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Abstract—In this paper, we propose a security model to capture active attacks against multi-path key establishment (MPKE) in
sensor networks. Our model strengthens previous models to capture more attacks and achieve essential security goals for multi-
path key establishment. In this model, we can apply protocols for perfectly secure message transmission to solve the multi-path key
establishment problem. We propose a simple new protocol for optimal one-round perfectly secure message transmission based on
Reed-Solomon codes. Then we use this protocol to obtain two new multi-path key establishment schemes that can be applied provided
that fewer than one third of the paths are controlled by the adversary. Finally, we describe another MPKE scheme that tolerates a
higher fraction (less than 1/2) of paths controlled by the adversary. This scheme is based on a new protocol for a weakened version of
message transmission, which is very simple and efficient.
Our multi-path key establishment schemes achieve improved security and lower communication complexity, as compared to previous
schemes.
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1 INTRODUCTION

Sensor networks consist of large numbers of wireless
sensor nodes which have only limited memory as well as
limited computational and communication capabilities.
The sensor nodes are usually distributed randomly in a
certain area for data acquisition and environment mon-
itoring. After deployment, they operate unattended and
without physical protection. They need to communicate
with each other to accumulate data and (possibly) relay
the data to a base station. In many applications, such as
battle field surveillance, communications between sensor
nodes have to be encrypted. At the same time, sensor
nodes deployed in a hostile environment are prone to
be captured and compromised.

A commonly studied key management approach for
sensor networks is key predistribution, which installs
cryptographic keys in sensor nodes before the nodes are
deployed. Later, after the sensor nodes are deployed,
they discover shared keys with their neighbouring nodes
(i.e., within the wireless communication range of the
nodes). If two nodes are in each other’s communication
range and they share a common key, then they can
encrypt the messages between them using the shared
key and hence establish a secure link. A large number of
key predistribution schemes have been proposed in the
literature, e.g., [8], [3], [14], [2], [15], [7], [17].
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A key predistribution scheme does not guarantee that
each pair of nodes share a predistributed key. For two
nodes A and B that do not share a key, they can establish
a path key using a secure multi-hop path between them. On
such a path, each two consecutive nodes have a secure
link. A can transport a key K to B via this path. On each
hop, K is transported using the secure link, encrypted
using the key shared by the two consecutive nodes (see
[8]).

To enhance the security of a path key, Chan, Perrig
and Song [3] and Zhu et al [24] proposed to use multiple
paths to transmit key shares. Suppose that there are
m secure node-disjoint paths between A and B (for a
discussion on how to find such paths, see [3]). Once n
such paths are identified, A could send n key shares
s1, . . . , sn to B, one share via each path. B recovers
the key K as K = s1 ⊕ . . . ⊕ sn. Note that the actual
number of such paths can be estimated using the k-
connectivity properties of a sensor network secured by
key predistribution schemes (see, e.g., [3], [23]).

The path key establishment using K = s1 ⊕ . . . ⊕ sn

is vulnerable to message dropping or altering. In [24],
Zhu et al also proposed to use an (n, k) secret sharing
scheme [20] to compute the shares and to recover the
key. An (n, k) secret sharing scheme generates n shares
for a secret s. With any k of these n shares, the secret s
can be recovered. The secret sharing scheme enables B
to recover the key when some shares are dropped.

To withstand message dropping and altering attacks,
Huang and Mehdi [10] proposed a multi-path key es-
tablishment scheme (the HM scheme) based on Reed-
Solomon (RS) codes. In the HM scheme, A chooses a



MULTI-PATH KEY ESTABLISHMENT IN SENSOR NETWORKS 2

key and encodes it in an RS codeword which consists
of multiple symbols. The symbols are sent to B via
multiple paths. The RS code provides error-correction
ability so that B can recover the key when some symbols
are dropped or altered. However, we show in Section 3
that there are some deficiencies in the Huang and Mehdi
scheme.

Deng and Han [5] proposed another RS code based
multi-path key establishment scheme named JERT (Just
Enough Redundancy Transmission). JERT is designed
for two neighbouring nodes which have a direct com-
munication link which provides authentication but not
secrecy (e.g., a broadcast channel), over which B can
send feedback to A. Unlike the HM scheme where A
transmits all the symbols of a codeword at the same time,
A transmits the symbols incrementally in JERT. When B
has received enough symbols and recovers a key, B and
A can run an authentication protocol over their direct
link to verify the recovered key. If the key recovered by
B is correct, then A will not send the remaining symbols.
We analyze the JERT scheme in more detail in Section 3.

1.1 Our Contributions

We first define a model for multi-path key establishment
(MPKE). This model enhances the model used in [10]
and [5], which does not adequately address the ques-
tion of secrecy of the established key. (As a result, the
previous schemes are not secure.) Our model explicitly
requires secrecy of the established key against active
adversaries, and the schemes we construct are secure in
this strengthened model.

Informally, there are two specific security objectives
that need to be achieved:

reliability
The adversary nodes should not be able to
prevent B from computing the key K that was
chosen by A.

secrecy
From the point of view of the adversary nodes,
the entropy of K (given the information that
they observe) should be sufficiently high so that
they cannot compute K.

Our initial observation is that the above objectives
can be realized using a protocol for perfectly secure
message transmission (PSMT). This connection has not
been pointed out or utilized in most previous papers on
the topic of MPKE (the sole exception being the 2004
paper by Wang [22], which considers a somewhat dif-
ferent problem). We note that constructions and bounds
for PSMT have been studied extensively since the 1993
paper of Dolev et al [6], and we argue that this theory
can be profitably applied in the context of multi-path
key establishment.

We then propose a new optimal protocol for one-
round PSMT based on Reed-Solomon codes. Our pro-
tocol is somewhat similar to a protocol found in Fitzi

et al [9]; however, we require only a single Reed-
Solomon codeword to be generated, split into pieces and
transmitted over the various channels. We believe that
our scheme is the simplest optimal one-round PSMT yet
proposed.

We use our new PSMT protocol to obtain two new
multi-path key establishment schemes that can be ap-
plied provided that fewer than one third of the paths
are controlled by the adversary. Our first PSMT scheme
works in the same setting as the HM scheme, where A
does not need to receive feedback from B; it is in fact
just a straightforward usage of PSMT for the purposes
of MPKE. Our second PSMT scheme works in the same
setting as JERT, where A can receive feedback from B
to reduce message transmission. For this scheme, we
make use of the fact that our PSMT scheme consists
of transmitting a single Reed-Solomon codeword; this
allows the symbols in the codeword to be transmitted
incrementally, until B has obtained a sufficient umber of
symbols to decode the codeword correctly.

We optimize the parameters of both these MPKE
schemes so that A uses the minimum transmission pos-
sible for B to recover a secure key.

Our third MPKE scheme tolerates a higher fraction
(less than 1/2) of paths controlled by the adversary. This
scheme is based on a new protocol for a “weakened”
version of message transmission, which is very simple
and efficient. To be specific, we sacrifice unconditional
security (which is required in PSMT but not in MPKE)
to obtain higher tolerance of adversary nodes.

1.2 Organization

The remainder of the paper is organized as follows. In
Section 2, we describe the proposed model and some
results on secure message transmission, Reed-Solomon
codes and key derivation using resilient functions. In
Section 3, we present and analyze the HM and JERT
schemes. In Section 4, we present our first two new
schemes and their analysis. In Section 5, we present our
third scheme, which tolerates a less than 1/2 fraction
of paths controlled by the adversary. In Section 6, we
conclude the paper.

2 THE MODEL AND SOME PRELIMINARIES

Our model for multi-path key establishment (MPKE) is
an enhancement of the model used in [10] and [5]. Our
model is described as follows:

1) In a sensor network secured using key predis-
tribution schemes, there often are multiple node-
disjoint paths between a specified source node A
and a specified destination node B. Every two
consecutive nodes (i.e., a link) on such a path have
a common key, and no two of these paths contain
any common nodes except for A and B. These
paths are identified by A before key establishment
takes place (e.g., using techniques such as those
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described in [3]). A sends key establishment mes-
sages over the paths. The efficiency of the scheme is
measured by communication complexity, i.e., the total
amount of information that is transmitted over all
the paths.

2) We will assume that a fraction e of these paths
(where 0 ≤ e < 1/2) are controlled by an adversary.
We call e the error rate. A path P is controlled
by an adversary if there exists an adversary that
has knowledge of the key corresponding to a link
on the path P 1. We assume that an adversary
controlling a path P can observe, drop or alter any
messages that are transmitted from A to B using
the path P .

3) The goal of a key establishment scheme is to enable
A and B to establish a key with sufficient entropy.
This leads to two security requirements.

a) First, the adversary should not be able to
disrupt the protocol by preventing B from
computing the same key K that A holds.

b) Second, the adversary should be prevented
from determining partial information about
the established key. This idea is formalized
by considering the entropy of the message
M received by B, from the point of view of
the adversary who collects partial information
about M (see Section 2.2.1 for details).

Note that we are building on the model used in [10]
and [5]; in particular, the first two requirements above,
as well as requirement 3(a), are similar to those used in
the prior works. However, the entropy of the established
key is not analyzed in [10] and [5]. Entropy is a critical
requirement for the established key to be secure, because
a key with low entropy can easily be determined by
the adversary by exhaustive search. Key entropy should
be considered when evaluating the scheme, along with
efficiency. This is why we have extended the model to
include an explicit requirement regarding entropy of the
key.

2.1 Secure Message Transmission
Perfectly secure message transmission (PSMT) was in-
troduced in 1993 by Dolev et al [6]. We define PSMT
protocols and summarize some relevant results in this
section.

Suppose two parties A and B are connected by p
channels. An adversary controls pa (or fewer) of these
channels, but it is not known which channels are con-
trolled by the adversary. The adversary can observe,
delete, or modify the information in these pa channels.

1. An adversary who controls a node N in one of the paths P from
A to B has access to all the keys stored in N . Suppose that one of
these keys, say K, is stored by a node N ′ in another path P ′ from A
to B. Therefore the adversary can read information encrypted using
the key K, and thus the path P ′ will not be secure. So the number of
paths controlled by the adversary can be greater than the number of
nodes controlled by the adversary. See [22] for more discussion on this
issue.

An r-round (p, pa)-perfectly secure message transmission
scheme is an interactive protocol between A and B which
takes place in r rounds (denoted as rounds 1, . . . , r), such
that the following properties are satisfied:

1) In each odd-numbered round, A sends information
to B over each of the p channels connecting them.

2) In each even-numbered round, B sends informa-
tion to A over each of the p channels connecting
them.

3) After the rth round, A and B both possess a com-
mon key K which is an element of a prespecified
key space K.

4) The adversary has no information on the value of
K (so the entropy of K, from the point of view of
the adversary, is log |K|).

The overhead of a PSMT is defined to be the ratio
amount of information transmitted over all p channels

length of the key K
.

There is a large literature on PSMT. For our purposes,
we are most interested in one-round protocols, since
these are the simplest and best suited to be applied to
multipath key establishment. It was proven in [6] that
a 1-round (p, pa)-perfectly secure message transmission
scheme exists if and only if p ≥ 3pa + 1. It is shown in
[9] that the overhead of a one-round PSMT satisfies the
condition

overhead ≥ p

p− 3pa
. (1)

Furthermore, for all pairs (p, pa) with p ≥ 3pa + 1,
schemes that meet this bound with equality (i.e., optimal
overhead schemes) are constructed in [9].

If 3pa ≥ p ≥ 2pa + 1, then all is not lost. It is possible
to construct 2-round (p, pa)-PSMT in these cases [19],
[13]. Alternatively, one can obtain one-round schemes
that are not perfectly reliable (i.e., where condition 3
in the definition of PSMT is relaxed). Such schemes are
constructed in [12], [16].

2.1.1 Comparison Between PSMT and MPKE
A PSMT assumes multiple channels connecting A and
B. The channels not controlled by the adversary are
assumed to provide unconditional secrecy and authen-
ticity. The security of a PSMT scheme is unconditional,
provided that no computational assumptions are made
in the analysis of the protocol. Almost all PSMT in
the literature are studied in the setting of unconditional
security.

In an MPKE, information is transmitted over links in
encrypted form using conventional secret-key cryptog-
raphy. Therefore we do not expect an MPKE to pro-
vide unconditional security; the security will depend on
the assumption that the encryption and authentication
schemes are (computationally) secure. Additional com-
putational assumptions may be required, depending on
the scheme.

In summary, any PSMT can be used for MPKE, but
there are reasonable and practical MPKE schemes that
are not PSMT schemes.
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2.2 Reed-Solomon Codes

Many PSMT protocols are based on Reed-Solomon
codes, which we introduce now. There are different
ways to construct RS codes. Each has its encoding and
decoding algorithms. Here we only describe the general
functionalities of the encoding/decoding algorithms. For
details of the algorithms, see, e.g., [18], [11]. Simply
speaking, the input of the RS encoding algorithm is a
message m = (m0, . . . ,mk−1) ∈ F k

q where Fq is a finite
field of order q. The output of an RS encoding algorithm
is c = (c0, . . . , cn−1) ∈ Fn

q where k ≤ n ≤ q. c is called a
codeword. Each element in m or c is called a symbol.

If it always happens that ci = mi for 0 ≤ i ≤ k−1, then
the encoding is systematic. In this case, m0, . . . ,mk−1 may
be called information symbols and ck, . . . , cn−1 may be
called parity check symbols. Not all RS encoding schemes
are systematic, however.

The above-described RS code has length n and dimen-
sion k. Its distance is d = n− k + 1 (i.e., any two distinct
codewords differ in at least n− k + 1 symbols).

A Reed-Solomon code is a linear code, which means
that the codewords form a k-dimensional subspace of the
vector space Fn

q . A commonly-used method of encoding
a linear code is to construct a generator matrix, denoted
G, whose rows form a basis for the code. Then, to encode
a message m, we compute c = mG.

During transmission, some symbols in a codeword c
may be deleted or altered. Suppose that δ of the symbols
in c are deleted, and ε other symbols in c are altered.
Let r be the resulting received vector. The input of the
decoding algorithm is r. The output of the decoding
algorithm is the codeword whose distance from r is
minimized. It is a standard result in coding theory that
this decoding algorithm will output c provided that

δ + 2ε < d. (2)

In the case of an RS code, we have d = n−k+ 1 and the
condition (2) becomes

δ + 2ε ≤ n− k. (3)

Given any codeword c, it is a simple matter to obtain
the corresponding message m, regardless of whether or
not the code is systematic.

In the above-described RS code, a message consists of
k symbols and a codeword consists of n (n ≥ k) symbols.
The code is termed an (n, k) RS code.

2.2.1 Evaluating the Secrecy of a Message

When RS codes are used to encode and transmit a secret
message m = (m0, . . . ,mk−1), we need to consider the
entropy of m from an adversary’s point of view. The
original entropy of m is k log2 q bits. Suppose that i
symbols are received by the adversary. If i ≥ k, then
the adversary can recover m, and the entropy of m is 0.
If i < k, then the adversary can randomly guess k − i
additional symbols and recover a (possibly incorrect)

message. In this case the adversary recovers the correct
message with probability

1
2(k−i) log2 q

.

Therefore, when the adversary knows i symbols in m,
the entropy of m is

max{(k − i) log2 q, 0}

bits.

2.3 Key Derivation and Resilient Functions
In the protocols we will be describing, the key K, which
is derived from a k-tuple m, should have sufficient
entropy. We will use the number of symbols, instead of
number of bits, to indicate the entropy. In this terminol-
ogy, the entropy of a message m is k symbols.

To ensure that K is secure, we desire that m should
have entropy at least ` symbols, for some prespecified
value of `. There are several ways to derive K from
m while preserving its entropy. For example, we can
use a cryptographic hash function hash to compute
K = hash(m). If it holds that

1) the hash function is modelled as a random oracle,
2) the input of the hash function has entropy at least

` symbols, and
3) the output of the hash function has a length of at

least ` symbols,
then the entropy of the derived key K is at least `
symbols (so we say that K is `-secure).

The above approach only provides computational se-
curity of the key. An alternative is to use resilient func-
tions [1], [4] to derive the key. This approach would
provide unconditional security of the key.

Suppose q is a prime power. Let k, `, t be positive
integers such that k ≥ `+ t. A (k, `, t, q)-resilient function,
or (k, `, t, q)-RF, is a function f : F k

q → F `
q such that

f(m) is uniformly distributed in F `
q whenever any t

inputs are fixed and the remaining k−t inputs are chosen
independently and uniformly at random from Fq , e.g.,
by an adversary (here we are regarding f as a function
with k inputs from Fq).

There is a large body of literature on resilient func-
tions. For our purposes, we need a well-known class of
resilient functions that is derived from Reed-Solomon
codes. In fact, any linear code gives rise to a linear
function. The following was proven for binary codes in
[1], [4]. It was observed in [21] that the same result holds
for codes over an arbitrary finite field.

Theorem 2.1: Suppose q is a prime power, and suppose
there exists a linear code over Fq having length n, dimen-
sion k and distance d. Then there exists a (n, k, d− 1, q)-
RF.

Using Reed-Solomon codes, the following is an imme-
diate corollary.

Corollary 2.2: Suppose q is a prime power such that
q ≥ k > `, where k and ` are positive integers. Then
there exists a (k, `, k − `, q)-RF.
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The construction of a (k, `, k − `, q)-RF is easy. Let
G be the generator matrix of a Reed-Solomon code of
dimension ` and length k over Fq . Then f is defined as
f(m) = mGT , where GT denotes the transpose of G.

Remark. The above-described usage of resilient func-
tions has previously been employed in the literature on
PSMT; see, for example, the function EXTRAND in [16,
§4.2]. However, surprisingly, the connection to resilient
functions is not made in [16] or in other papers on PSMT.

3 ANALYSIS OF THE HM AND JERT
SCHEMES

In this section, we analyze the HM and JERT schemes.
The HM scheme does not achieve its stated objectives,
and, moreover, it is insecure. The main problem with the
JERT scheme is that the security is not proved under a
strong enough adversarial model.

3.1 The HM Scheme
The HM scheme [10] is as follows. Let n − k = 2t. The
number of paths controlled by the adversary is assumed
to be at most t. Suppose that there are p node-disjoint
paths between A and B, where 2t < p ≤ k. A chooses
a message m = (m0, . . . ,mk−1) and uses a systematic
(n, k) RS encoding algorithm to generate a codeword
c = (m0, . . . ,mk−1, b0, . . . , b2t−1). m0, . . . ,mk−1 are k
information symbols and b0, . . . , b2t−1 are 2t parity check
symbols. Let b = (b0, . . . , b2t−1). Then A creates k (2t+1)-
tuples, each of the form mi ‖ b, and sends at most t of
the (2t + 1)-tuples on each of the p node-disjoint paths
(note that this requires that k ≤ pt, which is not stated
as a necessary condition in [10]).

Since there are at most t paths that are controlled by
the adversary and p > 2t, B can use majority rule to
find the correct b. It is then claimed in [10] that B can
then recover m, but ability to recover m also depends
on how many information symbols have been altered by
the adversary. In fact, we show that B may not be able to
recover m at all in many situations. Suppose k > p > 2t
(note that it is assumed that 2t < p ≤ k, so we are just
saying that k 6= p). Suppose that each message symbol
is transmitted by one path. Then there is at least one of
the p paths, say P0, that is used to transmit at least two
message symbols. If P0 is one of the t paths controlled
by the adversary, then the adversary can alter at least
t + 1 message symbols. However, an RS code can only
correct t errors, so the message cannot be recovered by
B.

Another problem with the scheme in [10] is that
adversary can obtain information about the message.
Recall that the scheme is supposed to tolerate up to t
compromised paths. However, if t paths are controlled
by the adversary, then the adversary receives 2t correct
parity check symbols and at least t correct information
symbols, and hence by (3) the adversaries collectively
are able to recover m when 3t ≥ k (equivalently, when

n ≤ 5t). Even when there is only one adversary node,
it will receive 2t parity check symbols and at least one
information symbol. Then the entropy of the key is
max{k − 2t− 1, 0} symbols, which could be very low.

We regard it as a weakness in the scheme for A to send
all the 2t parity check symbols on every path, because
for decoding of RS codes, a parity check symbol yields
the same amount of information about the message as
an information symbol does. Another problem (as noted
in [5]) is that the scheme is quite inefficient due to the
amount of repeated information that is transmitted.

3.2 The JERT Scheme

JERT [5] is designed for two neighbouring nodes that
have a direct channel that provides message integrity
but not secrecy, e.g., a broadcast channel. In this case,
A and B can run a challenge-response authentication
protocol over this insecure channel to verify if they share
a common secret key. The communication overhead over
the direct link is neglected in the analysis of the efficiency
of the scheme.

Here are the details of the scheme. A chooses
m = (m0, . . . ,mk−1), encodes it into a codeword c =
(c0, . . . , cn−1), and derives a key K from m. Then A
selects p node-disjoint paths between A and B. A divides
the n symbols into R groups. Group j contains rj
symbols. It holds that

R∑
j=1

rj = n.

A sends the n symbols in R rounds. In round j, the rj
symbols in group j are sent over the p paths. For each
path i, A computes fraction parameters qi (0 ≤ qi ≤ 1),
where

p∑
i=1

qi = 1.

Then A sends rjqi symbols over path i in round j. In
each round, if B can recover an m′ using all the received
symbols, then B derives a key K ′ from m′, and runs an
authentication protocol with A over their direct link to
verify if K = K ′. A keeps on sending the codeword
symbols until the authentication protocol indicates that
K ′ = K or until all n symbols are sent.

The main purpose JERT is for A to send just enough
symbols for B to recover K, instead of transmitting all
symbols as in the HM scheme. JERT may be thought of
as an adaptive algorithm, whereas HM is non-adaptive.

The security analysis in [5] discusses three attack
scenarios:

1) All adversary nodes are passive. In this case, the
probability that a given fraction of the symbols are
received by the adversary is computed.

2) All adversary nodes are active. In this case, the
number of symbols that must be sent so that B
can recover the key is computed.
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3) Some adversary nodes are active and some are
passive. This case is not analyzed in [5], where it is
stated that an analysis of this case “would be quite
complex”.

We believe that an adequate security model should
consider any combination of active and passive adver-
saries.

4 TWO NEW SCHEMES FOR MPKE BASED ON
REED-SOLOMON CODES

In our schemes, we consider all possible attack scenarios.
First, the adversary nodes cannot make B accept an
incorrect key, even if all the adversary nodes are active.
Therefore, since B learns the correct key, K, we only
need to consider how much information the adversary
nodes can derive about K. For this analysis, we allow
adversary nodes to be active or passive.

In this section, we propose two multi-path key es-
tablishment schemes, Protocol 1 and Protocol 2. These
protocols are obtained from a new and extremely simple
PSMT protocol based on (n, k) RS codes. In Protocol
1, as in the HM scheme, A does not receive feedback
from B. In Protocol 2, as in the JERT scheme, A receives
feedback from B. For both schemes, we are interested in
finding the optimal choice of (n, k) values such that B
can recover a key with the desired entropy while A only
transmits the minimum possible number of bits (i.e., the
transmission overhead is optimized).

As mentioned above, our schemes are based on RS
codes over finite field Fq . We assume that q is fixed and
q ≥ n in the chosen (n, k) RS code.

4.1 Protocol 1
Here are the details of our first MPKE protocol, which
is in fact a 1-round PSMT scheme if the parameters
are chosen appropriately. We refer to this protocol as
Protocol 1.

1) A chooses a random message m =
(m0, . . . ,mk−1) ∈ F k

q and encodes it into an
RS codeword c = (c0, . . . , cn−1) ∈ Fn

q .
2) A sends the n codeword symbols over p pre-

specified node-disjoint paths. Note that the number
of symbols sent over any path is either dn

p e or bn
p c.

3) B decodes the received symbols to a codeword c′.
Then a message m′ is derived from c′. Finally, a
key K ′ is derived from m′ using a pre-specified
key derivation function.

We discuss feasible and optimal choices of (n, k) val-
ues in Section 4.1.1.

Remark. When B receives a symbol ci, B also needs to
know its index i for decoding purposes (this applies to
the HM scheme and JERT as well). This objective could
be accomplished, for example, if A and B have some
synchronization mechanism. In any event, we assume
that B has some reliable means of knowing the index of
any received symbol.

4.1.1 Analysis and Optimization

Our goal is that the key K (derived from m) has entropy
` symbols if m has entropy at least ` symbols. We will
derive conditions to ensure that m has entropy at least
` symbols. Then the key derivation function is just a
(k, `, k−`, q)-RF, obtained from Corollary 2.2. This would
provide A and B with an unconditionally secure key in
F `

q .
Suppose there are p node-disjoint paths from A to B

and pa of these paths are controlled by the adversary.
Therefore the error rate is e = pa/p. For simplicity,
assume that n/p is an integer. Then in Protocol 1,
n/p × pa = ne symbols will be received by adversary
nodes. These ne symbols may be altered or deleted.

First, we derive a condition to ensure reliability (i.e., so
that B can correctly compute the key K). Since altering
symbols makes it most difficult for B to recover m, we
assume that these ne symbols are all altered. For B to be
able to correctly recover m, the condition (3) becomes

ne ≤ n− k
2

. (4)

Observe that (4) implies that ne < n/2, so e < 1/2.

Remark. If the scheme satisfies (4), then it is already
a perfectly reliable message transmission scheme (for a
definition, see [16]).

Now we consider secrecy of the transmitted message.
In order for m to have entropy at least ` symbols, we
require that

k − ne ≥ `. (5)

Using the fact that the desired entropy ` > 0, it can be
seen that (4) and (5) together imply that

k

1− 2e
≤ n < k

e
,

which yields e < 1/3.
So hereinafter we assume that e < 1/3. Under this

assumption, (4) and (5) are equivalent to

k − `
e
≥ n ≥ k

1− 2e
. (6)

The inequalities in (6) provide the conditions under
which B can compute a key with entropy at least `
symbols. Note that (6) can equivalently be expressed as
follows:

n(1− 2e) ≥ k ≥ `+ ne. (7)

Suppose a value ` is fixed. Then we define an ordered
pair (n, k) to be e-feasible if (6) (equivalently, (7)) is
satisfied.

Given ` and e, the set of all e-feasible ordered pairs
form a region, a typical example of which is indicated by
the shadowed area in Figure 1. The optimal solution will
be an ordered pair of integers (n, k) that is close to the
ordered pair (nmin, kmin), which denotes the intersection
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of the two lines k = n(1 − 2e)and k = ` + ne. It is easy
to compute

nmin =
`

1− 3e
and kmin =

`(1− 2e)
1− 3e

. (8)

Clearly nmin > 0 and kmin > 0 because e < 1/3. nmin

represents the optimal transmission size in the protocol.
Theorem 4.1: Suppose ` is a positive integer and 0 ≤

e < 1/3. Suppose (n, k) is e-feasible. Finally, suppose that
there are p disjoint paths from A to B, where pa = pe
of these paths are controlled by the adversary. Suppose
that n/p is an integer. Then Protocol 1 yields an `-secure
secret key. The total transmission of Protocol 1 consists
of n symbols.

If we apply Protocol 1 with (n, k) = (nmin, kmin), then
the transmission overhead is

n

`
=

1
1− 3e

=
p

p− 3pa
,

which is optimal, by (1).
Protocol 1 is analyzed in terms of the error rate e. In

general, the error rate will not be known. In practice,
Alice and Bob would choose a value e∗ < 1/3 which
they hope is an upper bound on e. They would then
execute Protocol 1 with an e∗-feasible ordered pair (n, k).
It is easy to see that an e∗-feasible ordered pair is also
e-feasible provided that 0 ≤ e ≤ e∗, so Protocol 1 will
still work correctly in these circumstances.

Example. Suppose that e = 1/5, p = 5 and ` = 40.
Then we can take n = 100 and k = 40 in Theorem
4.1. That is, we obtain a 40-secure key using a (100, 40)
RS code under the assumption that at most one of five
node-disjoint paths joining A and B is controlled by the
adversary.

4.2 Protocol 2
In Protocol 1, if the actual error rate e < e∗, then the
protocol might transmit more information than is actu-
ally necessary, i.e., the efficiency might not be optimal.
To reduce the number of transmitted symbols, A can use
feedback from B. This idea was first proposed in JERT
[5]. JERT is designed for two neighbouring nodes that
can communicate directly. It is assumed that the channel
connecting A and B is a broadcast channel. Therefore,
it provides data integrity, but no confidentiality or data
origin authentication. The lack of confidentiality or au-
thentication is not a problem, as this channel is used only
for message authentication. We assume a similar channel
in our protocol.

Next we define Protocol 2, where B will send feed-
back to A using the broadcast channel. Let e∗ be the
maximum error rate that the protocol is designed for
(i.e., an e∗-feasible ordered pair (n, k) is chosen for use
in the protocol). As before, assume that there are p node-
disjoint paths from A to B and assume for convenience
that p | n. In Protocol 2, MAC denotes a secure message
authentication protocol.

1) A chooses a random message m =
(m0, . . . ,mk−1) ∈ F k

q and encodes it into an
RS codeword c = (c0, . . . , cn−1) ∈ Fn

q .
2) In each of n/p rounds, A sends one codeword sym-

bol over each of the p pre-specified node-disjoint
paths.

3) After each round, B attempts to decode the sym-
bols he has received in the current and all previous
rounds to a codeword c′. If he is successful, then
a message m′ is derived from c′ and a key K ′ is
derived from m′ using the key derivation function.

4) If B is able to compute a (possible) key K ′, then
B initiates a conventional message authentication
code (MAC) based mutual authentication protocol
with A over the broadcast channel. In the protocol,
A and B both verify if they hold the same key.
If the authentication succeeds, then both A and B
stop. Since we assumed that the broadcast channel
provides integrity, the adversary is not able to
change the messages between A and B in the
authentication protocol. If A and B have the same
key, then the adversary is not able to prevent the
authentication from succeeding.

4.2.1 Analysis
First, we consider the properties of security and reliabil-
ity. We claim that Protocol 2 is computationally secure
whenever the mutual authentication protocol used in
step 4 is computationally secure. It is certainly possible
that B computes an incorrect key, but he will not accept
a wrong key (except with very small probability) due
to the mutual authentication protocol used in step 4
to prove possession of the new key. Eventually, after
some number of rounds, B will be able to compute the
correct key provided that e ≤ e∗ (for details, see below).
Therefore Protocol 2 achieves reliability. Secrecy follows
from the same analysis as for Protocol 1.

Protocol 2 is also secure against mobile adversaries.
(A mobile adversary is allowed to compromise different
nodes in different rounds, subject to the constraint that
the error rate is at most e∗ in any given round.)

Next, we analyze the efficiency of Protocol 2 by de-
termining the number of rounds required for B to be
able to compute the correct key K. After r rounds, B
has received rp symbols, at most rpe of which have been
altered. The number of symbols which have not yet been
transmitted to B is n− pr. Thus B has a received vector
in which ε ≤ per and δ = n− pr. Referring to (3), B can
correctly decode this received vector if

2rpe+ n− pr ≤ n− k,

which is equivalent to

r ≥ k

p(1− 2e)
. (9)

Therefore the correct key is computed by B after at most
dk/(p(1− 2e))e rounds. It follows that the speedup factor
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Fig. 1. e-feasible ordered pairs (n, k) for given error rate e and desired key entropy `.

of Protocol 2 as compared to Protocol 1 is

1− 2e∗

1− 2e
.

If e = e∗, then the number of rounds required is dk/(p(1−
2e∗))e. If e = 0, then the number of rounds required is
dk/pe.

Summarizing the above discussion, we have the fol-
lowing theorem.

Theorem 4.2: Suppose ` is a positive integer and 0 <
e ≤ e∗ < 1/3 and suppose (n, k) is e∗-feasible. Suppose
that there are p disjoint paths from A to B, where
pa = pe of these paths are controlled by the adver-
sary. Then Protocol 2 yields an `-secure secret key. The
total transmission of Protocol 2 consists of (roughly)
n(1− 2e∗)/(1− 2e) symbols.

Remark. In practice, B would not attempt to decode the
received vector after every round. The exact error rate
e = pa/p, where pa ≤ pe∗ is an integer. Using (9), we
see that it is sufficient for B to decode a received vector
only when a round r has the form

r =

 k

p
(

1− 2i
p

)
 =

⌈
k

p− 2i

⌉
for some integer i ≥ 0.

5 A SCHEME TOLERATING ERROR RATE <
1/2

Both of our protocols described in Section 4 assume that
the number of paths controlled by the adversary is less
than a 1/3 fraction of the number of paths connecting
A and B. A higher fraction (less than 1/2) of paths
controlled by the adversary could be tolerated by using
appropriate message transmission schemes mentioned
in Section 2.1. These schemes either require additional
rounds of communication or they are not perfectly
reliable. They are also somewhat complicated and/or
inefficient. In this section, we present a new 2-round
protocol for a weakened version of message transmission
which is very simple and efficient, and well-suited for
application as a MPKE scheme. Our protocol will be
computationally secure provided that certain specified
ingredients exist.

Our scheme has the following properties:
• We assume that A and B are joined by p node-

disjoint paths, at most pa of which are controlled
the adversary, where p ≥ 2pa + 1.

• We require a mapping h : K → T , where K is the
key component space and T is the tag space. We will
take K = Fq for some prime power q ≥ p.

• The scheme will be perfectly reliable if h is injective
(in this case, the scheme enables A and B to estab-
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lish a shared key K ∈ K with probability equal to 1
independent of any computational assumptions).

• The scheme will be (computationally) reliable if h is
second-preimage resistant.

• Under the assumption that h is a random function,
the scheme provides secrecy of the established key.
(For a random function, a computationally-bounded
adversary is unable to compute any non-negligible
information about a secret value L, when the adver-
sary is given only the value h(L).)

• The scheme is a two-round scheme.
Here is the protocol, which we term Protocol 3.
1) For 1 ≤ i ≤ p, A chooses a key component Li ∈ K

independently and uniformly at random. Then A
computes hi = h(Li), i = 1, . . . , p.

2) For 1 ≤ i ≤ p, A sends Li over the ith path. Also,
for 1 ≤ i, j ≤ p, i 6= j, A defines hi,j = hi and sends
hi,j over the jth path.

3) a) For 1 ≤ i ≤ p, B computes

check(i) = {j : hi,j = h(Li)}.

b) B accepts Li if and only if |check(i)| ≥ p−pa−
1.

c) B defines

accept = {i : B accepts Li}

and n = |accept|.
d) B defines m = (Li : i ∈ accept).
e) B computes K = f(m), where f is an (n, p−

pa, n− (p− pa), q)-resilient function.
4) B transmits accept to A over every one of the p

paths.
5) a) A determines accept, as it will be correctly

received over at least p − pa paths (i.e., a
majority of the paths).

b) A computes m and K exactly as B did.
Remark. As described above, Protocol 3 is not a message
transmission scheme due to the fact that the value of the
derived key, K, is not specified a priori ; its value depends
on possible actions of the adversary. This is sufficient for
the goals of an MPKE scheme. However, if desired, it is
easy to use a standard trick to make a minor alteration
to our scheme in order to transmit a predetermined key
K∗ from A to B. Namely, the protocol would be initiated
by B (instead of A), and in the second round, A would
send K∗ +K to B along with accept.

Remark. In practice, we could take h to be a second
preimage-resistant and one-way hash function. Another
alternative is to let h be a semantically secure public-
key cryptosystem with randomly chosen public key, in
which case h would be injective.

5.1 Analysis
First, we show that if B accepts a key component Li,
then it was not altered by the adversary. Suppose that the
adversary replaces Li by a different value L′i. Assuming

that h is injective, we have that h(L′i) 6= h(Li). In order
for the adversary to make B accept L′i (in step 3(b)), he
would have to change at least p−pa−1 of the p−1 values
hi,j (j 6= i). But if the adversary controls pi. then the
adversary controls at most pa−1 of the other p−1 paths.
We have pa−1 < p−pa−1 because p ≥ 2pa+1. Therefore,
in this situation, the scheme is perfectly reliable.

If h is not injective but it is second-preimage resistant,
then a computationally-bounded adversary is unable to
find L′i such that h(L′i) = h(Li), even if such L′i exist.
The scheme is (computationally) reliable in this case.

It remains to evaluate the secrecy of the derived key K.
First, we observe that if the adversary does not control
the ith path, then he cannot determine any information
about the key component Li. This is because we are
assuming that h is a random mapping. Now, let r denote
the number of rejected key components; r = p − a.
Any rejected key component lies on a path controlled
by the adversary. Therefore the number of accepted
key components that lie on paths controlled by the
adversary is at most pa − r = n − (p − pa). Now, the
n-tuple m contains at most n − (p − pa) components
that are known to the adversary. Hence, application of a
(n, p−pa, n−(p−pa), q)-resilient function will yield a key
whose entropy is p− pa symbols. This resilient function
exists by Corollary 2.2.

Finally, A is also able to compute K because A is
able to correctly determine the set accept after receiving
p copies of it from B (at most pa of these copies are
altered by the adversary, so the correct accept can be
determined by majority rule).

Let’s next analyze the transmission overhead of the
scheme. For the purpose of this analysis, assume that
|K| is Θ(|T |). Then the derived key has entropy p − pa

symbols and the total transmission from A to B is Θ(p2)
symbols. The total transmission from B to A is p2 bits
(the set accept can be represented as a bitstring of
length p). Since q ≥ p, this is at most p symbols. So the
total transmission is Θ(p2) symbols, and the transmission
overhead is at most

Θ
(

p2

p− pa

)
.

Since p− pa > p/2, the transmission overhead is Θ(p).
Theorem 5.1: Suppose ` is a positive integer and 0 ≤

e < 1/2. Suppose that there are p disjoint paths from
A to B, where pa = pe of these paths are controlled by
the adversary. Then Protocol 3 yields a (p − pa)-secure
secret key. The total transmission of Protocol 3 consists
of Θ(p2) symbols, and the transmission overhead is Θ(p).

6 CONCLUSION

We proposed an enhanced security model to capture
attacks against multi-path key establishment schemes in
sensor networks. We identified two security objectives,
which we term reliability and secrecy, that should be
achieved. We observed that these objectives could be
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realized using perfectly secure message transmission
schemes.

Next, we proposed a new, optimal one-round PSMT
scheme using Reed-Solomon codes, and we constructed
two new multi-path key establishment schemes based
on it. Both MPKE schemes achieve the desired objectives
in an efficient manner. The second protocol potentially
reduces the communication complexity in some cases
by using feedback involving a message authentication
code. Both of these protocols assume that the number of
adversary-controlled paths is less than a 1/3 fraction of
the number of paths connecting A and B.

Finally, we described another MPKE scheme that tol-
erates a higher fraction (less than 1/2) of paths controlled
by the adversary. This scheme is based on a new protocol
for a weakened version of message transmission, which
is very simple and efficient.
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