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Abstract. Designated Confirmer signatures were introduced to limit the verification property inherent to digi-
tal signatures. In fact, the verification in these signatures is replaced by a confirmation/denial protocol between
the designated confirmerand some verifier. An intuitive way to obtain such signaturesconsists in first gen-
erating a digital signature on the message to be signed, thenencrypting the result using a suitable encryption
scheme. This approach, referred to as the “encryption of a signature” paradigm, requires the constituents (en-
cryption and signature schemes) to meet the highest security notions in order to achieve secure constructions.
In this paper, we revisit this method and establish the necessary and sufficient assumptions on the building
blocks in order to attain secure confirmer signatures. Our study concludes that the paradigm, used in its basic
form, cannot allow a class of encryption schemes, which is vital for the efficiency of the confirmation/denial
protocols. Next, we consider a slight variation of the paradigm, proposed in the context of undeniable signa-
tures; we recast it in the confirmer signature framework along with changes that yield more flexibility, and
we demonstrate its efficiency by explicitly describing its confirmation/denial protocols when instantiated with
building blocks from a large class of signature/encryptionschemes. Interestingly, the class of signatures we
consider is very popular and has been for instance used to build efficient designated verifier signatures.
Keywords: Designated Confirmer signatures, “Encryption of a signature” paradigm, Generic construction,
Reduction/meta-reduction, Zero Knowledge.

1 Introduction

Digital signatures capture most of the properties met by signatures in the paper world, for instance,
universal verification. However, in some applications, this property is not desired or at least needs to
be controlled. Undeniable signatures were introduced in [12] for this purpose; they proved critical in
situations where privacy or anonymity is a big concern, suchas licensing software [12], electronic cash,
electronic voting and auctions. In these signatures, the verification can be only attained by means of
a cooperation with the signer, called the confirmation/denial protocols. Unfortunately, this very virtue
(verification with only the signer’s help) became its major shortcoming for many practical applications.
The flaw was later repaired in [10] by introducing the conceptof designated confirmer signatures. In
fact, this concept involves three entities, namely the signer who produces the signature, the designated
confirmer who confirms or denies an alleged signature and finally the recipient of the signature. Desig-
nated confirmer signatures, or confirmer signatures for brevity, can have the additional feature of being
converted, by the confirmer, to ordinary digital signatures.

1.1 Related work

Since the introduction of confirmer signatures, researchers sought ways of producing them from digi-
tal signatures and other cryptographic primitives such as encryption and/or commitment schemes. We
briefly review in this paragraph, in chronological order, the most important such attempts:

Okamoto (1994) [35].The result proposes a construction of confirmer signatures from digital signa-
tures, public key encryption, bit-commitment schemes and pseudo-random functions. The construc-
tion was used to prove equivalence between confirmer signatures and public key encryption with
respect to existence. Thus, efficiency was not taken into account in the framework.



Michels and Stadler (1998) [33].This approach builds efficient confirmer signatures from signatures
obtained from the Fiat-Shamir paradigm and from commitmentschemes. Thus, the resulting con-
firmer signatures can be only proven secure in the random oracle model (ROM), inheriting this prop-
erty from the use of the Fiat-Shamir paradigm, which constitutes their major shortcoming. Actually,
it is well known, according to [41], that most discrete-logarithm-based signatures obtained from the
Fiat-Shamir technique are very unlikely to preserve the same level of security in the standard model.

Camenisch and Michels (2000) [8].The authors present the “encryption of a signature” idea along
with a security analysis of the resulting confirmer signatures. In fact, they require existentially un-
forgeable signatures and indistinguishable encryption inthe strongest attack model (EUF-CMA sig-
natures and IND-CCA secure encryption) to achieve unforgeable, invisible, and transcript-simulatable
confirmer signatures. The major weakness of the construction lies in the resort, in the confirma-
tion/denial protocols, to general concurrent zero knowledge (ZK) proofs of NP statements.

Goldwasser and Waisbard (2004) [24].This result manages to circumvent partially the weakness
of the above construction. In fact, from a large class of digital signatures, the authors propose a
transformation to confirmer signatures by encrypting the former items under an IND-CCA secure
encryption during the confirmation protocol. They consequently achieve an efficient confirmation,
but at the expense of the transcript-simulatability, the invisibility and the length of the resulting sig-
natures. For instance, the signature contains at least twice the number of the confirmation protocol’s
rounds of encryptions. Moreover, the denial protocol of theconstruction has still recourse to general
concurrent ZK proofs of NP statements.

Gentry et al. (2005) [20].This work gives the possibility of building confirmer signatures from digital
signatures, encryption (IND-CCA) and commitment schemes.Although the resulting construction
does not use random oracles, it still does not get rid completely of general ZK proofs since the
confirmer has to prove in concurrent ZK the knowledge of the decryption of an IND-CCA encryption
and of a string used for commitment.

Wang et al. (2007) [47].In this work, the authors present two constructions. The first one fixes some
flaws noticed in [20], however, it still requires concurrentZK proofs of NP statements. The second
construction does not require any encryption, but at the expense of the underlying security assump-
tion. In fact, it has its invisibility resting on the decisional Diffie-Hellman assumption, which rules
out using the scheme in bilinear groups and thus benefiting from the attractive features they present
such as achieving short group elements. Moreover, the construction suffers also the recourse to the
ROM. Finally, these constructions as well as the construction in [20] are not anonymous, as we will
point later in this document.

Wikstr öm (2007) [14].The author in his work proposes a new model for convertible confirmer signa-
tures along with a generic construction analyzed in this newmodel. The construction is similar to the
one given in [8] with the exception of considering cryptosystems with labels. Although the construc-
tion requires a weaker security notion on the cryptosystem than IND-CCA, namely∆-IND-CCA, it
still resorts to general proofs of NP statements.

El Aimani (2008) [15]. This construction is a slight variation of the “encryption of a signature”
paradigm which uses cryptosystems from the KEM/DEM paradigm and requires them to be only
IND-CPA secure. The author claims that this impacts positively the efficiency of the confirma-
tion/denial protocols by allowing homomorphic schemes in the design. However, such a claim lacks
justification since the only illustrations provided in the paper (or in its full version [30]) are generic
constructions from a class of pairing-based signatures, which are used with a specific cryptosystem
(El Gamal encryption or the linear Diffie-Hellman KEM/DEM).Furthermore, one of the construc-
tions uses a cryptosystem which operates on messages inZ

×
p (for some primep), thus, the resulting

signatures will be quite long because of the size contrast between ring cryptography and elliptic-
curve cryptography. This seems to violate the main expectation from appealing to elliptic curve
cryptography, namely achieve short signatures.
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Summing up the state-of-the art in confirmer signatures, we deduce that the most mountainous obstacle
that faces the potentially anonymous generic constructions without ROM, namely those derived from
variants of the “encryption of a signature” paradigm, lies in the resort to general zero knowledge (ZK)
proofs of NP statements, e.g., proving in ZK the knowledge ofthe decryption of an IND-CCA encryp-
tion. In this paper, we revisit this paradigm. We basically address two questions: does the paradigm, used
in its basic form [8], allow building blocks with weaker security assumptions, for instance IND-CPA
cryptosystems and thus achieves efficient signatures as claimed in [15]? The second question concerns
the alleged efficiency of the construction in [15]; how important is the contribution of the IND-CPA
requirement to the efficiency of the confirmation/denial protocols?

1.2 Our contributions

The results in this paper are twofold. First, we consider theplain “encryption of a signature” paradigm
as described in [8]. We actually prove that EUF-CMA secure signatures are a sufficient and necessary
requirement to obtain EUF-CMA secure convertible confirmersignatures. Next, we show that indis-
tinguishable cryptosystems under aplaintext checking attack(IND-PCA) are already enough to obtain
invisible signatures under a chosen message attack (INV-CMA). This contrasts the wide belief that
the cryptosystems should be IND-CCA secure. We also show that this assumption on the cryptosys-
tem (IND-PCA secure) is necessary to obtain invisible signatures. This rules out automatically from
the design homomorphic cryptosystems, a class of cryptosystems which proved later to be vital for the
efficiency of the confirmation/denial protocols.

Next, we consider the proposal in [15] which builds a universally convertible undeniable signature
scheme from secure digital signatures and IND-CPA secure cryptosystems obtained from the KEM/DEM
paradigm. We propose a recast of the construction in the confirmer signature framework and we demon-
strate its efficiency by explicitly describing the confirmation/denial protocols when instantiated from a
large class of signature/encryption schemes. Interestingly, the class of signatures we consider has been
already defined as an ingredient of an efficient constructionof designated verifier signatures [44]. We
conclude that our recast of [15] betters the previous constructions of confirmer signatures in terms of
both efficiency and security. In fact, it gets rid of general ZK proofs of NP statements in the confirmation
and/or the denial protocols, oppositely to the constructions in [35, 8, 24, 20, 47]. Moreover, the resulting
signatures are not proven secure in the random oracle as in [33, 47], and they enjoy a strong invisibility
which captures both the traditional invisibility, defined in [8], and anonymity which was later defined in
[18]. We prove for instance that the latter property is not met by the constructions in [20, 47].

2 Convertible Designated Confirmer Signatures (CDCS)

Since their introduction, many definitions and security models for CDCS have emerged. We consider the
default model adopted in most confirmer signature proposals[8, 24, 20, 47, 15]. This model was primally
described in [8], where the signthen encrypt technique was first formally introduced.

We refer to Appendix A for the necessary cryptographic primitives that will come into use, that are,
digital signatures, public key encryption schemes, KEM/DEM mechanisms, and finallyΣ protocols.

2.1 Syntax

A CDCS scheme consists of the following procedures:

Key generation.Generates probabilistically key pairs(skS , pkS) and(skC , pkC) for the signer and for
the confirmer respectively, consisting of the private and the public key.

ConfirmSign.On inputskS , pkC and a messagem, outputs a confirmer signatureµ, then interacts with
the signature recipient to convince him of the validity of the just generated signature.
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Confirmation/Denial protocol.These are interactive protocols between the confirmer and a verifier.
Their common input consists of, in addition topkS andpkC , the alleged signatureµ, and the mes-
sagem in question. The confirmer uses his private keyskC to convince the verifier of the validity
(invalidity) of the signatureµ onm. At the end, the verifier either accepts or rejects the proof.

Selective conversion.This is an algorithm run by the confirmer usingskC , in addition topkC andpkS .
The result is either⊥ or a string which can be universally verified as a valid digital signature. Some
models, e.g. [14], require that the confirmer issues a protocol of the correctness of the conversion in
case of a valid signature1. We will see that the all the constructions that will follow,the confirmer
is able to provide such a proof. It is easy to see that such a proof of correctness is reduced, in case
of constructions from the “encryption of a signature” paradigm, to a proof that a given ciphertext
decrypts to a given message. This is theoretically possiblesince the last assertion is an NP statement
which accepts a ZK proof system.

Selective verification.This is an algorithm for verifying converted signatures. Itinputs the converted
signature, the message andpkS and outputs either0 or 1.

2.2 Security model.

The above algorithms must be complete. Moreover the confirmSign, confirmation and denial protocols
must be complete, sound and non transferable (simulatable)(see [8])2. In the sequel, we describe further
properties that a CDCS scheme should meet.

Security for the signer (unforgeability).It is defined through the following game: the adversaryA is
given the public parameters of the CDCS scheme, namelypkS andpkC , in addition toskC . A is
further allowed to query the signer on polynomially many messages, sayqs. At the end,A outputs
a pair consisting of a messagem, that has not been queried yet, and a stringµ. A wins the game if
µ is a valid confirmer signature onm. We say that a CDCS scheme is(t, ǫ, qs)-EUF-CMA secure if
there is no adversary, operating in timet, that wins the above game with probability greater thanǫ.

Security for the confirmer (invisibility).Invisibility against a chosen message attack (INV1-CMA) is
defined through the following game between an attackerA and his challengerR: afterA gets the
public parameters of the scheme fromR, he startsPhase 1where he queries the signing, confirma-
tion/denial, selective conversion oracles in an adaptive way. OnceA decides thatPhase 1is over, he
outputs two messagesm0,m1 that have not been queried before to the signing oracle and requests
a challenge signatureµ⋆. R picks uniformly at random a bitb ∈ {0, 1}. Then,µ⋆ is generated us-
ing the signing oracle on the messagemb. Next,A starts adaptively querying the previous oracles
(Phase 2), with the exception of not queryingm0,m1 to the signing oracle and(mi, µ

⋆), i = 0, 1,
to the confirmation/denial and selective conversion oracles. At the end,A outputs a bitb′. He wins
the game ifb = b′. We defineA’s advantage asadv(A) = |Pr[b = b′] − 1

2 |. We say that a CDCS
scheme is(t, ǫ, qs, qv, qsc)-INV1-CMA secure if no adversary operating in timet, issuingqs queries
to the signing oracle,qv queries to the confirmation/denial oracles andqsc queries to the selective
conversion oracle wins the above game with advantage greater thatǫ.

Anonymity of signatures.In some applications, it is required that the confirmer signatures are anony-
mous, i.e., do not leak the identity (public key) of the signer. We refer to [18] for the formal definition
of anonymity of confirmer signatures under a chosen message attack (ANO-CMA).

A stronger notion of invisibility.To capture both anonymity and invisibility, Galbraith and Mao intro-
duced in [18] a notion, which we denote INV2-CMA, that requires the confirmer signatures to be
indistinguishable from random elements in the signature space. This new notion is proven to imply
both INV1-CMA and ANO-CMA (Theorem 1 and Theorem 4 respectively of [18]).

1 It is not the responsibility of the confirmer to provide proofs for ill-formed signatures.
2 In [14], the author points a flaw in the definition of non transferability of [8] and proposes how to fix it (by having the

simulator rewound). In all the constructions that will follow, the property of non transferability will be met as a direct
consequence of using zero knowledge proofs.
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3 The Plain “Encryption of a Signature” Paradigm

The paradigm devises a CDCS scheme by producing a digital signature on the message to be signed, then
encrypting the result using a suitable cryptosystem. More precisely, letΣ be a digital signature scheme
given by Σ.keygen which generates a key pair (private key =Σ.sk, public key=Σ.pk), Σ.sign and
Σ.verify. Let furthermoreΓ denote a cryptosystem described byΓ.keygen that generates the key pair
(private key =Γ.sk, public key=Γ.pk), Γ.encrypt andΓ.decrypt. A confirmer signature on a message
m is issued by first producing a digital signatureσ = Σ.signΣ.sk(m) on m, then encrypting it using
Γ.pk. The result isµ = Γ.encryptΓ.pk(σ). It is obvious thatΣ.sk forms the (DCSC) signer’s private
key, whereasΣ.pk is his public key. To confirm (deny) a confirmer signatureµ, the confirmer uses
Γ.sk to prove the knowledge of the decryption ofµ which does (not) satisfy the equation defined by
the algorithmΣ.verify. Such a proof of knowledge is possible as the considered statements are in NP
(co-NP), and therefore accept zero knowledge proof systems(see [21]).

This technique was described and formally analyzed in [8]: it was shown that the construction is
EUF-CMA secure if the underlying (digital) signature scheme is also EUF-CMA secure. Moreover, it is
INV1-CMA secure if the underlying cryptosystem is IND-CCA secure. Finally, completeness, sound-
ness and non-transferability of the involved protocols follow from using ZK proofs of knowledge.

In the sequel, we prove that the condition on the underlying signature scheme (EUF-CMA secure) is
also necessary to achieve EUF-CMA secure confirmer signatures. Furthermore, we prove that IND-PCA
secure cryptosystems are already enough, though mandatory, to achieve INV1-CMA signatures.

Theorem 1. The above generic construction is (t, ǫ, qs)-EUF-CMA secure if and only if the underlying
digital signature scheme is (t, ǫ, qs)-EUF-CMA secure.

We provide the proof in Appendix B.

Invisibility. In this paragraph, we prove that IND-PCA secure cryptosystems are mandatory and enough
to achieve INV1-CMA secure undeniable signatures. To provethis assertion, we proceed as follows. We
first show that the INV1-CMA security of the resulting signatures cannot rest on the NM-CPA security of
the underlying cryptosystem. We do this by means of an efficient meta-reductionusing such a reduction
(the algorithm reducing NM-CPA breaking the underlying cryptosystem to INV1-CMA breaking the
construction) to break the NM-CPA security of the cryptosystem. Thus, under the assumption that the
cryptosystem is NM-CPA secure, the meta reduction forbids the existence of such a reduction. In case
the cryptosystem is not NM-CPA secure, such a reduction willbe useless. This result will rule out au-
tomatically all the other notions that are weaker than NM-CPA, namely, OW-CPA and IND-CPA. Next,
we use a similar technique to exclude the OW-CCA notion. The next security notion to be considered is
IND-PCA. Luckily, this notion turns out to be sufficient to obtain INV1-CMA secure signatures.

Note that meta-reductions have been successfully used in a number of important cryptographic re-
sults, e.g., the result in [7] which proves the impossibility of reducing factoring to the RSA problem,
or the results in [41, 39] which show that some well known signatures, which are proven secure in the
random oracle, cannot conserve the same security in the standard model. All those impossibility results
are partial as they apply only for certain reductions. Our result is in a first stage also partial since it
requires the reductionR, trying to attack a certain property of a cryptosystem givenby the public key
Γ.pk, to provide the adversary against the confirmer signature with the confirmer public keyΓ.pk. We
will denote such reductions bykey-preservingreductions, inheriting the name from a wide and popular
class of reductions which supply the adversary with the samepublic key as its challenge. Such reduc-
tions were for instance used in [40] to prove a separation between factoring and IND-CCA-breaking
some factoring-based cryptosystems in the standard model.Our restriction to such a class of reductions
is not unnatural since, to our best knowledge, all the reductions stemming the security of the generic con-
structions of confirmer signatures from the security of their underlying components, feed the adversary
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with the public keys of these components (signature scheme,encryption scheme, commitment scheme).
Next, we use simular techniques to [40] to extend our impossibility results to arbitrary reductions.

Lemma 1. Assume there exists a key-preserving reductionR that converts an INV1-CMA adversary
A against the above construction to an NM-CPA adversary against the underlying cryptosystem. Then,
there exists a meta-reductionM that NM-CPA breaks the cryptosystem in question.

Let us first interpret this result. The lemma claims that under the assumption of the underlying cryptosys-
tem being NM-CPA secure, there exists no key-preserving reductionR that reduces NM-CPA breaking
the cryptosystem in question to INV1-CMA breaking the construction, or if there exists such an algo-
rithm, the underlying cryptosystem is not NM-CPA secure, thus rendering such a reduction useless.

Proof. LetR be a key-preserving reduction that reduces NM-CPA breakingthe cryptosystem underlying
the construction to INV1-CMA breaking the construction itself. We will construct an algorithmM
that usesR to NM-CPA break the same cryptosystem by simulating an execution of the INV1-CMA
adversaryA against the construction.

Let Γ be the cryptosystemM is trying to attack.M launchesR over Γ with the same pub-
lic key, sayΓ.pk. M, acting as the INV1-CMA adversaryA against the construction, queriesR on

m0,m1
R
←− {0, 1}⋆ for confirmer signatures. Then he queries the resulting stringsµ0, µ1 (correspond-

ing to the confirmer signatures onm0 andm1 respectively) for a selective conversion. Letσ0 andσ1

be the output (digital) signatures onm0 andm1 respectively. At that point,M inputsD = {σ0, σ1}
to his own challenger as a distribution probability from which the plaintexts will be drawn. He gets in
response a challenge encryptionµ⋆, of eitherσ0 or σ1 underΓ.pk, and is asked to produce a cipher-
text µ′ whose corresponding plaintext is meaningfully related to the decryption ofµ⋆. To do this,M

chooses uniformly at random a bitb
R
←− {0, 1}. Then, he queries the presumed confirmer signatureµ⋆

on mb for a selective conversion. If the result is different from⊥, i.e.,µ⋆ is the encryption ofσb, then
M will output Γ.encryptΓ.pk(σb) (σb refers to the bit-complement of the elementσb) and the relationR:
R(m,m′) = (m′ = m). Otherwise, he will outputΓ.encryptΓ.pk(σ1−b) and the same relationR. Finally
M aborts the game (stops simulating an INV1-CMA attacker against the generic construction). ⊓⊔

Lemma 2. Assume there exists a key-preserving reductionR that converts an INV1-CMA adversary
A against the above construction to a OW-CCA adversary against the underlying cryptosystem. Then,
there exists a meta-reductionM that OW-CCA breaks the cryptosystem in question.

As previously, this result claims that under the assumptionof the underlying cryptosystem being OW-
CCA secure, there exists no key-preserving reductionR that reduces OW-CCA breaking the cryptosys-
tem in question to INV1-CMA breaking the construction, or ifthere exists such an algorithm, the under-
lying cryptosystem is not OW-CCA secure, thus rendering such a reduction useless.

Proof. The proof technique is similar to the one above. LetR be the key-preserving reduction that
reduces OW-CCA breaking the cryptosystem underlying the construction to INV1-CMA breaking the
construction itself. We will construct an algorithmM that usesR to OW-CCA break the same cryp-
tosystem by simulating an execution of the INV1-CMA adversary A against the construction.

Let Γ be the cryptosystemM is trying to attack.M gets his challengec and is equipped with a
decryption oracle that he can query on all ciphertexts of hischoice except of course on the challenge.M
launchesR overΓ with the same public keyΓ.pk and the same challengec. Obviously all decryption
queries made byR, which are by definition different from the challenge ciphertext c, can be forwarded
toM’s own challenger. At some point,M, acting as an INV1-CMA attacker against the construction,
will output two messagesm0,m1 and gets as response a challenge signatureµ⋆ which he is required to
tell to which message it corresponds. With overwhelming probability, µ⋆ 6= c, in fact, the challengec
is not the encryption of a certainσ such thatσ is a valid (digital) signature on the messagem0 or the
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messagem1. Therefore,M queries his own challenger for the decryption ofµ⋆ (he can issue such a
query since it is different from the challenge ciphertext).He checks whether the result, sayσ, is a valid
(digital) signature onm0 or m1. Then, he will simply output the result of this verification.Finally, when
R outputs his answer, decryption of the ciphertextc,M will simply forward this result to his challenger.

⊓⊔

Theorem 2. The cryptosystem underlying the above construction must beat least IND-PCA secure, in
case the considered reduction is key-preserving, in order to achieve INV1-CMA secure signatures.

Proof. We proceed in this proof with elimination. Lemma 1 rules out the notion NM-CPA and thus the
notions IND-CPA and OW-CPA. Moreover, Lemma 2 rules out OW-CCA and thus OW-PCA (and also
OW-CPA). Thus, the next notion to be considered is IND-PCA. ⊓⊔

Remark 1.The above theorem is only valid when the considered notions are those obtained from pairing
a security goal GOAL∈ {OW, IND, NM} and an attack model ATK∈ {CPA, PCA, CCA}. Presence
of other notions will require an additional study, however,Lemmas 1 and 2 will be always of use when
there exists a relation between these new notions and the notions OW-CCA and NM-CPA.

To extend the result to arbitrary reductions, we use the sametechniques as in [40]. Namely, we first
define the notion ofnon malleability of a cryptosystem key generatorthrough the following two games:
In Game 0, we consider an algorithmR trying to break a cryptosystemΓ , w.r.t. a public keyΓ.pk, in
the sense of NM-CPA or OW-CCA using an adversaryA which solves a problem A, perfectly reducible
to OW-CPA breaking the cryptosystemΓ . In this game,R launchesA over his own challenge keyΓ.pk

and some other parameters chosen freely byR. We will denote byadv0(R
A) the success probability

of R in such a game, where the probability is taken over the randomtapes of bothR andA. We
further definesuccGame0

Γ (A) = maxR adv0(R
A) to be the success inGame 0of the best reduction

R making the best possible use of the adversaryA. In Game 1, we consider the same entities as in
Game 0, with the exception of providingR with, in addition toA, a OW-CPA oracle (i.e. a decryption
oracle corresponding toΓ ) that he can query w.r.t. any public keyΓ.pk′ 6= Γ.pk, whereΓ.pk is the
challenge public key ofR. Similarly, we defineadv1(R

A) to be the success ofR in such a game, and
succGame1

Γ (A) = maxR adv0(R
A) the success inGame 1of the reductionR making the best possible

use of the adversaryA and of the decryption oracle.

Definition 1. A cryptosystemΓ is said to have a non malleable key generator if
∆ = maxA|succGame1

Γ (A)− succGame0
Γ (A)| is negligeable in the security parameter.

This definition informally means that a cryptosystem has a non malleable key generator if NM-CPA or
OW-CCA breaking it w.r.t. a keypk is no easier when given access to a decryption oracle w.r.t. any
public keypk′ 6= pk.

Theorem 3. If the cryptosystem underlying the above construction has anon malleable key generator,
then it must be at least IND-PCA secure in order to achieve INV1-CMA secure confirmer signatures.

We provide the proof in Appendix C
One can give an informal explanation to the result above as follows. It is well known that con-

structions obtained from the signthen encrypt paradigm are notstrongly unforgeable. I.e., a polynomial
adversary is able to produce, given a valid confirmer signature on a certain message, another valid con-
firmer signature on the same message without the help of the signer. Indeed, given a valid confirmer
signature on a message, an attacker can request its corresponding digital signature from the selective
conversion oracle, then he encrypts it under the cryptosystem public key and obtains a new confirmer
signature on the same message. Therefore, any reductionR from the invisibility of the construction to
the security of the underlying cryptosystem will need more than a list of records maintaining the queried
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messages along with the corresponding confirmer and digitalsignatures. Thus the insufficiency of no-
tions like IND-CPA. In [8], the authors stipulate that the given reduction would need a decryption oracle
(of the cryptosystem) in order to handle the queries made by the INV1-CMA attackerA, which makes
the invisibility of the construction rest on the IND-CCA security of the cryptosystem. In our work, we
remark that the queries made byA are not completely uncontrolled byR. In fact, they are encryptions
of some data already released byR, provided the digital signature scheme is strongly unforgeable, and
thus known to him. Therefore, a plaintext checking oracle suffices to handle those queries.

Theorem 4. The above construction is (t, ǫ, qs, qv, qsc)-INV1-CMA secure if the underlying digital sig-
nature is(t, ǫ′, qs)-SEUF-CMA secure and the underlying cryptosystem is (t + qsqsc(qsc + qv), ǫ · (1 −
ǫ′)(qsc+qv), qsc(qsc + qv))-IND-PCA secure.

The proof is provided in Appendix D.
Unfortunately, requiring the encryption scheme to be at least IND-PCA secure seems to impact neg-

atively the efficiency of the construction as it excludes homomorphic schemes from use (a homomorphic
cryptosystem cannot be IND-PCA secure). In fact, such schemes can be (as we will show later in this
document) efficient decryption verifiable, i.e., they accept efficient ZK proofs of knowledge of the de-
cryption of a given ciphertext. In the next section, we discuss an attempt to circumvent this problem.

Remark 2.There exists a simpler way to exclude homomorphic encryption from the design which con-
sists in proceeding as follows:
First rule out the notions OW-CPA, IND-CPA and OW-PCA by remarking that ElGamal’s encryption
meets all those notions (under the CDH, DDH and GDH assumption resp. ) but still cannot be used as
an ingredient in the construction. In fact, ElGamal offers the possibility of, given a ciphertext, creating
another ciphertext for the same message (multiply the first component bygr, for somer, and the second
one byyr, where(sk = x, pk = y = gx) is the key pair of the scheme). Now, let(µ,m0,m1) be a
challenge to an INV-CMA adversaryA. By construction,µ is an ElGamal encryption of someσ, which
is a digital signature on eitherm0 or m1. By the argument above,A can create another confirmer sig-
natureµ′, that is another encryption ofσ, and that he can query (w.r.t.m0 for example) to the selective
conversion oracle and then answer his own challenge.
Next, conclude that the cryptosystem in constructions derived from the “encryption of a signature”
paradigm must be at least OW-CCA or NM-CPA or IND-PCA secure in order to lead to secure con-
structions. Finally, conclude by the fact that a homomorphic scheme cannot be NM-CPA secure nor
OW-CCA nor IND-PCA secure3.
However, in order to determine the exact security needed to achieve secure constructions from the men-
tioned paradigm, there seems no known simpler way to exist than the study provided in this section.

4 Efficient KEM/DEM-based Constructions

One attempt to circumvent the problem ofstrong forgeabilityof constructions obtained from the plain
“encryption of a signature” paradigm can be achieved by binding the digital signature to its encryption.
In this way, from a digital signatureσ and a messagem, an adversary cannot create a new confirmer
signature onm by just reencryptingσ. In fact,σ forms a digital signature onm and some data, sayc,
which uniquely defines the confirmer signature onm. Moreover, this datac has to be public in order to

3 Let E be a cryptosystem such that∀m,m′ ∈M : E.encrypt(m ⋆ m′) = E.encrypt(m) ◦ E.encrypt(m′), whereM is the
message space,encrypt is the encryption algorithm and finally⋆ and◦ are some group laws defined byE on the message

and ciphertext spaces resp. Letc be the NM-CPA challenge. An adversary can simply choose a random messagem′ R
←−M,

encrypt it inc′ and finally outputc◦c′ and the relationR = ⋆. Now, letc be a OW-CCA challenge, an adversary can choose

again a random messagem′ R
←−M, encrypt it inc′ and then queryc ⋆ c′ to the decryption oracle. Letm” be the result, the

adversary can simply outputm”⋆m′−1 as the decryption ofc (we assume that computing inverses inM is done efficiently).
Similarly, a homomorphic scheme cannot be IND-PCA secure.
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issue the confirmSign/confirmation/denial protocols. Suchan idea has been implemented in [15] in the
undeniable signature framework, using the KEM/DEM paradigm; in fact, given a messagem, one first
fixes the session keyk and its encapsulationc, then generates a digital signatureσ on the “augmented”
messagem‖c, finally encryptsσ usingk and outputs the result as an undeniable signature onm.

In this section, we propose a recast of this construction in the CDCS framework. We also allow
more flexibility without compromising the overall securityby encrypting only one part of the signature
and leaving out the other part, provided it does not reveal information about the key nor about the
message. Moreover, we demonstrate the efficiency of the resulting construction by explicitly describing
its confirmSign/confirmation/denial protocols when the underlying components belong to a wide class
of encryption and digital signature schemes. Interestingly, the class of digital signatures we consider has
been already used in a recent proposal [44] as an ingredient for a generic construction of designated-
verifier signatures. Finally, we conclude with a comparisonwith the existing generic constructions.

4.1 The construction

Let Σ be a digital signature scheme given byΣ.keygen which generates a key pair (Σ.sk, Σ.pk), Σ.sign
andΣ.verify. Let furthermoreK be a KEM given byK.keygen which generates a key pair (K.pk,K.sk),
K.encap andK.decap. Finally, we consider a DEMD given byD.encrypt andD.decrypt.

Without loss of generality, we consider that a digital signatureσ generated usingΣ on a messagem,
can be written on the formσ = (s, r) wherer reveals no information aboutm nor about(Σ.sk, Σ.pk).
I.e., there exists an algorithm that inputs a messagem and a key pair(Σ.sk, Σ.pk) and outputs a string
indistinguishable fromr, where the probability is taken over the message and the key pair spaces consid-
ered byΣ. Note that every signature scheme produces signatures of the given form, since a signature can
be always written as the concatenation of itself and of the empty string (the message-key-independent
part). We assume thats belongs to the message space ofD.

Let ‖ denote the concatenation of two strings after appending to the first one the special character⋄.
Let m ∈ {0, 1}⋆ be a message not containing{⋄}, we propose the following recast of the construction
in [30]:

Key generation. Call Σ.keygen andK.keygen to generateΣ.sk, Σ.pk, K.pk andK.sk respectively.
Set the signer key pair to(Σ.sk, Σ.pk) and the confirmer key pair to(K.sk,K.pk).

ConfirmSign. Fix a keyk together with its encapsulatione. Then compute a (digital) signatureσ =
Σ.signΣ.sk(m‖e) = (s, r) on m‖e. Finally, outputµ = (e,D.encryptk(s), r) and prove the knowl-
edge ofs, decryption of(e,D.encryptk(s)), which satisfies together withr Σ.verify. This proof is
possible because the signer knowsk and(s, r), and the last assertion defines an NP language which
accepts a ZK proof system.

Confirmation/Denial protocol. To confirm (deny) a purported signatureµ = (µ1, µ2, µ3), issued
on a certain messagem, the confirmer first computesk = K.decapK.sk(µ1) then callsΣ.verify on
(D.decryptk(µ2), µ3) andm‖µ1 usingΣ.pk. According to the result, the signer issues a ZK proof of
knowledge of the decryption of(µ1, µ2) that, together withµ3, passes (does not pass) the verification
algorithmΣ.verify. Again this proof is possible because the given assertions are either NP or co-NP
statements and therefore accept a ZK proof system.

Selective conversion.To convert a given signatureµ = (µ1, µ2, µ3) issued on a certain messagem,
the confirmer first checks its validity. In case it is valid, the signer computesk = K.decapK.sk(µ1)
and outputs(D.decryptk(µ2), µ3) and proves thatk is the decapsulation ofµ1, otherwise he outputs
⊥.

Theorem 5. The above construction is (t, ǫ, qs)-EUF-CMA secure if the underlying digital signature
scheme is (t, ǫ, qs)-EUF-CMA secure.
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Theorem 6. The proposed construction is (t, ǫ, qs, qv, qsc)-INV2-CMA secure if it uses a(t, ǫ′, qs)-EUF-
CMA secure digital signature, an INV-OT secure DEM and a (t+qs(qv+qsc), ǫ·(1−ǫ′)qv+qsc)-IND-CPA
secure KEM.

The proofs are similar to those provided in [30]. Note that the strong unforgeability of the underlying
signature scheme is not needed here to achieve invisibility. In fact, if the adversary can come up with
another digital signatureσ′ on a givenm‖c, there is just one way to create the corresponding confirmer
signature, namely, encrypt it usingk = K.decap(c). Therefore, the reduction is able to handle a query
requesting the confirmation/denial or selective conversion of such a signature by just maintaining a list
of the queried messages, the issued confirmer signatures andtheir corresponding digital signatures.

4.2 Efficient Instantiations using Certain Signatures and Cryptosystems

In this paragraph, we define the classes of signatures/cryptosystems that yield efficient instantiations of
the construction defined earlier in this section. The class of digital signatures we consider is very similar
to the one defined by [44] in the context of designated verifiersignatures, whereas the class of considered
cryptosystems spotlights the importance of homomorphic encryption in the framework.

Definition 2. (The class S of signatures) S is the set of all digital signatures for which there exists a
pair of algorithms,Convert andRetrieve, whereConvert inputs a public keypk, a messagem, and a
valid signatureσ onm (according topk) and outputs the pair(s, r) such that:

1. there exists an algorithm that inputs a public key from thekey space and a message from the message
space, and outputs a string statistically indistinguishable fromr.

2. there exists an algorithmCompute that on the inputpk, the messagem andr, computes a description
of aone-way functionf : (G, ∗)→ (H, ◦s):
– where(G, ∗) is a group andH is a set equipped with the binary operation◦s ,
– ∀S, S′ ∈ G: f(S ∗ S′) = f(S) ◦s f(S′).

and anI ∈ H, such thatf(s) = I.

andRetrieve is an algorithm that inputspk, m and the correctly converted pair(s, r) and retrieves the
signatureσ onm.

The classS differs from the classC, introduced in [44], in the condition required for the one way function
f . In fact, in our description ofS, the functionf should satisfy a homomorphic property, whereas in the
classC, f should only possess an efficientΣ protocolfor proving knowledge of a preimage of a value in
its range. We show in Theorem 7 that signatures inS accept also efficientΣ protocolsfor proving knowl-
edge of preimages, and thus belong to the classC. Conversely, one can claim that signatures inC are
also inS, at least from a practical point of view, since it is not knownhow to achieve efficientΣ proto-
cols for proving knowledge of preimages off without having the latter item satisfy some homomorphic
properties. It is worth noting that similar to the classesS andC is the class of signatures introduced
in [24], where the condition of having an efficientΣ protocol for proving knowledge of preimages is
weakened to having only awitness hidingproof of knowledge. Again, although this is a weaker assump-
tion onf , all illustrations of signatures in this wider class happento be also inC andS. Our resort to
specify the homomorphic property onf will be justified later when describing the confirmation/denial
protocols of the resulting construction. In fact, these protocols are parallel composition ofΣ protocols
and therefore need a careful study as it is known that zero knowledge is not close under concurrent
composition. Finally, the classS encompasses most proposals that were suggested so far, RSA-FDH [3],
Schnorr [45], GHR [19], Modified ElGamal [42], Cramer-Shoup[13], Camenisch-Lysyanskaya-02 [25]
and most pairing-based signatures such as [6, 26, 4, 49, 48].

Theorem 7. The protocol depicted in Figure 1 is an efficientΣ protocol for proving knowledge of
preimages of the functionf described in Definition 2.
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1. The prover choosess′
R
←− G, computes and sendst1 = I ◦s f(s′) to the verifier.

2. The verifier choosesc
R
←− {0, 1} and sends it to the prover.

3. If c = 0, the prover sendss′.
Otherwise, he sendss ∗ s′.

4. If c = 0, the verifier checks thatt1 is computed as in Step 1.
Otherwise, he (verifier) accepts iff(s ∗ s′) = t1.

l

Fig. 1.Proof system for membership to the language{s : f(s) = I} Common input: I andPrivate input : s

The proof will be given in Appendix E.1.

Definition 3. (The class E of cryptosystems) E is the set of encryption schemesΓ , obtained from the
KEM/DEM paradigm, that have the following properties:

1. The message space is a groupM = (G, ∗) and the ciphertext spaceC is a set equipped with a binary
operation◦e.

2. Let m ∈ M be a message andc its encryption with respect to a keypk. On the common input
m, c and pk, there exists an efficient zero knowledge proof ofm being the decryption ofc with
respect topk. The private input of the prover is either the private keysk, corresponding topk, or
the randomness used to encryptm in c (the randomness which is input to the KEM encapsulation
algorithm).

3. ∀m,m′ ∈ M, ∀pk : Γ.encryptpk(m ∗m′) = Γ.encryptpk(m) ◦e Γ.encryptpk(m
′). Moreover, given

the randomness used to encryptm in Γ.encryptpk(m) andm′ in Γ.encryptpk(m
′), one can deduce

(using only the public parameters) the randomness used to encrypt m ∗ m′ in Γ.encryptpk(m) ◦e
Γ.encryptpk(m

′).

Examples of cryptosystems in the above class are ElGamal’s encryption [16], or the cryptosystem de-
fined in [5] which uses the linear Diffie-Hellman KEM. In fact,both cryptosystems are homomorphic
and possess an efficient protocol for proving that a ciphertext decrypts to a given plaintext: the proof of
equality of two discrete logarithms [11]. Paillier’s [38] cryptosystem cannot be viewed as an instance
of this class as it is not based on the KEM/DEM paradigm, however in Appendix E.2, we provide a
modified variant which belongs to the classE and thus is suitable for use in the construction.

Note that with this considered class of cryptosystems, the selective conversion is made efficient since
one can efficiently prove that a given ciphertext decrypts toa given message. In the sequel, we will see
that, with this class it is also easy to prove in ZK knowledge of the decryption of a given ciphertext.

1. The prover choosess′
R
←− G, computes and sendst2 = Γ.encrypt(s′) ◦e (c, sk) to the verifier

2. The verifier choosesc
R
←− {0, 1} and sends it to the signer.

3. If c = 0, the prover sendss′ and the randomness used to encrypt it inΓ.encrypt(s′).
Otherwise, he sendss′ ∗ s and proves thatt2 is an encryption ofs′ ∗ s.

4. If c = 0, the verifier checks thatt2 is computed as in Step 1.
Otherwise, he checks the proof of decryption oft2:

It it fails, he rejects the proof.

l

Fig. 2. Proof system for membership to the language{(e, sk) : ∃m : m = Γ.decrypt(e, sk)} Common input: (e, sk, Γ.pk)
andPrivate input: Γ.sk or randomness encryptingm in (e, sk)

Theorem 8. Let Γ be a OW-CPA secure cryptosystem from the above classE. Let furthermorec be an
encryption of some message under some public keypk. The protocol depicted in Figure 2 is an efficient
Σ protocol for proving knowledge of the decryption ofc.
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The proof is similar to the one of Theorem 7. ⊓⊔

The confirmation/denial protocols We combine an EUF-CMA secure signature schemeΣ ∈ S and
a cryptosystemΓ ∈ E, where the underlying KEMK and DEMD are IND-CPA and INV-OT secure
respectively, in the way described in Section 4. Namely, we first compute an encapsulatione together
with its corresponding keyk. Then compute a signatureσ on the message to be signed concatenated
with e. Finally convertσ to (s, r) using theConvert algorithm described in Definition 2 and encrypts
usingk. The resulting confirmer signature is(e,D.encryptk(s), r). We describe in Figure 3 the confir-
mation/denial protocols corresponding to the resulting construction. Note that the confirmation protocol
can be also run by the signer who wishes to confirm the validityof a just generated signature.

1. The prover and verifier, given the public input, computeI as defined in Definition 2.

2. The prover choosess′
R
←− G, computes and sendst1 = f(s′) ◦s I and

t2 = Γ.encrypt(s′) ◦e (e, sk) to the verifier

3. The verifier choosesc
R
←− {0, 1} and sends it to the prover.

4. If c = 0, the prover sendss′ and the randomness used to encrypts′ in Γ.encrypt(s′).
Otherwise, he sendss′ ∗ s and proves thatt2 is an encryption ofs′ ∗ s.

5. If c = 0, the verifier checks thatt1 andt2 are computed as in Step 1.
Otherwise, he checks the proof of decryption oft2:

It it fails, he rejects the proof.
Otherwise:

If the prover is confirming the signature, the verifier accepts if f(s′ ∗ s) = t1.
If the prover is denying the given signature, the verifier accepts the proof iff(s′ ∗ s) 6= t1.

l

Fig. 3. Proof system for membership (non membership) to the language {(e, sk, r) : ∃s : s = Γ.decrypt(e, sk) ∧
Σ.verify(Retrieve(s, r), m‖e) = ( 6=)1} Common input: (e, sk, r,Σ.pk, Γ.pk) andPrivate input: Γ.sk or randomness en-
cryptings in (e, sk)

Remark 3.The prover in Figure 3 is either the confirmer of the signature(e, sk, r) who can run the above
protocols with the knowledge of his private key, or the signer who wishes to confirm the validity of a just
generated signature (during the ConfirmSign protocol). In fact, with the knowledge of the randomness
used to encrypts in (e, sk), where(s, r) is the converted pair obtained fromσ = Σ.sign(m‖e), the
signer can issue the above confirmation protocol thanks to the properties satisfied byΓ .

Theorem 9. The confirmation protocol (run either by the signer on a just generated signature or by
the confirmer on any signature) described in Figure 3 is aΣ protocol if the underlying cryptosystem is
OW-CPA secure.

Theorem 10. The denial protocol described in Figure 3 is aΣ protocol if the underlying cryptosystem
is IND-CPA-secure.

The proofs of both theorems are given in Appendices E.3 and E.4 respectively.

4.3 Comparisons and possible extentions

Sign then encrypt variants. The construction presented in this section improves the plain paradigm [8]
as it weakens the assumption on the underlying cryptosystemfrom being IND-CCA secure to only being
IND-CPA secure. This impacts positively the efficiency of the construction from many sides. In fact, the
resulting signature is shorter and its generation cost is smaller, since IND-CPA cryptosystems are sim-
pler and allow faster encryption and shorter ciphertexts than IND-CCA ones. An illustration is given by
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ElGamal’s encryption and its IND-CCA variant, namely Cramer-Shoup’s encryption where the cipher-
texts are at least twice longer than ElGamal’s ciphertexts.Also, there is a multiplicative factor of at least
two in favor of ElGamal’s encryption/decryption cost. Moreover, the confirmation/denial protocols are
rendered more efficient by the allowance of homomorphic cryptosystems as shown in 4.2. Such cryp-
tosystems were not possible to use before, since a homomorphic scheme can never attain the IND-CCA
security. Besides, even when the IND-CCA cryptosystem is decryption verifiable, e.g., Cramer-Shoup
or the IND-CCA variant of Paillier’s encryption [9], the involved protocols are much more expensive
than the ones corresponding to their IND-CPA variant: in case of ElGamal, this protocol amounts to a
proof of equality of two discrete logarithms, and in case of our modified variant of Paillier (Appendix
E.2), this protocol comes to a proof of knowledge of anN -th root. The construction achieves also better
performances than the proposal of [24], where the confirmer signature comprisesk commitments and2k
IND-CCA encryptions, wherek is the number of rounds used in the confirmation protocol. Moreover,
the denial protocol presented in [24] suffers the resort to proofs of general NP statements (where the
considered encryption is IND-CCA). Finally, the resultingsignatures are not invisible.

Commitment-based constructions.Our construction does not use ROM, unlike the constructionsin [33,
47]. Moreover, it enjoys the strongest notion of invisibility (INV2-CMA) which captures both invisibil-
ity as defined in [8], and anonymity as defined in [18]. As mentioned in subsection 2.2, anonymity can
be an important requirement for confirmer signatures in somesettings. Unfortunately, many of the effi-
cient generic constructions are not anonymous. In fact, constructions like [33, 20, 47] have a confirmer
signature containing a commitment on the message to be signed and a valid digital signature on this
commitment. Therefore, such constructions leak always a part of the signing key, namely the public key
of the underlying digital signature. More precisely, an anonymity attackerA, will get two public keys
and a confirmer signature on a given message and has to tell thekey under which the confirmer signature
was created. To answer such a challenge,A will simply check the validity of the digital signature on
the commitment (both are part of the confirmer signature) with regard to one public key (the confirmer
signature public key includes the public key of the underlying digital signature). The result of such a
verification is sufficient forA to conclude in case the two confirmer public keys do not share the same
public key for the digital signature scheme.

The upshot is, our recast of the construction [15] achieves both maximal security (strong invisibility)
without random oracles, and efficiency in terms of the signature length, generation, confirmation/denial
and conversion cost. Furthermore, the construction readily extends todirected signatures[31] or unde-
niable confirmer signatures[29] by simply having the confirmer share his private key withthe signer.
Furthermore, one can extend the analysis provided in this paper to the other constructions instantiat-
ing the “encryption of a signature” paradigm, e.g., [24, 14]. In fact, both constructions are not strongly
unforgeable, thus the necessity of CCA or∆-CCA security. To circumvent this problem, one can use
similarly a cryptosystem derived from the hybrid encryption paradigm, and produce a signature on the
message concatenated with the encapsulation. Hence, the resulting constructions will thrive on CPA or
∆-CPA security while conserving the same security, and thus will achieve better performances as we
described above (short signature, small cost and many practical instantiations).

5 Conclusion

We provided the first thorough analysis of the “encryption ofa signature” paradigm. In fact, we set the
necessary and sufficient assumptions on the building blocksin order to achieve unforgeable and invisible
designated confirmer signatures under a chosen message attack. Next, we improved and reshaped a
recent result [15] in the confirmer signature framework. Moreover, we demonstrated the efficiency of our
recast by explicitly giving the confirmation/denial protocol of the resulting signatures when instantiated
with building blocks from a large class of signatures/cryptosystems. The next direction of research might
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be to check the minimality of the assumptions, in light of theprevious study, required for the security of
the proposed framework or of the constructions that use commitment schemes.
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A Preliminaries

A.1 Digital signatures

A signature schemeΣ comprises three algorithms, namely the key generation algorithm keygen, the
signing algorithmsign, and the verification algorithmverify. The standard security notion for a signature
scheme is existential unforgeability under chosen messageattacks (EUF-CMA), which was introduced
in [23]. Informally, this notion refers to the hardness of, given a signing oracle, producing a valid pair
of message and corresponding signature such that the message has not been queried to the signing
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oracle. There exists also the stronger notion, SEUF-CMA (strong existential unforgeability under chosen
message attack), which allows the adversary to produce a forgery on a previously queried message,
however the corresponding signature must not be obtained from the signing oracle.

A.2 Public key encryption schemes

A public key encryption (PKE) scheme consists of the key generation algorithmkeygen, the encryp-
tion algorithmencrypt and the decryption algorithmdecrypt. The typicalsecurity goalsa cryptosystem
should attain are: one-wayness (OW) which corresponds the difficulty of recovering the plaintext from
a ciphertext, indistinguishability (IND) which refers to the hardness of distinguishing ciphertexts based
on the messages they encrypt, and finally non-Malleability (NM) which corresponds to the hardness of
deriving from a given ciphertext another ciphertext such that the underlying plaintexts are meaningfully
related. Conversely, the typicalattack modelsan adversary against an encryption scheme is allowed to
are: Chosen Plaintext Attack (CPA) where the adversary can encrypt any message of his choice. This
is inevitable in public key settings, Plaintext Checking Attack (PCA) in which the adversary is allowed
to query an oracle on pairs (m, c) and gets answers whetherm is really encrypted inc or not, and fi-
nally Chosen Ciphertext Attack (CCA) where the adversary isallowed to query a decryption oracle.
Pairing the mentioned goals with these attack models yieldsnine security notions: GOAL-ATK for
GOAL ∈ {OW, IND, NM} and ATK∈ {CPA, PCA, CCA}. We refer to [2] for the formal definitions of
these notions as well as for the relations they satisfy.

A.3 Key/Data encapsulation mechanisms (KEM/DEMs)

A KEM comprises three algorithms: the key generation algorithm keygen, the encapsulation algorithm
encap and the decapsulation algorithmdecap. The typical security goals that a KEM should satisfy
are similar to the ones defined for encryption schemes. Similarly, when conjoined with the three attack
models CPA, PCA and CCA, they yield nine security notions whose definitions follow word-for-word
from the definitions of the encryption schemes notions. A DEMis simply a secret key encryption scheme
given by the same algorithms forming a cryptosystem (PKE). KEMs could be efficiently combined with
DEMs to build secure encryption schemes. This paradigm is called the Hybrid encryption paradigm and
we refer to [27] for the necessary and sufficient conditions on the KEMs and the DEMs in order to obtain
a certain level of security for the resulting hybrid encryption scheme. For instance, to obtain an IND-
CPA secure cryptosystem, it suffices to combine an IND-CPA secure KEM and anindistinguishable
under a one time attack (IND-OT)DEM. Finally, we need to define a further notion for DEMs:

Definition 4. A DEM is said to beinvisible under a one time attack (INV-OT)if no polynomial adver-
saryA wins the following game (running in three phases) with non negligeable probability.Phase 1.
The challenger runs the algorithmD.keygen to obtain a keyD.sk. Challenge. The adversary outputs
eventually a messagem⋆. The challenger picks uniformly at random a bitb from {0, 1}. If b = 0, he
encryptsm⋆, in e⋆, underD.sk. Otherwise, he chooses a string uniformly at random from theciphertext
space.Phase 2. A outputs a bitb′, representing his guess ofe⋆ being the encryption ofm⋆ and wins the
game ifb = b′. We defineA’s advantage asadv(A) = |Pr[b = b′] − 1

2 |, where the probability is taken
over the random choices of the adversaryA and the challenger.

A.4 Σ protocols

A Σ protocol is an argument of knowledge which is complete, sound and Zero Knowledge (ZK), which
is close under parallel composition if the number of rounds is constant or logarithmic in the security
parameters. We refer to [21] for more information.
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B Proof of Theorem 1

Proof. The If direction has been already proved in [8]. We prove now the other direction. Let(m⋆, σ⋆) be
an existential forgery against the digital signature scheme. One can derive a forgery against the confirmer
signature by simply encrypting the signatureσ⋆ using the public key of the confirmer. Simulation of the
attacker’s environment is easy; the reductionR (EUF-CMA attacker against the confirmer signature)
will forward the appropriate parameters (those concerningthe underlying digital signature) to the EUF-
CMA attacker against the underlying signature scheme, denotedA. For a signature query on a message
m, R will first request his challenger for a confirmer signatureµ that he decrypts using the universal
trapdoor (R has access to such a trapdoor according to the EUF-CMA security game described in 2.2 )
in σ. σ forms the result output toA. ⊓⊔

C Proof of Theorem 3

The proof is similar to a combination of Lemma 1 and Theorem 5 in [40]

Proof. We first note that the purpose ofGame 0 is to include all the key-preserving reductions which
feed the adversaryA with the same challenge public key in addition to some other parameters. Next
we remark that the advantage of the meta-reductionM in the proof of Lemma 1 (Lemma 2) is the
same as the advantage of any key-preserving reductionR reducing NM-CPA (OW-CCA) breaking a
cryptosystemΓ to breaking the invisibility of a given confirmer signature.For instance, this applies to
the reduction making the best use of an invisibility adversary A against the construction. Therefore we
have:

succGame0
Γ (A) ≤ succ(NM − CPA[Γ ])

wheresucc(NM−CPA[Γ ]) is the success of breakingΓ in the NP-CPA sense. We also havesuccGame0
Γ (A) ≤

succ(OW −CCA[Γ ]).
Next, we prove that for anyarbitrary reductionR that NM-CPA (OW-CCA) breaks a cryptosystem

Γ , given access to an invisibility adversaryA against the construction (of a confirmer signature using
Γ ), we have

adv(R) ≤ succGame1
Γ (A)

In fact, assume thatR breaks the NM-CPA (OW-CCA) security. We construct an algorithmM that
playsGame 1with respect to perfect oracle forA and succeeds in breaking the NM-CPA (OW-CCA)
security ofΓ with similar success probability. AlgorithmM gets a challenge w.r.t. a public keypk and
launchesR over the same challenge and the same public key. IfR callsA on pk, thenM will call his
own oracle forA. Otherwise, ifR callsA on pk′ 6= pk,M will invoke his own decryption oracle for
pk′ (OW-CPA oracle) to first decrypt the confirmer signature and then check whether the result is a valid
digital signature on the message in question. The output of the verification algorithm is sufficient forM
to answer such queries. Finally, whenR outputs the result toM, the latter will output the same result to
his own challenger.

Now, letR be an arbitrary reduction from NM-CPA (OW-CCA) breaking a cryptosystemΓ , with a
non malleable key generator, to INV1-CMA breaking the construction. We have

adv(R) ≤ succGame1
Γ (A)

≤ succGame0
Γ (A) + ∆

≤ succ(NM − CPA[Γ ])(succ(OW − CCA[Γ ])) + ∆

since∆ is negligeable, then under the assumption ofΓ being NM-CPA (OW-CCA) secure, the advantage
ofR is also negligeable. ⊓⊔
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D Proof of Theorem 4

Proof. Let A be an attacker that (t, ǫ, qs, qv, qsc)-INV1-CMA breaks the invisibility of the above con-
firmer signature, believed to be(t, ǫ′, qs)-EUF-CMA secure. We will construct an algorithmR that
IND-PCA breaks the underlying cryptosystem as follows.
Phase 1

Key generation. R will get the public parameters of the target cryptosystem from his challenger, that
areΓ.pk , Γ.encrypt andΓ.decrypt. Then, he will choose an appropriate signature schemeΣ with
parametersΣ.pk, Σ.sk, Σ.sign andΣ.verify.

ConfirmSign queries. For a signature query on a messagem.R first computes a (digital) signatureσ
on m using his secret keyΣ.sk. Then, he encryptsσ and outputs the result toA. Besides,R issues
a ZK proof of knowledge ofσ that satisfies the equation defined byΣ.verify. Such a proof is pos-
sible forR to provide since he knows the randomness used to encryptσ and the relation between
Γ.encrypt(σ) andσ defines an NP language and thus accepts a zero knowledge proofsystem ac-
cording to [22]. Finally,R will maintain a listL of the queries (messages), the corresponding digital
signatures and finally the signatures he issued.

Selective conversion queriesFor a putative confirmer signatureµ on m, R will look up the listL.
We note that each record ofL comprises three components : (1) the queried messagemi (2) σi

corresponding to a digital signature onmi (3) Γ.encryptΓ.pk(σi) = µi, which corresponds to the
confirmer signature issued onmi. If no record having as first component the messagem appears in
L, thenR will output ⊥. Otherwise, lett be the number of records having as first component the
messagem.R will invoke the plaintext checking oracle (PCA) furnished by his own challenger on
(σi, µ), for 1 ≤ i ≤ t, whereσi corresponds to the second component of such records. If the PCA
oracle identifiesµ as a valid encryption of someσi, 1 ≤ i ≤ t, thenR will return σi, otherwise he
will return ⊥. This simulation differs from the real one when the signature µ is valid and was not
obtained from the signing oracle. Since the only ways to create a valid confirmer signature which
was not issued byR is either to encrypt a digital signature obtained from the conversion oracle or
to come up with a new fresh pair of message and corresponding signature(m,µ).R can handle the
first case using his PCA oracle and list of recordsL. In the second case, we can distinguish two sub-
cases: eitherm has not been queried to the signing oracle in which case the pair (m,µ) corresponds
to an existential forgery on the confirmer signature scheme and thus to an existential forgery on
the underlying digital scheme according to Theorem 1, orm has been queried to the signing oracle
but Γ.decrypt(µ) is not an output of the selective conversion oracle, which corresponds to a strong
existential forgery on the underlying digital signature. Therefore, the probability that this scenario
does not happen is at least(1 − ǫ′)qsc because the underlying digital signature scheme is(t, ǫ′, qs)-
SEUF-CMA secure by assumption.

Verification (Confirmation/denial) queriesR will proceed exactly as in the selective conversion with
the exception of simulating the denial protocol instead of returning⊥, or the confirmation protocol
instead of returning the converted digital signature.R can issue such proofs without knowing the
private key of the cryptosystem using the rewinding technique (See [36] for an illustration) because
the protocols are zero knowledge and thus simulatable, or using designated verifier proofs [28] in a
registrated key model. Analogously, the probability thatA does not query a valid signature he has
not obtained from the signing oracle is at least(1− ǫ′)qv .

Challenge.Eventually,A he will output two challenging messagesm0 andm1. R will then compute
two signaturesσ0 andσ1 on m0 andm1 respectively, which he gives to his own challenger.R will
receive then the challengeµ⋆, as the encryption of eitherσ0 or σ1, which he will forward toA.
Phase 2.A will continue issuing queries to the signing, confirmation/denial and selective conversion
oracles andR can answer as previously. Note that in this phase,A is not allowed to query the signing
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oracle for a signature onm0,m1 or the selective conversion, confirmation/denial oracle on(mi, µ
⋆),

i = 0, 1. Also,R is not allowed to query his PCA oracle on(µ⋆, σi), i = 0, 1. If during the selective
conversion or confirmation/denial queries made byA, R is compelled to query his PCA oracle on
(µ⋆, σi), i = 0, 1, he will simply output⊥ in case of a selective conversion query or simulate the
denial protocol in case of a verification query. This differsfrom the real scenario whenµ⋆ is a valid
confirmer signature on some messagem /∈ {m0,m1}, which corresponds to an existential forgery on
the underlying signature scheme (σi will be a valid digital signature onmi, i = 0, 1 and on a message
m /∈ {m0,m1}). Again, this happens with probability at mostǫ′qsc+qv .
Final output. WhenA outputs his answerb ∈ {0, 1},R will forward this answer to his own challenger.
ThereforeR will IND-PCA break the underlying cryptosystem with advantage at leastǫ·(1−ǫ′)(qv+qsc),
in time at mostt + qsqsc(qv + qsc) after at mostqsc(qsc + qv) queries to the PCA oracle. ⊓⊔

E Efficient Instantiations using Certain Signatures and Cryptosystems

E.1 Proof of Theorem 7

We first remark that the functionf used in the definition of the classS induces a group law inH = f(G)
for the operation◦s. Moreover, we have1H = f(1G) and∀S ∈ G: f(s)−1 = f(s−1).

Proof. For completeness, it is clear that if both parties follow theprotocol, the prover will always be
able to provide a proof that the verifier will accept.
For soundness, we show that the prover can cheat with a probability at most2−1 in one round. In fact,
suppose that the prover can answer both challenges for the same commitmentt1. Let s0 ands1 be the
responses of the prover to the challenges0 and1 respectively in Step 3. Since the verifier accepts the
proof, we have,t1 = f(s0) ◦s I = f(s1). Thus,f(s1) ◦s f(s0)

−1 = f(s1 ∗ s−1
0 ) = I. Hence, the prover

would know a preimage ofI. We conclude that a cheating prover can cheat with at most1/2, provided
f is one-way and the verifier is honest (chooses the bit c uniformly from {0, 1}). Repeating the protocol
l times leads to a soundness error which is at most2−l.

To prove that the proof is ZK, we provide the following simulator.

1. Generate uniformly a random bitc′ ∈R {0, 1}. If c′ = 0, chooses′ ∈R G and sendst1 = f(s′) ∗ I,
otherwise, chooses′′ ∈R G and sendst1 = f(s′′) to the verifier.

2. Getc from the verifier. Ifc = c′: if c = 0, the simulator sends backs′, otherwise, it sendss′′. If
c 6= c′, it goes to Step 1.

The prover’s first message is always the functionf applied to a random values′′ ∈ G, and so is the first
message of the simulator. Sincec′ is chosen uniformly at random from{0, 1}, the probability that the
simulator rewinds the verifier is:

1− Pr[c = c′] = 1− (Pr[c = 0, c′ = 0] + Pr[c = 1, c′ = 1]) = 1− (
1

2
p +

1

2
(1− p)) = 1−

1

2
=

1

2

wherep = Pr[c = 0]. Therefore, the expected number of rewinds is 2 and as a consequence, the
simulator runs in expected linear time. Finally, the distribution of the answers of the prover and of the
simulator is again the same. We conclude that the protocol isZK. It also remains ZK if it is runl times
in parallel, wherel is either constant or logarithmic in the security parameter. In fact, the simulator of
the parallel composition of the protocol will be the parallel composition of the above simulator. Thus,
the expected running time of the new simulator is2l (probability of not rewinding the verifier is2−l),
which is either constant or polynomial in the security parameter. ⊓⊔
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E.2 A variant of the Paillier encryption in the KEM/DEM frame work

The Paillier encryption [38] operates on messages inZN , whereN is a safe RSA modulus. Encryption
of a messagem is done by picking a randomr ∈R Z

×

N and then computing the ciphertextc = rN (1 +
mN) mod N2. We propose the following KEM/DEM-based variant. To encrypt a messagem ∈ ZN ,
first pick a randomk ∈R ZN , encrypt it inc using Paillier’s encryption and then output(c, k + m) as
the encryption ofm. Decryption is done by first “decapsulating”c to recoverk, and then subtractingk
from the second component of the ciphertext.

The new cryptosystem is inE since the product◦e of two arbitrary ciphertexts is the ciphertext
corresponding to the sum of their underlying plaintexts. Wedefine the product◦e in Z

×

N2 × ZN to be
(a, b) ◦e (c, d) = (ac mod N2, b + d mod N). Moreover, ifr0 andr1 are the randomness used in two
arbitrary ciphertextsc0 andc1, thenr0r1 is the randomness used to encrypt the sum of the plaintexts
corresponding toc0 andc1 resp inc0 ◦e c1.

Moreover, the new cryptosystem is IND-CPA secure provided the original one is also IND-CPA
secure. In fact, letA be an IND-CPA adversary against the new cryptosystem. We build and IND-CPA
adversaryR against the original cryptosystem as follows. WhenA outputs his two challenge messages
m0 andm1.R will choose a randomk0 ∈R ZN , then computek1 = m0 + k0 −m1 and finally output
k0 andk1 to his challenger.R will get c⋆, as the encryption of eitherk0 or k1, that he will forward toA
along withk0 + m0 (equal tok1 + m1 by construction). The output ofA is sufficient forR to conclude.

We discuss now the security of the underlying KEM and DEM. Concerning the KEM, we need to
prove that it is IND-CPA secure. i.e., prove that given some encapsulationc, it is difficult to distinguish
decap(c) from a random element in the corresponding space. Note that the corresponding space is given
by the security parameter and not by a specific modulusN . Moreover, we know that given an encap-
sulationc, which corresponds to an encryption of some, elementk ∈ ZN using Paillier’s encryption,
it is hard to distinguishk from a random element inZN if the Decisional Composite Residuosity As-
sumption (corresponding to distinguishingN -th residues from random elements inZN2 see [38]) holds.
Therefore, one way to extend this indistinguishability to elements in the ciphertext space (given only
by the security parameter|N |, i.e., the bit length of the modulusN ), one can use the recent technique,
used in the area of undeniable signatures by [37] (Section 6.1), which consists in using “close enough”
moduli, i.e., moduli with common high leading bits, say about 80 (It is known how to generate moduli
N with about|N |/2 leading bits [1]). In this way, the ciphertext space is aboutthe same (in the view
of a polynomial attacker) for all the considered moduli and therefore indistinguishability of some ele-
ment w.r.t. some modulus will induce indistinguishabilityfor w.r.t. the other moduli. Finally the DEM
used in the above cryptosystem is obviously INV-OT secure. In fact, by constructionk is random and
since the DEM encryption function is one-to-one, then so is the resultm + k. Therefore, ciphertexts
obtained from the DEM are statistically indistinguishablefrom random elements inZN . We extend this
indistinguishability to the ciphertext space by the same argument of the “close enough” moduli.

E.3 Proof of Theorem 9

Proof. The confirmation protocol depicted in Figure 3 is a parallel composition of the proofs depicted
in Figures 1 and 2. Therefore completeness and soundness follow as a direct consequence of the com-
pleteness and soundness of the underlying proofs (see [21]).

To prove that the protocol is ZK. We provide the following simulator (for one execution):

1. Generatec′ ∈R {0, 1}. If c′ = 0, chooses′ ∈R G and sendst1 = f(s′)◦sI andt2 = Γ.encrypt(s′)◦e
(e, sk), otherwise, chooses′′ ∈R G and sendst1 = f(s′′) andt2 = Γ.encrypt(s′′) to the verifier.

2. Getc from the verifier. Ifc = c′: if c = 0, the simulator sends backs′ and the randomness used to
encryptΓ.encrypt(s′), otherwise, it sendss′′ and simulates the proof oft2 being an encryption ofs′′

(this proof is simulatable since it is by assumption ZK). Ifc 6= c′, it goes to Step 1.
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The prover’s first message is an encryption of a random values′′ ∈R G, in addition tof(s′′), and so is
the simulator’s first message. Therefore the distributionsof the prover and of the simulator are the same
in the first round of the proof. Moreover, the expected numberof rewinds is two (Pr(c 6= c′) = 1

2 ),
making the simulator run in an expected linear time. The distribution of the prover’s messages in the
third round are also similar to those of the simulator. We conclude that the confirmation protocol is
ZK. Parallel execution of the protocol will remain also ZK ifthe number of executionsl is constant or
logarithmic in the security parameter (see the above proof). ⊓⊔

E.4 Proof of Theorem 10

Proof. With the standard techniques, we prove that the denial protocol depicted in Figure 3 is complete
and sound with error probability2−l (l is the number of rounds) provided the verifier is honest and the
cryptosystem is one way. Similarly, we provide the following simulator to prove the ZK property.

1. Generatec′ ∈R {0, 1}. If c′ = 0, chooses′ ∈R G and sendst1 = f(s′)◦sI andt2 = Γ.encrypt(s′)◦e
(e, sk), otherwise, chooses′′ ∈R G and a randomt1 ∈R f(G) andt2 = Γ.encrypt(s′′).

2. Getc from the verifier. Ifc = c′: if c = 0, the simulator sends backs′ and the randomness used to
encryptΓ.encrypt(s′), otherwise, it sendss′′ and simulates the proof oft2 being an encryption ofs′′

(this proof is simulatable since it is by assumption zero knowledge). Ifc 6= c′, it goes to Step 1.

The prover’s first message is an encryption of some random values′′ and the elementt1 = f(s′′∗s−1)◦s
I. The simulator’s first message is an encryption of a random value s′′, and in caseb = 0 the element
t1 = f(s′′ ∗ s−1) ◦s I, whereas in the caseb = 1, it is the elementt1 ∈R f(G) (independent ofs′′).
Distinguishing these two cases it at least as hard as breaking the IND-CPA security of the underlying
cryptosystem. In fact, if the verifier is able to distinguishthese two cases, it can be easily used to break
the cryptosystem in the IND-CPA sense. Therefore, under theassumption of the IND-CPA security of the
cryptosystem, the simulator’s and prover’s first message distributions are indistinguishable. Moreover,
the simulator runs in expected linear time, since the numberof rewinds is2. Moreover, the distributions
of the prover’s and the simulator’s messages in the last round are again, by the same argument, indistin-
guishable under the IND-CPA security of the cryptosystem. Finally, with the same argument as above,
parallel execution of the protocol remains also ZK if the number of executions is constant or logarithmic
in the security parameter. ⊓⊔
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