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Abstract

At STOC 2006 and CRYPTO 2007, Beimel et al. introduced a set of privacy requirements for
algorithms that solve search problems. In this paper, we consider the longest common subsequence
(LCS) problem as a private search problem, where the task is to find a string of (or embedding
corresponding to) an LCS. We show that deterministic selection strategies do not meet the privacy
guarantees considered for private search problems and, in fact, may “leak” an amount of information
proportional to the entire input.

We then put forth and investigate several privacy structures for the LCS problem and design
new and efficient output sampling and equivalence protecting algorithms that provably meet the
corresponding privacy notions. Along the way, we also provide output sampling and equivalence
protecting algorithms for finite regular languages, which may be of independent interest.

1 Introduction

The sensitivity of patient data stored in large genomic databases makes their widespread use in
research problematic. Working with this data while protecting a patient’s privacy is recognized as a
major challenge for the biomedical research community [8, 39, 42]. Rigorous definitions for privacy
in this area, however, are still in development. In this paper, we investigate a problem of significant
importance to genomic computation: the longest common subsequence (LCS) problem. We propose
that the privacy notions from private search give a type of functional security, offering a strong
definition for patient privacy while allowing specific questions posed by researchers to be answered.
We show that these privacy notions can be realized for the LCS problem, efficiently and with perfect
privacy.

To date, research in secure genomic computation has considered variants of the string alignment
and LCS problems where the desired output is the edit-distance or the length of a subsequence [9,
21, 30, 41]. The alignment or subsequence itself, however, is often of equal or greater interest to
genomic research. In these scenarios, the problem is no longer a function, for example there may be
many longest common subsequences for any pair of strings (in fact, the number of solutions may be
exponential in the length of the input). To remedy this, we must first fix some strategy to select an
output. There is a growing body of literature — securely solving distributed constraint satisfaction
problems [33, 36, 37, 45], combinatorial auction optimization [40, 44], selecting a stable bipartite
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matching [20], selecting an optimal k-means clustering [17], generating small decision trees [31] —
where the selection strategy chosen is arbitrary, heuristic, or simply the one terminating earliest.
However, the choice of output may serve as a kind of “covert channel” that leaks information about
the inputs (unwittingly or maliciously). For tasks in genomic computation, this can mean an accidental
compromise of patient privacy.

We design algorithms to perform this selection for the LCS problem, provably meeting the security
definitions introduced for private search. This is not always possible. Firstly, private search algorithms
are unlikely to exist for many problems, including approximations of 3SAT [11], k-means clustering
and vertex cover [12]. Secondly, there are problems for which finding a solution is easy yet uniformly
sampling a solution seems hard, e.g. stable bipartite matching [15]. Lastly, it is not always possible
to re-use private search algorithms for related problems because the reduction typically distorts the
solution space. The private search algorithm for shortest path [13], for example, cannot be used
for LCS because all known reductions from LCS to shortest path have the property that multiple
paths correspond to the same subsequence; thus, a random path does not correspond to a random
subsequence.

We define and investigate privacy structures for two important variants of the LCS problem. For
the first, a solution is some longest common subsequence string. For the latter, a solution is some
“embedding,” i.e. structural data showing how the subsequence was encoded in the original input.
While these two variants are used interchangeably in the LCS literature and are often computed using
the same set of techniques, we demonstrate that they have very different privacy requirements. We
provide output sampling algorithms and equivalence protecting algorithms for both these variants.
Additionally, we design private search algorithms for selecting a word in the language of some de-
terministic finite automaton, which may be of use in private search beyond our specific application
(searching lexicons, searching a trie of game-playing strategies, pattern-recognition, etc).

Our main contribution is to design private search algorithms which are efficient. Towards this goal, we
provide an efficient, generic technique to convert a dynamic programming algorithm into an output
sampling algorithm. Unlike constructions from previous work, which perform a weighted selection
by repeatedly counting the solution space, we use the dynamic programming paradigm to count the
solution spaces of all possible sub-problems at the same cost of counting solutions to the original
instance (and avoid counting repeatedly). We also describe and use an efficient reduction from the
LCS string problem to the problem of words in the language of a DFA, where the reduction has the
important property of preserving the structure of the original solution space (sometimes referred to
as a parsimonious reduction).

In contrast, the literature on private search algorithms [11, 12] is overwhelmingly concerned with the
existence or non-existence of polynomial-time algorithms for various problems, and less concerned
with the efficiency of those algorithms. Our work can be seen as the beginning of a line of research
on the efficiency of private search, and a new line of research for the literature on LCS efficiency.

Motivation Performing different computational tasks on large biological databases is becoming a
more common practice in both public and private institutions. The FBI maintains a database of over
four million DNA profiles of criminal offenders, crime scene evidence, and missing persons in its CODIS
system [3], and uses the data for forensic studies and DNA-based identification. The United Kingdom’s
UK Biobank [7] and Quebec’s CARTaGENE [2] projects each plan to collect genetic samples from 1
percent of their respective populations. deCODE Genetics [4], a biopharmaceutical company which
studies genomic data for drug discovery and development, has collected the genotypic and medical
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data of over 50 percent of the population in Iceland. Similar endeavors seek to make these types of
databases available for scientific study [6].

The genomic data stored in these databases may be extremely sensitive: an individual’s DNA sequence
reveals a great deal of information regarding that individual’s health, background, and physical ap-
pearance [1, 5]. It has been shown that a sequence can be linked to the corresponding individual simply
by recognizing the presence of certain markers [32]. In the United States, HIPAA’s Privacy Rule [34]
mandates that a patient’s identity must be protected when their data (including genomic data) is
shared; failure to assure this may result in legal action, fines, revocation of government funding, and
imprisonment. The privacy notions considered in this paper may help establish the groundwork for
investigators, clinical researchers, and institutional review boards when designing projects, defining
rules for disclosure, and obtaining informed consent from participants.

2 Preliminaries

Let A and B be two strings over a finite alphabet Σ of size σ, with lengths m = |A| and n = |B|
(without loss of generality, let m ≤ n). A longest common subsequence (LCS) of A and B is a
subsequence of both A and B such that no other common subsequence has greater length. To help us
formally define those variants of the LCS problem that have received attention in the literature, we
introduce the following notation.

For any ` ∈ Z+, let the value function v : Σ`×{0, 1}` → Σ∗ be defined such that for all S ∈ Σ`−1, γ ∈
{0, 1}`−1, b ∈ {0, 1}, a ∈ Σ we have

v(S||a, γ||b) =
{

v(S, γ) if b = 0
v(S, γ)||a if b = 1

and let v(ε, ε) = ε.

Definition 1 (LCS Embeddings). Let the relation
LCSe(A,B, α, β) be true if α ∈ {0, 1}m, β ∈ {0, 1}n where v(A,α) = v(B, β) = x and there is no
α̂ ∈ {0, 1}m, β̂ ∈ {0, 1}n where v(A, α̂) = v(B, β̂) = x̂ such that |x̂| > |x|.

If LCSe(A,B, α, β) is true, we call (α, β) an embedding of an LCS of A and B. An embedding is
essentially a witness that v(A,α) is a valid subsequence of A. In some situations, however, we are
only interested in the subsequence itself.

Definition 2 (LCS String). Let the relation
LCS(A,B, x) be true if there exists some α ∈ {0, 1}m, β ∈ {0, 1}n such that LCSe(A,B, α, β) and
v(A,α) = v(B, β) = x.

Algorithms in the literature that solve the longest common subsequence problem return one or more of
the following outputs: (i) the length |x|, where LCS(A,B, x); (ii) a string x, where LCS(A,B, x); (iii)
an embedding (α, β) of an LCS, where LCSe(A,B, α, β). The literature has typically not differentiated
strongly between algorithms which recover strings and those which recover embeddings, but we will
show later that these problems have different security requirements.

The following dynamic programming algorithm solving the longest common subsequence problem was
independently discovered by many researchers (in both computer science and biology). Let L be the
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(m+1)× (n+1) matrix whose entries can be computed (row-by-row or column-by-column) using the
following:

L[i, j] =


0 if i = 0 or j = 0
L[i− 1, j − 1] + 1 if A[i] = B[j]
max(L[i− 1, j], L[i, j − 1]) otherwise

Entry L[m,n] holds the length of the LCS for A and B. When we consider the variant of the LCS
problem which outputs only the length of the LCS, then the LCS problem is a function. However,
when we consider the variants which output embeddings or strings (or both), then the problem is
no longer a function and we must consider how to perform the selection. When selecting an LCS
embedding, for example, the number of possible solutions is bounded by the following.

Claim 1 (Bound on Number of Embeddings [25]). Let E(n, m) be the maximum number of embeddings
of an LCS into strings of length n and m ≤ n. Then E(n, m) ≤ φ2

√
5

2π φ2n ≈ .932(2.62)n/n, where φ is
the golden ratio. As a consequence, dlog E(n, m)e < 1.4n.

Note that because each string must have an embedding, E(n, m) also provides an upper bound on the
number of possible solutions when selecting an LCS string. There exist efficient dynamic programming
algorithms to count the exact number of LCS embeddings or LCS strings for a particular problem
instance (see Appendix B for such algorithms). Each counting algorithm requires O(mn log E(m,n))
time and space. We use counting algorithms like these as the basis of our output sampling algorithms,
later.

Typically, simple deterministic algorithms that “backtrack” through the LCS dynamic programming
table are used to recover the string and/or embedding of an LCS for A and B. In the next section
we discuss new, strong privacy requirements for the selection mechanism that motivate the use of
alternate methods for backtracking.

Our algorithms satisfying these stronger security requirements require the ability to efficiently sample
from specific discrete distributions. Given a finite set of variables V = {v0, v1, . . . , v`} and their
frequencies {a0, a1, . . . , a`}, a weighted coin toss selects a variable vi ∈ V with probability ai/b where
b =

∑
j∈[0,`] aj . There are many procedures for flipping a weighted coin. One very simple procedure

is the following: select an appropriate number of random bits and let z be the integer they represent;
if z > b, then we fail; else, we output vi where i is the smallest integer such that z ≤

∑
j∈[0,i] aj . This

procedure fails with probability (2blog bc − 1)/2dlog be < 1/2. The procedure uses gwct(`, b) := O(` log b)
time and space. Additionally, notice that we can perform N weighted coin flips using kN log Ndlog be
random bits, where the probability of succeeding in all N coin flips is at least 1− 1/2k.

3 LCS as a Search Problem

In this section, we define search problems, give two natural variants of the longest common subsequence
problem formulated as search problems, and give some preliminary observations on their relationships.

Definition 3 (Privacy Structure [13]). A search
problem is an ensemble P = {Pn}n∈N such that Pn : {0, 1}n → 2{0,1}q(n)

for some positive polynomial
q(n). For a search problem P, the privacy structure ≡P is an equivalence relation on instances x, y ∈
{0, 1}n such that x ≡P y iff Pn(x) = Pn(y).
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Following Halevi et al. [27] and Beimel et al. [11], we say that an algorithm leaks at most k bits if it
refines each equivalence class by dividing it to at most 2k sub-classes.

Given two search problems P,R defined over the same input space, we call their privacy structures
incomparable if neither is a strict refinement of the other. In other words, if ≡P refines ≡R and ≡R
refines ≡P , then ≡P and ≡R are incomparable.

Definition 4 (LCS Embeddings). Define LCS-e as the search problem for LCS embeddings, where
for all A ∈ Σm, B ∈ Σn, we have

LCS-e(A,B) = {(α, β) : LCSe(A,B, α, β)}

Let ≡LCS-e be the related privacy structure, such that if
LCS-e(A,B) = LCS-e(A′, B′) we say (A,B) ≡LCS-e (A′, B′). For example, (atg, aga) ≡LCS-e
(agc, act).

Definition 5 (LCS Strings). Define LCS-s as the search problem for LCS strings, where for all
A ∈ Σm, B ∈ Σn, we have

LCS-s(A,B) = {x : LCS(A,B, x)}

Let ≡LCS-s be the related privacy structure, such that if
LCS-s(A,B) = LCS-s(A′, B′) we say (A,B) ≡LCS-s (A′, B′). For example, (atg, aga) ≡LCS-s
(cag, atg).

A few observations follow immediately from these definitions. First, privacy structures for LCS-s
and LCS-e are incomparable. Second, there are inputs of length n for which natural deterministic
selection strategies leak Θ(n) bits with respect to these privacy structures. Together, these observations
motivate us to look at these variants as separate and independent problems, and to search for clever
non-deterministic strategies which provably protect their privacy structures. See Appendix C for
details on these observations.

4 LCS Output Sampling

In this section, we give algorithms for our LCS variants which protect their respective privacy struc-
tures on a single query, known as output sampling algorithms. An output sampling algorithm is a
randomized algorithm whose outputs (i) are correct answers to the search problem, and (ii) form a
distribution which is indistinguishable from the uniform distribution on answers to the search problem.

Definition 6 (Output Sampling [11, 13]). Let P = {Pn}n∈N be a search problem. An algorithm A
is called an output sampling algorithm for P if (i) A is a deterministic polynomial time algorithm
taking two inputs x, sn where |x| = n and |sn| = p(n) for some polynomial p; and (ii) for every string
x ∈ {0, 1}n the distribution A(x, sn) is computationally indistinguishable from the uniform distribution
on P(x).

Our output sampling algorithms are based on efficient dynamic programming solutions for counting
the number of outputs for each search problem. Below, we design an output sampling algorithm for
the LCS-e search problem on inputs A and B. We use the LCS-e counting algorithm (see Appendix B)
to compute the D matrix used by the algorithm. We assume that the L matrix is computed following
the typical dynamic programming LCS algorithm.
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Algorithm 1 Output sampling algorithm for LCS-e
1. α, β, s← ε; i← m; j ← n; forceUp, forceLeft← false
2. while i > 0 and j > 0 do
3. W1,W2,W3,W4 ← 0
4. if A[i] = B[j] then W1 ← D[i− 1, j − 1]
5. if L[i− 1, j − 1] = L[i, j] then W2 ← D[i− 1, j − 1]
6. if L[i− 1, j] = L[i, j] then W3 ← D[i− 1, j]−W2

7. if L[i, j − 1] = L[i, j] then W4 ← D[i, j − 1]−W2

8. if forceUp then sample z ∈ {1, 3} where
Pr[z = i] = Wi/(W1 + W3)

9. else if forceLeft then sample z ∈ {1, 4} where
Pr[z = i] = Wi/(W1 + W4)

10. else sample z ∈ {1, 2, 3, 4} where
Pr[z = i] = Wi/(W1 + W2 + W3 + W4)

11. if z = 1 then
12. α← 1||α; β ← 1||β; s← A[i]||s
13. forceUp, forceLeft← false
14. i← i− 1, j ← j − 1
15. else if z = 2 then
16. α← 0||α; β ← 0||β
17. i← i− 1, j ← j − 1
18. else if z = 3 then
19. α← 0||α; forceUp← true
20. i← i− 1
21. else if z = 4 then
22. β ← 0||β; forceLeft← true
23. j ← j − 1
24. end while
25. return (α, β)

With a few non-trivial modifications, the algorithm below can be transformed into an output sampling
algorithm for the LCS-s search problem (see Appendix D).

Claim 2. Algorithm 1 is an output sampling algorithm for the LCS-e search problem and uses
O(n log E(m,n)) time and O(|D|) space.

Proof. At each step of the backtracking algorithm, there are several options to choose from. In order to
generate a uniformly random embedding, our algorithm needs to satisfy the following two properties.
(i) At each step of the backtracking, every two possible backtracking options should lead to two disjoint
sets of LCS embeddings. We call this the non-overlapping property. (ii) At each step, a backtracking
option is chosen randomly, according to a distribution that is weighted proportional to the number of
solutions that each option affords. We call this the correctly-weighted property.

We show that our algorithm has both of the above properties. Given that this is the case, based
on a simple lemma which we introduce next, it is easy to see that our algorithm generates an LCS
embedding uniformly at random.

Consider a tree T rooted at node r. The following simple algorithm shows how to traverse the tree
and output one leaf of the tree uniformly at random.
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1. Let StartNode← r.

2. End if StartNode does not have any children. Otherwise, randomly choose one of
StartNode’s children, according to the distribution that is weighted by the number of
that child’s desendents.

3. Let StartNode be equal to the chosen child. Go back to the first step.

Lemma 1. Consider a tree T rooted at node r. The algorithm given above outputs a leaf of the tree
uniformly at random.

In our algorithm each pair (i, j) corresponds to an internal node in the tree, and each LCS embedding
between strings A and B corresponds to a leaf. In each iteration of the while loop, we partition
the set of all possible LCS embeddings between A[1 . . . i] and B[1 . . . j] into four disjoint groups: (i)
embeddings that use A[i] and B[j]; (ii) embeddings that use neither A[i] nor B[j]; (3) embeddings
that use B[j] but not A[i]; (4) embeddings that use A[i] but not B[j]. If forceUp is set, it means that
B[j] needs to be part of the embedding and, therefore, backtracking options that do not use B[j] are
not allowed.

Similarly, if forceLeft is set, A[i] needs to be part of the embedding and backtracking options that do
not use A[i] should be ignored. This procedure guarantees that we meet the non-overlapping property
at each step.

Furthermore, the number of embeddings for each of the above four backtracking options is computed
and stored in W1, . . . ,W4, respectively. The Wi values are used to create the distribution for each coin
toss and therefore satisfy the second property. This concludes the correctness argument.

The main loop iterates at most m+n times. In each iteration we perform a single weighted coin toss,
requiring gwct(4, E(n, m)) = O(log E(n, m)) time and space. Thus, the algorithm uses O(|L|+ |D|+
(n + m) log E(n, m)) = O(|D|) space and O((n + m) log E(n, m)) = O(n log E(n, m)) time.

Output sampling algorithms may be appropriate for some applications and useful as independent
constructions. Notice, however, that multiple queries to an output sampling algorithm allow one to
learn many outputs, possibly. Next, we design algorithms which meet a stronger notion of privacy,
respecting the privacy structure while restricting what is learned across multiple queries.

5 LCS Equivalence Protecting

In this section, we give algorithms for our LCS variants which protect their respective privacy struc-
tures across multiple queries, known as equivalence protecting algorithms. An equivalence protecting
algorithm cannot be efficiently distinguished from a randomly selected oracle that (i) provides correct
answers to the search problem, and (ii) gives the same output for all inputs in the same equivalence
class with respect to the problem’s privacy structure.

Definition 7 (Equivalence Protecting [13]). Let
P = {Pn}n∈N be a search problem and p be the polynomial such that Pn : {0, 1}n → 2{0,1}p(n)

. We say
that for any n ∈ N, an oracle On : {0, 1}n → {0, 1}p(n) is private with respect to the privacy structure
≡P (alternately, we say it is private with respect to P or protects the equivalence relation ≡P) if (i) for
every x ∈ {0, 1}n it holds that On(x) ∈ Pn(x); and, (ii) for every x, y ∈ {0, 1}n it holds that x ≡P y
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implies On(x) = On(y). An algorithm A(·, ·) is an equivalence protecting algorithm for ≡P , if for
every polynomial time oracle machine D, for every polynomial q, and for any sufficiently large n

|Pr[DOn(1n) = 1]− Pr[DA(·,sn)(1n) = 1]| < 1/q(n)

where the first probability is over the uniform distribution over oracles On that are private with respect
to P, and the second probability is uniform over the choices of the seed sn for the algorithm A.

In summary, an equivalence protecting algorithm provides solutions that look random and behaves
consistently on equivalent inputs (and therefore does not leak further information when executed
repeatedly on equivalent inputs).

5.1 Equivalence Protecting: LCS Embedding

In this section, we design an equivalence protecting algorithm for the LCS-e search problem. We do
so by first building a canonical representative algorithm for P. Briefly, a canonical representative
algorithm is a randomized algorithm which, for all inputs in the same equivalence class, gives some
“canonical” output, which itself is a member of the equivalence class.

Definition 8 (Canonical Representative [13]). Let P = {Pn}n∈N be a search problem. A randomized
algorithm A is called a canonical representative algorithm for P if (i) for every x ∈ {0, 1}n it holds
that x ≡P A(x); and (ii) for every x, y ∈ {0, 1}n, it holds that A(x) = A(y) iff x ≡P y.

We then make use of a generic construction, due to Beimel et al. [13], which reduces the problem of
designing an equivalence protecting algorithm for P to that of designing an output sampling algorithm
and canonical representative algorithm for P.

Theorem 2 (Generic Construction [13]). Let P be a search problem and F = {Fn}n∈N be a family of
pseudorandom functions. Suppose P has (i) an efficient output sampling algorithm Arand; and (ii) an
efficient canonical representative algorithm Arep. Then there exists an efficient equivalence protecting
algorithm for P. The algorithm’s running time is bounded by exactly one invocation of Arand, Arep,
and the pseudorandom function.

We refer the reader to Beimel et al. [13] for details on the construction. At a high level, however, the
construction proceeds as follows: on input x, use the canonical representative algorithm to generate
an instance xrep; run the output sampling algorithm on xrep using a source of randomness that is
deterministically based on xrep, i.e. let the algorithm’s seed be Fn(xrep).

Claim 3. There exists an equivalence protecting algorithm for the LCS-e search problem, using O(mn+
n log E(m,n)) time and O(|D|) space.

The construction automatically follows from Theorem 2, our output sampling algorithm (Algorithm 1),
and our canonical representative algorithm (Algorithm 2), described next.

One straight-forward strategy for computing (C,D) given the set rep(A,B) (i.e., for Algorithm 2,
Step 16) is provided in Algorithm 3. Without loss of generality we assume that |Σ| ≥ n. If this is not
the case, we can simply add dummy characters to the alphabet to satisfy this requirement. Let σk

denote the lexicographically k-th character in the alphabet.
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Algorithm 2 Canonical representative algorithm for LCS-e
1. for j ← n to 0, i← m to 0 do
2. rep(A,B) ← ∅
3. if i = m or j = n
4. then Reach[i, j]← True
5. else
6. Reach[i, j]← False
7. if L[i, j] = L[i + 1, j + 1]− 1 and A[i + 1] = B[j + 1]
8. then Reach[i, j]← True
9. else if L[i, j] = L[i + 1, j] and Reach[i + 1, j]

10. then Reach[i, j]← True
11. else if L[i, j] = L[i, j + 1] and Reach[i, j + 1]
12. then Reach[i, j]← True
13. if Reach[i, j] and A[i] = B[j]
14. then rep(A,B) ← rep(A,B) ∪ (i, j)
15. end for
16. Deterministically compute a pair of strings (C,D)

such that rep(C,D) = rep(A,B)

17. return (C,D)

Algorithm 3 A selection mechanism for Algorithm 2
1. Let k ← 0
2. Sort rep(A,B) = {(i, j)} by i
3. while rep(A,B) 6= ∅ do
4. Let k ← k + 1
5. Let (i, j) be the first pair in rep(A,B)

6. if C[i] is defined then set D[j]← C[i]
7. else if D[j] is defined then set C[i]← D[j]
8. else set C[i], D[j]← σk

9. Remove (i, j) from rep(A,B)

10. end while
11. for all i′ ≤ m
12. if C[i′] is not yet defined then set C[i′]← σk+1

13. for all i′ ≤ n
14. if D[i′] is not yet defined then set D[i′]← σk+2

15. output (C,D)
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Claim 4. Algorithm 2 is a canonical representative algorithm for the LCS-e search problem and uses
O(mn) time and space. For this algorithm, we assume that entries of the L matrix are computed using
the normal dynamic programming LCS algorithm.

At a high level, the algorithm works by collecting any (i, j) for which there is at least one LCS of
A and B where A[i] and B[j] are matched. Particularly, by Step 12, if Reach[i, j] = True then a
subsequence common to A[1 . . . i] and B[1 . . . j] is the prefix of an LCS for A and B. In other words,
L[m,n] is reachable from L[i, j]. Step 13 verifies, based on any of the previous conditions, that at least
one LCS uses A[i] and B[j]. This collects all the “important” structure of A and B. In the proof, we
show that any two inputs are in the same equivalence class if and only if the algorithm generates the
same rep set for them. Using the rep set, we deterministically output a pair of strings (C,D) such
that rep(C,D) = rep. Thus, for any two equivalent inputs, the algorithm generates the same rep set
and outputs the same string (C,D), which is itself a member of the equivalence class.

Proof. Denote Algorithm 2 by A. We show that for any pair of inputs (A,B), (A′, B′), we have
(A,B) ≡LCS-e (A′, B′) iff A(A,B) = A(A′, B′). This will suffice to show that A is a canonical
representative algorithm for the LCS-e search problem.

First, we show the forward direction. If (A,B) ≡LCS-e (A′, B′), then the length of any LCS for the
pairs is the same. It suffices to show that every (i, j) ∈ rep(A,B) is also in rep(A′,B′). By construction,
if (i, j) ∈ rep(A,B) then there exists at least one LCS embedding (α, β) where A[i] matches B[j]. Since
(A,B) and (A′, B′) are in the same equivalence class, A′ and B′ have the same LCS embedding (α, β)
and therefore (i, j) ∈ rep(A′,B′). This shows that rep(A,B) = rep(A′,B′). Because our choice of string is
deterministic and based on rep(A,B), this shows A(A,B) = A(A′, B′).

Second, we show the reverse direction. Let (C,D) = A(A,B). Recall (C,D) was chosen by the
algorithm so that rep(C,D) = rep(A,B). Following from our assumption that A(A,B) = A(A′, B′),
we now have that rep(A,B) = rep(C,D) = rep(A′,B′). We prove our claim by showing that, under this
assumption, any LCS embedding for (A,B) is an LCS embedding for (A′, B′) and vice versa. Consider
an arbitrary embedding (α, β) corresponding to an LCS of length ` for (A,B). The embedding (α, β)
corresponds to a sequence of pairs (i1, j1), . . . , (i`, j`) in rep(A,B) that is monotonically increasing, i.e.
for any (ik, jk′) in the sequence we have ik < ik+1 and jk′ < jk′+1. This sequence of pairs also exists
in rep(A′,B′), since rep(A,B) = rep(A′,B′). By our construction for the set rep(A′,B′), this means (α, β)
is an embedding of a common subsequence for (A′, B′). We now need to show that this common
subsequence is of maximal length and therefore is an LCS for (A′, B′). It suffices to argue that no
monotonically increasing sequence of length `′ > ` in rep(A′,B′) exists. If this were true, any such
sequence would correspond to a common subsequence of length `′ > ` for (A,B) too, and would
contradict our assumption that (α, β) was an embedding of an LCS of length ` for (A,B). Therefore,
(α, β) is also an LCS embedding for (A′, B′). Symmetrically, one can show that any LCS embedding for
(A′, B′) is also an LCS embedding for (A,B). This concludes our claim that (A,B) ≡LCS-e (A′, B′).

The main loop of A iterates mn times. In each iteration, the set rep(A,B) increases by at most one.
Thus, the algorithm uses |L|+ mn = O(mn) space and O(mn) time.

5.2 Equivalence Protecting: LCS String

Here, we design an equivalence protecting algorithm for the LCS-s search problem. Unlike before,
we do not build a canonical representative algorithm for the LCS-s search problem. Instead, we take
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advantage of the fact that LCS-s(A,B) is a finite language (and therefore regular) and we construct
an efficient acyclic deterministic finite automaton (DFA) whose language is precisely LCS-s(A,B).
Essentially, we reduce the problem to that of finding an equivalence protecting algorithm for words
in the language of an acyclic DFA. We give our equivalence protecting algorithm for words in the
language of an acyclic DFA in Section 5.3. Our reduction works because the solution space is not
distorted by the transformation; it is efficient because the DFA we produce is small.

Algorithm 4 Equivalence protecting algorithm for LCS-s

1. Build an acyclic DFA whose language is LCS-s(A,B)

(a) Build M ′
AB such that

L(M ′
AB) = {w : w is a subsequence of A or B}

(b) Prune M ′
AB to build MAB such that

L(MAB) = LCS-s(A,B)

2. Use an equivalence protecting algorithm to select a word from the language of MAB

Claim 5. Algorithm 4 is an equivalence protecting algorithm for the LCS-s search problem, running
in O(nm + n log E(n, m)) time and space (for alphabets of fixed size) or O(n2 log E(n, m)) time and
space (for unbounded alphabets).

Proof. The ability to use input (A,B) to efficiently construct an acyclic DFA MAB where L(MAB) =
LCS-s(A,B) follows from Claim 6.

If inputs (A,B), (A′, B′) are in the same equivalence class with respect to the privacy structure for
LCS-s, then MAB and MA′B′ are in the same equivalence class with respect to the privacy structure for
the language of a DFA. This follows immediately from the fact that w ∈ L(MAB) iff w ∈ LCS-s(A,B).
Thus, an equivalence protecting algorithm for the language of acyclic DFAs on input MAB is an
equivalence protecting algorithm for LCS-s on input (A,B). The existence of an equivalence protecting
algorithm for the language of an acyclic DFA follows from Claim 9.

The efficiency of Algorithm 4 follows from the efficiency of Claim 6, from the efficiency of Claim 9,
and from the fact that |L(MAB)| = |LCS-s(A,B)| ≤ E(n, m).

The transformation we use in Step 1 of Algorithm 4 to convert input (A,B) into a DFA is similar to
the algorithm of Baeza-Yates [10] used to solve the LCS problem. This algorithm builds a directed
acyclic subsequence graph [19] (DASG) for strings A and B. A DASG for a string A is a DFA that
accepts the language of all subsequences in A (for an example, see Figure 1).

A DASG is analogous to a directed acyclic word graph (DAWG), but while a DAWG recognizes all
possible O(n2) subwords of A using O(n) space, a DASG recognizes all possible 2n subsequences of A
using O(n) space. We do not require our DFA to be this space-efficient (in particular, the canonical
representative algorithm for finite regular languages we use will not preserve this space efficiency) and
instead use a variation of Baeza-Yates’ construction to build a DASG for A and B using O(nm) time
and O(n2) space.

11
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Figure 1: The DASG for input “acgtat” (above) and “cgatta” (below).

Claim 6. On input (A,B) we can make a DFA M where L(M) = {w : LCS(A,B, w)}. The DFA M
has O(n + m) states and O(n2) transitions. The algorithm producing M uses O(nm) time and O(n2)
space.

Proof. On input (A,B) we can build a DASG M ′
AB using O(nm) time and O(n2) space. The

DASG M ′
AB has O(n + m) states and O(n2) transitions, and accepts the language L(M ′

AB) = {w :
w is a subsequence of A or B}. Additionally, each transition in M ′

AB is labeled if the transition cor-
responds to part of a subsequence common to both A and B. The construction is given by Baeza-
Yates [10, §5], using suffix-trees and table accesses. This DASG can be pruned in a straight-forward
manner, to produce a machine MAB where L(MAB) = {w : LCS(A,B, w)}. The pruning procedure
takes time and space linear in the size of M ′

AB, and is described in-depth in Appendix E.

5.3 Equivalence Protecting: Finite Languages

Here, we design an equivalence protecting algorithm for words in the language of an acyclic DFA.
We use the following notation. A deterministic finite automaton (DFA) M = (S, Σ, T, s0, A) is a
5-tuple where: S is a set of states; Σ is a finite alphabet; s0 is the initial state; A ⊆ S is the set of
accepting states; T : S × Σ → S is a function defining the transitions of the automata. Given any
DFA M = (S, Σ, T, s0, A), define its (directed) graph GM = (S, E) with E = {(s, s′) : ∃(s, σ, s′) ∈ T}.
A DFA is acyclic if its graph is acyclic.

First, we define the privacy structure for the finite language search problem. Note that while any
finite language can be represented by an acyclic DFA, the size of the DFA may not be small. Our
algorithms are efficient for languages whose acyclic DFA representations are small. As we have shown,
this is the case for the language LCS-s.

Definition 9 (Lang Privacy Structure). For any
acyclic DFA M = (S, Σ, T, s0, A), let Lang be the search problem for finite (regular) languages, where
Lang(M) = {w : w ∈ L(M)}. Let ≡Lang be the related privacy structure, such that M ≡Lang M ′ iff
L(M) = L(M ′).
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We will incrementally build our equivalence protecting algorithm for Lang, following the generic con-
struction from Theorem 2. An algorithm A is a canonical representative algorithm for the Lang search
problem if (i) M ≡Lang A(M) and (ii) for every M,M ′ it holds that A(M) = A(M ′) iff M ≡Lang M ′.

Claim 7. There is a canonical representative algorithm for the Lang search problem such that, given
an acyclic DFA M with O(n) states and O(n2) transitions, the algorithm constructs the canonical
acyclic DFA Mrep with O(n) states and O(n2) transitions and uses O(n) time and O(n2) space.

Proof. An acyclic DFA M can be used to produce the minimal-state DFA Mrep in O(|Σ||S|) time [35].
The resulting DFA will necessarily also be acyclic. Mrep is a canonical representative algorithm for
the Lang search problem because any two DFAs M,M ′ accepting the same language will produce
the same DFA Mrep when minimized. This follows from the classic Myhill-Nerode theorem on the
uniqueness (up to isomorphism) of the minimal-state DFA accepting the language L(M).

Claim 8. Given a minimal-state acyclic DFA M with |S| states, there is an output sampling algo-
rithm for the Lang search problem taking O(|S| log |L(M)|) time and space (for fixed alphabets) or
O(|S|2 log |L(M)|) time and space (for unbounded alphabets).

The algorithm for this claim is given in Algorithm 5. As before, we prove the claim by showing the
algorithm has the non-overlapping and correctly-weighted properties. Unlike before, the algorithm
and proof are much simpler, due to the fact that every path through the graph corresponds to a
unique output (else, we reach a contradiction with the DFA being minimal).

Algorithm 5 Output sampling algorithm for Lang
1. for all s ∈ A do strings(s)← 1
2. for all s ∈ S \A do
3. let num(s, x) be the number of transitions of

the form (s, σ, x) ∈ T
4. let strings(s)←

∑
x∈S num(s, x)strings(x)

5. s← s0, ans← ε
6. loop
7. R← ∅
8. for all x such that ∃(s, σ, x) ∈ T do R← {x} ∪R
9. for all i ∈ R do ti ← num(s, i)strings(i)

10. if s ∈ A then R← s ∪R and ts ← 1 end if
11. t←

∑
i∈R ti

12. sample z ∈ R where Pr[z = i] = ti/t
13. if z = s then
14. return ans
15. else
16. choose a random transition of the form (s, σ, z) ∈ T
17. ans← ans||σ
18. s← z
19. end if
20. end loop

Proof. We prove the claim by showing Algorithm 5 has the non-overlapping and correctly-weighted
properties.
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In the algorithm, the labeling procedure is straight-forward since the automaton is finite and acyclic.
At the end of the labeling procedure, the variable strings(s) represents the number of paths from
s to some accepting state, because every transition leads to a state that is within the reach of an
accepting state (M does not have any non-accepting states with no outgoing transitions, since these
“dead states” could be removed thus contradicting the minimality of M). Each path from from s to
some accepting state corresponds to a unique string, because each transition out of s is labeled with
a unique character (recall, M is a DFA). Thus the algorithm has the non-overlapping property.

In the algorithm, for i 6= s, ti is the number of strings that can be produced moving to state i. When
s is an accepting state then we can consider returning the current string by letting ts = 1. Otherwise,
ti is the number of strings produced along paths from s to some accepting state along a path passing
through state i. If we select i 6= s, then we select a random transition to move to state i. Thus, the
algorithm has the correctly-weighted property.

Note that the values strings(s) and ti are never larger than the size of the language |L(M)|. Thus,
the length of the labels and the length of the numbers used for the weighted coin toss are both
bound by O(log |L(M)|). Thus, the labeling step takes |T | log |L(M)| time and space, where |T | =
min (|S||Σ|, |S|2). Each iteration, the size of the set R is bound by min (|Σ|, |S|). Each iteration, the
weighted coin toss takes gwct(|R|, |L(M)|) time and space. The loop iterates at most |S| times, because
the automaton is acyclic and the longest word in its language has length |S|.

Thus, for alphabets of fixed size, Algorithm 5 runs in O(|S| log |L(M)|) time and space. For unbounded
alphabets, Algorithm 5 runs in O(|S|2 log |L(M)|) time and space.

Claim 9. There is an equivalence protecting algorithm for the Lang search problem such that, given
an acyclic DFA M = (S, Σ, T, s0, A), the algorithm uses O(|S| log |L(M)|) time and space (for fixed
alphabets) or O(|S|2 log |L(M)|) time and space (for unbounded alphabets).

This follows immediately from the generic construction of Theorem 2, the existence of an efficient
canonical representative algorithm for this search problem (Claim 7), and the existence of an efficient
output sampling algorithm for this search problem (Claim 8).

6 Conclusion

We have introduced variants of the longest common subsequence problem, a classic problem for both
computer scientists and biologists, and considered each as a private search problem. For each we
defined a strong security requirement and explored the definitions and the relationships of these
privacy structures. We presented efficient private search algorithms for each variant and for the search
problem of words in the language of a DFA, which may be of independent interest. The time and
space required by each of our algorithms is asymptotically the same as (or better than) that of the
algorithms used to count the size of the problem’s output set on a given input. All our algorithms
can be securely implemented in a variety of client-server or distributed settings using existing, general
secure multiparty computation protocols, e.g. [14, 18, 23, 43].

Generating uniformly random solutions to problems is a very natural notion and, as such, a large body
of research has been devoted to designing polynomial-time output sampling algorithms for a variety
of combinatorial problems, such as perfect bipartite matchings [28] and spanning trees [16] (for some
survey work and more examples, see [22, 29, 38]). Further complementing this line of research, we
hope our work may motivate more efficient sampling algorithms for our problems, perhaps by relaxing
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our objectives and sampling from the solution space computationally close to uniform, or perhaps by
finding more efficient counting algorithms (on which our sampling algorithms rely).

In addition to the definitions considered in this paper, Beimel et al. [13], propose an alternative
notion for private search algorithms, called resemblance preserving algorithms. We leave it as an open
problem to design efficient resemblance preserving algorithms for the LCS-e and the LCS-s problems.

While the literature on private genomic computation is itself still evolving, we hope our work motivates
further research in this area: research on the relationship between the strong definitions of privacy
presented here and the types of privacy being considered in biomedical research; research on bounding
the expected value of E(n, m) for realistic genomic data; and research on other private search problems
of interest to genomic research.
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A Definitions

Definitions 10–14 are adapted from definitions provided by Beimel et al. [11, 13].

Definition 10 (Seeded Algorithms). A seeded algorithm A is a deterministic polynomial time algo-
rithm taking two inputs x, sn where |x| = n and |sn| = p(n) for some polynomial p. The distribution
induced by a seeded algorithm on an input x is the distribution on outcomes A(x, sn) where sn is
chosen uniformly at random from {0, 1}p(|x|).

Definition 11 (Output Sampling Algorithm). Let P = {Pn}n∈N be a search problem. A seeded
algorithm A is called an output sampling algorithm for P if for every pair of strings x ∈ {0, 1}n the
distribution A(x, sn) is computationally indistinguishable from the uniform distribution on P(x).

Definition 12 (Private Oracle). Let P = {Pn}n∈N be a search problem and p be the polynomial such
that Pn : {0, 1}n → 2{0,1}p(n)

. We say that for a given n ∈ N, an oracle On : {0, 1}n → {0, 1}p(n) is
private with respect to the privacy structure ≡P if (i) for every x ∈ {0, 1}n it holds that On(x) ∈ Pn(x)
(that is, On returns correct answers); (ii) for every x, y ∈ {0, 1}n it holds that x ≡P y implies
On(x) = On(y). We say such an oracle is private with respect to P, or protects the equivalence
relation ≡P .

Definition 13 (Equivalence Protecting Algorithm). Let P = {Pn}n∈N be a search problem. An
algorithm A(·, ·) is an equivalence protecting algorithm for ≡P , if for every polynomial time oracle
machine D, for every polynomial p, and for any sufficiently large n,

|Pr[DOn(1n) = 1]− Pr[DA(·,sn)(1n) = 1]| < 1/p(n)

where the first probability is over the uniform distribution over oracles On that are private with respect
to P, and the second probability is uniform over the choices of the seed sn for the algorithm A.

Definition 14 (Canonical Representative Algorithm). Let P = {Pn}n∈N be a search problem. A
randomized algorithm A is called a canonical representative algorithm for P if (i) for every x ∈ {0, 1}n
it holds that x ≡P A(x); and (ii) for every x, y ∈ {0, 1}n, it holds that A(x) = A(y) iff x ≡P y.

Definition 15 (DFA). A deterministic finite automaton (DFA) M = (S, Σ, T, s0, A) is a 5-tuple
where: S is a set of states; Σ is a finite alphabet; s0 is the initial state; A ⊆ S is the set of accepting
states; T : S × Σ→ S is a function defining the transitions of the automata.

From state s on input σ ∈ Σ, let 〈s, σ〉 = T (s, σ) be the state reached from the transition. Let the
notation be transitive: if w = σ1σ2 . . . σ` is a word, then let 〈s, w〉 be the state reached by transitioning
from s given the ordered inputs σ1, σ2, . . . , σ`. A word w is accepted by the automaton if 〈s0, w〉 ∈ A.
Define the automaton’s language as L(M) = {w : 〈s0, w〉 ∈ A}.

Definition 16 (Acyclic DFA). Given a DFA M = (S, Σ, T, s0, A), define its (directed) graph GM =
(S, E) with E = {(s, s′) : ∃(s, σ, s′) ∈ T}. A DFA is acyclic if its graph is acyclic. The language of an
acyclic DFA is finite and composed entirely of finite-length words.

Any regular language is accepted by some DFA, and any finite language is accepted by some acyclic
DFA.
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B LCS Counting Algorithms

In this section, we summarize two basic dynamic programming algorithms due to Greenberg [26]
for counting the number of solutions to the LCS-e and LCS-s search problems. We use these as a
foundation for building our output sampling algorithms. For each counting algorithm, we assume the
typical LCS dynamic programming matrix L has already been populated.

Claim 10. Algorithm 6 correctly counts the number of solutions to LCS-e or LCS-s. Each requires
O(mn log E(m,n)) time and space.

Algorithm 6 Count LCS Embeddings and Strings [26].

To count solutions in LCS-e, use with boxed code .
To count solutions in LCS-s, use with shaded code .
1. for j ← 0 to n, i← 0 to m do
2. if i = 0 or j = 0 then
3. D[i, j]← 1
4. else
5. D[i, j]← 0
6. if A[i] = B[j] then
7. D[i, j]← D[i− 1, j − 1]
8. end if
9. else

10. if L[i− 1, j] = L[i, j] then
11. D[i, j]← D[i, j] + D[i− 1, j]
12. end if
13. if L[i, j − 1] = L[i, j] then
14. D[i, j]← D[i, j] + D[i, j − 1]
15. end if
16. if L[i− 1, j − 1] = L[i, j] then
17. D[i, j]← D[i, j]−D[i− 1, j − 1]
18. end if
19. end if
20. end if
21. end for
22. return D[m,n]
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C Privacy Structure Relationships

Claim 11. Privacy structures ≡LCS-s and ≡LCS-e are incomparable.

Proof. The following proves the claim: (i) (cat, ct) ≡LCS-e (gat, gt) but (cat, ct) 6≡LCS-s (gat, gt); (ii)
(cat, ct) ≡LCS-s (ctg, ct) but (cat, ct) 6≡LCS-e (ctg, ct).

Claim 12. Some natural deterministic selection strategies which output strings (embeddings) on inputs
of length n may leak Θ(n) bits with respect to the privacy structure ≡LCS-s (≡LCS-e).

Proof. Let n = 3` and |Σ| ≥ n. Consider the following grammars:

G ::= (“abc”|“bca”)||(“def”|“efd”)||(“ghi”|“hig”) . . .

X ::= (“a”|“b”|“c”)||(“d”|“e”|“f”)||(“g”|“h”|“i”) . . .

For each A ∈ L(G) there exists a B such that for all x ∈ L(X) we have LCS(A,B, x), and for all
x′ 6∈ L(X) it is not true that LCS(A,B, x′). Specifically for A = abc . . . we choose B = cba . . ., and for
A = bca . . . we choose B = acb . . .. Let S = {(A,B) : A ∈ L(G) and B is constructed in this manner}.

For all (A,B), (A′, B′) ∈ S, we have

(A,B) ≡LCS-s (A′, B′) and (A,B) ≡LCS-e (A′, B′)

Now, consider any deterministic selection strategy flcs that recovers a longest common sequence string.
Of the longest common subsequences, it must return one. Each unique LCS embedded in input A
corresponds to a unique string. Without loss of generality, say the deterministic algorithm flcs(A,B)
returns the LCS with the “earliest” embedding in A. For example, our strategy yields flcs(abc, cba) = a
while flcs(bca, acb) = b.

Thus, {flcs(A,B) : (A,B) ∈ S} is a set of size 2`. Therefore, flcs partitions the equivalence class
into 2` sub-classes. Thus, this deterministic backtracking algorithm leaks ` = Θ(n) bits relative to
≡LCS-s.

To show the same result for embeddings, let flcs(A,B) be the deterministic selection strategy that
returns the embedding of a longest common subsequence. Consider the strategy that, at each step,
chooses the lexicographically first character. For example, flcs(gcta, cagt) returns the embedding of
ca. Again, the set {flcs(A,B) : (A,B) ∈ S} contains 2` unique embeddings (all embed the string
adgj . . .), thus dividing the equivalence class into 2` sub-classes.

Definition 17 (Embeddings with Strings). Let
LCSes(A,B, α, β, x) be true if LCS(A,B, x), LCS-e(A,B, α, β) and x = v(A,α), and false otherwise.
Define LCS-es as the search problem for LCS embeddings with strings, where for all A ∈ Σm, B ∈ Σn,
we have

LCS-es(A,B) = {(α, β, x) : LCSes(A,B, α, β, x)}

Let ≡LCS-es be the related privacy structure, where if
LCS-es(A,B) = LCS-es(A′, B′) we say (A,B) ≡LCS-es (A′, B′). For example, (atg, aga) ≡LCS-es
(acg, agt).

As one might expect, ≡LCS-es refines both ≡LCS-s and ≡LCS-e. In fact, as we show next, the
structure ≡LCS-es leaks Θ(n) bits relative to both ≡LCS-s and ≡LCS-e.
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Claim 13. Privacy structure ≡LCS-es leaks Θ(n) bits relative to privacy structure ≡LCS-s.

Proof. It it clear that ≡LCS-es refines ≡LCS-s. Consider the set S from before. For (A,B), (A′, B′) ∈
S, the strings are structurally the same but the embeddings yield different values. Specifically,
(abc . . . , cba . . .) and (bca . . . , acb . . .) both have embedding (100 . . . , 001 . . .) but in one case the em-
bedding’s value is a . . . and in the other it is b . . .. In fact, this set is divided by ≡LCS-es into 2`

sub-classes. Thus, ≡LCS-es leaks Θ(n) bits relative to ≡LCS-s.

Claim 14. Privacy structure ≡LCS-es leaks Θ(n) bits relative to privacy structure ≡LCS-e.

Proof. It is clear that ≡LCS-es refines ≡LCS-e. Consider the set S from before. Let Aπ, Bπ be the
strings formed from A by permuting the characters in Σ according to π. For all (A,B) ∈ S, we have

(Aπ, Bπ) ≡LCS-e (Aπ′
, Bπ′

) and (Aπ, Bπ) 6≡LCS-es (Aπ′
, Bπ′

)

Permuting the alphabet will not change the embeddings (the strings are, structurally, the same as
before), but it will change the values of the strings at those embeddings. When |Σ| = n = 3`, this
divides ≡LCS-e into

(
n
`

)
sub-classes. Since (3e)` ≤

(
n
`

)
≤ 3`, ≡LCS-es leaks Θ(n) bits relative to

≡LCS-e.
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D Output Sampling: LCS String

For comparison purposes, we give the output sampling algorithms for both the LCS-e and LCS-s
search problems in Algorithm 7. For each variant, we assume that the L matrix and the D matrix
are already computed using the normal LCS dynamic programming algorithm and the appropriate
variant of the counting algorithm (see Algorithm 6), respectively.

Algorithm 7 Output sampling algorithms for LCS variants

For LCS-e, use with boxed code .
For LCS-s, use with shaded code .
1. α, β, s← ε; i← m; j ← n; forceUp, forceLeft← false
2. while i > 0 and j > 0 do
3. W1,W2,W3,W4 ← 0
4. if A[i] = B[j] then W1 ← D[i− 1, j − 1]
5. if L[i− 1, j − 1] = L[i, j] then W2 ← D[i− 1, j − 1]
6. if L[i− 1, j] = L[i, j] then W3 ← D[i− 1, j]−W2

7. if L[i, j − 1] = L[i, j] then W4 ← D[i, j − 1]−W2

8. if forceUp then sample z ∈ {1, 3} where
Pr[z = i] = Wi/(W1 + W3)

9. else if forceLeft then sample z ∈ {1, 4} where
Pr[z = i] = Wi/(W1 + W4)

10. else sample z ∈ {1, 2, 3, 4} where
Pr[z = i] = Wi/(W1 + W2 + W3 + W4)

11. if z = 1 or A[i] = B[j] then
12. α← 1||α; β ← 1||β; s← A[i]||s
13. forceUp, forceLeft← false
14. i← i− 1, j ← j − 1
15. else if z = 2 then
16. α← 0||α; β ← 0||β
17. i← i− 1, j ← j − 1
18. else if z = 3 then
19. α← 0||α; forceUp← true
20. i← i− 1
21. else if z = 4 then
22. β ← 0||β; forceLeft← true
23. j ← j − 1
24. end if
25. end while
26. return (α, β) return s

Claim 15. There exists an output sampling algorithm for the LCS-s search problem using O(n log E(m,n))
time and O(|D|) space(see Algorithm 7).

Proof. The efficiency claim follows the proof of Claim 2, due to the closeness in operation of the
two variants. The correctness claim mostly follows from the same argument used in Claim 2, with
the following differences. In the counting algorithm for LCS-s, there are two cases when determining
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contributions to D[i, j]: when A[i] = B[j] and when A[i] 6= B[j]. In the first case, the only contribution
to D[i, j] is from D[i− 1, j − 1] which corresponds to the scenario where the characters are matched;
thus, we make this choice deterministically in the algorithm. When A[i] 6= B[j], we proceed with the
coin tossing as usual, weighing each choice by how much it has contributed to the total D[i, j]; notice
the value D[i − 1, j − 1] does not contribute to D[i, j] when A[i] 6= B[j], and this is reflected in the
fact that W1 = 0 and some of the remaining coin tosses become trivial.

24



E Pruning procedure for DASG

We can prune the DASG M ′
AB to produce the acyclic DFA MAB, the automaton which accepts the

language L(MAB) = {w : LCS(A,B, w)}. The pruning procedure is given below. For an example of
the procedure, see Figures 2–5.

1. For any state s, we call state s′ reachable from s if there is a transition from s to s′

that is labeled as being common to A and B.

2. Use depth-first search to label the DFA M ′
AB = (S′,Σ, T ′, s0, A

′), starting at s = s0:

(a) For any state s′ reachable from s,
set label(s) = 1 + max {label(s′)}.

(b) If there are no states reachable from s,
set label(s) = 0.

3. For all s ∈ A′, if label(s) = 0, then add s to A.

4. For all (si, σ, sj) ∈ T ′, if label(si) = 1 + label(sj) then add (si, σ, sj) to T

5. Return MAB = (S′,Σ, T, s0, A).

From the construction, because we have only pruned transitions, it is clear that MAB is also acyclic
and L(MAB) ⊆ L(M ′

AB). To show that L(MAB) = {w : LCS(A,B, w)}, it suffices to show that
any subsequence whose length is not maximal is not accepted by MAB. If the length of the LCS for
A and B is `, then label(s0) = `. Any word of length `′ < ` needs to reach an accepting state s
(where label(s) = 0) using `′ transitions. To so do would mean using a transition from si to sj where
label(si) > 1 + label(sj). By construction, no such transition exists in MAB. Thus the pruned DFA
only accepts words of length `. This suffices to show that the pruned DFA accepts only common
subsequences of length `, i.e. longest common subsequences. This size of MAB is, in the worst case,
the same as the size of M ′

AB.
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Figure 2: M ′
AB, generated by the construction of Baeza-Yates [10]. States inherited from a string’s

DASG (see Figure 1) have been left labeled; dotted lines represent shared subsequences.
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Figure 3: M ′
AB, labeled according to the pruning procedure.
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Figure 4: MAB, after the pruning procedure.
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Figure 5: M[AB], the canonical representative automaton (i.e., state-minimized canonical DFA) for
MAB from Figure 4.
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