0 −2−1 0 0 0 0 2−1 0
8 0 2−2 −2−2 0 0 −2−2 2−2 −2−2 2−2 0 0 −2−2 2−2 2−1 2−1

9 2−1 −2−2 −2−2 0 0 2−2 −2−2 −2−2 −2−2 −2−1 0 −2−2 2−2 0 0
a 0 2−1 0 2−2 2−2 2−2 −2−2 0 0 0 −2−1 2−2 2−2 −2−2 2−2

b −2−1 0 0 −2−2 −2−2 2−2 −2−2 −2−1 0 0 0 2−2 2−2 2−2 −2−2

c 0 0 0 −2−2 −2−2 −2−2 −2−2 2−1 0 0 −2−1 −2−2 2−2 2−2 −2−2

d 2−1 2−1 0 −2−2 −2−2 2−2 2−2 0 0 0 0 2−2 −2−2 2−2 −2−2

e 0 2−2 2−2 −2−1 2−1 −2−2 −2−2 −2−2 −2−2 0 0 −2−2 −2−2 0 0
f 2−1 −2−2 2−2 0 0 −2−2 −2−2 −2−2 2−2 2−1 0 2−2 2−2 0 0

Table 3. Correlation table of S-box of PRESENT: c(α, β)

B The S-box and Permutation tables of PRESENT

The S-box and the permutation tables of PRESENT are given in Table 4 and Table 5,
respectively.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S(x) C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

Table 4. S-box table of PRESENT in hexadecimal notation

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P (i) 0 16 32 48 1 17 33 49 2 18 34 50 3 19 35 51

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
P (i) 4 20 36 52 5 21 37 53 6 22 38 54 7 23 39 55

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
P (i) 8 24 40 56 9 25 41 57 10 26 42 58 11 27 43 59

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
P (i) 12 28 44 60 13 29 45 61 14 30 46 62 15 31 47 63

Table 5. Permutation table of PRESENT


