
Single Block Attacks and Statistical Tests on

CubeHash

Benjamin Bloom∗ Alan Kaminsky†

August 21, 2009

Abstract

This paper describes a second preimage attack on the CubeHash cryp-
tographic one-way hash function. The attack finds a second preimage in
less time than brute force search for these CubeHash variants: CubeHash
r/b-224 for b > 100; CubeHashr/b-256 for b > 96; CubeHashr/b-384 for
b > 80; and CubeHashr/b-512 for b > 64. However, the attack does
not break the CubeHash variants recommended for SHA-3. The attack
requires minimal memory and can be performed in a massively parallel
fashion. This paper also describes several statistical randomness tests on
CubeHash. The tests were unable to disprove the hypothesis that Cube-
Hash behaves as a random mapping. These results support CubeHash’s
viability as a secure cryptographic hash function.

1 Introduction

Invented by Daniel Bernstein, CubeHash [3] is a cryptographic one-way hash
function submitted as a candidate to the NIST SHA-3 hash function competi-
tion. CubeHash has three parameters:

• r, the number of mixing rounds applied to each message block (r ≥ 1).

• b, the length of a message block in bytes (1 ≤ b ≤ 128).

• h, the size of the hash value in bits (h = 8, 16, 24, . . . , 512).

“CubeHashr/b-h” denotes the CubeHash variant with certain parameter choices;
for example, CubeHash1/128-512.

CubeHash is expected to be stronger (more resistant to attack) as the num-
ber of mixing rounds r is increased and as the message block size b is reduced.
The CubeHash variants recommended in the original SHA-3 submission are
CubeHash8/1-224, CubeHash8/1-256, CubeHash8/1-384, and CubeHash8/1-
512. Later (after the work described in this paper was done), Bernstein revised

∗Department of Computer Science, Rochester Institute of Technology, bwb1636@cs.rit.edu
†Department of Computer Science, Rochester Institute of Technology, ark@cs.rit.edu

1

the recommended variants for SHA-3 to be CubeHash16/32-224, CubeHash
16/32-256, CubeHash16/32-384, and CubeHash16/32-512 [5]. Several attacks
and collisions on reduced-strength variants of CubeHash have been reported
[1, 2, 8, 9, 10, 11, 12, 13, 18]. None of these break the CubeHash variants
recommended for SHA-3 (neither the original nor the revised variants).

We describe a second preimage attack on CubeHash. It is called a “single
block attack” because it finds a second preimage consisting of a single message
block. The attack finds a second preimage in less time than brute force search
(fewer than 2h hash function evaluations for an h-bit hash) for these Cube-
Hash variants: CubeHashr/b-224 for b > 100; CubeHashr/b-256 for b > 96;
CubeHashr/b-384 for b > 80; and CubeHashr/b-512 for b > 64. Note that the
attack works equally well for any number of mixing rounds r. However, the
attack does not break the CubeHash variants recommended for SHA-3. The
attack requires minimal memory and can be performed in a massively parallel
fashion.

In addition, several statistical randomness tests can be performed on Cube-
Hash using the single block attack methodology. To our knowledge, this paper
is the first to report the results of statistical randomness tests on CubeHash.
The tests failed to disprove the hypothesis that CubeHash behaves as a random
mapping.

The paper is organized as follows. Section 2 describes the single block attack.
Section 3 describes the implementation of the attack as a massively parallel
program for a hybrid parallel computer and reports the program’s performance.
Section 4 gives examples of second preimages found using the parallel program.
Section 5 describes the statistical tests and their results. Section 6 compares
the single block attack to previously reported attacks.

2 Single Block Attack

2.1 Hash Computation

The CubeHash state consists of 128 bytes. The state bytes are organized into
32 words, with four bytes per word in little-endian order. The state words are
designated x00000 through x11111. Word x00000 contains byte 0 (least significant)
through byte 3 (most significant), word x00001 contains bytes 4–7, and so on.

The hash of a b-byte message is computed as follows using CubeHashr/b-h
(Figure 1). This is the procedure for hashing a message consisting of a single
b-byte block. CubeHash can hash a message of any size; the procedure for doing
so is described in [3].

1. Set the state to the initialization vector (IV). The initialization vector is
described later. This is shown as State0 in Figure 1.

2. Exclusive-or the b bytes of the message into the first b bytes of the state,
yielding State1. (The last 128− b bytes of State1 remain the same as the
IV.)

2

State

Message

b bytes bytes
b

State

r rounds

State

0x80 Message padding byte

State

r rounds

State

1Finalization word

State

1 0r rounds

State

H

h/ 8
bytes

Figure 1: Computing the CubeHash hash of a single block message

3

3. Apply r mixing rounds to the state, yielding State2. The round function
is described later.

4. Exclusive-or a message padding byte of 0x80 into the first byte of the
state, yielding State3.

5. Apply r rounds to the state, yielding State4.
6. Exclusive-or the number 1 into the last word of the state, yielding State5.
7. Apply 10r rounds to the state, yielding State6. (Steps 6–7 finalize the

computation.)
8. The hash of the message, H , is the first h/8 bytes of the final state.

The round function does the following invertible transformation on the Cube-
Hash state [3].

1. Add x0jklm into x1jklm modulo 232, for each (j, k, l, m).
2. Rotate x0jklm upwards by 7 bits, for each (j, k, l, m).
3. Swap x00klm with x01klm, for each (k, l, m).
4. Exclusive-or x1jklm into x0jklm, for each (j, k, l, m).
5. Swap x1jk0m with x1jk1m , for each (j, k, m).
6. Add x0jklm into x1jklm modulo 232, for each (j, k, l, m).
7. Rotate x0jklm upwards by 11 bits, for each (j, k, l, m).
8. Swap x0j0lm with x0j1lm, for each (j, l, m).
9. Exclusive-or x1jklm into x0jklm, for each (j, k, l, m).

10. Swap x1jkl0 with x1jkl1, for each (j, k, l).

The IV is computed by setting state word x00000 to h/8, x00001 to b, x00010

to r, and x00011 through x11111 to 0, then applying 10r rounds to the state,
yielding State0 [3].

2.2 Attack Computation

Because the CubeHash round function is invertible, the initial state can be
computed by working backwards from the final state. The single block attack,
first reported in [7], is based on this ability.

Given the hash value H of some message, a b-byte second preimage message
is computed as follows using CubeHashr/b-h (Figure 2).

1. Set the first h/8 bytes of the final state to the hash value H and set the
last 128 − h/8 bytes to a trial value T , yielding State6. The manner of
choosing the trial value is described later.

2. Apply 10r reverse rounds to the state, yielding State5. The reverse round
function does the steps of the round function in reverse order, substituting
downward rotations for upward rotations and subtraction modulo 232 for
addition modulo 232.

3. Exclusive-or the number 1 into the last word of the state, yielding State4.
4. Apply r reverse rounds to the state, yielding State3.
5. Exclusive-or a message padding byte of 0x80 into the first byte of the

state, yielding State2.

4

State

Message

b bytes bytes
b

State

Must be equal

r reverse rounds

State

0x80 Message padding byte

State

r reverse rounds

State

1Finalization word

State

1 0r reverse rounds

State

H

H T

h/ 8
bytes

Figure 2: The single block attack on CubeHash

5

6. Apply r reverse rounds to the state, yielding State1.
7. If the last 128 − b bytes of State1 are not equal to the last 128 − b bytes

of the IV (State0), then the trial was unsuccessful.
8. Otherwise, the trial was successful. The second preimage is computed by

exclusive-oring the first b bytes of State1 with the first b bytes of the IV.

Repeating the above procedure with different values of T will eventually
generate a second preimage. The manner of choosing T values is not critical.
For example, a sequence of consecutive values could be used, or randomly-chosen
values could be used.

Assuming that CubeHash (in either the forward or the reverse direction)
behaves as a random mapping, for an arbitrary trial value T , the probability
that the final 128− b bytes of State1 are equal to the corresponding bytes of the
IV is 2−8(128−b). Therefore, the expected number of trials to achieve success is
28(128−b). If 28(128−b) < 2h, then the single block attack finds a second preimage
with fewer expected trials than brute force search. In other words, the single
block attack is more effective than brute force search for h = 224 and b > 100,
for h = 256 and b > 96, for h = 384 and b > 80, and for h = 512 and b > 64.

Note that the expected number of trials to achieve success does not depend
on the number of rounds r. Of course, the running time of the attack compu-
tation increases as r increases.

Also note that for b = 128, the probability of success is 1; in other words,
any value of T immediately produces a second preimage.

3 Parallel Implementation

The single block attack was implemented as a Java program, using the Parallel
Java Library [15, 16], to run on a hybrid SMP cluster parallel computer—that
is, a cluster of compute nodes, each node being a shared memory multiprocessor
(SMP), or multicore, computer. The program is available at [17].

When executed on one processor, the single block attack program does the
following. The program generates a random b-byte message and computes its
hash using CubeHashr/b-h. The program then does n trials in sequence. (r, b, h,
n, and the pseudorandom number generator seed are specified on the command
line.) Each trial carries out the attack computation with a different trial value
T from 0 through n−1. Each trial’s outcome is success (a second preimage was
found) or failure. The program counts the number of successes and records the
smallest value of T that yielded a second preimage. The program reports those
results as well as the original message, the second preimage derived from the
smallest successful T , and the hash value H .

When executed in parallel, the single block attack program runs with Kp
parallel processes, one process per compute node, and with Kt parallel threads
in each process, one thread per core on each node—a total of K = Kp·Kt threads
altogether. The n trials are partitioned equally among the K threads, and the
trials are performed in parallel. Each thread counts the number of successes

6

1 1 0
1E2

1E3

1E4

Kt = 1

Kt = 2

Kt = 3

Kt = 4

Running Time vs. Processors

Processes, Kp

R
u

n
n

in
g

 t
im

e
 (

se
c)

0 1 2 3 4 5 6 7 8 9 1 0
0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

Kt = 1

Kt = 2

Kt = 3

Kt = 4

Speedup vs. Processors

Processes, Kp

S
p

e
e

d
u

p

Figure 3: Program performance for CubeHash1/127-512, 232 trials

and records the smallest successful T for that thread’s portion of the trials.
When all trials have finished, the threads on each node do a shared-memory
parallel reduction to combine the per-thread results, yielding the total number
of successes and the smallest successful T for that node. The processes on all
the nodes then do a message-passing parallel reduction to combine the per-node
results, yielding the total number of successes and the smallest successful T
for the entire program run. One process reports the results. Apart from the
final reductions, the program executes in a massively parallel fashion with no
communication or coordination among the threads or processes.

The single block attack program was run on a hybrid SMP cluster paral-
lel computer with ten nodes, each node a Sun Microsystems workstation with
two AMD Opteron 2218 dual-core CPUs, a 2.6 GHz clock, and 8 GB of main
memory. The nodes are connected by a dedicated 1 Gbps switched Ethernet
network. On this computer, the program can scale up to as many as Kp = 10
processes and Kt = 4 threads per process; that is, 40 processors. The nodes use
the SunOS 5.10 operating system and the Sun JDK 1.5.0 15 HotSpot Server
Java Virtual Machine (JVM).

Figure 3 plots the running time and the speedup of the single block attack
program for CubeHash1/127-512 with 232 trials versus the number of parallel
processors. Speedup is the running time of a sequential version of the program
(with one process, no multithreading, and no message passing) relative to the
running time of the parallel program. The program experiences speedups 95%
of the ideal or better all the way out to 40 processors. Complete running time
measurements are available at [17].

For CubeHash1/127-512, the single block attack program takes 4,059 seconds
to do 232 trials on one processor, or 945 nsec per trial. Since for r = 1 each trial
consists mostly of 12 applications of the (reverse) round function, the program
takes 78.8 nsec per round. At a clock speed of 2.6 GHz, the program takes 205

7

cycles per round. For comparison, the CubeHash speeds reported by the eBASH
Project [14] for a C program on x86-architecture processors range from 21 to 535
cycles per round. (These are derived from the median speed of CubeHash8/1-
512 in cycles per byte for long messages, divided by 8 rounds per byte.)

4 Attack Results

The single block attack program was executed with parameter settings r = {1,
2, 4, 8} rounds per message block, b = {127, 126, 125} bytes per message block,
h = 512-bit hash value, n = 232 trials, and 100 different pseudorandom number
generator seeds. The program was also executed with parameter settings r = {1,
2, 4, 8} rounds per message block, b = 124 bytes per message block, h = 512-bit
hash value, n = 240 trials, and 10 different pseudorandom number generator
seeds. Some of the second preimages found are listed below, along with the
decimal trial numbers T that generated the second preimages; complete results
are available at [17]. The messages and hash values are given in hexadecimal,
with each pair of digits representing one byte.

In the following examples, the original message consists of the first b bytes
of this sequence of 128 bytes:

951fefce947916ccbaf6134ab2b377a54db9f0b7c1f4932b5bc68147dce57828

ba5b054f446fecc05c9086e96555fada9118b5598364d1b023f425bcdd094505

7c33e9fbbc20ff096ba9740f4d278f4922d5178ae650210fa9680512bf998ef1

2e9f246b5266e40c6240b7a681566d4a3817c19319bbcaede6cf93df7635ebdf

CubeHash1/127-512—second preimage for T = 190:

634a7948fcfdfc384e0e6f9bcff365aec19076d0629d9225ff717f9a6c0b832c

bfb27a6ef39927000b59695995efade283b695b4233f48147a0eba13b4e9e775

251f70b402da5b7e52b8306ba46aacc0655a5f0e73b7f9321f520ed656dbcb3f

5f4c8490bc02885ba622e9155703e0ec845d19a459b4563f686661af8c2320

Hash value of original message and second preimage:

9975b5bb8fb33005a6bc7414d13d470581474a69f6c2cb01e3e8fe8150996272

4d3633a9ab53cdbe8cbf8d61fa9650d0e16e0be832c607eaeaed2bb1f58a078e

CubeHash2/126-512—second preimage for T = 92,677:

cf9f6826607b68a01f1241715c38440c6b34c28fa356c3bbc0d7a6440870b8c5

02a8443c503630361feebe7a9638c77469250f39285ab31b035e28de492ecfce

ce4d446a36b40a90e90ab9e89424fc30aeaa25f97aa717a978735c9a2c028a77

b3e1fd5b96cedbe6902f4ae272e8a42d21b2993a266ebd0bfc9eb03c9147

Hash value of original message and second preimage:

58a1c388b6523a2cf2f7d75e58dc5f4b4d2f7715b12327ba32e4422149d554d1

70d735851cba47a2faf38f63bf23b326a3c09ba0d4887a655c6913d7f22446bd

8

CubeHash4/125-512—second preimage for T = 10,746,494:

985de06c0e2484aed791dafa9eeb4e28a3a635d43cd6e02c3712f4d150516602

7290996865b1e7248bc12f6bbc426553fcad2a666517c935a5dda79539fd3739

5739d14b83a03a862f0b12af35a4ad3584cf98818c5c99927822dad8a8b5d65a

6d1e047614a6c62c00607b470ae2937b6f8b11779d76e0f9bb5295305f

Hash value of original message and second preimage:

f3a508e80f39cf1ec5a079559a65f49eb8df6e86d67cd4455084dd06219af708

233b89c4b6443fc4ccd077c8358e59c6ffd6871bb5880d13291bf4dcaa778808

CubeHash8/124-512—second preimage for T = 2,860,087,247:

d901bc3da81f07c292d9d074825b0fddafb87304fde1fe54fd9cd7c88befbfbf

644e39d6d437a99ab9d19dc4f5c3fbf2a61a51533afa4f27c7fabc51c356bb1e

2b23d1252ca8e4c421a883c2c43d69adbf7a2adc257b219408717ad04ec13b21

6cf31959fed1e6450c1795280361003affbb2cfa6bc0aa786f434911

Hash value of original message and second preimage:

b130c28fbb1dc8aa1135c2a85e46826ab272247a61c246a041664b1e9bad2bd2

e14c0e0f19386c4838b2214140e6477d7b1b1804128fd9e13a039c8ad26f5ba6

As mentioned previously, the single block attack succeeds with probability
1 for b = 128 and any trial value T ; no search is required. Here is the second
preimage of the original message for CubeHash8/128-512 with T = 0:

bdcbaa75be2f003456bd95652dc85f04a0d2bd31947435600ca3ea077d884d79

da4d7cf62a490188d908d8722af8ee10b56fa22ba06873a83203c5b1d8c3ebfc

dfb180cc60bca3dbf086977ab41515749577f1aef8bb1af2b7f20f811aa54b86

a5a82b8d88d83a56aadb3d642128007dfaf964bb4dc2e1c3c6fe4e8b19362d65

Hash value of original message and second preimage:

2631bf00ee41369ce3a19ac4a91cf5df4fd9cffb18278d5f32b193b4bf82c58c

73bd83bdcd81a0729ee9a6b862948edbe2a160ea9b8403e710328711e66d9311

5 Statistical Tests

5.1 Number of Successful Trials

Under the null hypothesis that CubeHash behaves as a random mapping, when
the single block attack program does n trials with CubeHashr/b-h, the expected
number of successes s is n·2−8(128−b) and the expected number of failures is n−s.
The single block attack program performs a χ2 test on the observed number of
successes o to attempt to disprove the null hypothesis. The χ2 statistic is

χ2 =
(o − s)2

s
+

((n − o) − (n − s))2

n − s
=

(o − s)2

s
+

(o − s)2

n − s
(1)

9

Table 1: χ2 Tests of Number of Successful Trials

b = 127 b = 126 b = 125 b = 124
n = 232 n = 232 n = 232 n = 240

r = 1

s 16,777,216 s 65,536 s 256 s 256
o 16,768,519 o 66,254 o 290 o 290
χ2 4.52604 χ2 7.86639 χ2 4.51563 χ2 4.51563
p 0.033383 p 0.005036 p 0.033587 p 0.033587

r = 2

s 16,777,216 s 65,536 s 256 s 256
o 16,764,484 o 66,086 o 300 o 277
χ2 9.70003 χ2 4.61585 χ2 7.56250 χ2 1.72266
p 0.001843 p 0.031678 p 0.005960 p 0.189351

r = 4

s 16,777,216 s 65,536 s 256 s 256
o 16,763,353 o 66,188 o 304 o 209
χ2 11.4999 χ2 6.48667 χ2 9.00000 χ2 8.62891

p 0.000696 p 0.010869 p 0.002700 p 0.003309

r = 8

s 16,777,216 s 65,536 s 256 s 256
o 16,767,205 o 64,713 o 203 o 287
χ2 5.99701 χ2 10.3354 χ2 10.9727 χ2 3.75391

p 0.014330 p 0.001305 p 0.000925 p 0.052684

Under the null hypothesis, χ2 obeys a chi-squared distribution with one degree
of freedom. For each CubeHash variant tested, Table 1 shows the results of
the program run with the largest value of the χ2 statistic, including the ex-
pected number of successes s, the observed number of successes o, χ2, and the
significance (p-value) of χ2.

In 1,238 of the 1,240 program runs the null hypothesis was not rejected, and
in two of the program runs the null hypothesis was rejected, at a significance
of 0.001. (These two runs are highlighted in Table 1.) However, we cannot
conclude that CubeHash does not behave as a random mapping on the basis
of these two runs, because at a significance of 0.001 we would expect the null
hypothesis to be rejected about one in 1,000 times by chance even if the null
hypothesis is true.

For each CubeHash variant, a Kolmogorov-Smirnov (K-S) test was per-
formed to test the null hypothesis that the χ2 values from that variant’s program
runs obey a chi-squared distribution with one degree of freedom. As one ex-
ample, Figure 4 shows the expected and observed cumulative distributions for
CubeHash1/127-512; plots for all variants are available at [17]. Table 2 lists
the K-S statistic D and its significance for each variant. In all cases, the null
hypothesis was not rejected.

10

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Chi−square statistic

C
u

m
u

la
ti

ve
 p

ro
b

a
b

ili
ty

Figure 4: Expected (red) and observed (black) cumulative distributions of χ2

for CubeHash1/127-512

Table 2: K-S Tests of χ2 Distributions

b = 127 b = 126 b = 125 b = 124

r = 1
D 0.081986 D 0.099036 D 0.091300 D 0.449424
p 0.495247 p 0.266442 p 0.359208 p 0.023479

r = 2
D 0.093538 D 0.062532 D 0.051574 D 0.217311
p 0.330395 p 0.817055 p 0.947710 p 0.676334

r = 4
D 0.126019 D 0.098237 D 0.068251 D 0.283495
p 0.076778 p 0.275138 p 0.725416 p 0.339452

r = 8
D 0.092620 D 0.062538 D 0.071269 D 0.191768
p 0.342026 p 0.816968 p 0.674332 p 0.813183

5.2 Number of Failures Before First Success

The single block attack program does a series of trials with T = 0, 1, 2, . . . and
records the smallest T that yielded a second preimage. In other words, the
series of trials yielded T failures in a row before the first success. Under the
null hypothesis that CubeHash behaves as a random mapping, the probability
of experiencing T failures followed by one success is

Pr[T failures] = (1 − p)T p (2)

11

0 100 200 300 400 500 600 700 800 900 1000 1100 1200
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Smallest successful T

C
u

m
u

la
ti

ve
 p

ro
b

a
b

ili
ty

Figure 5: Expected (red) and observed (black) cumulative distributions of small-
est successful T for CubeHash1/127-512

Table 3: K-S Tests of Smallest Successful T Distributions

b = 127 b = 126 b = 125 b = 124

r = 1
D 0.105274 D 0.070612 D 0.080661 D 0.240533
p 0.205371 p 0.685513 p 0.516467 p 0.547622

r = 2
D 0.066822 D 0.083771 D 0.083605 D 0.245708
p 0.749153 p 0.467318 p 0.469881 p 0.519894

r = 4
D 0.047921 D 0.115872 D 0.111087 D 0.193748
p 0.972475 p 0.127049 p 0.158740 p 0.803264

r = 8
D 0.089831 D 0.054503 D 0.067466 D 0.213803
p 0.378969 p 0.920626 p 0.738502 p 0.695875

where p = 2−8(128−b) is the probability of success on each trial. The cumulative
probability distribution is

Pr[≤ T failures] =

T∑

i=0

(1 − p)ip = 1 − (1 − p)T+1 (3)

For each CubeHash variant, a K-S test was performed to test the null hy-
pothesis that the smallest successful T values from that variant’s program runs
obey the above distribution. As one example, Figure 5 shows the expected and
observed cumulative distributions for CubeHash1/127-512; plots for all variants
are available at [17]. Table 3 lists the K-S statistic D and its significance for
each variant. In all cases, the null hypothesis was not rejected.

12

6 Related Work

Most of the reported attacks on CubeHash rely on the specific structure of Cube-
Hash’s round function. These include attacks based on differential pathways in
the round function [1, 2, 8, 9, 10, 11, 12, 13] and attacks based on symmetries
in the internal state transformed by the round function [2].

In contrast, Bernstein (in the original CubeHash submission, [4]) reported
generic collision and second preimage attacks that work for any hash function
using an invertible round function and that do not rely on the hash function’s
specific structure. For CubeHash with a b-byte message block, the second preim-
age attack computes the initial state forward through the round function to an
intermediate state S, computes the final state backward through the inverse
round function to another intermediate state S′, and looks for a collision in the
last 128 − b bytes of S and S′. Khovratovich et al. [18] reported this same
attack. Aumasson et al. [2] pointed out that this attack could look for collisions
in the state after each step of the round function, not just between applications
of the round function.

Like Bernstein’s generic second preimage attack, our single block attack is
a generic attack that works for any hash function using an invertible round
function. However, the single block attack computes the final state backward
through the inverse round function all the way to the initial state and looks
for a match with the last 128 − b bytes of the IV, rather than meeting in the
middle and looking for a collision. Because the single block attack looks for an
exact match rather than a collision, the expected number of trials (28(128−b)) is
large, but no memory is required (apart from storage for the CubeHash state
itself). In contrast, a birthday-paradox collision search requires many fewer tri-

als (
√

28(128−b)) but also requires copious memory. Furthermore, on a cluster
parallel computer, the single block attack executes in a massively parallel fash-
ion with almost no interprocessor communication (only one final reduction). A
birthday-paradox collision search on a cluster parallel computer requires exten-
sive interprocessor communication (see, for example, [6]).

7 Conclusion

We have reported an attack on the CubeHash one-way hash function that finds a
second preimage consisting of a single message block. The attack requires mini-
mal memory and was implemented as a massively parallel Java program running
on a hybrid parallel computer. The attack requires less time than brute force
search for reduced-strength CubeHash variants but does not break the variants
recommended for SHA-3. From statistical tests based on the single block at-
tack, we found no reason to disbelieve that CubeHash behaves as a random
mapping. These results support CubeHash’s viability as a secure cryptographic
hash function.

13

References

[1] J.-P. Aumasson. Collision for CubeHash2/120-512. NIST hash-forum mail-
ing list, December 4, 2008. http://ehash.iaik.tugraz.at/uploads/a/
a9/Cubehash.txt

[2] J.-P. Aumasson, E. Brier, W. Meier, M. Naya-Plasencia, and T. Peyrin.
Inside the hypercube. In 14th Australasian Conference on Information Se-
curity and Privacy (ACISP 2009), July 2009.

[3] D. Bernstein. CubeHash specification (2.B.1). Extracted from CubeHash
submission to the NIST SHA-3 Competition. http://csrc.nist.gov/

groups/ST/hash/sha-3/Round1/documents/CubeHash.zip

[4] D. Bernstein. CubeHash appendix: complexity of generic attacks. Ex-
tracted from CubeHash submission to the NIST SHA-3 Competition.
http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/documents/

CubeHash.zip

[5] D. Bernstein. CubeHash parameter tweak: 16 times faster. July 15, 2009.
http://cubehash.cr.yp.to/submission/tweak.pdf

[6] D. Bernstein, T. Lange, C. Peters, R. Niederhagen, and P. Schwabe. FSB-
day: Implementing Wagner’s generalized birthday attack against the SHA-
3 candidate FSB. Cryptology ePrint Archive Report 2009/292, June 17,
2009. http://eprint.iacr.org/2009/292

[7] B. Bloom and S. Janis. Inference attacks on CubeHash. Rochester Institute
of Technology, Department of Computer Science, Parallel Computing II
class project, May 13, 2009. http://www.cs.rit.edu/~ark/spring2009/
736/team/1/

[8] E. Brier, S. Khazaei, W. Meier, and T. Peyrin. Attack for CubeHash-2/2
and collision for CubeHash-3/64. NIST hash-forum mailing list, February
3, 2009. http://ehash.iaik.tugraz.at/uploads/3/3a/Peyrin_ch22_

ch364.txt

[9] E. Brier, S. Khazaei, W. Meier, and T. Peyrin. Real collisions for
CubeHash-4/64. NIST hash-forum mailing list, July 6, 2009. http://

ehash.iaik.tugraz.at/uploads/9/93/Bkmp_ch464.txt

[10] E. Brier, S. Khazaei, W. Meier, and T. Peyrin. Real collisions for
CubeHash-4/48. NIST hash-forum mailing list, July 16, 2009.

[11] E. Brier and T. Peyrin. Cryptanalysis of CubeHash. In International Con-
ference on Applied Cryptography and Network Security (ACNS ’09), June
2009.

[12] W. Dai. Collisions for CubeHash1/45 and CubeHash2/89. December 26,
2008. http://www.cryptopp.com/sha3/cubehash.pdf

14

[13] W. Dai. Collision for CubeHash2/12. January 17, 2009. http://www.

cryptopp.com/sha3/cubehash2.pdf

[14] ECRYPT Benchmarking of Cryptographic Systems: Measurements of hash
functions. Version 2009.04.22. http://bench.cr.yp.to/results-hash.

html

[15] A. Kaminsky. Parallel Java: A unified API for shared memory and cluster
parallel programming in 100% Java. In 21st IEEE International Parallel
and Distributed Processing Symposium (IPDPS 2007), March 2007.

[16] A. Kaminsky. Parallel Java Library. http://www.cs.rit.edu/~ark/pj.
shtml

[17] A. Kaminsky. Single block attacks and statistical tests on CubeHash web
site. http://www.cs.rit.edu/~ark/parallelcrypto/cubehash01/

[18] D. Khovratovich, I. Nikolić, and R.-P. Weinmann. Preimage attack
on CubeHash512-r/4 and CubeHash512-r/8. 2008. http://ehash.iaik.
tugraz.at/uploads/6/6c/Cubehash.pdf

15

