
Distinguishing Attacks on Stream Ciphers
Based on Arrays of Pseudo-random Words∗

Nathan Keller† and Stephen D. Miller‡

Abstract

In numerous modern stream ciphers, the internal state consists of
a large array of pseudo-random words, and the output key-stream is
a relatively simple function of the state. In [16], it was heuristically
shown that in various cases this structure may lead to distinguishing
attacks on the cipher. In this paper we further investigate this struc-
tural attack. We present a rigorous proof of the main probabilistic
claim used in the attack in the basic cases, and demonstrate by ex-
amining a concrete example (the cipher sn3 [11]) that the heuristic
assumptions of the attack are remarkably precise in more complicated
cases. Furthermore, we use the general technique to devise a distin-
guishing attack on the stream cipher mv3 [9] requiring 282 words of
key-stream. Unlike the attacks in [16], our attack does not concentrate
on the least significant bits of the words, thus allowing to handle the
combination of more operations (xors, modular additions and multi-
plications, and rotations by a fixed number of bits) in the update and
output rules of the cipher.

∗This is the full version of a paper submitted for publication in a journal, which contains
only Sections 1, 2, and 3. The material in Section 4 concerns an attack on the mv3 stream
cipher. After writing up a description of our results, we learned that essentially identical
arguments – but with important miscalculations – had simultaneously been published in
[15]. For the sake of completeness we include an appendix reconciling the two attacks. See
footnote 2 for similar comments on the sn3 stream cipher.
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1 Introduction

Stream ciphers are widely used in practical cryptography, especially in en-
vironments where the high speed of encryption is crucial. While in general
there exist many different types of stream ciphers, there are several structures
which are shared by numerous modern ciphers.

One of these structures is basing the internal state of the cipher on a very
large array, where the output key-stream is a relatively simple function of
the array elements. The first cipher having this structure was alleged rc4
(designed in 1987), and modern ciphers of this class include hc-256 [19], the
Py family [2], sn3 [11], ngg [13], gghn [8], mv3 [9], and others (see [16]).
The main advantage of ciphers of this class is their high speed: due to the
simple update and output rules, the encryption is very fast, while the security
follows from pseudo-random accesses to a very large array, unknown to the
attacker.

In alleged rc4, the array consists of a permutation of the values 0, 1, . . . , 255.
In the modern ciphers, which are based on longer (usually, 32-bit) words,
keeping a permutation of all the possible words in memory is infeasible, and
hence the permutation is replaced by an array of pseudo-random words.

In [16], Paul and Preneel showed heuristically that in various cases, the
randomness of the array elements can be used to mount a distinguishing
attack on the cipher.1 Their method is based on the following phenomenon:

Proposition 1. Let T be an array of n independently and uniformly chosen
random values in {0,1}, and let i, j be chosen independently and uniformly
at random from {1,. . . ,n}. Then

Pr [ T [i] = T [j] ] =
1

2
+

1

2n
.

This calculation comes from the fact that if i = j then T [i] = T [j] holds for
sure, and if i 6= j, then by randomness, Pr[T [i] = T [j]] = 1/2. Put another
way:

the xor of randomly chosen bits from a fixed, random array is

not uniformly distributed, but has a slight bias towards zero.

1We note that the practical significance of distinguishing attacks of the class presented
in [16], as well as those discussed in our paper (attacks that are unlikely to be leveraged
to a key-recovery attack), can be questioned (see [18]). This issue is outside of the scope
of the current paper.
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This bias potentially applies to any cryptographic operation summing ran-
dom entries from random arrays. Note that the attack does not work if the
values of the array are not random (like in alleged rc4, where at any stage of
the encryption, exactly half of the lsbs of the array elements are zeros). This
is because in the case i 6= j, there is a small counter bias, which makes the
overall probability unbiased. The main idea of the attack in [16] (originally
presented in [7]) is to find a condition E on the elements of the array, such
that if E is satisfied, then the least significant bit (lsb) of a combination of
the output words is biased; this bias is used to distinguish the output of the
cipher from a random string.

In this paper we further investigate the structural attack presented in [16].
First, we present a rigorous generalization of Proposition 1 to compute the
bias of the sum of k random elements, for all k ≥ 1. Then we demonstrate the
precision of the heuristic assumption (i.e., the assumption that if the special
event E does not occur, then there is no counter-bias) in more complicated
cases by considering a concrete example. We devise a distinguishing attack
on the stream cipher sn3 [11] designed by Maltchev in 2002. Our heuristic
computation shows that the bias of the distinguisher is 2−15.40, and a series
of experiments with a key-stream of length 240 shows that the bias is in
the range between 2−15.37 and 2−15.42. Hence, the heuristic assumption is
remarkably precise in this case.2

Finally, we use the general technique to mount a distinguishing attack on
mv3. The stream cipher mv3 [9] was designed by Keller et al. in 2006, as
an attempt to generalize the alleged rc4 structure to a 32-bit word based
cipher. The internal state of the cipher consists of several large buffers of
pseudo-random words, and the update and output rules are based on rapidly
mixing random walks. The cipher uses a combination of different arithmetic
operations on 32-bit words (xors, additions, and multiplications), as well
as cyclical rotations by a fixed number of bits. While the encryption speed
of mv3 is high (less than 5 cycles per byte), the initialization phase is very
slow, and hence the cipher is appropriate for encrypting large amounts of
data. The security claim made in [9] is that no attack on the cipher should
be faster than exhaustive key search for 256-bit keys. As mentioned in the

2We note that another distinguishing attack on sn3 was presented in [14]. The attack
uses part of the observations used in our attack, along with different techniques. The
authors of [14] claim that the attack requires 228.2 words of key-stream. However, a
careful examination of the attack, presented in the appendix, shows that it requires about
238 words of key-stream, while our attack requires less than 230 words.
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footnote on the first page, this attack was independently codiscovered in [15],
but with a mistaken complexity estimate. No other cryptographic attacks
on the cipher have been presented thus far.

Our distinguishing attack on mv3 requires 282 words of key-stream. The
attack uses the higher-order differential technique [10], examining the xor
of quadruples of output words having a special structure. The main feature
of the attack is that it does not concentrate on the least significant bits of
the output words. Instead, the attack considers the xor of pairs of consec-
utive bits of the output words, following a technique presented by Cho and
Pieprzyk [5] in a different context. As a result, the attack can handle fixed bit
rotations and modular multiplications, unlike previous attacks of the same
structure (e.g., [16, 19]) that can handle only rotations by a pseudo-random
number of bits, modular additions and xors.3 While our distinguishing at-
tack is clearly impractical, it is faster than the security claims asserted in
[9].

The paper is organized as follows: in Section 2 we present the proof of
the generalization of Proposition 1. The attack on sn3, along with the ex-
perimental verification of the results, is presented in Section 3. In Section 4
we present the attack on mv3. In the appendix we discuss the flaws in the
attacks presented in [14] and [15].

2 Rigorous Proof of the Heuristic Assump-

tion in Basic Cases

In this section we present a rigorous generalization of Proposition 1 to the
sum of k random 0/1 elements, for all k ≥ 1. We give both an exact formula
and a simpler asymptotic for large arrays.

Proposition 2. Let T be an array of N independently distributed uniform
random values in {0, 1}, and let k ≥ 1. Let Sk denote the sum of k elements of
the array which are chosen uniformly and independently at random (including

3This partially settles two open problems raised in ([17], Section 7.2), asking for a
generalization of the techniques presented in [16] which is not restricted to analyzing the
lsb, and which can handle also modular multiplications.
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possible repetitions). We have that

pk := Pr[ Sk ≡ 0 (mod 2) ] =
1

2
+

1

2

N∑
r =0

[
2−N N !

(N − r)!r!

](
2r

N
− 1

)k

;

in particular pk = 1
2

for k odd, p2 = 1
2

+ 1
2N

, and p4 = 1
2

+ 3
2N2 − 1

N3 . For N
large, p2k is approximately 1

2
+ 1

2
( 2

N
)kπ−1/2Γ(k + 1/2), where Γ denotes the

Gamma function.

Proof. Let t1, . . . , tN denote the elements of the array, and consider the ran-
dom variable

X :=
N∑

i =1

(−1)ti = 2Y −N ,

where Y =
∑

i≤N ti is the Binomial(N, 1/2) random variable whose prob-
ability distribution is given by the bracketed expression above. Expanding
out this sum for k-th powers of X, we see

Xk =
N∑

i1,...,ik =1

(−1)ti1+···+tiN = 2 #{1 ≤ i1, . . . , ik ≤ N | ti1+· · ·+tik ≡ 0 (mod 2)}−Nk.

Combining these formulas shows that pk is determined by the expected value
of moments of Y :

pk =
#{1 ≤ i1, . . . , ik ≤ N | ti1 + · · ·+ tik ≡ 0}

Nk
= E

[
1

2
(
2Y

N
− 1)k

]
+

1

2
.

This establishes the formula asserted above, because this expected value is
its second term. The special cases of pk mentioned can be seen by direct
calculation.

As far as the limit of p2k for N large, we recall the Central Limit The-
orem: that the Binomial(N, 1/2) random variable is approximated by the
Normal distribution with mean N/2 and variance N/4 (see [6, Chapter VII]).
This allows us to approximate the sum above with the integral

∫

R

[√
2

πN
e−

(2x−N)2

2N

](
2x

N
− 1

)2k

dx ,

which — after changing variables to y =
√

2x−N — may be computed as
( 2

N
)kπ−1/2Γ(k + 1/2) using Euler’s integral formula Γ(s) =

∫∞
0

e−uus−1du.
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We use Proposition 2 as the basic tool in many of our probability cal-
culations in what follows. In order to derive estimates using it, we need
to make a working assumption that the array elements and pointers in the
stream ciphers we study are themselves independently, identically uniformly
distributed at random. Of course the point of this paper is to contradict
that, by demonstrating an attackable bias. However, it seems numerically
reasonable to make this assumption as an approximation, because a devia-
tion that is strong enough to significantly affect our calculations would itself
likely produce a stronger attack than the ones we present. In addition, in the
complicated cases where the bias cannot be proved rigorously, we follow [16]
in making the heuristic assumption that there is no counter-bias when the
special event does not occur. The experiment presented in the next section
demonstrates the precision of this assumption.

3 Distinguishing Attack on SN3

3.1 Description of SN3

The stream cipher sn3 [11] was designed by Simeon Maltchev in 2002. sn3
is a software-efficient stream cipher, optimized for execution on 32-bit micro
processors. It is based on a large array of pseudo-random words, and uses
only simple word operations, like xor and cyclical rotations.

The structure of sn3 is the following: The internal state of the cipher
consists of three arrays V 1, V 2, and V 3, of sixty four 32-bit words each, and
three 6-bit indices, i, j, and m. Index i addresses only the V 1 array, index j
addresses only the V 2 array, and index m addresses only the V 3 array.

The key-stream generation is composed of 64-step cycles, where in each
cycle, i takes the values from 0 to 63 sequentially, and j and m perform a
(pseudo)-random walk, determined by the elements of the V 1 array. In each
step, one word from each array is selected according to i, j, and m, the xor of
these three words is outputted as the key-stream word, and the three words
are used to update themselves by a relatively simple update rule.

The structure of a step is outlined in the pseudo-code below. In the code,
⊕ denotes bitwise xor, ≪ denotes cyclical left rotation, and À denotes
noncyclical right shift (which discards the rightmost bits). The key-stream
word which is outputted at the end of the step is denoted Ki. The indices i
and j are set to zero at the beginning of the key-stream generation process.
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1. T1 = V 1[i]
2. T2 = V 2[j]
3. m = T1 (mod 64)
4. T3 = V 3[m]
5. V 1[i] = (T1 ≪ 1)⊕ T2
6. V 2[j] = (T2 ≪ 5)⊕ T3⊕ 0x8c591ca1
7. V 3[m] = (T3 ≪ 17)⊕ T1⊕ 0xab8ec254
8. i = i + 1 (mod 64)
9. j = T1 À 8 (mod 64)
10. Ki = T1⊕ T2⊕ T3

After each 64-step cycle, the arrays are rotated cyclically to the left: the
contents of V 1 are placed in V 3; those of V 3, in V 2; and those of V 2, in V 1.
We omit the key expansion algorithm, since it does not affect our attacks.
Instead, we assume that the initial values in the arrays V 1, V 2, and V 3 are
independently uniformly distributed.

3.2 Our Attack

The basic observation we use in the attack is a weakness in the update rule
of V 1, V 2, and V 3. We observe that regardless of the values of the words T1,
T2, and T3 before the update operation, the values V 1[i], V 2[j], and V 3[m]
after the update satisfy a simple linear relation involving the Hamming weight
(the number of 1’s in a word’s binary representation). If these words are next
updated simultaneously, this will result in a bias that is described below.

Proposition 3. Consider the values V 1[i], V 2[j], and V 3[m] right after
the update operation in step 7 above. The parity of the Hamming weight of
V 1[i]⊕ V 2[j]⊕ V 3[m] is zero, that is, its binary representation has an even
number of 1’s.

Proof. Let g(x) denote the parity of the Hamming weight of a 32-bit word x,
i.e., g(x) ≡ HW (x) (mod 2). It is easy to see that for any two words x and
y, we have g(x ⊕ y) = g(x) ⊕ g(y), g(x) ⊕ g(x) = 0, and g(x ≪ k) = g(x)
for any 0 ≤ k ≤ 31. Using these rules and the formulas in steps 5-7 above,
one sees

g(V 1[i]⊕ V 2[j]⊕ V 3[m]) = g(V 1[i])⊕ g(V 2[j])⊕ g(V 3[m]) =

= g(T1)⊕g(T2)⊕g(T2)⊕g(T3)⊕g(0x8c591ca1)⊕g(T3)⊕g(T1)⊕g(0xab8ec254) =
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= g(0x8c591ca1)⊕ g(0xab8ec254) = 0,

as asserted.

In order to exploit Proposition 3, we first give a criterion that describes
such a simultaneous update of the three words above in terms of the indices
(i, j, m) in the current step, and the indices (i′, j′,m′) in a certain step in the
previous cycle of 64 steps. We denote the k-th step in the r-th cycle by Sr

k,
and examine the triples of indices (i, j,m) corresponding to each step.

Definition 1. We say Event Er
k occurs if the following relations among in-

dices are met during step Sr
k. Let (T1, T2, T3) = (V 1[a1], V 2[a2], V 3[a3]) be

the words producing the output of this step (i.e., for this step, (i, j,m) =
(a1, a2, a3); in particular, a1 = k). The event occurs when these three condi-
tions are satisfied:

1. In step Sr−1
a3

, the indices (i, j, m) are equal to (a3, a1, a2).

2. In the steps Sr−1
i for all i > a3, the indices satisfy j 6= a1 and m 6= a2.

3. In the steps Sr
i for all i < a1, the indices satisfy j 6= a2 and m 6= a3.

Note that if Event Er
k occurs, then the values T1, T2, and T3 used for

producing the key-stream word in step Sr
k are exactly of the form described

in Proposition 3. Indeed, Condition 1 assures that T1, T2, and T3 were
updated together in step Sr−1

a3
, and Conditions 2 and 3 assure that none of

them was updated since the simultaneous update. In the next proposition we
calculate the probability of occurrence of events Er

k, based on our randomness
assumption mentioned at the end of Section 2.

Proposition 4. The probability of the event Er
k is Pr[Er

k] = 2−13.20(1 −
1/64)2k.4

Proof. First, we calculate the probability of the event Er
k if the triple of

indices (i, j, m) used in step Sr
k is (a1, a2, a3) (where a1 = k). Since the

indices j and m are each randomly distributed among 64 possible values, the
probability that Condition 1 is satisfied is 2−12. For the same reason, the
probabilities that Conditions 2 and 3 are satisfied are (1− 1/64)2(63−a3), and

4Throughout this paper, numbers are rounded to the last decimal place.
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(1 − 1/64)2a1 , respectively. Since the three conditions are independent, the
probability of the event Er

k in this case is

Pr
[
Er

k|(a1, a2, a3)
]

= 2−12(1− 1/64)126−2a3+2a1 .

The unconditional probability of the event Er
k is the average of the conditional

probabilities over all the possible values of a2 and a3. Hence,

Pr[Er
k] = 2−6

63∑
a3=0

2−12(1− 1/64)126−2a3+2a1

= 2−18(1− 1/64)126+2a1

63∑
a3=0

(1− 1/64)−2a3 ≈ 2−13.20(1− 1/64)2a1 .

The assertion follows since a1 = k.

Using Proposition 4 we can show that the parity of the Hamming weight of
the key-stream words in sn3 is biased.

Proposition 5. Consider a random key-stream word x output by the sn3
algorithm (at any stage of the key-stream generation), and denote by g(x)
the parity of the Hamming weight of x. Then Pr[g(x) = 0] = 1

2
+ 2−15.40.

Proof. Consider the key-stream word xk at step Sr
k of the key-stream gen-

eration. By Proposition 4, the event Er
k occurs with probability Pr[Er

k] =
2−13.2(1 − 1/64)2k. By Proposition 3, if this event occurs, then Pr[g(xk) =
0] = 1. On the other hand, Event Er

k characterizes the conditions for all
three values of T1, T2, T3 to be simultaneously updated. If the event does
not occur, some other random word(s) in the buffer influence the output, and
by our randomness assumption we instead have Pr[g(xk) = 0] = 1

2
. Thus, in

total,

Pr[g(xk) = 0] =
(
2−13.20(1− 1/64)2k

)
· 1 +

(
1− 2−13.20(1− 1/64)2k

)
· (1/2)

= 1/2 + 2−14.20(1− 1/64)2k.

Finally, Pr[g(x) = 0] is the average over the possible values of k. Thus,

Pr[g(x) = 0] = 1/2 + 2−6

63∑

k=0

2−14.20(1− 1/64)2k = 1/2 + 2−15.40.

This completes the proof of Proposition 5.
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Since for a random stream, the parity of the Hamming weights of the words
is unbiased, we get the following:

Corollary 1. The key-stream of sn3 can be distinguished from a random
stream using less than 230 key-stream words.5

3.3 Experimental Results

Our computations above predict that g(Ki) is zero slightly more often than it
is 1, and in particular that

∑
i≤t g(Ki) is roughly t

2
−2−15.40t. (Were the cipher

unbiased, the second term would be replaced by an error term of size roughly
O(t1/2).) We modified Maltchev’s C code [11] to check this, and ran it on
a Dell PowerEdge 2650 with an Intel Zeon 2.6ghz processor and 2gb ram.
It took approximately 30 hours to generate each of 3 samples of 240 output
words. The empirical bias from our 3 · 240 trials was −0.0000231 ≈ 2−15.402,
very close to our prediction. A plot of

∑
i≤t g(Ki)− t

2
from one of the trials

is presented in Figure 1.

4 Distinguishing Attack on MV3

4.1 The Structure of MV3

The stream cipher mv3 [9] was designed by Keller et al. in 2006. The main
goal of its design is to adapt the alleged RC4 structure to word-based stream
ciphers, in which storing in memory a permutation of all the possible words
is infeasible. The internal state of the cipher is an array of pseudo-random
words, and the output rule is based on random accesses to the array de-
termined by rapidly mixing random walks on directed graphs. In addition,
the cipher uses a combination of different arithmetic word operations (xors,
additions, and multiplications), as well as cyclical rotations.

The structure of mv3 is the following: The heart of the internal state is an
array T of 256 32-bit words, which is slowly updated during the key-stream

5We calculate the amount of key-stream required for a distinguishing attack using The-
orem 1 of [16], which states that a key-stream length at least c0q

−2 is sufficient for getting
an advantage of .5 over a random stream. Here q denotes the bias of the linear approxima-
tion, and c0 ≈ .454936 is the positive constant such that 1√

2π

∫√c0

−√c0
exp(−u2/2) du = 1

2 .
(Please note that the value of c0 was slightly misstated as ≈ .4624 in [16].) For a detailed
discussion, see [1].
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Figure 1: Cumulative sums
∑

i≤t g(Ki)− t
2

of the Hamming weight parity of
sn3 output words. Were they indeed unbiased, the graph would be centered
near zero, rather than having the negative slope it displays due to the bias
calculated above.

generation phase. In addition, the internal state contains three buffers A,B,
and C of 32 words each, that are cyclically shifted every 32 steps (namely,
buffer A is discarded, buffer B becomes A, buffer C becomes B, and fresh
values compose the new buffer C). The internal state is completed by several
indices: secret word indices x and c and byte index j, that are updated using
random walks on different directed graphs, and publicly known indices i
(running from 0 to 31) and u (running from 0 to 255). The key-stream
words are combinations of words taken from the A,B, and C buffers, where
the array T is used for updating the indices and refilling the buffer C. The
key-stream generation procedure is presented in the following pseudo-code:

Input: length len
Output: stream of length len

repeat len/32 times
for i = 0 to 31

j ← j + (B[i] mod 256)
x ← x + T [j]
C[i] ← (x ≫ 8)
output (x · c)⊕ A[9i + 5]⊕ (B[7i + 18] ≫ 16)

end for
u ← u + 1
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T [u] ← T [u] + (T [j] ≫ 13)
c ← c + (A[0] ≫ 16)
c ← c ∨ 1
c ← c2

A ← B, B ← C
end repeat

In the code, + and · denote addition and multiplication modulo 232, respec-
tively, and (≫ k) denotes cyclical rotation by k bits to the right. The symbol
∨ denotes a logical or operation, and ⊕ denotes bitwise xor.

We omit the key initialization phase of the cipher, since it does not affect
our attacks. Instead, we assume that the internal state is initialized with
perfectly random words. In particular, since the initial values of the indices
x, c, and j are determined in the initialization phase, we assume that these
values are random, in accordance with the working assumption at the end of
Section 2.

4.2 Distinguishing Attack on a Simplified Variant of
MV3

In order to explain the main idea of our attack clearly, we start with consid-
ering a simplified variant of the cipher in which some cyclical rotations are
removed. Namely, the update rule of buffer C is replaced by the simpler rule

C[i] ← x, (1)

and the output rule is replaced by

Out(i) = (x · c)⊕ A[9i + 5]⊕B[7i + 18].

The rest of the structure remains unchanged.
In this simplified variant, the attacker can concentrate on the least sig-

nificant bits (lsbs) of the output words, for which modular additions are
equivalent to bitwise xors. Moreover, since the lsb of c is always equal to
1, the lsb of x · c is always equal to the lsb of x. Hence, if the attacker
examines only the lsbs of the output words, the simplified variant of the
cipher is equivalent to an even simpler variant in which the update rule of x
is replaced by

x ← x⊕ T [j], (2)

12



and the output rule is simply

Out(i) = C[i]⊕ A[9i + 5]⊕B[7i + 18].

In the attack, we consider the xor of two output words Out(i1) and Out(i2),
given at steps i1 and i2 of the same 32-step loop in the key generation process,
where i2 − i1 is even. We have

Out(i1)⊕Out(i2) =
(
C[i1]⊕C[i2]

)
⊕

(
A[9i1+5]⊕A[9i2+5]

)
⊕

(
B[7i1+18]⊕B[7i2+18]

)
.

(3)
According to (1) and (2), the term C[i1] ⊕ C[i2] is the xor of (i2 − i1)
randomly chosen elements of the array T and hence, by Proposition 2, its
lsb is biased toward zero. Moreover, since the elements in buffers B and
A are simply the elements of buffer C one or two loops before, the terms
A[9i1 + 5] ⊕ A[9i2 + 5] and B[7i1 + 18] ⊕ B[7i2 + 18] are also xors of an
even number of randomly chosen elements of the array T , and thus, their
lsbs are also biased toward zero. Because of our working assumption that
the elements of A, B, and C are independent, these biases can be combined
using Matsui’s Piling-up Lemma [12] to compute the bias of the lsb of the
expression (3). To be precise, denote by qk the bias toward zero of the xor
of k random 0/1 elements (in the notation of Proposition 2, qk = pk − 1/2).
Furthermore, let

k1 = i2 − i1, k2 =
∣∣∣(9i1 + 5) mod (32)− (9i2 + 5) mod (32)

∣∣∣,

k3 =
∣∣∣(7i1 + 18) mod (32)− (7i2 + 18) mod (32)

∣∣∣.
Then by Matsui’s Piling-up Lemma,

Pr
[
lsb

((
C[i1]⊕ C[i2]

)
⊕

(
A[9i1 + 5]⊕ A[9i2 + 5]

)
⊕

(
B[7i1 + 18]⊕B[7i2 + 18]

))
= 0

]

=
1

2
+ 4qk1qk2qk3 .

An exhaustive check of the possible values of i1 and i2 (using the values of
qk computed in Proposition 2) shows that the right hand side assumes its
maximal value when i2 − i1 = 4, for 24 of the 32 possible values of i1. In
these cases, k1 = k2 = k3 = 4, and hence the right hand side equals

1/2 + 4
( 3

2 · 2562
− 1

2563

)3

= 1/2 + 2−44.26.
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By Equation (3), this means that

Pr
[
lsb(Out(i1)⊕Out(i2)) = 0

]
= 1/2 + 2−44.26. (4)

Since for a random string, the expression in the left hand side is unbiased,
Formula (4) can be used to distinguish the output of this simplified variant
of mv3 from a random string using less than 288 words of output.

4.3 Distinguishing Attack on MV3

When attacking the original version of mv3, the attacker cannot restrict
himself to the lsbs of the words in buffer C. Due to the cyclical rotations,
even if the attacker considers only the lsbs of the output words, he has to deal
also with bits 8 and 24 of buffer C that influence the output through buffers
A and B. As a result, the update rule x ← x + T [j] is no longer equivalent
to the simpler x ← x ⊕ T [j], and thus the attacker has to overcome the
composition of xors and modular additions. In particular, the observation
used in Section 4.2 is not valid anymore: while the xor of an even number
of random elements of the T array is biased in each of its bits, the same is
not true for their modular sum.6

In order to overcome these difficulties, we consider the xor of four output
words in the same 32-step loop, having the following special structure:

(Out(i1)⊕Out(i1 + l))⊕ (Out(i2)⊕Out(i2 + l)),

for an appropriate choice of i1, i2, and l. We note that while the simplified
attack presented in Section 4.2 resembles the differential cryptanalysis tech-
nique [3], the attack presented here is an instance of higher-order differential
cryptanalysis [10]. We have:

(
Out(i1)⊕Out(i1 + l)

)
⊕

(
Out(i2)⊕Out(i2 + l)

)
= (5)

=
(
((C[i1] ≪ 8)·c)⊕((C[i1+l] ≪ 8)·c)

)
⊕

(
((C[i2] ≪ 8)·c)⊕((C[i2+l] ≪ 8)·c)

)
⊕

(6)

6For example, consider the sum T [j1] + T [j2] for random j1 and j2. If j1 6= j2 then
clearly the sum is unbiased. If j1 = j2 then the sum T [j1] + T [j2] is simply a left shift of
T [j1] by one bit. The lsb of this value is necessarily zero, but any other bit k is unbiased
since it is equal to bit k− 1 of T [j1]. Hence, in total, bit k of T [j1] + T [j2] is unbiased for
all k > 0.
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⊕
(
A[9i1 + 5]⊕ A[9(i1 + l) + 5]

)
⊕

(
A[9i2 + 5]⊕ A[9(i2 + l) + 5]

)
⊕ (7)

(
(B[7i1+18] ≫ 16)⊕(B[7(i1+l)+18] ≫ 16)

)
⊕

(
(B[7i2+18] ≫ 16)⊕(B[7(i2+l)+18] ≫ 16)

)
.

(8)
Like in the simplified attack, we consider each of the terms (6), (7), and (8)
separately, and show that a certain linear combination of its bits is biased
toward zero. Then, we use Matsui’s Piling-up Lemma [12] to combine these
biases into a bias of the entire expression.

For the sake of simplicity, we consider first a simplified version of the
term (6) in which the cyclical rotations and the multiplication with c are
removed. We shall show later that both the rotations and the multiplication
by c do not change the conclusions of our argument. Hence, we consider the
simplified term:

(C[i1]⊕ C[i1 + l])⊕ (C[i2]⊕ C[i2 + l]). (9)

The basic observation we use in our attack is the following:

Observation 1. Recall that the elements of the buffer C are determined by
consecutive values of x. By the update rule of x, if i1 < (i1 + l) mod 32, then
the relation between C[i1] and C[i1 + l] is (ignoring the cyclical rotation):

C[i1 + l] = C[i1] +
(
T [j(i1 + 1)] + T [j(i1 + 2)] + . . . + T [j(i1 + l)]

)
,

where j(i) denotes the value of the index j at step i of the loop. That is,
C[i1 + l] is obtained from C[i1] by adding a sum of l random elements of the
T array. Similarly, if i2 < (i2 + l) mod 32, then C[i2 + l] is obtained from
C[i2] by adding a sum of l random elements of the T array.7 If the indices
of the two sequences of random elements are equal (possibly in a different
order), then we have

C[i1 + l]− C[i1] = C[i2 + l]− C[i2], (10)

7If both i1 < (i1 + l) mod 32 and i2 < (i2 + l) mod 32 do not hold, then the argument
presented below can still be applied, when (i1, i2) is replaced by (i1 + l, i2 + l) mod 32,
and l is replaced by 32 − l. If only one of the two conditions holds, then the sequences
considered in the sequel are of different lengths, and hence our attack cannot be applied.
Hence, the attacker has to choose values (i1, i2, l) such that either none or two of the
conditions i1 < (i1 + l) mod 32 and i2 < (i2 + l) mod 32 are satisfied.
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where “–” denotes subtraction (mod 232). We show that the relation (10) can
be used to detect a set of biases satisfied by Expression (9), which is invariant
under cyclical rotations.

In order to exploit expression (10) to detect a bias in the expression (9),
we have to find a relation between the subtraction operation used in (10)
and the xor operation used in (9). Note that we seek for a relation that
is invariant under cyclical rotations, and hence the obvious relations using
the msb or the lsb are not sufficient for our purpose. We use the following
result, due to Cho and Pieprzyk [5]:

Proposition 6. ([5, Corollary 2]) Let Γi denote the 32-bit linear mask in
which only bits i and i + 1 are non-zero. Thus, for any 32-bit word x, we
have Γi(x) = xi ⊕ xi+1. Let x, y, and K be random 32-bit words. Then for
all 0 ≤ i ≤ 30,

Pr
[
Γi ((x + K)⊕ (y + K)⊕ x⊕ y)

]
=

2

3
+

2−2i−2

3
>

2

3
.

Using Proposition 6, we can give a precise form to Observation 1.

Proposition 7. Consider 0 ≤ i1 < i2 ≤ 31 and 1 ≤ l ≤ 31, such that the
two conditions i1 < (i1 + l) mod 32 and i2 < (i2 + l) mod 32 are satisfied. Let
l1 = min(l, i2 − i1). For any 0 ≤ i ≤ 30,

Pr
[
Γi

(
((C[i1] ≪ 8)·c)⊕((C[i1+l] ≪ 8)·c)⊕((C[i2] ≪ 8)·c)⊕((C[i2+l] ≪ 8)·c)

)
= 0

]

>
1

2
+

256! l1!

6 (256− l1)! 2562l1
.

Proof. We consider first a simplified version of the statement, without the
cyclical rotation and multiplication by c. As noted in Observation 1, we have

C[i1 + l] = C[i1] +
(
T [j(i1 + 1)] + T [j(i1 + 2)] + · · · + T [j(i1 + l)]

)
,

and similarly with i1 replaced by i2. Denote by E1 the following event: the two
multisets {j(i1+1), j(i1+2), . . . , j(i1+l)} and {j(i2+1), j(i2+2), . . . , j(i2+l)}
are equal. It is clear that if the event E1 occurs, then

T [j(i1+1)]+T [j(i1+2)]+· · ·+T [j(i1+l)] = T [j(i2+1)]+T [j(i2+2)]+· · ·+T [j(i2+l)].
(11)
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Thus, we can apply Proposition 6 with x = C[i1], y = C[i2], and K =
T [j(i1 + 1)] + T [j(i1 + 2)] + · · ·+ T [j(i1 + l)], to get

Pr
[
Γi (C[i1]⊕ C[i1 + l]⊕ C[i2]⊕ C[i2 + l]) = 0

∣∣∣E1

]
> 2

3
.

If the event E1 does not occur, then by the randomness of the elements of
the T array, the expression in the left hand side is unbiased. Hence, in total,

Pr [ Γi (C[i1]⊕ C[i1 + l]⊕ C[i2]⊕ C[i2 + l]) = 0 ] > 1
2

+ Pr[E1]
6

. (12)

The probability of the event E1 depends on the overlapping between the
sequences (i1 + 1, i1 + 2, · · · , i1 + l) and (i2 + 1, i2 + 2, · · · , i2 + l). If some
of the indices overlap, then the corresponding T [j(i)] terms can be removed
from Equation 11, thus simplifying the equation. It is easy to see that the
number of non-overlapping indices in the sequences is l1 = min(l, i2 − i1).

8

Hence, Equation 11 is reduced to

T [j(i1+1)]+· · ·+T [j(i1+l1)] = T [j(i2+(l−l1+1))]+· · ·+T [j(i2+l)]. (13)

Furthermore, since in Equation (13) the indices of i are distinct, we can
use the randomness assumption on the index j, to assume that the indices
j(·) in both sides of the equation are independently uniformly distributed in
{0, 1, . . . , 255}. The probability of E1 is bounded from below by the prob-
ability of the following event E2: all the elements of each of the multisets
{j(i1 + 1), j(i1 + 2), . . . , j(i1 + l1)} and {j(i2 + (l − l1 + 1)), j(i2 + (l − l1 +
2)), . . . , j(i2 + l)} are distinct, and the two multisets are equal. It is easy to
see that

Pr[E2] =
256 · 255 · . . . · (256− l1 + 1)

256l1

l1!

256l1
=

256! l1!

(256− l1)! 2562l1
.

Substituting this into (12) proves the proposition when the cyclical rotations
and multiplications by c are omitted. However, it is clear from the proof that
if one rotates all words in the buffer C by a constant number of bits, and
multiplies them all by the same word c, a similar argument applies.

8 For example, the equation T [j(1)]+T [j(2)]+ · · ·+T [j(9)] = T [j(4)]+T [j(5)]+ · · ·+
T [j(12)] is equivalent to the simpler equation T [j(1)] + T [j(2)] + T [j(3)] = T [j(10)] +
T [j(11)] + T [j(12)]..

17



Now consider Equation (5) at the beginning of this subsection. Proposi-
tion 7 asserts that the term (6) is biased toward zero. Since the elements of
buffers A and B are obtained from elements of buffer C in previous loops, the
argument of Proposition 7 is valid also for the terms (7) and (8), and hence
both of them are also biased toward zero. The exact lower bounds on the
biases are obtained by substituting the triples (9i1 + 5, 9i2 + 5, 9l) mod (32)
and (7i1 +18, 7i2 +18, 7l) mod (32) in Proposition 7 in the place of (i1, i2, l).
In total, Proposition 7 can be applied to all the three terms (6), (7), and (8)
if the following three pairs of conditions are satisfied:9

i1 < (i1 + l) mod (32), i2 < (i2 + l) mod (32),

9i1+5 mod (32) < 9(i1+l)+5 mod (32), 9i2+5 mod (32) < 9(i2+l)+5 mod (32),

7i1+18 mod (32) < 7(i1+l)+18 mod (32), 7i2+18 mod (32) < 7(i2+l)+18 mod (32).
(14)

For terms (7) and (8), we replace the value l1 computed in Proposition 7 for
the term (6) by

l2 = min(9l mod (32), |(9i1 + 5) mod (32)− (9i2 + 5) mod (32)|) and

l3 = min(7l mod (32), |(7i1 + 18) mod (32)− (7i2 + 18) mod (32)|),
respectively. Combining the biases using Matsui’s Piling-up Lemma [12], we
thus get:

Corollary 2. Let (i1, i2, l) be such that 0 ≤ i1 < i2 ≤ 31, 1 ≤ l ≤ 31, and
the six conditions described in (14) are satisfied. Then for all 0 ≤ i ≤ 30 one
has

Pr [Γi (Out(i1)⊕Out(i1 + 4)⊕Out(i2)⊕Out(i2 + 4)) = 0 ] > 1
2
+ 4 r(l1) r(l2) r(l3),

where l1, l2, and l3 are as defined above, and r(li) = 256! li!
6 (256−li)! 2562li

.

An exhaustive check of all the possible triples (i1, i2, l) (performed by a
computer program) shows that the right hand side assumes its maximal value
for the quadruple (0, 1, 14, 15) as well as 21 more quadruples (i1, i1+l, i2, i2+l)

9As noted before, each pair of conditions can be replaced by the complement condi-
tions, by slightly modifying the argument. This change can be done for each of the pairs
independently, and hence, in total there are eight sets of six conditions for which the attack
can be applied.
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listed in the footnote below.10 For each of these quadruples, we have l1 = 1
and l2 = l3 = 2, and thus,

Pr [Γi (Out(i1)⊕Out(i1 + 4)⊕Out(i2)⊕Out(i2 + 4)) = 0 ] > 1
2

+ 2−43.77.
(15)

Finally, we note that in the attack we can use 31 linear approximations in
parallel, each for a different choice of i in the linear mask Γi. Hence, in
total, in each 32-step loop the attacker can use 22 quadruples of (i1, i1 +
l, i2, i2 + l) and 31 different approximations for each of them.11 Since the bias
of each approximation is 2−43.77, the data complexity of the distinguisher is
(0.454936 · 287.53 · 32)/(22 · 31) = 281.99 words of key-stream. Summarizing
the attack, we have:

Corollary 3. The key-stream of mv3 can be distinguished from a random
string using less then 282 words of key-stream.

5 Summary and Conclusions

In this paper we examined a structural distinguishing attack introduced
in [16], applicable to stream ciphers whose internal state consists of arrays
of pseudo-random words, and whose output is a relatively simple function of
the internal state. We presented a rigorous proof of the heuristic assump-
tions used in the attack in basic cases, along with experimental evidence for
the precision of the assumptions in more complicated cases. In addition,
we extended the technique, allowing it to handle more complicated update
and output rules, and used it to mount a distinguishing attack on the cipher
mv3 [9], requiring less than 282 words of output.

10The values of the 22 optimal quadruples (i1, i1 + l, i2, i2 + l) are:

(0, 1, 14, 15), (0, 1, 18, 19), (1, 2, 15, 16), (3, 4, 21, 22), (4, 5, 18, 19), (4, 5, 22, 23),

(5, 6, 19, 20), (5, 6, 23, 24), (6, 7, 20, 21), (6, 7, 24, 25), (7, 8, 21, 22), (7, 8, 25, 26),

(8, 9, 22, 23), (8, 9, 26, 27), (9, 10, 23, 24), (11, 12, 29, 30), (12, 13, 26, 27), (12, 13, 30, 31),

(13, 14, 27, 28), (14, 15, 28, 29), (15, 16, 29, 30), (16, 17, 30, 31).

11For a precise treatment of linear attacks using a combination of multiple linear ap-
proximations, see [4].
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Our attacks, along with previously published distinguishing attacks on
stream ciphers based on arrays (e.g., [16, 19]), show that unless the output
rule is very complex, it is difficult to avoid “academic” distinguishing attacks.
However, perhaps this should not necessarily be considered a weakness of such
ciphers. Instead, since extremely long key-streams are not used in real-life
applications, it seems reasonable to ask what complexity of a distinguishing
attack is reasonable to tolerate before deeming a stream cipher insecure with
respect to it.12
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A Appendix

In this appendix we examine the attacks on sn3 and mv3 presented in [14]
and [15], respectively, and show that their correct data complexities are 238

key-stream words for sn3 (instead of 228.2 claimed by the authors), and 282

key-stream words for mv3 (instead of 263 claimed by the authors).

A.1 The Attack on SN3 Presented in [14]

The attack uses some of the ideas used in our attack on sn3, along with dif-
ferent techniques. Unfortunately, their work suffers from two computational
flaws:

1. On Page 3, immediately above Figure 2, it is asserted that

1× 1

64
× 1

64
× 1× 1

64
= 2−15.
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Replacing the right hand side by the correct value of 2−18 results in
reducing the probability of occurrence of Event I (computed at the
bottom of Page 3) from 2−4(1 + 23.9 × 2−15) to 2−4(1 + 23.9 × 2−18).

2. Immediately following this, the authors assert (without proof) that
since the probability of Event I for a random permutation is 2−4, the
cipher can therefore be distinguished with 222.2 cycles of 64 output
words. This includes the implicit claim that two Binomial random
variables Bin(n, p) with means 2−4(1 + 23.9 × 2−15) and 2−4 can be
distinguished with 222.2 samples. This claim is incorrect. Since the
standard deviation of the variables is

√
np(1− p) with p ≈ 2−4, the

number of required samples must satisfy
√

np(1− p) ≈ 2−15n, which
leads to n ≈ 226.

Combining the two corrections, we get that the probability of Event I
is 2−4(1 + 23.9 × 2−18), and hence the number of samples required for the
distinguishing is approximately 232. Since each sample is obtained from a
cycle of 64 words, the overall data complexity of the attack is close to 238

key-stream words.

A.2 The Attack on MV3 Presented in [15]

The attack is essentially the same as the attack presented in our paper, but
claims a different overall complexity due to the following errors:

1. On Page 244 it is stated that

Pr[Const1 = Const2] =
2(

256
2

) ≈ 2−13.99.

This statement is incorrect. We have Const1 = Const2 if two unordered
pairs of integers between 1 and 256 are equal. The probability that
two such ordered pairs are equal is 2−16. Since the order does not
matter, the probability is approximately doubled. Hence, the correct
probability is approximately 2−15.

2. Formula (5) on Page 244 states that

Pr([xt · c]0,1 ⊕ [(xt + Const1) · c]0,1 ⊕ [xτ · c]0,1⊕
[(xτ + Const2) · c]0,1 = 0) ≈ 1/2 + 0.66 · 2−13.99.
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The right hand side is incorrect. The formula follows from combining
the relation Const1 = Const2 which holds (by the author’s claims) with
probability 2−13.99, and the approximation of the relation between XOR
and addition (taken from the paper of Cho and Pieprzyk) which holds
with probability 2/3. Hence, the correct probability is

2−13.99 · (2/3) + (1− 2−13.99) · (1/2) = 1/2 + 2−13.99 · (1/6).

3. The bias of expression (6) is calculated on page 245 to be

1

2
(1 + 22 · (2

3
)32−8(2−13.99)2) ≈ 1

2
+ 2−36.73.

This formula combines the biases of three expressions of the form of
(5) using Matsui’s Piling-up Lemma [12]. The lemma states that if
the biases are q1, q2, q3, then the overall bias is 22q1q2q3. In our case,
two of the biases are equal to (1/6) · 2−15 (instead of (2/3) · 2−13.99,
as we explained above). For similar reasons, the third bias is equal to
(1/6) · 2−8 (instead of (2/3) · 2−8). Hence, the total probability should
be updated to

1

2
+ 22 · (1

6
)3 2−8 (2−15)2) ≈ 1

2
+ 2−43.73.

Note that this probability agrees with the probability computed in our
attack in (15).

4. The number of samples required for the distinguishing attack is com-
puted as

n = 2−9.53 × 272.46 = 262.93,

due to the parallel application of multiple approximations. However,
this number counts 32-word cycles and not single key-stream words
(only a full cycle contains 29.53 approximations that can be used in par-
allel). Hence, the overall data complexity in key-stream words should
be multiplied by 25.

Combining all the corrections, the bias of the approximation should be
multiplied by 27, and the final data complexity should be multiplied by 25.
Hence, the correct data complexity of the attack is

262.93 · (27)2 · 25 = 281.93,

consistent with our attack.
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