On-line Non-transferable Signatures Revisited

Jacob C. N. Schuldt' and Kanta Matsuura?

! Research Center for Information Security,
National Institute of Advanced Industrial Science and Technology, Japan
jacob.schuldt@aist.go.jp
2 Institute of Industrial Science, The University of Tokyo, Japan
kanta@iis.u-tokyo.ac. jp

Abstract. Undeniable signatures, introduced by Chaum and van Antwerpen, and desig-
nated confirmer signatures, introduced by Chaum, allow a signer to control the verifiability
of his signatures by requiring a verifier to interact with the signer to verify a signature. An
important security requirement for these types of signature schemes is non-transferability
which informally guarantees that even though a verifier has confirmed the validity of a signa-
ture by interacting with the signer, he cannot prove this knowledge to a third party. Recently
Liskov and Micali pointed out that the commonly used notion of non-transferability only
guarantees security against an off-line attacker which cannot influence the verifier while he
interacts with the signer, and that almost all previous schemes relying on interactive proto-
cols are vulnerable to on-line attacks. To address this, Liskov and Micali formalized on-line
non-transferable signatures which are resistant to on-line attacks, and proposed a generic
construction based on a standard signature scheme and an encryption scheme.

In this paper, we revisit on-line non-transferable signatures. Firstly, we extend the security
model of Liskov and Micali to cover not only the sign protocol, but also the confirm and dis-
avow protocols executed by the confirmer. Our security model furthermore considers the use
of multiple (potentially corrupted or malicious) confirmers, and guarantees security against
attacks related to the use of signer specific confirmer keys. We then present a new approach
to the construction of on-line non-transferable signatures, and propose a new concrete con-
struction which is provably secure in the standard model. Unlike the construction by Liskov
and Micali, our construction does not require the signer to issue “fake” signatures to main-
tain security, and allows the confirmer to both confirm and disavow signatures. Lastly, our
construction provides noticeably shorter signatures than the construction by Liskov and
Micali.

Keywords: non-transferable signatures, standard model, provable security.

1 Introduction

An ordinary signature scheme provides public verifiability i.e. anyone is able to verify the validity of
a given signature using the public key of the signer. While this property is useful in many scenarios,
it might not always be desirable. For example, a signer who signs a sensitive message might prefer
to be able to control who can verify the validity of his signature. Chaum et al. [10] addressed this
problem with their proposal of undeniable signatures in which a verifier is required to interact with
the signer to verify a signature. Furthermore, to preserve non-repudiation, the signer is also able
to prove invalidity of a signature through a disavow protocol. Hence, in a dispute, the signer will
either be able to confirm or disavow a purported signature. However, in some scenarios, a signer
might become unavailable or might refuse to cooperate with a verifier, in which case the validity
of a signature cannot be determined. To address this, Chaum [9] introduced designated confirmer
signatures in which a third party, the confirmer, can interact with a verifier to confirm or disavow a
signature on behalf of the signer. Furthermore, the confirmer can, in the case of a dispute, extract
a publicly verifiable signature (of the signer) from a valid designated confirmer signature. Since
their introduction, a number of undeniable schemes [8, 16, 15,25, 21, 22] and designated confirmer
schemes [27,4, 18,17, 36] have been proposed.

Off-line and On-line Non-transferability. An important security notion for these types of signature
schemes is non-transferability. Intuitively, non-transferability guarantees that once a verifier has
verified a signature and is convinced about its validity, he cannot transfer this conviction to a third
party. This is achieved by ensuring that a verifier is able to simulate a transcript of the interaction
with the signer/confirmer i.e. any “evidence” of validity obtained through the interaction, could
have been generated by the verifier himself. A scheme providing this property is said to be off-line
non-transferable. However, Liskov and Micali [26] pointed out that almost all® previous schemes
relying on interactive protocols to provide off-line non-transferability are vulnerable to on-line
attacks, i.e. an attacker who is present while the verifier interacts with a signer/confirmer might
be able to determine the validity of a signature by influencing messages sent by the verifier. A
scheme preventing these types of attacks is said to be on-line non-transferable and is constructed by
enabling the verifier to interactively simulate the interaction with a signer/confirmer. To preserve
soundness of the scheme, only the verifier should be able to simulate a proof, and to facilitate this,
Liskov and Micali [26] assumed the verifier holds a public/private key pair i.e. to simulate the
interaction between the signer/confirmer and a verifier, the private key of the verifier is required.
Note that this approach to on-line non-transferability requires that the verifier knows the private
key corresponding to his public key to maintain security. More specifically, if it is possible for a
verifier to convince a third party that he does not know his private key (e.g. by generating his
public key by applying a hash function to a random seed pky = H(x), and then presenting x to the
third party), the scheme will no longer provide on-line non-transferability. To prevent this type of
malicious behavior, verifier key registration is required i.e. a verifier should prove knowledge of his
private key when registering his public key (see [26] for further discussion of this). In this paper,
we adopt the same general approach as [26], assume verifiers are equipped with public/private key
pairs, and will furthermore explicitly model verifier key registration in our security model®.

In [26], Liskov and Micali illustrated the feasibility of constructing an on-line non-transferable
signature scheme under the above described assumption of verifier key registration. More specif-
ically, they proposed a generic construction based on an ind-cpa secure public key encryp-
tion scheme and a uf-cma secure signature scheme. The resulting scheme provides on-line non-
transferability of an interactive sign protocol through which the signer both constructs and proves
validity of a signature. Furthermore, the scheme supports the use of confirmers and is proved
secure in the standard model. However, to achieve on-line non-transferability, a signer has to be
willing to issue “fake” signatures to anyone requesting them. This is essential since a verifier will
not be able to simulate the sign protocol without the ability to ask the signer for fake signatures.
This drawback limits the practical applicability of the scheme. Furthermore, the functionality and
security guarantees of the confirmer are somewhat limited. More specifically, a confirmer can dis-
avow but not confirm the validity of a signature, and neither off-line nor on-line non-transferability
are considered for the disavow protocol®.

Our Contribution. In this paper, we address many of the limitations of the approach by Liskov
and Micali. Firstly, we extend the security model to model not only the on-line non-transferability
of the sign protocol, but also of the confirm and disavow protocols executed by the confirmer.
Furthermore, we introduce two additional security notions, confirmer soundness and key unforge-
ability, required by the added ability of the confirmer to confirm signatures and to prevent attacks
related to the forgery of signer specific confirmer keys which are used both in our construction and
in [26] (see Section 4 for details). Unlike [26], our security model also allows the signer to make
use of multiple confirmers and ensures unforgeability even against malicious confirmers, which will
guarantee security in a more realistic usage scenario.

3 See Related Work below for a few exceptions in the random oracle model

4 Note that while the security definitions in [26] does not explicitly describe verifier key registration, this
1s a requirement to ensure basic security, and we argue that our security models are fundamentally the
same.

5 The defined disavow protocol in [26] is non-interactive and provides a publicly verifiable proof of inva-
lidity

We then propose a new general approach to the construction of on-line non-transferable signa-
tures. More specifically, we show how a simple core confirmer signature scheme, which essentially
implements the non-interactive functionality of an on-line non-transferable signature scheme, can
be extended to a fully secure scheme with the additional use of ordinary signatures, sigma pro-
tocols, and trapdoor commitments with an enhanced binding property. Based on this approach,
we propose a concrete instantiation which is provably secure in the standard model assuming the
computational Diffie-Hellman problem and the decisional linear problem are hard.

Compared to the approach taken by Liskov and Micali, our scheme has several advantages.
Besides implementing additional confirmer functionality and providing security in our extended
security model, our scheme allows a verifier to independently simulate the sign, confirm and
disavow protocols, and does not require the signer to issue “fake” signatures to maintain security.
Lastly, our concrete instantiation provides efficient protocols and short signatures consisting of
four group elements and an integer, whereas the scheme by Liskov and Micali requires signatures
consisting of more than 3k encryptions, where k is the security parameter. However, we note that
our concrete scheme requires large public keys due to the use of the techniques by Waters [35].

Related Work. Jakobsson et al. [20] introduced an alternative approach to limiting the verifiability
of signatures with their proposal of designated verifier signatures in which only a specific verifier
chosen by the signer will be convinced about the validity of a signature. This concept was extended
by Steinfeld et al. [32] who introduced universal designated verifier signatures which allow any
user (i.e. not only the signer) to convert a publicly verifiable signature into a designated verifier
signature for a chosen verifier. Since this type of schemes do not rely on interactive protocols
for signature confirmation, on-line attacks are not a concern. However, these schemes do not
provide a mechanism to determine the validity of a (converted) signature in a dispute. In fact,
most of the proposed concrete schemes (e.g. [24, 33, 23]) enable the designated verifier to construct
signatures which are perfectly indistinguishable from signatures constructed by the signer. Hence,
unlike undeniable and designated confirmer signatures, non-repudiation cannot be enforced in
these schemes which make them unsuitable for a number of applications.

A few existing schemes, which are provably secure in the random oracle model, implicitly
provide protection against on-line attacks. For example, the undeniable signature schemes by
Kudla et al. [21] and Huang et al. [19] provide non-interactive proofs which are simulatable by
the verifier, and hence avoid the problem of on-line attacks. Note that an undeniable signature
scheme with non-interactive proofs is different from a designated verifier signature scheme in that
a signature is independent of the verifier(s) and that the signer is able to disavow a signature.
Furthermore, Monnerat et al. [29] proposed an undeniable signature scheme which uses interactive
2-move confirm and disavow protocols and requires verifiers to hold a public/private key pair.
While the used definition of non-transferability in [29] only guarantees transcript simulatability
(i.e. defines off-line non-transferability), the concrete scheme allows a verifier to use his private
key to simulate proofs interactively, and hence the scheme provides on-line non-transferability.
However, we emphasize that all of the above schemes are only provable secure in the random
oracle model, and that the schemes furthermore do not support the use of confirmers to ensure
non-repudiation if the signer becomes off-line or refuses to cooperate.

2 Preliminaries

In this section, we will define the computational problems underlying our concrete instantiation
of a on-line non-transferable signature scheme, as well as a introduce the basic primitives which
will be used in our general construction.

Negligible function. A function € : N — [0, 1] is said to be negligible if for all ¢ > 0 there exists an
k. such that for all k > k. e(k) < 1/k°.

The discrete logarithm problem. Let G be a group generator which given a security parameter k,
outputs a group G of prime order p, where 2* < p < 2¥+1 and a generator g. The advantage of
an adversary against the discrete logarithm problem is defined as follows:

Advgl,A(k) =Pr[(G,p,g) « G(k);h + G;z + A(G,p,g,h) : ¢° = h]

Definition 1 The discrete logarithm problem is said to be hard with respect to G, if all polynomial
time adversaries A have negligible advantage AdvéfA(k).

The decisional linear problem. This decisional problem was introduced by Boneh et al. in [1], and
is defined follows. Let the advantage of an adversary A against the decisional linear problem with
respect to a group generator G be given as:

Adv‘gjf(k) = |Pr[(G,p,g) < G(k);u,v + G;a,b + Zy : A(G,p,g,u“,vb,g“%) =1]-
Pr[(G,p,9) «+ G(k);u,v < G;a,b,c < Zp : A(G,p,g,u“,vb,gc) = 1]

Definition 2 The decisional linear problem is said to be hard with respect to G if all polynomial
time algorithms A have negligible advantage Advg' 2 (k).

In [1], the decisional linear problem is shown to be computationally infeasible in the generic bilinear
group model.

Collision resistant hash function. Let H = {H, : {0,1}* — {0,1}/"I} be a hash function family
indexed by a key v € {0,1}*. The advantage of an adversary A against the collision resistance of
‘H is defined as:

Adwszy (k) = Pl {0,115 (m,m') « A(v) : H,(m) = Hy(m') Am]

Definition 3 A hash function family H is said to be collision resistant if all polynomial time
col

algorithms A have negligible advantage Ade’A(k) against H.
Signatures. A standard signature scheme is given by the following four algorithms: Setup which
takes as input a security parameter 1%, and returns a set of public parameters par; KeyGen which
takes as input par, and returns a public/private key pair (pk, sk); Sign which takes as input par,
a private key sk and a message m, and returns a signature o; and lastly Verify which takes as
input par, a public key pk, a message m and a signature o, and returns T if ¢ is a valid signature
on m under the public key pk and 1 otherwise.

We require that a signature scheme is correct i.e. for all par «+ Setup(1¥), all (pk,sk) +
KG(par), and all messages m, it is required that SVer(par, pk, m,Sign(par, sk,m)) = T.

Strong unforgeability against a chosen message attack (suf-cma) for a signature scheme S is
defined as follows: Let the advantage of an adversary A against S be given by

Adv%{}ma(k) = Prlpar « Setup(1%); (pk, sk) < KeyGen(par); (m*,c*) < A% (par, pk) :
(m*7 0*) ¢ {(mla Ul)a R (mfh Uq)} A VerifY(paTapka m*a U*) = T]

where Oy, is a sign oracle which given m; returns o; < Sign(par, sk,m;), ¢ is the number of
queries made by A to Oy, and {(m1,01),...,(mq,04)} is the list of messages/signature pairs
which A obtained from O,;.

Definition 4 A signature scheme S is said to be suf-cma secure if all polynomial time adversaries
A have negligible advantage Advg{::m(k) against S.

Weak unforgeability against a chosen message attack (wuf-cma) is defined exactly as above, except
that the requirement that (m*,0*) & {(m1,01),...,(mq,04)} is relaxed to m* & {m1,...,my} ie.
for A to successfully attack the scheme, it is required that m* was not previously submitted to
the sign oracle.

We will now recall a well-known signature scheme by Waters [35]. This scheme will play an im-
portant role in the construction of our concrete instantiation of a on-line non-transferable signature
scheme.

— Setup: Pick a group G of primer order p and equipped with a bilinear map e : G x G — Gr.
Furthermore, pick generator g of G and return the parameters par < (G, p, g, €).

— KeyGen : Given par, pick a + Z,, and h < G, and set ¢’ < g“. Furthermore, pick ug, ..., up <
G, and for a message m € {0,1}", define F(m) = uo [}, u** where m; is the ith bit of m.
Finally set the public key to pk + (¢, h,ug,...,u,) and the private key to sk < a. Return
(pk, sk).

— Sign : Given input (par, sk, m), where sk = a, pick r < Z,, compute o1 < ¢" and o9 <
h®F(m)", and return the signature o = (01, 02).

— Ver : Given par, a public key pk = (¢’, h, ug, . .., u,), a message m and a signature o = (01, 02),
return accept if e(g,02) = e(g’, h)e(oq, F(m)).

In [35], the above signature scheme is shown to be wuf-cma secure given that the computational
Diffie-Hellman problem is hard in G.

Sigma protocols. A sigma protocol for a binary relation R is a 3-move protocol between a prover
and a verifier. Both prover and verifier receive a common input x, but the prover receives a witness
w such that (z,w) € R as an additional private input. In the first move of the protocol, the prover
sends a “commitment” message a, in the second move, the verifier sends a random “challenge”
message ¢, and in the final move, the prover sends a “response” message z. Given the response
message, the verifier either accepts or rejects the proof. We use the notation X{(z,w) : R(z,w) =
1} to denote a sigma protocol for the relation R with common input z and witness w. A sigma
protocol is required to have two security properties:

— Special honest verifier zero-knowledge: There exists a simulation algorithm Simy that given
input = and a challenge message ¢, outputs an accepting transcript (a, ¢, z) < Simg(x,c). We
require that the distribution of the simulated (a, ¢, z) is perfectly indistinguishable from the
distribution of the transcripts of a real interaction.

— Special soundness: There exists an algorithm WExty that, given two accepting transcripts,
(a,c,z) and (a,c,2'), for input x which have the same commitment message a but different
challenge messages ¢ # ¢, can extract a witness w such that (x,w) € R.

Trapdoor commitment schemes. A trapdoor commitment scheme 7' = {G, Comm, TdComm, TdOpen}
is given by a generation algorithm G which, given a security parameter 1¥, returns a commitment
key ck and a trapdoor td; a deterministic commitment algorithm Comm which, given ck, a value
w € W and randomness r € R, returns a commitment com on w (an opening of com is simply
(w,r), and a verifier checks that com = Comm(ck, w,r)); a trapdoor commitment algorithm TdComm
that, given ck, returns a commitment com’ and auxiliary information auz such that the trapdoor
opening algorithm TdOpen, given aux, any value w’ and the trapdoor td, returns 7’ such that
com’ = Comm(ck,w’,r"). We consider the following security properties for a trapdoor commitment
scheme:

— Computational binding: For (ck,td) + G(1*), the probability that any computationally bounded

adversary given ck can compute (w, r,w’, ") such that w # w’ and Comm(ck, w, r) = Comm(ck, w’,r),

is negligible in the security parameter k.

— Perfect hiding: For (ck,td) < G(1¥), random 7,7’ < R, and for any w,w’ € W, the commit-
ments Comm(ck, w,r) and Comm(ck,w’,r") are distributed identically.

— (Perfect) trapdoor property: For (ck,td) + G(1¥), any w € W, an honestly computed commit-
ment com < Comm(ck,w,r) where r <~ R, and a commitment computed using the trapdoor
(com’, auz) + TdComm(ck) and r’ +— TdOpen(auz, w,td), the values (com,r) and (com’,r’) are
distributed identically.

Note that a perfect trapdoor property implies perfect hiding, since an honestly computed com-
mitment is indistinguishable from a commitment computed using TdComm, and the latter can be
opened to any value.

3 On-line Non-transferable Signatures

An on-line non-transferable signature (ONS) scheme involves a signer S, a confirmer C, and a
verifier V', and is given by the following algorithms

— Setup which, given a security parameter 1*, returns the public parameters par.
— KeyGeng, KeyGen,,, and KeyGen,, which, given par, return public/private key pairs (pkg, sks),
(pkc, skc), and (pky, sky) for a signer, a confirmer, and a verifier, respectively.
— CSetup which on input par, skc and pkg, returns a signer specific public/private confirmer
key pair (pkc,s, skc,s). This algorithm is run once by the confirmer for each signer S, and the
confirmer stores skc, g for later use. The public key pkc s is given to the signer who is to use
this when constructing signatures with confirmer C.
— CKeyValid which, on input par, pks, pkc, and pkc g, outputs either accept or reject.
— (Sign, Receive) which is a pair of interactive algorithms with common input (par, pks, pkc, pkc,s, pky, m).
Sign is run by the signer and is given skg as private input, and Receive is run by the verifier.
At the end of the interaction, both Sign and Receive will output a signature, og and og, and
Receive will in addition output either accept or reject.
— Convert which, on input par, pks, skc,g, m, and o, returns a verification token tk,.
— TkVerify which, on input par, pks, pkc, pkc,s, m, o, and tk,, returns either accept or
reject.
— (Confirm,V¢) which is a pair of interactive algorithms with common input (par, pks, pkc, pkc,s, pkv, m, o).
Confirm is run by the confirmer and is given skc g as private input, and V¢ is run by the
verifier. At the end of the interaction, V¢ outputs either accept or reject.
— (Disavow,Vp) which is also a pair of interactive algorithms. Input for Disavow and Vp is
exactly as in (Confirm, V) above, and the output of Vp is either accept or reject.

Like Liskov and Micali [26], we require that before signer S makes use of a confirmer C, he will
approach C' to obtain a signer specific confirmer key pkc s which C' generates by running CSetup.
This process can be seen as a registration procedure in which the confirmer agrees to act as a
confirmer for this specific signer. Note that this does not require a confidential channel between
the signer and confirmer. Our definition differs slightly from that of [26] in that we explicitly
define a key validation algorithm CKeyValid for signer specific confirmer keys®, and introduce
(Confirm, V) to allow C to confirm signatures. Furthermore, we do not include a fake signature
algorithm which is required to maintain the security of the scheme in [26]. Lastly, our definition
allows a confirmer to convert a signature as opposed to eztract an ordinary publicly verifiable
signature of the signer. While a conversion of a message/signature pair (m,o) will produce a
token tk, which will allow anyone to verify the validity of (m,o), an extraction will produce
another signature o’ (of the signer) which is publicly verifiable, but does not necessarily provide
any confirmation of the validity of the original signature . Hence, conversion essentially provides
the same amount of information as the confirm protocol, whereas extraction only guarantees that
the signer at some point signed the message m.

Using the above defined algorithms, a confirmer can verify a signature by first computing a
verification token using Convert and then verifying the signature using TkVerify. To simplify
notation, we define an algorithm Valid which performs these two steps:

— Valid: given the input (par, pks, pkc, pkc,s, m, o, skc,s), compute the verification token tk, <—
Convert(par, pks, m, o, skc,g) and return TkVerify(par, pks, pkc, pkc,s, m, o, tky).

We will use the notation {Sign(skg) <+ Receive}(par, pks,pkc, pkc,s,pky, m) to denote the in-
teraction between Sign and Receive on common input (par, pks, pkc, pkc,s, pkv, m) and private
input skg to the Sign algorithm. To shorten the common input, we will sometimes use PK =
(pks, pkc, pkc,s, pky) to represent the public keys i.e. the above common input might be writ-
ten as (par, PK,m). We furthermore use (og,(o0g,2)) < {Sign(sks) <> Receive}(par, PK, m)

5 This algorithm is required by our extended security model. More specifically, it is required to define key
unforgeability (see Section 4).

to denote the output of Sign and Receive, respectively, and use (og,z) <2 {Sign(sks) <+
Receive}(par, PK, m) when we are only considering the output of Receive. Similar notation is
used for the confirm and disavow protocols.

Correctness. Intuitively, correctness simply requires that if all parties behave honestly, the outcome
of all algorithms and protocols are as expected. More specifically, correctness requires that for all
par < Setup(1%), (pks,sks) < KeyGeng(par), (pkc,skc) <+ KeyGeny(par), (pkc.s,skc.s) +
CSetup(par, pks, skc), (pkv, skv) < KeyGeny, (par), PK < (pks,pkc,pkc,s,pky), all messages
m, and all (og, (0R, 2r)) <2 {Sign(sks) <> Receive}(par, PK,m), that

— CKeyValid(par, pks, pkc, pkc,s) = accept

— zp = accept and og = 0g

— Valid(par, pks, pkc, pkc,s, skc,s, m,0) = accept

— z¢ + {Confirm(skc,s) <> Ve }(par, PK, m,o) yields z¢c = accept

Furthermore, for all (m’,o’) such that Valid(par,pks,pkc,pkc,s,skc,s,m',c’) = reject, we
require that zp <2 {Disavow(skc,s) <> Vp }(par, PK,m’,¢’) yields zp = accept.

4 Security Model

An ONS scheme has to satisfy a number of security requirements to be considered secure. These
are unforgeability, key unforgeability, soundness, non-repudiation and mnon-transferability, which
will be defined in the following. However, before we can formally define these security notions, we
require a ONS scheme to implement the following verifier simulation algorithms:

— SimSign(par, pks, pkc, vkc,s, pkv, m, sky): Simulates the Sign algorithm.
— SimCon(par, pks, pkc, pke,s, pky, m, o, sky): Simulates the Confirm algorithm.
— SimDis(par, pks, pkc, pke,s, pky, m, o, sky): Simulates the Disavow algorithm.

While these algorithms are not part of the basic functionality of an ONS scheme, they must be
defined to ensure that a verifier can simulate the interactive protocols of the scheme as required
by the non-transferability notion defined below (note that all simulation algorithms require the
private key of the verifier as input). Furthermore, since an adversary might observe the execution
of these algorithms while attempting to mount attacks against other security properties of the
scheme, we must provide the adversary with oracle access to these algorithms in the relevant
security definitions.

Unforgeability. Intuitively, unforgeability guarantees that only the signer should be able to produce
valid signatures. We define a strong notion of unforgeability requiring that, even for a maliciously
chosen confirmer key, an adversary with oracle access to an honest signer cannot produce a new
message/signature pair and convince a verifier about the validity of this pair, either by interacting
with the verifier in the confirm protocol or by producing a token such that TkVerify outputs
accept. Our definition allows the adversary to obtain signatures using any confirmer key, and
thereby ensures security in a scenario where a signer makes use of multiple potentially malicious
confirmers. In comparison, the unforgeability notion defined by Liskov and Micali only considers
a signer using a single honest confirmer. Formally, we define unforgeability of an ONS scheme N
via the experiment Exp}l\f;f{“a shown in Figure 4. In the experiment, .4 has access to the oracles
O = {Ovkeyreg: Osign, Osimsign, Osimcon, Osimpis} which are defined as below. The oracle
Ov KeyRreg implements verifier key registration and maintains a list, Ly keyreg, Of registered keys.
It is assumed that it can be verified that a key pair (pky, sky) is valid i.e. that (pky, sky) lies in
the range of KeyGen,,".

7 Note that this can be achieved for any scheme by including the randomness used to generate (pky, sky)
in the private key sky .

Expl (1)
Lsign < {}; LvkeyReg + {}

par Setup(lk) Exp?&:‘“f(lk)
(pks, sks) < KeyGeng(par) Losectup < {}; LvkeyReg < {}
(pkv, skv) < KeyGen,, (par) par + Setup(1¥)
(pkc, pkc.s,m, 0, tks, st) < A° (par, pks,pkv) (pkc,skc) + KeyGeng (par)
PK < (pks,pkc, pko,s, pkv) (pks, pke,s) < A° (par, pkc)
z 2 {A9(st) & Ve(par, PK,m,0)} z « CKeyValid(par, pks, pkc, pkc,s)
2" < TkVerify(par, pks, pkc, pkc,s, m, o, tks) if (pks,pkc,s,*) € Losetup N 2 = accept
if (pkc,pkc,s,m,0) € Lgign/A\ output 1
(z = accept V 2’ = accept) else output 0
output 1

else output 0

Expf’;’jrep (1%)
par + Setup(1*)
(pkv, skv) < KeyGen,, (par)
(pks, pkc,pke,s, m, st) «— A° (par, pkv)
PK < (pks, pkc,pkc,s, pkv)
(st', (0,21)) < {A®(st) «> Receive(par, PK,m)}
22 2 {A9(st') & Vp(par, PK,m,0)}
if 21 = 22 = accept

output 1

else output 0

Fig. 1. Unforgeability, key unforgeability and non-repudiation security experiments

— OvKeyReg: given (pky, sky), this oracle stores (pky, sky) in the list Ly geyreq and returns T
to A if (pky, sky) is a valid key pair. Otherwise, the oracle returns L to A. In the following, if
a query to an oracle involves a verifier key pky, it is assumed that A has previously submitted
pky to this oracle as part of a valid key pair. If this is not the case, the relevant oracle will
return L to A.

— Ogign: given input (pkc,pkc,s,pkyv,m), this oracle interacts with A by running Sign with
common input (pks, pkc,pkc,s, pky, m) and secret input skg. Local output of Sign will be a
signature o, and (pkc,pkc,s,m,o0) is added to Lg;gn.

— Ogsimsign: given input pkg, pkc, pkc,s, and m, this oracle interact with 4 by running the
simulation algorithm SimSign(par, pks, pkc, pkc,s,m, sky).

— Ogimcon: given input pkg, pkc, pkc,s, m and o, this oracle interacts with A by running the
simulation algorithm SimCon(par, pks, pkc, pkc. s, pkv,m, o, sky).

— Ogimpis: given the same input as Ogimcon, this oracle interacts with A by running the sim-
ulation algorithm SimDis(par, pks,pkc,pkc,s,pkv,m, o, sky).

Definition 5 An ONS scheme N 1is said to be unforgeable, if the exists no polynomial time
uf-cma uf-cma

algorithm A with non-negligible advantage Advy 4 (k) = Pr[ExpMA (1%) = 1.

Key unforgeability. The use of the confirmer setup, CSetup, warrants additional security require-
ments. Key unforgeability requires that an adversary without access to the private confirmer key,
cannot produce a new valid signer specific confirmer key i.e. a new key which is accepted by
CKeyValid. The security model in [26] does not have a similar security requirement and does in
fact not rule out the possibility that a signer is able to forge a signer specific confirmer key and
then use this forged key in the sign protocol. This would leave the confirmer unable to either
confirm, disavow or convert the signature. However, such concerns are eliminated by explicitly
requiring key unforgeability. Formally, key unforgeability of an ONS scheme N is defined via
the experiment Exp};\?ﬁuf(lk) shown in Figure 4. In the experiment, A has access to the oracles
0= {OVKeyRegyoCSetupaOCom)ert,OConvoDis} where OVKeyReg is defined as in the unforge'
ability experiment, and the remaining oracles are defined as follows:

BT (1)
par < Setup(lk) Expi\’,‘ﬁ”“f(lk)
(pkc, skc) < KeyGen (par) par < Setup(1%)
(pkv, skv) < KeyGen,, (par) (pkv, skv) < KeyGen,, (par)
(pks, m, St) — AO (par, pkc7 Skc,ka) (pks7pkjcapkcys7 m,o, tkda St) <~ 'Ao (par, pkv)
(pkc,s, skc,s) < CSetup(par, pks, skc) PK <+ (pks, pkc,pkc,s, pkv)
PK < (pks,pkc,pkc,s,pkv) 21 2 {A9(st) & Vp(par, PK, m,0)}
(0,21) 2 {A®(st, pkc,s, skc,s) 29 <9 {A9(st) & Vo(par, PK, m,0)}

Receive(par, PK, m™*)} z3 < TkVerify(par, pks, pkc, pkc,s,m, o, tks)
22 < Valid(par, pks, pkc,pkc,s,m”,0,skc,s) if z1 = accept A (22 = accept V z3 = accept)
if 21 = accept A 22 = reject output 1
output 1 else output 0
else output 0

Fig. 2. Soundness security experiments.

— Oc¢setup: given pkg, this oracle runs (pkc,s, skc,g) < CSetup(par, pks, skc), stores the tuple
(pks,pkc.s, skc,s) in Losetup, and returns pke,s to A.

— Oconvert: given pkg, pkc,s, m, and o, this oracle sea