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Abstract. Undeniable signatures, introduced by Chaum and van Antwerpen, and desig-
nated confirmer signatures, introduced by Chaum, allow a signer to control the verifiability
of his signatures by requiring a verifier to interact with the signer to verify a signature. An
important security requirement for these types of signature schemes is non-transferability
which informally guarantees that even though a verifier has confirmed the validity of a signa-
ture by interacting with the signer, he cannot prove this knowledge to a third party. Recently
Liskov and Micali pointed out that the commonly used notion of non-transferability only
guarantees security against an off-line attacker which cannot influence the verifier while he
interacts with the signer, and that almost all previous schemes relying on interactive proto-
cols are vulnerable to on-line attacks. To address this, Liskov and Micali formalized on-line
non-transferable signatures which are resistant to on-line attacks, and proposed a generic
construction based on a standard signature scheme and an encryption scheme.

In this paper, we revisit on-line non-transferable signatures. Firstly, we extend the security
model of Liskov and Micali to cover not only the sign protocol, but also the confirm and dis-
avow protocols executed by the confirmer. Our security model furthermore considers the use
of multiple (potentially corrupted or malicious) confirmers, and guarantees security against
attacks related to the use of signer specific confirmer keys. We then present a new approach
to the construction of on-line non-transferable signatures, and propose a new concrete con-
struction which is provably secure in the standard model. Unlike the construction by Liskov
and Micali, our construction does not require the signer to issue “fake” signatures to main-
tain security, and allows the confirmer to both confirm and disavow signatures. Lastly, our
construction provides noticeably shorter signatures than the construction by Liskov and
Micali.
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1 Introduction

An ordinary signature scheme provides public verifiability i.e. anyone is able to verify the validity of
a given signature using the public key of the signer. While this property is useful in many scenarios,
it might not always be desirable. For example, a signer who signs a sensitive message might prefer
to be able to control who can verify the validity of his signature. Chaum et al. [10] addressed this
problem with their proposal of undeniable signatures in which a verifier is required to interact with
the signer to verify a signature. Furthermore, to preserve non-repudiation, the signer is also able
to prove invalidity of a signature through a disavow protocol. Hence, in a dispute, the signer will
either be able to confirm or disavow a purported signature. However, in some scenarios, a signer
might become unavailable or might refuse to cooperate with a verifier, in which case the validity
of a signature cannot be determined. To address this, Chaum [9] introduced designated confirmer
signatures in which a third party, the confirmer, can interact with a verifier to confirm or disavow a
signature on behalf of the signer. Furthermore, the confirmer can, in the case of a dispute, extract
a publicly verifiable signature (of the signer) from a valid designated confirmer signature. Since
their introduction, a number of undeniable schemes [8, 16, 15, 25, 21, 22] and designated confirmer
schemes [27, 4, 18, 17, 36] have been proposed.



Off-line and On-line Non-transferability. An important security notion for these types of signature
schemes is non-transferability. Intuitively, non-transferability guarantees that once a verifier has
verified a signature and is convinced about its validity, he cannot transfer this conviction to a third
party. This is achieved by ensuring that a verifier is able to simulate a transcript of the interaction
with the signer/confirmer i.e. any “evidence” of validity obtained through the interaction, could
have been generated by the verifier himself. A scheme providing this property is said to be off-line
non-transferable. However, Liskov and Micali [26] pointed out that almost all3 previous schemes
relying on interactive protocols to provide off-line non-transferability are vulnerable to on-line
attacks, i.e. an attacker who is present while the verifier interacts with a signer/confirmer might
be able to determine the validity of a signature by influencing messages sent by the verifier. A
scheme preventing these types of attacks is said to be on-line non-transferable and is constructed by
enabling the verifier to interactively simulate the interaction with a signer/confirmer. To preserve
soundness of the scheme, only the verifier should be able to simulate a proof, and to facilitate this,
Liskov and Micali [26] assumed the verifier holds a public/private key pair i.e. to simulate the
interaction between the signer/confirmer and a verifier, the private key of the verifier is required.
Note that this approach to on-line non-transferability requires that the verifier knows the private
key corresponding to his public key to maintain security. More specifically, if it is possible for a
verifier to convince a third party that he does not know his private key (e.g. by generating his
public key by applying a hash function to a random seed pkV = H(x), and then presenting x to the
third party), the scheme will no longer provide on-line non-transferability. To prevent this type of
malicious behavior, verifier key registration is required i.e. a verifier should prove knowledge of his
private key when registering his public key (see [26] for further discussion of this). In this paper,
we adopt the same general approach as [26], assume verifiers are equipped with public/private key
pairs, and will furthermore explicitly model verifier key registration in our security model4.

In [26], Liskov and Micali illustrated the feasibility of constructing an on-line non-transferable
signature scheme under the above described assumption of verifier key registration. More specif-
ically, they proposed a generic construction based on an ind-cpa secure public key encryp-
tion scheme and a uf-cma secure signature scheme. The resulting scheme provides on-line non-
transferability of an interactive sign protocol through which the signer both constructs and proves
validity of a signature. Furthermore, the scheme supports the use of confirmers and is proved
secure in the standard model. However, to achieve on-line non-transferability, a signer has to be
willing to issue “fake” signatures to anyone requesting them. This is essential since a verifier will
not be able to simulate the sign protocol without the ability to ask the signer for fake signatures.
This drawback limits the practical applicability of the scheme. Furthermore, the functionality and
security guarantees of the confirmer are somewhat limited. More specifically, a confirmer can dis-
avow but not confirm the validity of a signature, and neither off-line nor on-line non-transferability
are considered for the disavow protocol5.

Our Contribution. In this paper, we address many of the limitations of the approach by Liskov
and Micali. Firstly, we extend the security model to model not only the on-line non-transferability
of the sign protocol, but also of the confirm and disavow protocols executed by the confirmer.
Furthermore, we introduce two additional security notions, confirmer soundness and key unforge-
ability, required by the added ability of the confirmer to confirm signatures and to prevent attacks
related to the forgery of signer specific confirmer keys which are used both in our construction and
in [26] (see Section 4 for details). Unlike [26], our security model also allows the signer to make
use of multiple confirmers and ensures unforgeability even against malicious confirmers, which will
guarantee security in a more realistic usage scenario.

3 See Related Work below for a few exceptions in the random oracle model
4 Note that while the security definitions in [26] does not explicitly describe verifier key registration, this
is a requirement to ensure basic security, and we argue that our security models are fundamentally the
same.

5 The defined disavow protocol in [26] is non-interactive and provides a publicly verifiable proof of inva-
lidity



We then propose a new general approach to the construction of on-line non-transferable signa-
tures. More specifically, we show how a simple core confirmer signature scheme, which essentially
implements the non-interactive functionality of an on-line non-transferable signature scheme, can
be extended to a fully secure scheme with the additional use of ordinary signatures, sigma pro-
tocols, and trapdoor commitments with an enhanced binding property. Based on this approach,
we propose a concrete instantiation which is provably secure in the standard model assuming the
computational Diffie-Hellman problem and the decisional linear problem are hard.

Compared to the approach taken by Liskov and Micali, our scheme has several advantages.
Besides implementing additional confirmer functionality and providing security in our extended
security model, our scheme allows a verifier to independently simulate the sign, confirm and
disavow protocols, and does not require the signer to issue “fake” signatures to maintain security.
Lastly, our concrete instantiation provides efficient protocols and short signatures consisting of
four group elements and an integer, whereas the scheme by Liskov and Micali requires signatures
consisting of more than 3k encryptions, where k is the security parameter. However, we note that
our concrete scheme requires large public keys due to the use of the techniques by Waters [35].

Related Work. Jakobsson et al. [20] introduced an alternative approach to limiting the verifiability
of signatures with their proposal of designated verifier signatures in which only a specific verifier
chosen by the signer will be convinced about the validity of a signature. This concept was extended
by Steinfeld et al. [32] who introduced universal designated verifier signatures which allow any
user (i.e. not only the signer) to convert a publicly verifiable signature into a designated verifier
signature for a chosen verifier. Since this type of schemes do not rely on interactive protocols
for signature confirmation, on-line attacks are not a concern. However, these schemes do not
provide a mechanism to determine the validity of a (converted) signature in a dispute. In fact,
most of the proposed concrete schemes (e.g. [24, 33, 23]) enable the designated verifier to construct
signatures which are perfectly indistinguishable from signatures constructed by the signer. Hence,
unlike undeniable and designated confirmer signatures, non-repudiation cannot be enforced in
these schemes which make them unsuitable for a number of applications.

A few existing schemes, which are provably secure in the random oracle model, implicitly
provide protection against on-line attacks. For example, the undeniable signature schemes by
Kudla et al. [21] and Huang et al. [19] provide non-interactive proofs which are simulatable by
the verifier, and hence avoid the problem of on-line attacks. Note that an undeniable signature
scheme with non-interactive proofs is different from a designated verifier signature scheme in that
a signature is independent of the verifier(s) and that the signer is able to disavow a signature.
Furthermore, Monnerat et al. [29] proposed an undeniable signature scheme which uses interactive
2-move confirm and disavow protocols and requires verifiers to hold a public/private key pair.
While the used definition of non-transferability in [29] only guarantees transcript simulatability
(i.e. defines off-line non-transferability), the concrete scheme allows a verifier to use his private
key to simulate proofs interactively, and hence the scheme provides on-line non-transferability.
However, we emphasize that all of the above schemes are only provable secure in the random
oracle model, and that the schemes furthermore do not support the use of confirmers to ensure
non-repudiation if the signer becomes off-line or refuses to cooperate.

2 Preliminaries

In this section, we will define the computational problems underlying our concrete instantiation
of a on-line non-transferable signature scheme, as well as a introduce the basic primitives which
will be used in our general construction.

Negligible function. A function ε : N→ [0, 1] is said to be negligible if for all c > 0 there exists an
kc such that for all k > kc ε(k) < 1/kc.



The discrete logarithm problem. Let G be a group generator which given a security parameter k,
outputs a group G of prime order p, where 2k < p < 2k+1, and a generator g. The advantage of
an adversary against the discrete logarithm problem is defined as follows:

AdvdlG,A(k) = Pr[(G, p, g)← G(k);h← G;x← A(G, p, g, h) : gx = h]

Definition 1 The discrete logarithm problem is said to be hard with respect to G, if all polynomial
time adversaries A have negligible advantage AdvdlG,A(k).

The decisional linear problem. This decisional problem was introduced by Boneh et al. in [1], and
is defined follows. Let the advantage of an adversary A against the decisional linear problem with
respect to a group generator G be given as:

AdvdlinG,A (k) = |Pr[(G, p, g)← G(k);u, v ← G; a, b← Zp : A(G, p, g, ua, vb, ga+b) = 1]−
Pr[(G, p, g)← G(k);u, v ← G; a, b, c← Zp : A(G, p, g, ua, vb, gc) = 1]|

Definition 2 The decisional linear problem is said to be hard with respect to G if all polynomial
time algorithms A have negligible advantage AdvdlinG,A (k).

In [1], the decisional linear problem is shown to be computationally infeasible in the generic bilinear
group model.

Collision resistant hash function. Let H = {Hν : {0, 1}∗ → {0, 1}|ν|} be a hash function family
indexed by a key ν ∈ {0, 1}∗. The advantage of an adversary A against the collision resistance of
H is defined as:

AdvcolH,A(k) = Pr[ν ← {0, 1}k; (m,m′)← A(ν) : Hν(m) = Hν(m′) ∧m 6= m′]

Definition 3 A hash function family H is said to be collision resistant if all polynomial time
algorithms A have negligible advantage AdvcolH,A(k) against H.

Signatures. A standard signature scheme is given by the following four algorithms: Setup which
takes as input a security parameter 1k, and returns a set of public parameters par; KeyGen which
takes as input par, and returns a public/private key pair (pk, sk); Sign which takes as input par,
a private key sk and a message m, and returns a signature σ; and lastly Verify which takes as
input par, a public key pk, a message m and a signature σ, and returns > if σ is a valid signature
on m under the public key pk and ⊥ otherwise.

We require that a signature scheme is correct i.e. for all par ← Setup(1k), all (pk, sk) ←
KG(par), and all messages m, it is required that SVer(par, pk,m, Sign(par, sk,m)) = >.

Strong unforgeability against a chosen message attack (suf-cma) for a signature scheme S is
defined as follows: Let the advantage of an adversary A against S be given by

Advuf-cmaS,A (k) = Pr[par ← Setup(1k); (pk, sk)← KeyGen(par); (m∗, σ∗)← AOsig (par, pk) :

(m∗, σ∗) 6∈ {(m1, σ1), . . . , (mq, σq)} ∧ Verify(par, pk,m∗, σ∗) = >]

where Osig is a sign oracle which given mi returns σi ← Sign(par, sk,mi), q is the number of
queries made by A to Osig, and {(m1, σ1), . . . , (mq, σq)} is the list of messages/signature pairs
which A obtained from Osig.
Definition 4 A signature scheme S is said to be suf-cma secure if all polynomial time adversaries
A have negligible advantage Advuf-cmaS,A (k) against S.

Weak unforgeability against a chosen message attack (wuf-cma) is defined exactly as above, except
that the requirement that (m∗, σ∗) 6∈ {(m1, σ1), . . . , (mq, σq)} is relaxed to m∗ 6∈ {m1, . . . ,mq} i.e.
for A to successfully attack the scheme, it is required that m∗ was not previously submitted to
the sign oracle.

We will now recall a well-known signature scheme by Waters [35]. This scheme will play an im-
portant role in the construction of our concrete instantiation of a on-line non-transferable signature
scheme.



– Setup: Pick a group G of primer order p and equipped with a bilinear map e : G×G→ GT .
Furthermore, pick generator g of G and return the parameters par ← (G, p, g, e).

– KeyGen : Given par, pick α← Zp and h← G, and set g′ ← gα. Furthermore, pick u0, . . . , un ←
G, and for a message m ∈ {0, 1}n, define F (m) = u0

∏n
i=1 u

mi
i where mi is the ith bit of m.

Finally set the public key to pk ← (g′, h, u0, . . . , un) and the private key to sk ← α. Return
(pk, sk).

– Sign : Given input (par, sk,m), where sk = α, pick r ← Zp, compute σ1 ← gr and σ2 ←
hαF (m)r, and return the signature σ = (σ1, σ2).

– Ver : Given par, a public key pk = (g′, h, u0, . . . , un), a message m and a signature σ = (σ1, σ2),
return accept if e(g, σ2) = e(g′, h)e(σ1, F (m)).

In [35], the above signature scheme is shown to be wuf-cma secure given that the computational
Diffie-Hellman problem is hard in G.

Sigma protocols. A sigma protocol for a binary relation R is a 3-move protocol between a prover
and a verifier. Both prover and verifier receive a common input x, but the prover receives a witness
w such that (x,w) ∈ R as an additional private input. In the first move of the protocol, the prover
sends a “commitment” message a, in the second move, the verifier sends a random “challenge”
message c, and in the final move, the prover sends a “response” message z. Given the response
message, the verifier either accepts or rejects the proof. We use the notation Σ{(x,w) : R(x,w) =
1} to denote a sigma protocol for the relation R with common input x and witness w. A sigma
protocol is required to have two security properties:

– Special honest verifier zero-knowledge: There exists a simulation algorithm SimΣ that given
input x and a challenge message c, outputs an accepting transcript (a, c, z)← SimΣ(x, c). We
require that the distribution of the simulated (a, c, z) is perfectly indistinguishable from the
distribution of the transcripts of a real interaction.

– Special soundness: There exists an algorithm WExtΣ that, given two accepting transcripts,
(a, c, z) and (a, c′, z′), for input x which have the same commitment message a but different
challenge messages c 6= c′, can extract a witness w such that (x,w) ∈ R.

Trapdoor commitment schemes. A trapdoor commitment scheme T = {G, Comm, TdComm, TdOpen}
is given by a generation algorithm G which, given a security parameter 1k, returns a commitment
key ck and a trapdoor td; a deterministic commitment algorithm Comm which, given ck, a value
w ∈ W and randomness r ∈ R, returns a commitment com on w (an opening of com is simply
(w, r), and a verifier checks that com = Comm(ck, w, r)); a trapdoor commitment algorithm TdComm

that, given ck, returns a commitment com′ and auxiliary information aux such that the trapdoor
opening algorithm TdOpen, given aux, any value w′ and the trapdoor td, returns r′ such that
com′ = Comm(ck, w′, r′). We consider the following security properties for a trapdoor commitment
scheme:

– Computational binding: For (ck, td)← G(1k), the probability that any computationally bounded
adversary given ck can compute (w, r, w′, r′) such that w 6= w′ and Comm(ck, w, r) = Comm(ck, w′, r),
is negligible in the security parameter k.

– Perfect hiding: For (ck, td) ← G(1k), random r, r′ ← R, and for any w,w′ ∈ W, the commit-
ments Comm(ck, w, r) and Comm(ck, w′, r′) are distributed identically.

– (Perfect) trapdoor property: For (ck, td)← G(1k), any w ∈ W, an honestly computed commit-
ment com ← Comm(ck, w, r) where r ← R, and a commitment computed using the trapdoor
(com′, aux)← TdComm(ck) and r′ ← TdOpen(aux,w, td), the values (com, r) and (com′, r′) are
distributed identically.

Note that a perfect trapdoor property implies perfect hiding, since an honestly computed com-
mitment is indistinguishable from a commitment computed using TdComm, and the latter can be
opened to any value.



3 On-line Non-transferable Signatures

An on-line non-transferable signature (ONS) scheme involves a signer S, a confirmer C, and a
verifier V , and is given by the following algorithms

– Setup which, given a security parameter 1k, returns the public parameters par.
– KeyGenS , KeyGenC , and KeyGenV which, given par, return public/private key pairs (pkS , skS),

(pkC , skC), and (pkV , skV ) for a signer, a confirmer, and a verifier, respectively.
– CSetup which on input par, skC and pkS , returns a signer specific public/private confirmer

key pair (pkC,S , skC,S). This algorithm is run once by the confirmer for each signer S, and the
confirmer stores skC,S for later use. The public key pkC,S is given to the signer who is to use
this when constructing signatures with confirmer C.

– CKeyValid which, on input par, pkS , pkC , and pkC,S , outputs either accept or reject.
– (Sign, Receive) which is a pair of interactive algorithms with common input (par, pkS , pkC , pkC,S , pkV ,m).

Sign is run by the signer and is given skS as private input, and Receive is run by the verifier.
At the end of the interaction, both Sign and Receive will output a signature, σS and σR, and
Receive will in addition output either accept or reject.

– Convert which, on input par, pkS , skC,S , m, and σ, returns a verification token tkσ.
– TkVerify which, on input par, pkS , pkC , pkC,S , m, σ, and tkσ, returns either accept or

reject.
– (Confirm, VC) which is a pair of interactive algorithms with common input (par, pkS , pkC , pkC,S , pkV ,m, σ).

Confirm is run by the confirmer and is given skC,S as private input, and VC is run by the
verifier. At the end of the interaction, VC outputs either accept or reject.

– (Disavow, VD) which is also a pair of interactive algorithms. Input for Disavow and VD is
exactly as in (Confirm, VC) above, and the output of VD is either accept or reject.

Like Liskov and Micali [26], we require that before signer S makes use of a confirmer C, he will
approach C to obtain a signer specific confirmer key pkC,S which C generates by running CSetup.
This process can be seen as a registration procedure in which the confirmer agrees to act as a
confirmer for this specific signer. Note that this does not require a confidential channel between
the signer and confirmer. Our definition differs slightly from that of [26] in that we explicitly
define a key validation algorithm CKeyValid for signer specific confirmer keys6, and introduce
(Confirm, VC) to allow C to confirm signatures. Furthermore, we do not include a fake signature
algorithm which is required to maintain the security of the scheme in [26]. Lastly, our definition
allows a confirmer to convert a signature as opposed to extract an ordinary publicly verifiable
signature of the signer. While a conversion of a message/signature pair (m,σ) will produce a
token tkσ which will allow anyone to verify the validity of (m,σ), an extraction will produce
another signature σ′ (of the signer) which is publicly verifiable, but does not necessarily provide
any confirmation of the validity of the original signature σ. Hence, conversion essentially provides
the same amount of information as the confirm protocol, whereas extraction only guarantees that
the signer at some point signed the message m.

Using the above defined algorithms, a confirmer can verify a signature by first computing a
verification token using Convert and then verifying the signature using TkVerify. To simplify
notation, we define an algorithm Valid which performs these two steps:

– Valid: given the input (par, pkS , pkC , pkC,S ,m, σ, skC,S), compute the verification token tkσ ←
Convert(par, pkS ,m, σ, skC,S) and return TkVerify(par, pkS , pkC , pkC,S ,m, σ, tkσ).

We will use the notation {Sign(skS) ↔ Receive}(par, pkS , pkC , pkC,S , pkV ,m) to denote the in-
teraction between Sign and Receive on common input (par, pkS , pkC , pkC,S , pkV ,m) and private
input skS to the Sign algorithm. To shorten the common input, we will sometimes use PK =
(pkS , pkC , pkC,S , pkV ) to represent the public keys i.e. the above common input might be writ-
ten as (par, PK,m). We furthermore use (σS , (σR, z)) ← {Sign(skS) ↔ Receive}(par, PK,m)

6 This algorithm is required by our extended security model. More specifically, it is required to define key
unforgeability (see Section 4).



to denote the output of Sign and Receive, respectively, and use (σR, z) ←2 {Sign(skS) ↔
Receive}(par, PK,m) when we are only considering the output of Receive. Similar notation is
used for the confirm and disavow protocols.

Correctness. Intuitively, correctness simply requires that if all parties behave honestly, the outcome
of all algorithms and protocols are as expected. More specifically, correctness requires that for all
par ← Setup(1k), (pkS , skS) ← KeyGenS(par), (pkC , skC) ← KeyGenC(par), (pkC,S , skC,S) ←
CSetup(par, pkS , skC), (pkV , skV ) ← KeyGenV (par), PK ← (pkS , pkC , pkC,S , pkV ), all messages
m, and all (σS , (σR, zR))←2 {Sign(skS)↔ Receive}(par, PK,m), that

– CKeyValid(par, pkS , pkC , pkC,S) = accept

– zR = accept and σR = σS
– Valid(par, pkS , pkC , pkC,S , skC,S ,m, σ) = accept

– zC ← {Confirm(skC,S)↔ VC}(par, PK,m, σ) yields zC = accept

Furthermore, for all (m′, σ′) such that Valid(par, pkS , pkC , pkC,S , skC,S ,m
′, σ′) = reject, we

require that zD ←2 {Disavow(skC,S)↔ VD}(par, PK,m′, σ′) yields zD = accept.

4 Security Model

An ONS scheme has to satisfy a number of security requirements to be considered secure. These
are unforgeability, key unforgeability, soundness, non-repudiation and non-transferability, which
will be defined in the following. However, before we can formally define these security notions, we
require a ONS scheme to implement the following verifier simulation algorithms:

– SimSign(par, pkS , pkC , pkC,S , pkV ,m, skV ): Simulates the Sign algorithm.
– SimCon(par, pkS , pkC , pkC,S , pkV ,m, σ, skV ): Simulates the Confirm algorithm.
– SimDis(par, pkS , pkC , pkC,S , pkV ,m, σ, skV ): Simulates the Disavow algorithm.

While these algorithms are not part of the basic functionality of an ONS scheme, they must be
defined to ensure that a verifier can simulate the interactive protocols of the scheme as required
by the non-transferability notion defined below (note that all simulation algorithms require the
private key of the verifier as input). Furthermore, since an adversary might observe the execution
of these algorithms while attempting to mount attacks against other security properties of the
scheme, we must provide the adversary with oracle access to these algorithms in the relevant
security definitions.

Unforgeability. Intuitively, unforgeability guarantees that only the signer should be able to produce
valid signatures. We define a strong notion of unforgeability requiring that, even for a maliciously
chosen confirmer key, an adversary with oracle access to an honest signer cannot produce a new
message/signature pair and convince a verifier about the validity of this pair, either by interacting
with the verifier in the confirm protocol or by producing a token such that TkVerify outputs
accept. Our definition allows the adversary to obtain signatures using any confirmer key, and
thereby ensures security in a scenario where a signer makes use of multiple potentially malicious
confirmers. In comparison, the unforgeability notion defined by Liskov and Micali only considers
a signer using a single honest confirmer. Formally, we define unforgeability of an ONS scheme N
via the experiment Expuf-cmaN,A shown in Figure 4. In the experiment, A has access to the oracles
O = {OV KeyReg,OSign, OSimSign,OSimCon, OSimDis} which are defined as below. The oracle
OV KeyReg implements verifier key registration and maintains a list, LV KeyReg, of registered keys.
It is assumed that it can be verified that a key pair (pkV , skV ) is valid i.e. that (pkV , skV ) lies in
the range of KeyGenV

7.

7 Note that this can be achieved for any scheme by including the randomness used to generate (pkV , skV )
in the private key skV .



Expuf-cmaS,A (1k)

LSign ← {}; LVKeyReg ← {}
par ← Setup(1k)
(pkS , skS)← KeyGenS(par)
(pkV , skV )← KeyGenV (par)
(pkC , pkC,S ,m, σ, tkσ, st)← AO(par, pkS , pkV )
PK ← (pkS , pkC , pkC,S , pkV )
z ←2 {AO(st)↔ VC(par, PK,m, σ)}
z′ ← TkVerify(par, pkS , pkC , pkC,S ,m, σ, tkσ)
if (pkC , pkC,S ,m, σ) 6∈ LSign∧

(z = accept ∨ z′ = accept)
output 1

else output 0

Exp
key-uf
S,A (1k)

LCSetup ← {}; LVKeyReg ← {}
par ← Setup(1k)
(pkC , skC)← KeyGenS(par)
(pkS , pkC,S)← AO(par, pkC)
z ← CKeyValid(par, pkS , pkC , pkC,S)
if (pkS , pkC,S , ∗) 6∈ LCSetup ∧ z = accept

output 1
else output 0

Exp
non-rep
S,A (1k)

par ← Setup(1k)
(pkV , skV )← KeyGenV (par)
(pkS , pkC , pkC,S ,m, st)← AO(par, pkV )
PK ← (pkS , pkC , pkC,S , pkV )
(st′, (σ, z1))← {AO(st)↔ Receive(par, PK,m)}
z2 ←2 {AO(st′)↔ VD(par, PK,m, σ)}
if z1 = z2 = accept

output 1
else output 0

Fig. 1. Unforgeability, key unforgeability and non-repudiation security experiments

– OV KeyReg: given (pkV , skV ), this oracle stores (pkV , skV ) in the list LV KeyReg and returns >
to A if (pkV , skV ) is a valid key pair. Otherwise, the oracle returns ⊥ to A. In the following, if
a query to an oracle involves a verifier key pkV , it is assumed that A has previously submitted
pkV to this oracle as part of a valid key pair. If this is not the case, the relevant oracle will
return ⊥ to A.

– OSign: given input (pkC , pkC,S , pkV ,m), this oracle interacts with A by running Sign with
common input (pkS , pkC , pkC,S , pkV ,m) and secret input skS . Local output of Sign will be a
signature σ, and (pkC , pkC,S ,m, σ) is added to LSign.

– OSimSign: given input pkS , pkC , pkC,S , and m, this oracle interact with A by running the
simulation algorithm SimSign(par, pkS , pkC , pkC,S ,m, skV ).

– OSimCon: given input pkS , pkC , pkC,S , m and σ, this oracle interacts with A by running the
simulation algorithm SimCon(par, pkS , pkC , pkC,S , pkV ,m, σ, skV ).

– OSimDis: given the same input as OSimCon, this oracle interacts with A by running the sim-
ulation algorithm SimDis(par, pkS , pkC , pkC,S , pkV ,m, σ, skV ).

Definition 5 An ONS scheme N is said to be unforgeable, if the exists no polynomial time
algorithm A with non-negligible advantage Adv

uf-cma
N,A (k) = Pr[Expuf-cmaN,A (1k) = 1].

Key unforgeability. The use of the confirmer setup, CSetup, warrants additional security require-
ments. Key unforgeability requires that an adversary without access to the private confirmer key,
cannot produce a new valid signer specific confirmer key i.e. a new key which is accepted by
CKeyValid. The security model in [26] does not have a similar security requirement and does in
fact not rule out the possibility that a signer is able to forge a signer specific confirmer key and
then use this forged key in the sign protocol. This would leave the confirmer unable to either
confirm, disavow or convert the signature. However, such concerns are eliminated by explicitly
requiring key unforgeability. Formally, key unforgeability of an ONS scheme N is defined via
the experiment Exp

key-uf
N,A (1k) shown in Figure 4. In the experiment, A has access to the oracles

O = {OV KeyReg,OCSetup,OConvert,OCon,ODis} where OV KeyReg is defined as in the unforge-
ability experiment, and the remaining oracles are defined as follows:



Exp
snd-sign
N,A (1k)

par ← Setup(1k)
(pkC , skC)← KeyGenC(par)
(pkV , skV )← KeyGenV (par)
(pkS ,m, st)← AO(par, pkC , skC , pkV )
(pkC,S , skC,S)← CSetup(par, pkS , skC)
PK ← (pkS , pkC , pkC,S , pkV )
(σ, z1)←2 {AO(st, pkC,S , skC,S)↔

Receive(par, PK,m∗)}
z2 ← Valid(par, pk∗S , pkC , pkC,S ,m

∗, σ, skC,S)
if z1 = accept ∧ z2 = reject

output 1
else output 0

Expsnd-confN,A (1k)

par ← Setup(1k)
(pkV , skV )← KeyGenV (par)
(pkS , pkC , pkC,S ,m, σ, tkσ, st)← AO(par, pkV )
PK ← (pkS , pkC , pkC,S , pkV )
z1 ←2 {AO(st)↔ VD(par, PK,m, σ)}
z2 ←2 {AO(st)↔ VC(par, PK,m, σ)}
z3 ← TkVerify(par, pkS , pkC , pkC,S ,m, σ, tkσ)
if z1 = accept ∧ (z2 = accept ∨ z3 = accept)

output 1
else output 0

Fig. 2. Soundness security experiments.

– OCSetup: given pkS , this oracle runs (pkC,S , skC,S)← CSetup(par, pkS , skC), stores the tuple
(pkS , pkC,S , skC,S) in LCSetup, and returns pkC,S to A.

– OConvert: given pkS , pkC,S ,m, and σ, this oracle searches for a matching tuple (pkS , pkC,S , skC,S)
in LCSetup. If no such tuple is found, the oracle returns ⊥ to A. Otherwise, the oracle returns
tk ← Convert(par, pkS , pkC , pkC,S , skC,S ,m, σ).

– OCon: given pkS , pkC,S , pkV , m, and σ, the oracle searches for a tuple (pkS , pkC,S , skC,S) in
LCSetup. If no such tuple is found the oracle returns ⊥. Otherwise, the oracle interacts with A
running Confirm with the common input (par, pkS , pkC , pkC,S , pkV ,m, σ) and private input
skC,S .

– ODis: given the same input as OCon, this oracle returns ⊥ to A if the tuple (pkS , pkC,S , skC,S)
is not found in LCSetup. Otherwise, the oracle interacts with A by running Disavow with
common input (par, pkS , pkC , pkC,S , pkV ,m, σ) and private input skC,S .

Definition 6 An ONS scheme N is said to be key unforgeable if there exists no polynomial time
algorithm A with non-negligible advantage Adv

key-uf
N,A (k) = Pr[Exp

key-uf
N,A (1k) = 1].

Non-repudiation. Informally, non-repudiation requires that, even if a malicious signer and con-
firmer collude, it is not possible for the signer to make an honest verifier accept a message/signature
pair as valid in the sign protocol, while the confirmer is able to disavow the validity of the mes-
sage/signature pair. Our definition of non-repudiation is slightly weaker than the definition given
in [26] in that we allow the adversary a negligible success probability whereas [26] requires the suc-
cess probability to be zero. However, we highlight that [26] makes use of a non-interactive disavow
protocol which is both off-line and on-line transferable which allows the slightly stronger non-
repudiation property, whereas our constructions will rely on interactive non-transferable protocols
with negligible soundness error.

We define non-repudiation of an ONS scheme N via the experiment Exp
non-rep
N,A (1k) shown in

Figure 4. In the experiment, A has access to the oracles O = {OSimSign,OSimCon,OSimDis} which
are defined as above.

Definition 7 An ONS scheme N is said to provide non-repudiation if there exists no polynomial
time algorithm A with non-negligible advantage Adv

non-rep
N,A (k) = Pr[Expnon-repN,A (1k) = 1].

Soundness. We consider two soundness notions – signer soundness and confirmer soundness.
The first notion, signer soundness, guarantees that a signer cannot make a verifier accept a mes-
sage/signature pair as valid through the sign protocol without the confirmer being able to confirm
the validity of this pair as well as compute a verification token showing validity. Our definition
guarantees signer soundness even if the confirmer is corrupted since the adversary is allowed to
access the private confirmer key, and implies the soundness notion by Liskov and Micali which
only grants the adversary access to the public confirmer key. Formally, we define signer soundness



of an ONS scheme N via the experiment Expsnd-signN,A (1k) shown in Figure 2. In the experiment, A
will have access to the oracles O = {OSimSign,OSimCon,OSimDis} defined as above.

Definition 8 An ONS scheme N is said to provide signer soundness if there exists no polynomial
time algorithm A with non-negligible advantage Adv

snd-sign
N,A (k) = Pr[Expsnd-signN,A (1k) = 1].

The second notion, confirmer soundness, guarantees that even if both signer and confirmer key is
maliciously generated, a confirmer cannot produce a message/signature pair which he can success-
fully disavow by completing the disavow protocol, while still being able to confirm validity of this
pair, either by completing the confirm protocol or by producing a token that will make TkVerify

output accept. Since Liskov and Micali do not consider the confirmer’s ability to confirm a signa-
ture, an equivalent security notion is not defined in [26]. We define confirmer soundness of an ONS
scheme N via the experiment Expsnd-confN,A (1k) shown in Figure 2. In the experiment, A has access
to the oracles O = {OSimSign,OSimCon,OSimDis} defined as in the non-repudiation experiment.

Definition 9 An ONS scheme is said to provide confirmer soundness if there exists no polynomial
time algorithm A with non-negligible advantage Adv

snd-conf
N,A (k) = Pr[Exp

snd-conf
N,A (1k) = 1].

On-line Non-transferability. Intuitively, on-line non-transferability of a protocol requires that an
adversary cannot distinguish between a real execution of the protocol and a simulated execution
by the verifier. Note that since we are considering the on-line non-transferability of both the sign,
confirm and disavow protocols, a verifier must be able to provide a consistent response, even if the
adversary first obtains a signature through the (simulated) sign protocol and later try to re-confirm
the validity through the (simulated) confirm protocol. We define a single non-transferability notion
covering the non-transferability of all three interactive protocols. More specifically, we require
that an adversary cannot distinguish between a scenario in which he obtains a valid signature
through the sign protocol, confirms the validity through the confirm protocol, and then interacts
in the simulated disavow protocol, and a scenario in which he obtains a signature through the
simulated sign protocol, confirms the validity through the simulated confirm protocol, and then
interacts in the disavow protocol. Our non-transferability notion implies a similar type of non-
transferability of the sign protocol as defined by Liskov and Micali, but does not involve fake
signature generation. Formally, we define on-line non-transferability of a ONS scheme N via the
experiment Expnon-transN,A (1k) shown in Figure 4. In the experiment, A has access to the oracles
O = {OV KeyReg,OCSetup,OSign,OConvert,OCon,ODis} defined as in the unforgeability and the
key unforgeability experiments. The oracles O′ are defined exactly as O, except that OConvert will
not respond to the query consisting of the challenge (pkS , pkC,S), m∗ and σ∗, and OCon and ODis
will not respond to queries on the challenge (pkS , pkC,S), m∗, σ∗ and any pkV . Note that OSign
allows the adversary to obtain signatures under any confirmer key, and that OConvert, OCon and
ODis accepts any signer key. This ensures security in a scenario where multiple confirmers service
multiple signers. Note also that the adversary is given the private key of the verifier. This will
ensure that even if the verifier is compromised, the non-transferability is still maintained.

Definition 10 An ONS scheme N is said to be on-line non-transferable if there exists no poly-
nomial time algorithm A with non-negligible advantage Advnon-transN,A (k) = |Pr[Expnon-transN,A (1k) =

1]− 1
2 |.

5 Construction of an ONS scheme

In this section we will present a construction of an ONS scheme based on four simpler building
blocks: a standard signature scheme, a core confirmer signature scheme, sigma protocols, and a
trapdoor commitment scheme with an enhanced binding property. In the following, we will formally
define a core confirmer signature scheme as well as the needed security requirements, motivate and
define the enhanced binding property of a trapdoor commitment scheme, and finally show how
the above mentioned primitives can be combined into a secure ONS scheme.



Expnon-transN,A (1k)

LVKeyReg ← {}
par ← Setup(1k)
(pkS , skS)← KeyGenS(par)
(pkC , skC)← KeyGenC(par)
(pkC,S , skC,S)← CSetup(par, pkS , skC)
(pkV , skV )← KeyGenV (par)
PK ← (pkS , pkC , pkC,S , pkV )
(m∗, st)← AO(par, PK, skV )
b← {0, 1}
if b = 0

(σ∗, st′)← {Sign(par, PK,m∗, skS)↔ A(st)}
st′′ ←2 {Confirm(par, PK,m∗, σ∗, skC,S)↔ A(st′)}
st′′′ ←2 {SimDis(par, PK,m∗, σ∗, skV )↔ A(st′′)}

else (b = 1)
(σ∗, st′)← {SimSign(par, PK,m∗, skV )↔ A(st)}
st′′ ←2 {SimCon(par, PK,m∗, σ∗, skV )↔ A(st′)}
st′′′ ←2 {Disavow(par, PK,m∗, σ∗, skC,S)↔ A(st′′)}

b′ ← AO
′
(st′′′)

if b = b′ output 1
else output 0

Fig. 3. On-line non-transferability security experiment.

5.1 Core Confirmer Signature Scheme

A core confirmer signature scheme is essentially an ONS scheme without any of the interactive algo-
rithm. More specifically, a core confirmer signature scheme is given by CS = {CS.Setup, CS.KeyGenS ,
CS.KeyGenC , CS.Sign, CS.Convert, CS.TkVerify} where the algorithms CS.Setup, CS.KeyGenS ,
and CS.KeyGenC are defined as in a full ONS scheme, and the CS.Sign, CS.Convert and CS.TkVerify

algorithms are defined as follows:

– CS.Sign: given par, pkC , m, and skS , this algorithm returns a signature σ.
– CS.Convert: given par, pkS , m, σ and skC , this algorithm returns a token tkσ.
– CS.TkVerify: given par, pkS , pkC , m, σ and tkσ, this algorithm returns either accept or

reject.

Both CS.Convert and CS.TkVerify are assumed to be deterministic. Note that all algorithms are
non-interactive and that no specific confirmer keys pkC,S or verifier keys pkV are required. Like
for an ONS scheme, we define an algorithm CS.Valid as

– CS.Valid: given par, pkS , pkC , m, σ and skC , this algorithms computes the verification token
tkσ ← CS.Convert(par, pkS ,m, σ, skC) and returns the output of the verification algorithm
CS.TkVerify(par, pkS , pkC ,m, σ, tkσ).

We require that a core confirmer signature scheme is correct i.e. we require that for all par ←
CS.Setup(1k), (pkS , skS)← CS.KeyGenS(par), (pkC , skC)← CS.KeyGenV (par), all messages m and
all σ ← CS.Sign(par, pkC ,m, skS), that CS.Valid(par, pkS , pkC ,m, σ, skC) yields accept.

Furthermore, we require that a core confirmer signature scheme has unique private confirmer
keys i.e. for any pkC , there exists at most one skC such that (pkC , skC) ∈ {CS.KeyGenC(par)} where
{CS.KeyGenC(par)} denotes the set of all possible confirmer key pairs generated by CS.KeyGenC .8

Security Requirements. For a core confirmer signature scheme to be secure, we require that the
scheme provides unforgeability, invisibility and token soundness. However, due to the reduced

8 This property is needed to prove confirmer soundness (Theorem 20) of the construction presented in
Section 5.3.



Expcs-uf-cmaCS,A (1k)

LCSSign ← {}
par ← CS.Setup(1k)
(pkS , skS)← CS.KeyGenS(par)
(pk∗C ,m

∗, σ∗, tk∗)← AO(par, pkS)
z ← CS.TkVerify(par, pkS , pk

∗
C , σ

∗,m∗, tk∗)
if (pk∗C ,m

∗, σ∗) 6∈ LCSSign ∧ z = accept

output 1
else output 0

Expcs-inv-cmaCS,A (1k)

par ← CS.Setup(1k)
(pkS , skS)← CS.KeyGenS(par)
(pkC , skC)← CS.KeyGenC(par)
(m∗, st)← AO(par, pkS , pkC)
b← {0, 1}
if b = 0 σ∗ ← S
else σ∗ ← CS.Sign(par, pkC , skS ,m)
b′ ← AO(st, σ∗)
if b = b′ output 1
else output 0

Expcs-tk-sndCS,A (1k)

par ← CS.Setup(1k)
(pk∗S , pk

∗
C , sk

∗
C ,m

∗, σ∗, tk∗σ)← A(par)
z1 ← CS.TkVerify(par, pk∗S , pk

∗
C , σ

∗,m∗, tk∗σ)
z2 ← CS.Valid(par, pk∗S , pk

∗
C , σ

∗,m∗, sk∗C)
if (pk∗C , sk

∗
C) ∈ {CS.KeyGenC(par)} ∧ z1 = accept ∧ z2 = reject

output 1
else output 0

Fig. 4. Unforgeability, invisibility and token soundness experiments for a core confirmer signature scheme.

functionality of a core confirmer signature scheme, these definitions will be much simpler compared
to the security definitions of a full ONS scheme.

We define unforgeability of a core confirmer signature scheme CS via the experiment Expcs-uf-cmaCS,A (1k)
shown in Figure 5.1. In the experiment, A has access to the oracle OSign defined as follows:

– OSign: given pkC , and m, this oracle computes the signature σ ← CS.Sign(par, pkC ,m, skS),
adds (pkC ,m, σ) to LCSSign, and returns σ.

Definition 11 A core confirmer signature scheme CS is said to be unforgeable if there exists no
polynomial time algorithm A with non-negligible advantage Adv

cs-uf-cma
CS,A (k) = Pr[Expcs-uf-cmaCS,A (1k) =

1].

Invisibility of a core confirmer signature scheme CS, which captures the property that valid
signatures cannot be distinguished from random elements of the signature space, is defined via the
experiment Expcs-inv-cmaCS,A shown in Figure 5.1. In the experiment, S denotes the signature space of
the scheme, and A has access to the oracles O = {OSign,OConvert} where OSign is defined as in
the above unforgeability experiment, and OConvert is defined as follows:

– OConvert: given m and σ, this oracle returns tk ← CS.Convert(par, pkS , pkC ,m, σ, skC).

Note that this oracle will only convert signatures from the signer pkS and is not required to work
for maliciously generated public signer keys for which the adversary might know the corresponding
private key. Hence, intuitively, this security requirement only requires the scheme to be secure in
a “single user” setting in which a confirmer only services a single signer. This weaker requirement
is important for the security proof of our concrete construction.

Definition 12 A core confirmer signature scheme CS is said to be invisible if there exists no poly-
nomial time algorithm A with non-negligible advantage Advcs-inv-cmaCS,A (k) = |Pr[Expcs-inv-cmaCS,A (1k) =

1]− 1
2 |.

Lastly, we consider token soundness [31] for a core confirmer signature scheme which intuitively
captures the property that an accepting verification token cannot be constructed for an invalid
signature. Formally, we define token soundness of a scheme CS via the experiment Expcs-tk-sndCS,A
shown in Figure 5.1. In the figure, {CS.KeyGenC(par)} denotes the set of all possible key pairs
generated by CS.KeyGenC .



Definition 13 A core confirmer signature scheme CS is said to have token soundness if there ex-
ists no polynomial time algorithm A with non-negligible advantage Advcs-tk-sndCS,A (k) = Pr[Expcs-tk-sndCS,A (1k) =
1].

Compatible Sigma Protocols. In our full ONS scheme, we will base the construction of on-line
non-transferable protocols on sigma protocols. For this purpose, we require that a set of sigma
protocols compatible with the core confirmer signature scheme exists. More specifically, we say
that a triple of sigma protocols, ΣS , ΣC and ΣC , and a core confirmer signature scheme CS are
compatible if the sigma protocols are defined for the common input x = (par, pkS , pkC ,m, σ) and
the following relations.

– ΣS{(x, (skS , r)) : (pkS , skS) ∈ {CS.KeyGenS(par)} ∧ σ = CS.Sign(par, pkC ,m, skS ; r)}
– ΣC{(x, skC) : (pkC , skC) ∈ {CS.KeyGenC(par)}∧CS.Valid(par, pkS , pkC ,m, σ, skC) = accept}
– ΣC{(x, skC) : (pkC , skC) ∈ {CS.KeyGenC(par)}∧CS.Valid(par, pkS , pkC ,m, σ, skC) = reject}

Recall that we use the notation Σ{(x,w) : R(x,w) = 1} to denote the sigma protocol Σ for
relation R with common input x and witness w. For simplicity, we furthermore assume that the
challenge space of ΣS , ΣC and ΣC are of the same size.

5.2 On-line Non-transferable Protocols

As mentioned above, our construction of on-line non-transferable protocols is based on extensions
of the compatible sigma protocols for a core confirmer signature scheme. We use a simple and
intuitive approach inspired by the construction of designated verifier proofs by Jakobsson et al.
[20] which is furthermore closely related to the construction of efficient zero-knowledge proofs in
the auxiliary string model [14] and the recent construction of deniable authentication for signatures
[28]. More specifically, we modify the sigma protocols using a trapdoor commitment scheme, and
let a prover and a verifier interact as follows:

1. The prover computes the first message a of the sigma protocol and the commitment com ←
Comm(ck, a, r) for random r, and then sends com to the verifier.

2. The verifier then sends a random challenge c to the prover.
3. The prover computes the last message z of the sigma protocol and sends the opening (a, r)

together with z to the verifier. The verifier checks that com = Comm(ck, a, r), and accepts if
(a, c, z) is an accepting transcript of the sigma protocol.

The commitment key and trapdoor (ck, td) will be used as the public/private key pair (pkV , skV )
of the verifier. Hence, using skV , the verifier will be able to open com to any message a of his choice,
and can therefor postpone generating a until after the challenge c is revealed which allows him
to simulate the proof interactively. We use the notation NT(ck)-Σ to denote the non-transferable
protocol obtained by modifying the sigma protocol Σ as described above using the commitment
key ck.

However, the above approach is not sufficient for proving our constructions secure. Essentially
the problem is that an adversary can request to interact with SimSign, SimCon and SimDis in
many of the security notions defined in Section 4, choosing any message or message/signature pair
(valid or invalid) as input. This type of query can be difficult to handle for a simulator not knowing
the trapdoor of the commitment scheme, whereas a simulator knowing the trapdoor might not
gain sufficient information from an adversary breaking the security of the scheme. To address this
problem, we introduce a commitment scheme with a stronger binding property. Specifically, we
consider the advantage of an adversary A against binding property of a commitment scheme T to
be defined as

AdvbindT,A (k) = Pr[(ck, td)← G(1k); (w, r, w′, r′)← AOc,Oo(ck) :

w 6= w′ ∧ Comm(ck, w, r) = Comm(ck, w′, r′)]



where A has access to a commit and an open oracle, Oc and Oo, which behave as follows: upon
request, Oc computes (com, aux) ← TdComm, stores aux and returns com to A. Given a com-
mitment com returned by Oc and a value w, Oo retrieves the corresponding aux and returns
r ← TdOpen(aux,w, td) such that com = Comm(ck, w, r). The adversary is only allowed to query
Oo with a commitment com obtained from Oc, and is not allowed to make more than one query
to Oo for a given commitment com.

Definition 14 A trapdoor commitment scheme T is said to be binding under selective trapdoor
openings if there exists no polynomial time algorithm A with non-negligible advantage AdvbindT,A .

Pedersen’s commitment scheme [30] can be shown to be binding under selective trapdoor openings
assuming the one more discrete logarithm problem is hard. However, to obtain a commitment
scheme which can be shown secure only assuming the ordinary discrete logarithm problem is hard,
we can make use of the “double trapdoor” extension also used to strengthen signatures [34] and
improve on-line/off-line signatures [3, 7]. Below, we recall this scheme.

– G: Given 1k, pick a group G of prime order p such that 2k < p < 2k+1, and furthermore pick
a generator g ← G and random x1, x2 ← Zp. Compute h1 ← gx1 and h2 ← gx2 , and set the
public parameters to ck ← (G, p, g, h1, h2) and the trapdoor to td← (x1, x2).

– Comm: Given ck and a value w ∈ Zp, pick random r1, r2 ← Zp and compute a commitment to
w as com← gwhr11 h

r2
2 . (The opening of com is (w, r1, r2).)

– TdComm: Pick random r ← Zp and set com← gr and aux← r.
– TdOpen: Given com, a corresponding aux, the trapdoor td = (x1, x2) and a value w, pick

random r1 ← Zp, compute r2 ← (aux− w − x1r1)/x2, and return the opening (w, r1, r2).

Theorem 15 Assume the discrete logarithm problem is hard in G. Then the above commitment
scheme is binding under selective trapdoor openings. More specifically, there exists a polynomial
time algorithm B such that for any polynomial time adversary A, AdvbindT,A (k) ≤ AdvdlG,B(k)/2.

The proof of the above theorem can be found in Appendix A. It is relatively easy to verify that
the scheme is also perfectly hiding and provides a perfect trapdoor property.

5.3 Combined Scheme

We will now show how to combine the above mentioned primitives into a full ONS scheme. More
specifically, let CS = {CS.Setup, CS.KeyGenS , CS.KeyGenC , CS.Sign, CS.Convert, CS.TkVerify} be
a core confirmer signature scheme with compatible sigma protocols ΣS , ΣC and ΣC , let T = {T.G,
T.Comm, T.TdComm, T.TdOpen} be a trapdoor commitment scheme, and let S = {S.Setup, S.KeyGen,
S.Sign, S.Verify} be an ordinary signature scheme. We construct an ONS scheme N as follows:

– Setup(1k): Compute parS ← S.Setup(1k) and parCS ← CS.Setup(1k), and return the param-
eters par ← (parS , parCS). It is assumed that parCS include a description of the randomness
space R used by the CS.Sign algorithm.

– KeyGenS(par): Return (pkS , skS)← CS.KeyGenS(parCS).
– KeyGenC(par): Return (pkC , skC)← S.KeyGen(parS).
– KeyGenV (par): Return (pkV , skV )← T.G(1k).
– CSetup(par, pkS , skC): Compute the key pair (pk′C , sk

′
C) ← CS.KeyGenC(parCS) and the sig-

nature δ ← S.Sign(parS , “pkS ||pk′C”, skC), and return pkC,S ← (pk′C , δ) and skC,S ← sk′C .
– CKeyValid(par, pkS , pkC , pkC,S) Let pkC,S = (pk′C , δ) and return the result of the verification

S.Verify(parS , pkC , “pkS ||pk′C”, δ).
– (Sign, Receive): The common input is given by (par, pkS , pkC , pkC,S ,m, pkV ) where pkC,S =

(pk′C , δ) and the signer is given skS as private input.
Firstly, the signer picks r ∈ R and computes σ ← CS.Sign(parCS , pk

′
C , skS , pkC ||pkC,S ||m; r).

Then the signer sends σ to the verifier, and interacts with the verifier in the protocol NT(pkV )-ΣS
using (par, pkS , pk

′
C , pkC ||pkC,S ||m,σ) as common input and (skS , r) as secret input. 9

9 Note that this construction of the sign protocol is slightly more flexible than required by the definition
in Section 3 in that a signer is able to re-confirm a signature by running NT(pkV )-ΣS . This, however,
requires the signer to remember the randomness used to construct the signature.



– Convert(par, pkS ,m, σ, skC,S): Return tkσ ← CS.Convert(parCS , pkS ,m, σ, skC,S).
– TkVerify(par, pkS , pkC , pkC,S ,m, σ, tkσ): Firstly, verify the validity of pkC,S by computing
z ← CKeyValid(par, pkS , pkC , pkC,S) defined above. If z = accept, let pkC,S = (pk′C , δ) and
return CS.TkVerify(parCS , pkS , pk

′
C , pkC ||pkC,S ||m,σ, tkσ). Otherwise, return reject.

– (Confirm, VC): The common input is given by (par, pkS , pkC , pkC,S , pkV ,m) where pkC,S =
(pk′C , δ) and the signer is given skC,S as private input. Firstly, the verifier checks validity of
pkC,S by running CKeyValid(par, pkS , pkC , pkC,S), and aborts if the output is reject. The
confirmer then interacts with the verifier in the protocol NT(pkV )-ΣC with private input skC,S
and common input (parS , pkS , pk

′
C , pkC ||pkC,S ||m,σ).

– (Disavow, VD): Having the same common input as in (Confirm, VC), the verifier firstly checks
if CKeyValid(par, pkS , pkC , pkC,S) = accept, and aborts if this is not the case. The verifier
and signer then interact in the protocol NT(pkV )-ΣC with private input skC,S to the confirmer
and common input (parS , pkS , pk

′
C , pkC ||pkC,S ||m,σ).

Security. We will now prove that the above constructed ONS scheme satisfies the security defini-
tions given in Section 4 assuming the underlying primitives are secure. However, firstly we must
define the simulation algorithms required to achieve security. SimSign, SimCon and SimDis are
constructed as follows:

– SimSign(par, pkS , pkC , pkC,S , pkV ,m, skV )
1. Pick random σ ← S and send σ to the verifier.
2. Run (com, aux)← TdCom(pkV ) and send com to the verifier.
3. When a challenge c is received from the verifier, let pkC,S = (pk′C , σ) and compute (a, z)←

SimΣS
(par, pkS , pk

′
C , pkC ||pkC,S ||m,σ, c) and r ← TdOpen(aux, a, skV ), and send (a, z, r)

to the verifier.
– SimCon and SimDis with input (par, pkS , pkC , pkC,S , pkV ,m, σ, skV ) are both implemented by

step 2 and 3 above in which SimΣS
is replaced with SimΣC

and SimΣC
, respectively.

Theorem 16 Assume that CS is unforgeable, that ΣS is honest verifier zero-knowledge and has
special soundness, and that T provides a perfect trapdoor property and is binding under selective
trapdoor openings. Then the above ONS scheme N is unforgeable. More specifically, there exist
polynomial time algorithms B, B′ and B′′ such that for any polynomial time adversary A,

Adv
uf-cma
N,A ≤

√
4Advcs-uf-cmaCS,B + 1/p2 + AdvbindT,B′ + Adv

cs-uf-cma
CS,B′′ + 1/p,

where p is the size of the challenge space of ΣS.

The proof can be found in Appendix B.1.

Theorem 17 Assume the signature scheme S is strongly unforgeable. Then the above ONS scheme
N has key unforgeability. More specifically, there exists a polynomial time algorithm B such that
for any polynomial time adversary A, Advuf-cmaN,A ≤ Adv

suf-cma
S,B .

This follows directly from the construction since a specific confirmer key pkC,S consists of a public
key pk′C of the underlying core confirmer signature scheme and a signature δ on pkS ||pk′C i.e.
producing a new valid pkC,S for a different pkS ||pk′C pair corresponds directly to forging a new
message/signature pair of the underlying signature scheme. We omit the details here.

Theorem 18 Assume that ΣS and ΣC have special soundness, and that T is binding under se-
lective trapdoor openings. Then the above ONS scheme N provides non-repudiation. More specifi-
cally, there exists a polynomial time algorithm B such that for any polynomial time adversary A,
Adv

non-rep
N,A ≤ 2/p+ 2AdvbindT,B , where p is the size of the challenge space of ΣS and ΣC .

The proof can be found in Appendix B.2.
The following two theorems shows the soundness properties of the above proposed ONS scheme.

The proof of the first theorem follows a very similar pattern to the proof of Theorem 18, and can
be derived from this. We leave out the details of this proof. The proof of the second theorem can
be found in Appendix B.3.



Theorem 19 Assume that ΣS have special soundness, and that T is binding under selective trap-
door openings. Then the above ONS scheme N provides signer soundness. More specifically, there
exists a polynomial time algorithm B such that for any polynomial time adversary A, Adv

snd-sign
N,A ≤

2/p+ AdvbindT,B , where p is the size of the challenge space of ΣS.

Theorem 20 Assume that CS has unique private confirmer keys and provides token soundness,
that ΣC and ΣC have special soundness, and that T is binding under selective trapdoor open-
ings. Then the above ONS scheme N provides confirmer soundness. More specifically, there exists
polynomial time algorithms B and B’ such that for any polynomial time adversary A,

Adv
snd-conf
N,A ≤

√
4Advcs-tk-sndCS,A + 1/p2 + 3AdvbindT,B′ + 3/p,

where p is the size of the challenge space of ΣC and ΣC .

Lastly, we consider the non-transferability of the proposed ONS scheme. The proof of the following
theorem can be found in Appendix B.4.

Theorem 21 Assume that CS is invisible, that ΣS, ΣC and ΣC are honest verifier zero-knowledge,
and that T provides a perfect trapdoor property. Then the above ONS scheme N provides on-line
non-transferability. More specifically, there exists a polynomial time algorithm B such that for any
polynomial time adversary A, Advnon-transN,A ≤ Advcs-inv-cmaCS,B .

6 Concrete Instantiation

To instantiate the construction presented in Section 5.3, we can use the strongly unforgeable
signature scheme by Boneh et al. [2] and the double trapdoor Pedersen commitment scheme shown
in Section 5.2. To complete the instantiation, we will define and prove secure a core confirmer
signature scheme and compatible sigma protocols.

6.1 Concrete Core Confirmer Signature Scheme

Our scheme is essentially based on a linear encryption of the first component of a Waters signature
[35] combined with the technique of Boneh et al. [2] to obtain a strongly unforgeable scheme.
This will result in a strongly unforgeable and invisible scheme with a structure that allows the
compatible sigma protocols to be implemented using well-know techniques for proving knowledge
of discrete logarithms. Our scheme CS is defined below.

– Setup: Given 1k, choose bilinear groups (G,GT ) of prime order 2k < p < 2k+1, a bilinear map
e : G×G→ GT and generator g of G. Furthermore, choose a collision resistant hash function
family H = {Hν : {0, 1}∗ → {0, 1}|ν|} indexed by a key ν ∈ {0, 1}k (note that since 2|ν| < p,
the output of Hν can be viewed as an element of Zp). Return par = (G,GT , e, p, g,H).

– KeyGenS(par) : Pick α← Zp, set g1 ← gα, and pick g2, h← G. Furthermore, pick u0, . . . , un ←
Zp, and define F (m) = u0

∏n
i=1 u

mi
i where mi is the ith bit of m. Finally pick a hash key

ν ∈ {0, 1}k and return pkS = (q, g1, g2, h, u0, . . . , un) and skS = α.

– KeyGenC(par) : Pick x, y ← Zp and set u ← gx
−1

and v ← gy
−1

. Return pkC = (u, v) and
skC = (x, y).

– Sign : Given input (par, pkC ,m, skS), where pkC = (u, v) and skS = α, pick a, b, r, s ←
Zp, compute t ← Hν(pkC ||ua||vb||gr+a+b||m) and M = gths, and return the signature σ ←
(ua, vb, gr+a+b, gα2 F (M)r, s).

– Convert(par, pkS ,m, σ, skC) : Let σ = (σ1, σ2, σ3, σ4, s) and skC = (x, y). If the equation
e(g, σ4) = e(g1, g2)e(σ3/(σ

x
1σ

y
2 ), F (M)) holds where M = gths and t = Hν(pkC ||σ1||σ2||m),

return the token tkσ = (σx1 , σ
y
2 ). Otherwise return ⊥.

– TkVerify(par, pkS , pkC ,m, σ, tkσ) : Let pkS = (q, g1, g2, h, u0, . . . , un), pkC = (u, v), σ =
(σ1, σ2, σ3, σ4, s) and tkσ = (tk1, tk2). Return accept if the equations e(u, tk1) = e(σ1, g),
e(v, tk2) = e(σ2, g) and e(g, σ4) = e(g1, g2)e(σ3/(tk1tk2), F (M)) holds where M = gths and
t = Hν(pkC ||σ1||σ2||σ3||m).



Security The unforgeability of our core confirmer signature scheme rests on the unforgeability of
the signature scheme by Waters [35], defined in Section 2.

Theorem 22 Assume that Waters’ signature scheme W is unforgeable, H is a collision resistant
hash function family, and the discrete logarithm problem is computationally hard with respect to the
group generator G implicitly defined by Setup. Then the above core confirmer signature scheme CS
is unforgeable. More specifically, there exists polynomial time algorithms, B, B’ and B” such that
for any polynomial time adversary A, Adv

cs-uf-cma
CS,A (k) ≤ Adv

wuf-cma
W,B (k) + AdvcolH,B′(k) + AdvdlG,B′′(k).

The proof of the above theorem follows a very similar strategy to the proof of strong unforgeability
of the signature scheme by Boneh et al. [2] based on Waters’ signature scheme, and we leave out the
details here. Note that Waters’ signature scheme is proved unforgeable assuming the computational
Diffie-Hellman problem is hard [35], and that collision resistant hash functions can be constructed
using this assumption as well [13] i.e. the unforgeability of the above core confirmer signature
scheme can be reduced to the computational Diffie-Hellman problem only.

The proofs of the following two theorems, showing invisibility and token soundness of the above
core confirmer signature scheme, can be found in Appendix C.1 and C.2, respectively.

Theorem 23 Assume that the above core confirmer signature scheme CS is unforgeable and that
the decisional linear problem is hard with respect to the group generator G implicitly defined by
Setup. Then CS is invisible. More specifically, there exists polynomial time algorithms B and B’
such that for any polynomial time adversary A, Advcs-inv-cmaCS,A (k) ≤ Adv

cs-uf-cma
CS,B (k) + AdvdlinG,B′(k).

Theorem 24 The above core confirmer signature scheme has token soundness.

Compatible sigma protocols. To be able to use the above core confirmer signature scheme in the
construction of a concrete ONS scheme, we need to provide compatible sigma protocols ΣS , ΣC
and ΣC . Let pkS = (k, g1, g2, h, u0, . . . , un), σ = (σ1, σ2, σ3, σ4, s), and let (a, b, r) ∈ Z3

p be the
randomness used to construct σ. Then, for the concrete core confirmer signature scheme, ΣS can
be described as follows

ΣS{((par, pkS , pkC ,m, σ), (α, a, b, r)) : gα = g1∧ua = σ1∧vb = σ2∧ga+b+r = σ3∧gα2 F (M)r = σ4)}

where M = gths and t = Hν(pkC ||σ1||σ2||σ3||m). This sigma protocol can be implemented using
standard and well-known techniques for proving knowledge of discrete logarithms (e.g. see [6]).

The protocol ΣC can be described as follows.

ΣC{((par, pkS , pkC ,m, σ), (x, y)) : ux = g ∧ vy = g∧
e(σ1, F (M))xe(σ2, F (M))y = e(g1, g2)e(σ3, F (M))/e(g, σ4)}

where M = gths and t = Hν(pkC ||σ1||σ2||σ3||m). Note that if σ is converted using skC = (x, y),
the token will be of the form tkσ = (tk1, tk2) = (σx1 , σ

y
2 ) and the first two equations will guarantee

that e(u, tk1) = e(g, σ1) and e(v, tk2) = e(g, σ2). Furthermore, the last equation above can be
re-written as e(tk1tk2, F (M)) = e(g1, g2)e(σ3, F (M))/e(g, σ4). Hence, if the above protocol is
sound, all the equations of TkVerify are guaranteed to hold when the conversion is done using
skC = (x, y) i.e. Valid(par, pkS , pkC ,m, σ, skC) = accept. Like ΣS , this sigma protocol can be
implemented using standard protocols for proving knowledge of discrete logarithms.

Lastly, the protocol ΣC can be described as follows.

ΣC{((par, pkS , pkC ,m, σ), (x, y)) : ux = g ∧ vy = g∧
e(σ1, F (M))xe(σ2, F (M))y 6= e(g1, g2)e(σ3, F (M))/e(g, σ4)}

where M = gths and t = Hν(pkC ||σ1||σ2||σ3||m). As above, the soundness of the above protocol
guarantees that TkVerify(par, pkS , pkC ,m, σ, tkσ) = reject if tkσ is generated using skC i.e.
Valid(par, pkS , pkC ,m, σ, skC) = reject. To implement the protocol, we make use of a technique
by Camenish and Shoup [5] for proving inequality between discrete logarithms. More specifically,
let e1 = e(σ1, F (M)), e2 = e(σ2, F (M)) and e3 = e(g1, g2)e(σ3, F (M))/e(g, σ4). A prover and
verifier then interact as follows



– The prover picks random r ← Zp, computes C ← (ex1e
y
2/e3)r and sends C to the verifier.

– The prover and verifier then interact in the protocol Σ{(α, β, γ) : uαg−γ = 1 ∧ vβg−γ =

1 ∧ eα1 e
β
2 e
−γ
3 = C} where α = xr, β = yr and γ = r.

The value C can be sent together with the first message of the sigma protocol in the second step to
obtain a 3-move protocol. To see that the above protocol is special honest verifier zero-knowledge
and has special soundness, similar arguments to [5] can be used, and we refer the reader to [5] for
the details.

7 Comparison

The generic construction by Liskov and Micali [26] provides many instantiation options due to
their use of standard primitives, whereas our approach relies on special building blocks. However,
our concrete instantiation has several advantages compared to any instantiation of the scheme by
Liskov and Micali, both in terms of functionality, efficiency and security. More specifically, our
scheme allows a confirmer to both confirm and disavow signatures whereas [26] only allows the
latter, and our scheme furthermore provides publicly verifiably conversion of signatures as opposed
to signature extraction. Secondly, our scheme provides short signatures compared to the O(k) size
signatures of [26] which results in the additional advantage of a more efficient sign protocol in
which the verifier obtains a signature from the signer. However, we note that our scheme requires
large public keys due to the use of Waters signatures, whereas [26] can be instantiated to provide
compact public keys. Lastly, all interactive protocols of our scheme are on-line non-transferable,
security is guaranteed when multiple (potentially malicious) confirmers are used, and the signer is
not required to engage in any “fake” signing protocols to maintain security. As mentioned in the
introduction, these security properties are not enjoyed by [26]. However, it should be noted that
the non-interactive disavow protocol of [26] allows perfect non-repudiation whereas our scheme
only achieves computational non-repudiation.
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A Proof of Theorem 15

Proof. Given an adversary A that breaks the binding under selective trapdoor openings of the
commitment scheme, we construct an algorithm B that solves the discrete logarithm problem.

B is given the group G of order p, a generator g, and an element h, and is required to compute
the discrete logarithm x = logg h. Firstly, B flips a random coin b. If b = 0, B randomly picks
x1 ← Zp and sets h1 ← gx1 and h2 ← h. Otherwise, B randomly picks x2 ← Zp and sets h1 ← h
and h2 ← gx2 . Then B runs A with input ck = (G, p, g, h1, h2).

If A makes a commit query to Oc, B responds by randomly picking rg, rh ← Zp and returning
the commitment c ← grghrh . Note that c is distributed as an ordinary commitment. The values
(rg, rh) are stored for later use.

If A makes an open query to Oo with value w and a commitment c = grghrh obtained through
a previous commit query, B responds as follows: Firstly, B retrieves (rg, rh) for c (note that this is
always possible since c must be obtained through Oc). Then if b = 0, B computes r1 ← (rg−w)/x1,
sets r2 ← rh and returns (w, r1, r2). Otherwise, if b = 1, B sets r1 ← rh, computes r2 ← (rg−w)/x2,
and returns (w, r1, r2). Note that since (rg, rh) was picked uniformly at random, (r1, r2) will also
be uniformly distributed in Zp in both cases.

Eventually A outputs (w, r1, r2, w
′, r′1, r

′
2) such that gwhr11 h

r2
2 = gw

′
h
r′1
1 h

r′2
2 and w 6= w′. This

implies that either r1 6= r′1 or r2 6= r′2. In the first case, B can recover the discrete logarithm of h1
w.r.t. g as x1 ← (w−w′+x2(r2−r′2))/(r′1−r1) assuming b = 1 (i.e. we have h2 = gx2). In the second
case, B can recover the discrete logarithm of h2 w.r.t. g as x2 ← (w − w′ + x1(r1 − r′1))/(r′2 − r2)
assuming b = 0 (i.e. we have h1 = gx1). Since b is completely hidden from A, B will recover the
discrete logarithm of h with probability 1/2 and hence solve the given discrete logarithm problem.

ut

B ONS Scheme Security Proofs

B.1 Proof of Theorem 16

Proof. We prove the theorem by considering the following sequence of games:

Game0 This is the original Expuf-cmaN,A (1k) experiment.

Game1 In this game we change how A’s sign queries are handled. More specifically, when inter-
acting with A in the NT(pkV )-ΣS protocol, the trapdoor functionality of T is used as follows:
Firstly, the private key skV corresponding to pkV is retrieved from LV KeyReg. Then, instead
of sending com ← T.Comm(pkV , a; r) where a is the first message of ΣS to A, we compute
(com′, aux) ← T.TdCom(pkV ), store aux, and send com′ to A. When a challenge c is received
from A, we compute r′ ← T.TdOpen(aux, a, skV ), and return (a, r′, z) where z is the last mes-
sage of ΣS . Note that since a is not needed until A submits his challenge c, the computation
of a can be delayed until this happens.

Game2 In this game, we replace the honestly generated messages of ΣS with the simulated mes-
sages output by SimΣS

i.e. when a challenge c is received from A, we compute the messages
(a′, z′) ← SimΣS

((par, pkS , pk
′
C , pkC ||pkC,S ||m,σ), c) and r′ ← T.TdOpen(aux, a′, skV ), and

returns (a′, r′, z′) to A.



Let Succi be the event that A wins in Gamei. Furthermore, let Forge1 be the event that A wins
by successfully completing the confirm protocols in Game2 (i.e. z = accept) and let Forge2 be
the event that A wins by producing a token tk∗ such that the output of TkVerify is accept in
Game2 (i.e. z′ = accept). Note that if A wins in Game2, either Forge1 or Forge2 must occur i.e.
Pr[Succ2] ≤ Pr[Forge1] + Pr[Forge2]. The advantage of A can be expressed as follows:

Pr[Succ0] ≤ |Pr[Succ0]− Pr[Succ1]|+ |Pr[Succ1]− Pr[Succ2]|+ Pr[Forge1] + Pr[Forge2]

Claim 25 Pr[Succ0] = Pr[Succ1]

Proof. The only difference between Game0 and Game1 is how the commitments in A’s sign queries
are computed; in Game0, these are honestly computed using the commitment key pkV , whereas
in Game1, the trapdoor functionality of T is used in combination with the trapdoor skV retrieved
from LV KeyReg. Note that it is assumed (pkV , skV ) was previously submitted to OV KeyReg and
that (pkV , skV ) is a valid key pair. Since T is assumed to provide a perfect trapdoor property, the
distribution of honestly computed commitments and openings is identical to the distribution of
commitments and openings computed using the trapdoor functionality, and the view of A must
be identical in Game0 and Game1. Hence, the success probability of A must also be identical in
Game0 and Game1. ut

Claim 26 Pr[Succ1] = Pr[Succ2]

Proof. The only difference between Game1 and Game2 is that in the last message of the sign
protocol in A’s sign queries, A will receive messages from an honest run of ΣS in Game1, whereas
in Game2, A will receive the simulated messages computed by SimΣS

. Since ΣS is assumed to be
honest verifier zero knowledge, the distribution of these messages will be identical, and hence, A’s
view and success probability in Game1 and Game2 will be identical. ut

Claim 27 Pr[Forge1] ≤
√

4Adv
cs-uf-cma
CS,B + 1/p2 + AdvbindT,B′ + 1/p

Proof. Assume an adversary A with advantage εA = Pr[Forge1] exists i.e. A wins in Game2
by completing the confirm protocol with probability εA. From A, we will construct either an
algorithm B that breaks the unforgeability of the underlying core confirmer signature scheme, or
an algorithm B’ which breaks the binding under selective trapdoor openings property of T .
B is constructed as follows: Firstly, B receives parameters parCS and a public signer key pkS

for the core confirmer signature scheme, then generates parS ← S.Setup(1k) and (pkV , skV ) ←
T.G(1k), sets par ← (parS , parCS), and runs A with input (par, pkS , pkV ). B answer A’s oracle
quires as follows

– OSign: given (pkC , pkC,S , pkV ,m), B submits pkC ||pkC,S ||m to his own signing oracle and
obtains a signature σ on pkC ||pkC,S ||m under pkS . B then sends σ to A and interacts with A
as described in Game2 using the trapdoor skV and simulated messages generated with SimΣS

.
– OSimSign, OSimCon and OSimDis: B interacts with A as an honest unforgeability challenger

using his knowledge of skV .

At some point, A will output (pk∗C , pk
∗
C,S ,m

∗, σ∗) and interact with B in the confirm protocol.
Upon completion of the protocol, B obtains a transcript (com, c, a, z, r) of the NT(pkV )-ΣC proto-
col. At that point, B rewinds A to the point where A sent the message com to B, and then replays
A with a new randomly chosen challenge value c′ as a response to com. Since we assume that A
will successfully complete the protocol with probability εA, a standard rewinding argument shows
that with probability ε2A/4− εA/2p where p is the size of the challenge space, A will successfully
complete both runs of the protocol using the same random tape. More specifically, following [14],
consider a matrix in which each row corresponds to the random tape used by A, and each column
corresponds to a challenge value c. Let an entry in the matrix be “1” if A successfully completes
the protocol with the corresponding random tape and challenge value, and “0” otherwise. Since A
is assumed to succeed with probability εA, the average number of ones in a row must be εAp where



p is the size of the challenge space. Define a row to be heavy if it contains more than εAp/2 ones.
It follows that at least half of all ones in the matrix must be in heavy rows i.e. with probability
εA/2, A will successfully complete the protocol and the random tape used by A will correspond
to a heavy row. In this case, the row will contain at least εAp/2 − 1 other challenge values for
which A will successfully complete the protocol i.e. if we rewind A using the same random tape
and provide A with a different randomly chosen challenge value c′, with probability εA/2 − 1/p,
A completes the second run of the protocol successfully. Hence, with probability ε2A/4− εA/2p, B
will obtain two transcripts, (com, c, a, z, r) and (com′, c′, a′, z′, r′), where com = com′.

Now, if a 6= a′, B aborts. Otherwise, B computes sk′C ← WExtΣC
(a, c, c′, z, z′) that, by the

definition of ΣC , must satisfy CS.Valid(parCS , pkS , pk
′
C , pk

∗
C ||pk∗C,S ||m∗, σ∗, sk′C) = accept where

pk∗C,S = (pk′C , δ) i.e. generating the token tkσ∗ ← CS.Convert(parCS , pkS , pk
′
C , pk

∗
C ||pk∗C,S ||m∗, σ∗, sk′C)

and checking validity by running CS.TkVerify(parCS , pkS , pk
′
C , pk

∗
C ||pk∗C,S ||m∗, σ∗, tkσ∗) will yield

accept. Lastly, B returns (pk∗C ||pk∗C,S ||m∗, σ∗, tk∗σ) as his own forgery. Note that, since it is re-
quired that (pk∗C , pk

∗
C,S ,m

∗, σ∗) 6∈ LSign, B will not have received σ∗ as a response to one of his
own sign queries on pk∗C ||pk∗C,S ||m∗, and B’s forgery will be a valid forgery. Conditioned on A not

causing B to abort, the advantage of B is Advcs-uf-cmaCS,B ≥ ε2A/4− εA/2p.
Let Abort be the event that B aborts in the above simulation. We have that

Pr[Forge1] ≤ Pr[Forge1|Abort] + Pr[Abort]

From the above construction of B, we conclude that Pr[Forge1|Abort] ≤
√

4Advcs-uf-cmaCS,B + 1/p2 +

1/p. To complete the proof of the claim, we will show that if the event Abort happens, we can
construct an algorithm B′ which breaks the binding under selective trapdoor openings property
of the commitment scheme T .

We construct the algorithm B’ as follows: Firstly, B’ receives a commitment key ck = pkV , gen-
erates parameters parS ← S.SetupS(1k) and parCS ← CS.SetupCS(1k), sets par ← (parS , parCS),
compute (pkS , skS)← S.KeyGenS(parCS), and runs A with input (par, pkS , pkV ). B’ answers A’s
queries as follows

– OSign: given (pkC , pkC,S ,m) where pkC,S = (pk′C , δ), B’ uses his knowledge of skS to construct
a valid signature σ ← CS.Sign(parCS , pk

′
C , pkC ||pkC,S ||m, skS) which is sent to A. Then, B’

uses his oracles Oc and Oo to interact with A in the simulated sign protocol as described in
Game2. More specifically, B′ interacts with A as follows:

1. B’ queries Oc, obtains com, and sends com to A.
2. When a challenge c is received from A, B’ obtains a simulated transcript of ΣS by running

(a, z) ← SimΣS
(parCS , pkS , pk

′
C , pkC ||pkC,S ||m,σ, c), submits (com, a) to Oo to obtain r

such that com = T.Comm(pkV , a; r), and lastly sends (a, z, r) to A.

– OSimSign: given (pkC , pkC,S ,m), B’ picks a random signature σ ← S, sends σ to A, and
interacts with A as described in step 1 and 2 of the simulation of OSign above.

– OSimCon, OSimDis: given (pkS , pkC , pkC,S), B’ simulates these oracles by executing step 1 and
2 from the simulation of OSign.

At some point, A outputs (pk∗C , pk
∗
C,S ,m

∗, σ∗) and interacts with B’ in the confirm protocol. Like
above, B’ first completes the protocol, then rewinds and re-plays A to obtain two transcripts
(com, c, a, z, r) and (com′, c′, a′, z′, r′) of NT(pkV )-ΣC where com = com′. Note that A’s view will
distributed identically to the view when interacting with B. If Abort occurs (i.e. a 6= a′), B’ returns
(com, a, r, a′, r′) as an attack against the binding property of T . Note that if (com, c, a, z, r) and
(com′, c′, a′, z′, r′) are accepting transcripts, T.Comm(pkV , a, r) = com = com′ = T.Comm(pkV , a

′, r′)
i.e. B’ successfully attacks the binding under selective openings property of T .

From the above construction of B’ we conclude that Pr[Abort] ≤ AdvbindB′,T . Combining this with
the above yields the result stated in the claim. ut

Claim 28 Pr[Forge2] ≤ Adv
cs-uf-cma
CS,B



Proof. Assume there exists an algorithm A with success probability εA = Pr[Forge2]. Using A,
we construct an algorithm B that breaks the unforgeability of CS with probability εA.
B receives parameters parCS and a public key pkS , generates parS ← S.SetupS(1k), par ←

(parS , parCS), and (pkV , skV ) ← T.GV (1k), and runs A with input (par, pkS , pkV ). B then simu-
lates the oracles OSign, OSimSign, OSimCon and OSimDis as in the first part of Claim 27. Lastly,
A outputs a tuple (pk∗C , pk

∗
C,S ,m

∗, σ∗, tk∗) where pk∗C,S = (pk′C , δ). If Forge2 occurs, we must
have that CS.TkVerify(parCS , pkS , pk

′
C , pk

∗
C ||pk∗C,S ||m∗, σ∗, tk∗) = accept and that σ∗ was not re-

turned as a response to a sign query on (pk∗C , pk
∗
C,S ,m

∗). Hence, B returns (pk′C , pk
∗
C ||pk∗C,S ||m∗, σ∗, tk∗σ)

which will be a valid forgery of CS with probability εA. ut

The theorem follows by the combination of the above claims. ut

B.2 Proof of Theorem 18

Proof. Assume there exists an adversary A with success probability εA in the non-repudiation
experiment. We will shown that, usingA, an adversary against the binding property of the trapdoor
commitment scheme can be constructed. To this end, first consider the following simulator B
interacting with A in the non-repudiation experiment.

Firstly, B generates parS ← S.Setup(1k), parCS ← CS.Setup(1k), par ← (parS , parCS) and
(pkV , skV )← T.G(1k) as an honest challenger. Then B runs A with input (par, pkV ) and responds
honestly to A’s queries to the OSimSign, OSimCon and OSimDis oracles using skV . At some point,
A outputs (pkS , pkC , pkC,S ,m), where pkC,S = (pk′C , δ), and then interacts with B in the sign
protocol i.e. A will send a signature σ to B, and then interact with B in the NT(pkV )-ΣS protocol.
With probability at least εA, A successfully completes NT(pkV )-ΣS . At this point, B rewinds and
replays A, but provide a different randomly chosen challenge value in the NT(pkV )-ΣS protocol.
As in the proof of Claim 27, a standard rewinding argument shows that, with probability at least
ε2A/4−εA/2p, A will successfully complete the protocol with the new challenge value, and B obtains
two accepting transcripts (com, a, c, z, r) and (com′, a′, c′, z′, r′) of NT(pkV )-ΣS where com = com′

(note also that the signature σ sent in the first move of the protocol will be the same for both runs).
If a 6= a′, B will abort. This event will be denoted Abort1. Otherwise, by the special soundness of
ΣS , B can compute (skS , r)← WExtΣS

(a, c, c′, z, z′) such that (pkS , skS) ∈ {CS.KeyGenS(parCS)}
and σ = CS.Sign(parCS , pk

′
C , pkC ||pkC,S ||m, skS ; r).

After completing the sign protocol, A interacts with B in the disavow protocol by running
NT(pkV )-ΣC . Given that A successfully completed the sign protocol, A will successfully complete
NT(pkV )-ΣC with probability at least εA since it is assumed A will succeed in wining the entire
security experiment with probability εA. Note also that the distribution of A’s view before exe-
cuting NT(pkV )-ΣC is independent of whether A was rewinded in the NT(pkV )-ΣS protocol or
not, since, in either case, a uniformly random challenge value is provided. Upon completion of
NT(pkV )-ΣC , B rewinds and replays A, but provides a different randomly chosen challenge value
in the second run. Like above, with probability ε2A/4− εA/2p, B obtains two accepting transcript,
(com, a, c, z, r) and (com′, a′, c′, z′, r′), of NT(pkV )-ΣC where com = com′. Again, if a 6= a′, B
aborts. This event will be denoted Abort2. Otherwise, by the special soundness property of ΣC ,
B can compute sk′C ← WExtΣC

(a, c, c′, z, z′) such that (pk′C , sk
′
C) ∈ {CS.KeyGenC(parCS)} and

CS.Valid(parCS , pkS , pk
′
C ,m, σ, sk

′
C) = reject.

Assuming that neither Abort1 nor Abort2 occur and that εA > 2/p, B will, with non-zero
probability, obtain σ, skS , r and sk′C with the above stated properties. However, this directly
lead to a contradiction. More specifically, the correctness of CS implies that since (pkS , skS) ∈
{CS.KeyGenS(parCS)}, (pk′C , sk

′
C) ∈ {CS.KeyGenC(parCS)} and σ = CS.Sign(parCS , pk

′
C ,m, skS ; r),

then we must have that CS.Valid(parCS , pkS , pk
′
C ,m, σ, sk

′
C) = accept. This contradicts the

above established property that CS.Valid(parCS , pkS , pk
′
C ,m, σ, sk

′
C) = reject. We conclude that

conditioned on neither Abort1 nor Abort2 occurring, we must have εA ≤ 2/p.
Let Succ denote the event that A succeeds in the non-repudiation experiment. We have that

Adv
non-rep
N,A = Pr[Succ] ≤ Pr[Succ|Abort1 ∧Abort2] + Pr[Abort1] + Pr[Abort2]



From the above we conclude that Pr[Succ|Abort1 ∧ Abort2] ≤ 2/p. By constructing simulators
almost identical to the simulator B’ in the proof of Claim 27, we will obtain Pr[Abort1] ≤ AdvbindT,B′

and Pr[Abort2] ≤ AdvbindT,B′ . Hence, for all algorithms A, we must have Pr[Succ] ≤ 2/p + 2AdvbindT,B′
i.e. assuming T is binding under selective openings, the advantage of A must be negligible. This
completes the proof. ut

B.3 Proof of Theorem 20

Proof. Assume there exists a successful adversary A against the confirmer soundness of the con-
structed scheme. Using A, we will construct algorithms breaking either the token soundness of the
core confirmer signature scheme or the enhanced binding property of the commitment scheme.

Firstly, consider the following events: let Succ1 denote that A succeeds in the confirmer sound-
ness experiment by completing both the confirm and disavow protocols (i.e. z1 = z2 = accept),
and let Succ2 denote the event that A succeeds by completing the disavow protocol and producing
a valid verification token (i.e. z1 = z3 = accept). Then we must have

Advsnd-confN,A ≤ Pr[Succ1] + Pr[Succ2]

Claim 29 Pr[Succ1] ≤ 2/p+ 2AdvbindT,B′

Proof. Let A be an adversary such that Pr[Succ1] = εA. Consider the following simulator B
interacting with A in the confirmer soundness experiment: B generates parS ← S.Setup(1k),
parCS ← CS.Setup(1k), par ← (parS , parCS), and (pkV , skV ) ← T.G(1k), and runs A with input
(par, pkV ). When A queries one of the oracles OSimSign, OSimCon or OSimDis, B responds honestly
using skV . At some point, A will output (pkS , pkC , pkC,S ,m, σ, tkσ) where pkC,S = (pk′C , δ) and
interact with B in the disavow protocol i.e. NT(pkV )−ΣC . With probability at least ε, A will
successfully complete the protocol, and at this point, B rewinds and replays A, but provides A
with a new randomly chosen challenge value in NT(pkV )−ΣC . As in the proof of Claim 27, B will
obtain two accepting transcripts, (com, a, c, z, r) and (com′, a′, c′, z′, r′) where com = com′, with
probability at least ε − A2/4 − εA/2p. If a 6= a′, B will abort. Let this event be denoted Abort1.
Otherwise, B uses the special soundness of ΣC to compute sk′C ← ExtΣC

(a, c, c′, z, z′) such that
(pk′C , sk

′
C) ∈ {CS.KeyGenC(par) and CS.Valid(parCS , pkS , pk

′
C ,m, σ, sk

′
C) = reject.

After completing the disavow protocol, A will interact with B in the confirm protocol i.e.
NT(pkV )−ΣC . Note that A’s view is independent of whether the previous disavow protocol was
rewinded or not, and that A will successfully complete the confirm protocol with probability at
least εA. Upon completion, B will rewind A and provide him with a new randomly chosen challenge
value in NT(pkV )−ΣC . As above, with probability at least ε2A/4− εA/2p, B obtains two accepting
transcripts, (com, a, c, z, r) and (com′, a′, c′, z′, r′) where com = com′, and will abort if a 6= a′.
The latter event will be denoted Abort2. If B does not abort, he will use the special soundness
of ΣC to compute sk′′C ← ExtΣC

(a, c, c′, z, z′) such that (pk′c, sk
′′
C) ∈ {CS.KeyGenC(parCS)} and

CS.Valid(parCS , pkS , pk
′
C ,m, σ, sk

′′
C) = accept.

Assuming that neither Abort1 nor Abort2 occur, and that εA > 2/p, B will, with non-zero
probability, obtain sk′C and sk′′C with the above described properties. However, since the core
confirmer signature scheme has unique private confirmer keys, we must have sk′C = sk′′C . This
directly leads to a contradiction since the deterministic CS.Valid cannot both output accept

and reject given the same input. We conclude that conditioned on neither Abort1 nor Abort2
occurring, we must have ε ≤ 2/p. More specifically, we have

Pr[Succ1] ≤ Pr[Succ1|Abort1 ∧Abort2] + Pr[Abort1] + Pr[Abort2]

and, from the above, we have Pr[Succ1|Abort1 ∧ Abort2] ≤ 2/p. Using a simulator similar to B’
in the proof of Claim 27, we can furthermore show that Pr[Abort1] ≤ AdvbindT,B′ and Pr[Abort2] ≤
AdvbindT,B′ . Hence, the claim follows. ut

Claim 30 Pr[Succ2] ≤
√

4Advcs-tk-sndCS,B + 1/p2 + AdvbindT,B′ + 1/p



Proof. Let A be an adversary such that Pr[Succ2] = εA. Consider the following simulator B
interacting with A in the confirmer soundness experiment while attempting to break the token
soundness of the core confirmer signature scheme.
B receives parCS , generates parS ← S.Setup(1k), par ← (parS , parCS) and (pkV , skV ) ←

T.G(1k), and runs A with input (par, pkV ). Exactly as in the above claim, B responds to A’s queries
toOSimSign,OSimCon andOSimDis by using skV , and will interact withA in NT(pkV )−ΣC whenA
outputs (pkS , pkC , pkC,S ,m, σ, tkσ) where pkC,S = (pk′C , δ). Note that A will successfully complete
the protocol and CS.TkVerify(parCS , pkS , pk

′
C ,m, σ, tkσ) = accept with probability εA. Upon

completion of the protocol, B rewinds and replays A with a new randomly chosen challenge value
in NT(pkV )−ΣC . As above, with probability at least ε2A/4− εA/2p, B obtains two accepting tran-
scripts, (com, a, c, z, r) and (com′, a′, c′, z′, r′) where com = com′, and will abort if a 6= a′. If B does
not abort, he will extract sk′C ← ExtΣC

(a, c, c′, z, z′) such that (pk′C , sk
′
C) ∈ {CS.KeyGenC(parCS)}

and CS.Valid(parCS , pkS , pk
′
C ,m, σ, sk

′
C) = reject. Lastly, B outputs (pkS , pk

′
C , sk

′
C ,m, σ, tkσ)

as his own attack against the token soundness of the core confirmer signature scheme. Note that
this will be a valid attack due to the properties of (pkS , pk

′
C , sk

′
C ,m, σ, tkσ) outlined above. Con-

ditioned on B not aborting, we have Advcs-tk-sndCS,B ≥ ε2A/4− εA/2p.
Let Abort denote the event that B aborts. We have that

Pr[Succ2] ≤ Pr[Succ2|Abort] + Pr[Abort]

From the above, we conclude that Pr[Succ2|Abort] ≤
√

4Advcs-tk-sndCS,B + 1/p2 + 1/p. Lastly, by

constructing a simulator similar to B’ in the proof of Claim 27, we can show that Pr[Abort] ≤
AdvbindT,B′ . ut

The theorem follows from combining the above claims. ut

B.4 Proof of Theorem 21

Proof. In the following, we let Expnon-trans-bN,A denote the experiment in which the challenge bit b is
chosen. We prove the theorem by considering the following sequence of games:

Game0 This game corresponds to the Expnon-trans-0S,A experiment.
Game1 In this game, we change how the interaction with A in the sign, confirm and disavow oracle

queries is done. More specifically, the protocols NT(pkV )-ΣS , NT(pkV )-ΣC and NT(pkV )-ΣC

are changed using the trapdoor property of T as follows: Firstly, the private key skV corre-
sponding to pkV is retrieved from LV KeyReg. Then, instead of sending com← T.Comm(pkV , a; r)
to A, where a is the first message of ΣS , ΣC or ΣC (depending on the query type), we compute
(com′, aux) ← T.TdCom(pkV ), store aux, and send com′ to A. When a challenge c is received
from A, we compute r′ ← T.TdOpen(aux, a, skV ), and return (a, r′, z) where z is the last mes-
sage of ΣS , ΣC or ΣC . Note that since a is not needed until A submits his challenge c, the
computation of a can be delayed until this happens.

Game2 In this game, we replace the honestly generated message of ΣS , ΣC and ΣC in the
sign, confirm and disavow queries with simulated messages output by SimΣS

, SimΣC
and

SimΣC
e.g. when a challenge c is received from A in a sign query, we compute (a′, z′) ←

SimΣS
((par, pkS , pkC,S , pkC ||pkC,S ||m,σ), c) and r′ ← TdOpen(aux, a′, skV ), and return (a′, r′, z′)

to A.
Game3 In this game, the challenge sign and confirm protocols are modified using the trapdoor

property of T in the same way the sign and confirm oracle queries was modified in Game1.
Game4 In this game, the challenge sign and confirm protocols are modified using the simulated

messages from SimΣS
and SimΣskC

in the same way the sign and confirm oracle queries was
modified in Game2.

Game5 In this game, the challenge signature σ∗ is picked at random from the signature space
S instead of being honestly generated using the CS.Sign algorithm of the core confirmer
signature scheme.



Game6 In this game, the challenge (simulated) disavow protocol is modified by replacing the
simulated messages generated using SimΣC

with the honestly generated messages of ΣC . Fur-

thermore, the first message a of ΣC is generated at the time the challenger sends the first
message of the disavow protocol.

Game7 In this game, we again modify the challenge disavow protocol, this time by replacing
the trapdoor commitment generated by T.TdComm(pkV ) with an honest commitment to the
message a introduced in Game6 generated by T.Comm(pkV , a; r).

Game8 and Game9 In these games, the changes introduces in Game2 and Game1 are reversed.
Note that the changes regarding the challenge query introduced in Game3, Game4, Game6
and Game7 remains, and that Game9 corresponds to the experiment Expnon-trans-1N,A .

Let Ei denote the event that A outputs 1 in game i. The advantage of A can be expressed as

Advnon-transN,A =
1

2
|Pr[E0]− Pr[E7]| ≤ 1

2

8∑
i=0

|Pr[Ei]− Pr[Ei+1]|

Claim 31 Pr[E0] = Pr[E1], Pr[E2] = Pr[E3], Pr[E6] = Pr[E7] and Pr[E8] = Pr[E9]

This follows from the perfect trapdoor property of the commitment scheme T . The proofs of these
statements are almost identical to the proof of Claim 25, and we leave out the details.

Claim 32 Pr[E1] = Pr[E2], Pr[E3] = Pr[E4], Pr[E5] = Pr[E6] and Pr[E7] = Pr[E8]

This follows from the special honest verifier zero-knowledge property of ΣS , ΣC and ΣC . The
proofs of these statements are almost identical to the proof of Claim 26, and we leave out the
details.

Claim 33 |Pr[E4]− Pr[E5]| ≤ 2Advcs-inv-cmaCS,B

Proof. Assume there exists an adversary A that outputs 1 in Game4 with a different probability
than in Game5, and let the difference be denoted εA = |Pr[E4]−Pr[E5]|. Using A, we construct a
distinguisher B that breaks the invisibility of the core confirmer signature scheme with probability
εA/2.

Firstly, B is given parameters parCS , a public signer key pkS , and a public confirmer key
pk′C of the core confirmer signature scheme. B then generates parS ← S.Setup(1k), sets par ←
(parS , parCS), and computes the key pairs (pkC , skC) ← S.KeyGen(parS) and (pkV , skV ) ←
T.G(1k). Lastly, B computes δ ← S.Sign(parS , pkS ||pk′C , skC), sets pkC,S ← (pk′C , δ), and runs
A with input (par, pkS , pkC , pkC,S , pkV , skV ).

While running, A can make confirmer setup, sign, convert and disavow oracle queries, which
B answers as follows:

– OCSetup: Given pkS , B runs (pk′C , sk
′
C) ← CS.KeyGenC(parCS), constructs the signature δ ←

S.Sign(parS , pkS ||pk′C , skC), sets pkC,S ← (pkC , δ) and skC,S ← sk′C , stores (pkC,S , skC,S) in
LCSetup, and finally returns pkC,S to A.

– OSign: Same as in the proof of Claim 27 above. Note that B has access to a (non-interactive)
signing oracle and that the sign protocol is simulated using skV in Game4/Game5.

– OConvert: Given (pkS , pkC,S ,m, σ) where pkC,S = (pk′C , δ), if pkS and pkC,S are identi-
cal to the challenge keys given to A, B submits (pkC ||pkC,S ||m,σ) to his own convert or-
acle (note that this conversion oracle only works for the challenge keys (pkS , pk

′
C) given

given to B). The obtained token tkσ is then returned to A. Otherwise, B searches for a
tuple (pkS , pkC,S , skC,S) in LCSetup, and if such a tuple is found, B computes and returns
tkσ ← CS.Convert(parCS , pkS , pk

′
C , pkC ||pkC,S ||m,σ, skC,S) (note that skC,S = sk′C). If no

such tuple is found, B returns ⊥ to A.



– OCon: Given (pkS , pkC,S , pkV ,m, σ) where pkC,S = (pk′C , δ), if pkS and pkC,S are identical
to the challenge keys given to A, B submits ((pkC ||pkC,S ||m,σ) to his own convert oracle
to obtain tkσ. Otherwise, B searches for a tuple (pkS , pkC,S , skC,S) in LCSetup, and com-
putes the token tkσ ← CS.Convert(parCS , pkS , pk

′
C , pkC ||pkC,S ||m,σ, skC,S) if such a tuple

is found. Then, if CS.TkVerify(parCS , pkS , pk
′
C , pkC ||pkC,S ||m,σ, tkσ) = accept, B retrieves

(pkV , skV ) from LV KeyReg and interacts with A in the (simulated) confirm protocol using
skV as described in Game4/Game5. If no matching tuple (pkS , pkC,S , skC,S) is found or
CS.TkVerify(parCS , pkS , pkC,S ,m, σ, tkσ) = reject, B returns ⊥ to A.

– ODis: B answers these queries in a similar way to confirm queries, except that the disavow
protocols is simulated for signatures which are found to be invalid.

At some point, A outputs a challenge message m∗. B forwards the message pkC ||pkC,S ||m∗ as his
own challenge message, and obtains a signature σ∗ which is send to A. Then B interacts with
A in the simulated sign protocol using skV as described in Game4/Game5. After this challenge
query, A can ask additional confirmer setup, sign, convert, confirm and disavow queries which B
answers as above. Note that A is not allowed to submit the challenge keys, message and signature,
(pkS , pkC,S ,m

∗, σ∗) to the convert, confirm or disavow oracles. Lastly, A outputs a bit b′ which B
forwards as his own answer in the invisibility game of the core confirmer signature scheme.

From the above description of B, it should be clear that if the challenge signature given to B
is a valid honestly generated signature, B provides A with a perfect simulation of Game4. On the
other hand, if the challenge signature given to B is picked at random from the signature space of
the core confirmer signature scheme, then B will provide A with a perfect simulation of Game5.
Letting β be the bit chosen by B’s challenger and β′ be the bit output by B, the advantage of B
can be expressed as

Advcs-inv-cmaCS,B = Pr[β′ = β]− 1/2

= Pr[β′ = 1|β = 1] Pr[β = 1] + Pr[β′ = 0|β = 0] Pr[β = 0]− 1/2

= 1/2(Pr[β′ = 1|β = 1]− Pr[β′ = 1|β = 0])

= 1/2(Pr[b′ = 1|β = 1]− Pr[b′ = 1|β = 0])

= 1/2(Pr[E4]− Pr[E5])

The above claim follows directly from this. ut

The theorem follows by the combination of the above claims. ut

C Core Confirmer Signature Scheme Security Proofs

C.1 Proof of Theorem 22

Proof. To prove the theorem, we consider the following two games:

Game0 This is the original invisibility game.

Game1 In this game, the response to convert queries is changed as follows. If A submits a tuple
(m,σ) such that σ was not obtained by submitting the challenge confirmer key pkC and the
message m to the sign oracle, we return ⊥ to A i.e. the signature is treated as invalid.

Let Succi be the event that A wins in Gamei. The advantage of A in the invisibility game can be
expressed as

Advcs-inv-cmaCS,A = |Pr[Succ0]− 1/2| ≤ |Pr[Succ0]− Pr[Succ1]|+ |Pr[Succ1]− 1/2|

Claim 34 |Pr[Succ0]− Pr[Succ1]| < Adv
cs-uf-cma
CS,B



Proof. Firstly, note that Game0 and Game1 are identical unless A makes a convert query on
at least one signature tuple (m,σ) which is valid wrt. the challenge keys (pkS , pkC) and which
was not obtained by submitting (pkC ,m) to the sign oracle. Hence, if there is a difference in the
output of A in Game0 and Game1, A must make such a query. We show the claim by a proof by
contradiction, and assume there exists an adversary A which makes one of these queries. Using A,
we construct an algorithm B that breaks the unforgeability of the core confirmer signature scheme
as follows.
B receives parameters par and a public signer key pkS , computes (pkC , skC)← KeyGenC(par),

and runs A with input (par, pkS , pkC). While A is running, A can query his sign and convert
oracles which B simulates as follows.

– OSign: Given (pkC ,m), B simply forwards (pkC ,m) to his own signing oracle, and returns the
obtained signature σ to A.

– OConvert: Given (m,σ), B computes tkσ ← Convert(par, pkS , pkC ,m, σ, skC). If σ was not
obtained through a sign query on (pkC ,m) and TkVerify(par, pkS , pkC ,m, σ, tkσ) = accept,
B halts with the output (pkC ,m, σ, tkσ). Otherwise, B returns tkσ to A.

At some point, A outputs a challenge message m∗. B flips a random coin b← {0, 1}, and if b = 0,
B submits (pkC ,m

∗) to his own signing oracle to obtain σ∗. Otherwise, if b = 1, B randomly picks
σ∗ ← S. Lastly, B sends σ∗ to A. After this challenge query, A can ask additional sign and convert
queries, which are answered as above.

From the above description of B, it is clear that B breaks the unforgeability of the core confirmer
signature scheme whenever A submits a convert query of the above described form. This, combined
with the observation that Game0 and Game1 are identical unless such a query is made, yields the
claimed result. ut

Claim 35 |Pr[Succ1]− 1/2| < AdvdlinG,B

Proof. We show the claim by contradiction. Assume that an adversary A with non-negligible
advantage εA = |Pr[Succ1] − 1/2| in Game1 exists. Using A, we will construct an algorithm
B which solves the decisional linear problem with respect to the group generator G (which is
implicitly defined by the Setup algorithm) with probability εA.

Firstly, B is given a group description (G,GT , e, p) and an instance (u, v, h, ux, vy, hc) ∈ G6

of the decisional linear problem in G. To generate a set of parameters, B picks a hash function
family H = {Hν : {0, 1}∗ → {0, 1}|ν|}, sets g ← h and par ← (G,GT , e, p, g,H). To generate a
public/private signing key pair, B picks a hash key ν ← {0, 1}k, α ← Zp, g2, h′, u0, . . . , un,← G
and sets g1 ← gα, pkS ← (k, g1, g2, h

′, u0, . . . , un) and skS ← α. As a public confirmer key, B uses
pkC ← (u, v). Finally, B runs A with input (par, pkS , pkC). While running, A can ask sign and
convert queries which B answers as follows.

– OSign: Given (pkC ,m), B simply runs σ ← Sign(par, pkS , pkC ,m, skS) but remembers the
random choices a, b, r ∈ Zp used to construct the signature, and stores (m,σ, a, b, r) for later
use. B then returns σ to A.

– OConvert: Given (m,σ) where σ = (σ1, σ2, σ3, σ4, s), B returns ⊥ to A if σ was not returned
to A as a response to a query on (pkC ,m) (note that this response is exactly as described in
Game1). Otherwise, B recalls the random choices a, b, r ∈ Zp used to construct σ, and returns

the token tkσ = (ga, gb). Note that (ga, gb) = (ux
′a, vy

′b) = (σx
′

1 , σ
y′

2 ) where the tuple (x′, y′)
is the (unknown) private confirmer key corresponding to pkC .

At some point, A outputs a challenge message m∗. B constructs a challenge signature by picking
r, s← Zp and setting σ∗ ← (ux, vy, hchr, gα2 F (M)r) whereM = gt(h′)s, t = Hν(pkC ||ux||vy||hchr||m),
and (ua, vb, hc) are the elements received in the decisional linear problem. Note that if c is random,
then σ∗ will be distributed as a random element in G4 × Zp, whereas if c = a + b, σ∗ will be a
valid signature on m∗ since hchr = ga+b+r. After the challenge query, A can ask additional sign
and convert queries which B answers as above. When A halts with output b′, B simply forwards
b′ as his own final output and halts.



From the above description of B, it should be clear that B will solve the decisional linear
problem whenever A correctly guesses whether the challenge signature is honestly generated or
a random element of the signature space, and that B will have advantage εA. Hence, the claim
follows. ut

The theorem follows from the combination of the above claims. ut

C.2 Proof of Theorem 24

Proof. Assume there exists an adversary A which has a non-zero advantage in the token soundness
experiment, and let (pkS , pkC , skC ,m, σ, tkσ) be the output of A where pkC = (u, v), skC = (x, y),
σ = (σ1, σ2, σ3, σ4, s) and tkσ = (tk1, tk2).

Since it is required that (pkC , skC) ∈ {KeyGenC(par)}, we must have that ux = g and vy = g.
The requirement that TkVerify(par, pkS , pkC ,m, σ, tkσ) = accept means that e(u, tk1) = e(σ1, g)
and e(v, tk2) = e(σ2, g) which, by the properties of the pairing, implies that tk1 = σx1 and tk2 = σy2 .

On the other hand, the requirement that Valid(par, pkS , pkC ,m, σ, skC) = reject means that
if the token tk′σ ← Convert(par, pkS ,m, σ, skC) is computed, the output of TkVerify(par, pkS , pkC ,m, σ, tk

′
σ)

is reject. However, since skC = (x, y), we must have that tk′σ = (σx1 , σ
y
2 ) = tkσ. Since TkVerify is

deterministic, this contradicts the above which requires that the output of TKVerify(par, pkS , pkC ,m, σ, tkσ)
is accept. Hence, we conclude that A cannot exist. ut


