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Abstract. In this paper we show how to use an old mathematical concept of
diophantine analysis, the approximation theorem of Kronecker, in symmetric

cryptography. As a first practical application we propose and analyze the new

symmetric 128-bit block cipher KronCrypt. The cipher is a 4-round Feistel
network with a non-bijective round function f made up of a variable number

of large key-dependent S-boxes, XORs and modular additions. Its key length
is variable but not less than 128 bit. The main innovation of KronCrypt in the

area of symmetric cryptography is the fact that the key-dependent S-boxes are

based upon a constructive proof of the approximation theorem of Kronecker
used as a boolean function. We prove the correctness of our concept in general

and show how we designe the new cipher KronCrypt. Furthermore, results

concerning statistical behaviour, i.e. confusion, diffusion and completeness,
and differential cryptanalysis are presented.

1. Introduction

The resumption of old mathematical ideas sometimes led to new concepts in
cryptography, e.g. the modular arithmetic and its usage in public-key cryptography
and the application of finite fields in AES. A lot of concepts of number theory and
algebra influenced new research topics in cryptography or gave rise to new ciphers.

In this paper we present a new idea for symmetric cryptography based on a
well-known result from diophantine analysis. We show how a constructive proof of
the approximation theorem of Leopold Kronecker can be used for a new private-key
cryptosystem.

In the case of KronCrypt, the design process is somewhat different to that
of lots of other private-key cryptosystems. Often, the designers want to achieve
some cryptographic goals with their new cipher, and a lot of work is done to do so.
Here for the main point we had the idea that a constructive proof of Kronecker’s
approximation theorem is a core component of new symmetric ciphers. After that,
we tried to impose a classical and modern design on that core component. Finally,
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we analyzed the resulting cipher with respect to some important modern concepts
of symmetric cryptanalysis.

KronCrypt is a symmetric 128-bit block cipher with variable key size not less
than 128 bit. The main structure is that of a Feistel network with a minimum of
r = 4 rounds and a round function f made up of a variable number s ∈ {2, 4, 8} of
large parallel key-dependent S-boxes σ : {0, 1}s1 → {0, 1}s2 , where s1 = 64/s, s2 =
64. Furthermore, compositions of XORs and additions mod s2 are used. The
KronCrypt key κ is a finite sequence of so-called partial quotients a0, . . . , aν−1 of
a regular continued fraction κ = [0; a0, a1, . . . , aν−1] or – equivalent – a rational
number c/d. Based on this main key, the round keys κi, i = 1, . . . , r, are computed
by the key schedule.

This paper is organized as follows: Section 2 introduces the main terms and
definitions from diophantine analysis. This is required to understand the definition
of KronCrypt in Section 3. In Section 4 we discuss the design goals and the various
choices we made. The following Section 5 contains a mathematical result about
KronCrypt’s security. In Section 6 we describe the quality of KronCrypt with
respect to the concepts arising from the theory of C. E. Shannon, i.e. the concepts
of confusion, diffusion, completeness and the avalanche effect [1, 2, 3, 4, 5]. Section
7 presents first results in the context of differential cryptanalysis. At last in Section
8 we summarize and present ideas for further analysis. Numerical results and their
plots are given in the Appendices A and B, test vectors can be found in Appendix
C.

2. Tools from Diophantine Analysis:
Kronecker’s Theorem and Continued Fractions

In this section we introduce the main terms and definitions of diophantine
analysis which are required to define and understand KronCrypt in the following
Section. In diophantine analysis the approximation of irrational numbers α ∈ R\Q
by rationals p/q ∈ Q is a main topic.1 The principal tools are the regular continued
fractions

a0 +
1

a1 +
1

a2 +
1

· · ·+
1

aN−1 +
1
aN

,

where the leading coefficient a0 is an integer and all partial quotients ai (i =
1, . . . , N) are positive integers. The continued fraction is said to be normed, if
aN 6= 1. It can be shown that for N → ∞ the above given expression converges
to some real number α depending on all partial quotients ai. In that case we call
the expression an infinite continued fraction, or simply continued fraction. Cur-
rent notations are [a0; a1, a2, . . . , aN ] (finite continued fraction) and [a0; a1, a2, . . .]
(infinite continued fraction).

An important term is a convergent, which is a rational number

[a0; a1, . . . , an] =:
pn
qn

(0 ≤ n ≤ N).

1Nice introductions to this discipline can be found in [6, 7].
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pn/qn is called the n-th convergent of the continued fraction. Given the partial
quotients of the continued fraction, the corresponding convergents can easily be
computed using the recurrence formulas

p0 = a0, p1 = a1a0 + 1, pn = anpn−1 + pn−2 (2 ≤ n ≤ N),(1)

q0 = 1, q1 = a1, qn = anqn−1 + qn−2 (2 ≤ n ≤ N).(2)

It is useful to know that pn and qn are coprime for all convergents and that there
is an one-to-one-correspondence between the finite and normed continued fractions
and the rational numbers Q – every rational number can be represented by a unique
finite and normed continued fraction and vice versa. Thereby the partial quotients
ai of the continued fraction of a given rational number p/q ∈ Q are the quotients
from the Euclidean Algorithm applied to p and q.

This can be generalized for irrational numbers α ∈ R \ Q leading to an infi-
nite continued fraction. Therefore we recursively define sequences (an)n∈N over N
(except a0 ∈ Z) and (θn)n∈N over R>1 (except θ0 := α ∈ R) by

an = [θn] , θn+1 =
1

θn − an
(n ≥ 0).

For an irrational number α its representation by a continued fraction is unique and

lim
n→∞

pn
qn

= α

holds. Nothing is known about the size of partial quotients in the case of irrational
numbers α except α is a real quadratic surd.

Theorem 1 (Lagrange). Let α be a real quadratic surd. Then there are non-
negative integers n,m and partial quotients a0, a1, . . . , an and b0, b1, . . . , bm such
that

(3) α = [b0; b1, . . . , bm, a0, a1, . . . , an, a0, a1, . . . , an, . . .]

is periodic. Conversely, every periodic continued fraction of the form (3) represents
a real quadratic surd α.

Convergents pn/qn are very useful in approximating the corresponding irra-
tional number α. A theorem from diophantine analysis states that

(4)
∣∣∣∣α− pn

qn

∣∣∣∣ ≤ 1
qnqn+1

≤ 1
q2n
.

Furthermore, convergents are the best rational approximations with bounded de-
nominators: for n ≥ 1, 0 < q ≤ qn and pn/qn 6= p/q, the inequality∣∣∣∣α− pn

qn

∣∣∣∣ < ∣∣∣∣α− p

q

∣∣∣∣
holds.

The main target of this section is to present a constructive proof of the ap-
proximation theorem of Kronecker, which is a inhomogenous generalization of the
approximation theorem of Hurwitz. The latter one states that for every α ∈ R \Q
there are infinitely many rationals p/q in lowest terms such that∣∣∣∣α− p

q

∣∣∣∣ < 1√
5q2

.

Now, we first state and then prove the approximation theorem of Kronecker:



4 C. ELSNER, M. SCHMIDT

Theorem 2 (Kronecker). For each α ∈ R \ Q, η ∈ R, n > 0 and δ ∈ R with
δ > 0 there are integers p, q with q > n such that

(5) |qα− p− η| <
(

1
2

+
1√
5

+ δ

)
1
q
.

Proof. Without loss of generality, let δ < 1. Let ϑ := δ/2. From the theorem
of Hurwitz it follows that there are coprime rational numbers c/d ∈ Q, d > ϑ−1n,
such that

(6) |dα− c| < 1
d
√

5
.

With h := [dη + 1/2] we have |h − dη| ≤ 1/2. From the elementary theory of
diophantine equations we know that there are integers x, y such that cx − dy = h
and ϑd− d < x ≤ ϑd. It follows that

(7) d|(d+ x)α− (c+ y)− η| ≤ (d+ x)|dα− c|+ |h− dη|.
Let p := c+ y, q := d+ x. Thus, we have q > n because

q = d+ x > d+ ϑd− d = ϑd > ϑϑ−1n = n.

That gives

(8) |qα− p− η| < (1 + ϑ)
(
d
√

5
)−1

+ (2d)−1.

Furthermore, d−1 ≤ (1 + ϑ)q−1 holds, and this final inequality is used to conclude
on

(1 + ϑ)
(
d
√

5
)−1

+ (2d)−1 <

(
1√
5

+
1
2

+ δ

)
q−1.

The theorem is proved. �

The type of approximation result in the theorem of Hurwitz is called homoge-
neous diophantine approximation, whereas the form of Kronecker’s approximation
theorem is called inhomogeneous, η is the inhomogeneity of the diophantine in-
equality. This additional term will be crucial for designing a cryptosystem based
upon this proof.

At this point, it should also be remarked that there are k-dimensional versions
of Kronecker’s theorem. They are stated as follows:

Theorem 3. Let α1, . . . , αk be a family of linear independent real numbers over
Z, let η1, . . . , ηk be arbitrary real numbers, and let N and ε be positive numbers.
Then there are integers q > N, p1, . . . , pk such that

|qαm − pm − ηm| < ε (m = 1, . . . , k).

Thereby we call a family of numbers ξ1, . . . , ξr linear independent over Z if
r∑
i=1

aiξi = 0⇒ ai = 0 (i = 1, . . . , r)

holds, where ai ∈ Z.

In contrast to the one-dimensional approximation theorem, there is no known
constructive proof for the multi-dimensional versions. Hence, they cannot be used
for cryptographic practice.
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3. KronCrypt

In this section we define the new block cipher KronCrypt. In 3.1 the key
schedule is discussed, followed by the description of encryption and decryption in
3.2.

3.1. The Key Schedule. Consider the positive integers s1, s2,m and K sat-
isfying the following conditions:

(9) 2m−1 ≥ K + 2, s2 − s1 ≥ m.

Later, it is proved that m denotes the minimal number of additional bits coming
from the process of solving an inhomogeneous diophantine inequality of the form
stated in (5). Thus, for a S-box input ρ with ρ ∈ {0, 1}s1 and the S-box σ, in
which an inhomogenous diophantine equation is solved by the process given by the
constructive proof of Theorem 2, we have a S-box σ : {0, 1}s1 → {0, 1}s2 with
s2 ≥ m+ s1.

For generating a KronCrypt key κ, we randomly choose partial quotients from
the interval I := [K, 2K − 1], where the inequality in (9) is temporarily strengthen
to an equation. Thus we have

(10) K = 2m−1 − 2.

Moreover we set the leading coefficient equal to zero, thus achieving a sequence of
partial quotients representing a rational number c/d ∈ (0, 1) as the KronCrypt key:

(11) κ = [0; a0, a1, . . . , aν−1] (ak ∈ I for k = 0, . . . , ν − 1) .

ν is chosen sufficiently large to ensure that the binary representation of κ is greater
than 128 bit.

With the recurrence formulas it follows easily that the finite sequence of partial
quotients as well as the final corresponding convergent are both equivalent repre-
sentations of one KronCrypt key κ. So the process of key generating has to ensure
that both representations have a binary length not less than 128 bit.

The computation of the round keys κi, i = 1, . . . , r, from the KronCrypt key
κ is very simple. For each round the appropriate round key is derived from κ by
running through the finite sequence a0, . . . , aν−1 in a cyclic way, starting at the
index

k = λ · i mod ν, λ = max
{[ν
r

]
, 1
}

(i = 1, . . . , r) .

Again, we set the leading coefficient equal to zero to guarantee that the round
keys κi represent rational numbers in (0, 1), too. The resulting infinite sequence of
partial quotients

(12) αi = [0; ak, ak+1, . . . , aν−1, a0, a1, . . .]

is then truncated after the index µ, where the µ-th convergent satisfies the inequality

(13) di,µ−1 ≤
(

1 +
2
K

)
2s1 < di,µ ≤ 2s2 .

As before, the convergents are derived from the sequence of partial quotients using
the recurrence formulas. The resulting finite sequence of µ + 2 partial quotients
defines the round key

κi = [0; ak mod ν , ak+1 mod ν , . . . , ak+µ mod ν ] .
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In accordance with the KronCrypt key κ the round keys κi are considered
as convergents, i.e. rational numbers, respectively. In this way, the κi are the
convergents

ci
di

:=
ci,µ
di,µ

of the irrational number αi. In the following we denote by K̃ the set of all possible
round keys. The next theorem guarantees that it is possible to compute a number
di,µ satisfying (13).

Theorem 4. By the method described above for deriving the round keys from
the KronCrypt key, there is a denominator di,µ of a convergent of αi satisfying
(13).

Proof. It follows easily from the recurrence formulas that the sequence of
denominators of convergents (di,0, di,1, . . .) is monotone increasing with respect to
the second subscript. For this reason, the left-hand side of the inequality

(14) di,µ−1 ≤
(

1 +
2
K

)
2s1 < di,µ

is obviously true. So we prove the right-hand inequality. Assume that it does not
hold, i.e.

(15) di,µ > 2s2 .

Then, on the one side, we get

di,µ
di,µ−1

>
2s2

(1 + 2/K)2s1
≥ 2m+s1

(1 + 2/K)2s1
= 2K

from (10), (14) and (15). On the other side, we have from the recurrence formula
for the denominators and from (11) that

di,µ = ak+µ mod ν · di,µ−1 + di,µ−2 ≤ 2K · di,µ−1,

a contradiction. This proves the upper bound for di,µ. �

3.2. Encryption. Similar to most Feistel ciphers, the plaintext is divided into
two halves of equal length. In the case of KronCrypt, we have

P = (L0, R0) ∈
(
{0, 1}64

)2
.

In each round of the Feistel cipher we define a round function

f : {0, 1}64 × K̃ → {0, 1}64

operating on the 64-bit string Ri (i = 0, . . . , r − 1), and on a round key κi+1 ∈ K̃.
Then, the 64-bit output of f is XORed with the left side Li (i = 0, . . . , r − 1),
and both sides are swapped for the next round. After the last round of the Feistel
cipher, the swapping of both sides is reversed and the algorithm is finished.
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3.2.1. The Round Function f . The round function f is made up of a parallel
usage of s ∈ {2, 4, 8} key-dependent and large S-boxes. Therefore, the input Ri ∈
{0, 1}64 splits into 64/s-bit strings ρ1, . . . , ρs, which are inputs of the S-boxes σj (j =
1, . . . , s). These S-boxes are nonlinear mappings

(16) σ : {0, 1}s1 → {0, 1}s2
(
s1 =

64
s
, s2 = 64

)
which are the same in one round of the Feistel cipher but differ key-dependently
from one round to the next. The results τ1, . . . , τs are combined alternately with
XOR and addition mod 264 yielding the round function output z ∈ {0, 1}64. More
precisely, we have for each round i = 1, . . . , r of the Feistel cipher that

Ri = (ρ1, . . . , ρs) ,

τj = σ(ρj),
j = 1, . . . , s.

Finally we compute the output z = f(Ri, κi+1) by

(17) z =


((((((τ1 ⊕ τ2) � τ3)⊕ τ4) � τ5)⊕ τ6) � τ7)⊕ τ8 , if s = 8
((τ1 ⊕ τ2) � τ3)⊕ τ4 , if s = 4
τ1 ⊕ τ2 , if s = 2

It is also possible to modify (17) to a symmetric bracketing which is cheaper in
hardware. Since we assume a more secure cipher (especially against differential and
linear attacks) when using the asymmetric bracketing we compute z as described
in (17).

3.2.2. The S-boxes σ. The S-boxes σ form the heart of KronCrypt. Implement-
ing the proof of Kronecker’s approximation theorem as a boolean function, we get
a real innovation in cryptography. For the substitution procedure in KronCrypt we
solve an inhomogeneous diophantine inequality. Thus, by following the lines of the
proof of Theorem 2, we define the KronCrypt S-boxes.

The terms α, c, d satisfying the inequality of the approximation theorem of
Hurwitz result from the key schedule (see 3.1). For the i-th round of the Feistel
cipher let2

(18) α := αi /∈ Q, c := ci,µ, d := di,µ,

whereas it follows from (12) and Theorem 1 that α is a quadratic surd and therefore
no rational number. The inhomogeneity represents the input ρ of σ in a scaled way:

η :=
ρ

2s1
(s1 like in (16)) .

In accordance with the proof of Theorem 2, let

h :=
[
dη +

1
2

]
.

Solving the diophantine equation

(19) cx− dy = h, −d ≤ x < 0 ,

2In the following we drop the indices i and j by reasons of clarity.
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we know from the elementary theory of diophantine equations that there is a unique
solution. To do so, we first solve the diophantine equation

cu− dv = 1

by computing

u = c−1 mod d, v =
[
c · u
d

]
.

Then, a solution of cx− dy = h is now given by

x0 = uh, y0 = vh ,

and finally we derive the unique solution of (19) by

x = x0 − td, y = y0 − tc,
where

t =
[x0

d

]
+ 1.

Hence, it follows that

(20) 0 ≤ d+ x < d.

For the completion of the S-box we put

p = c+ y, q = d+ x

and find that p and q fulfill the inhomogeneous diophantine inequality of Kronecker’s
approximation theorem with 1/2 + 1/

√
5 + δ replaced by 1/2 + 1/K. As the result

of this procedure we use the quantity q.

input (ρ ∈ {0, 1}s1 , round key c/d , u = c−1 mod d)
η := ρ/2s1

h := [d · η + 1/2]
x0 := u · h
t := [x0/d] + 1
x := x0 − t · d
q := d+ x
output (τ = q ∈ {0, 1}64 )

Algorithm 1

Algorithm 1 provides a formal account of the S-boxes in pseudocode, where
those computations from the proof of Kronecker’s theorem are omitted which are
not needed for the computation of the output q = τ .

The kernel of the following theorem is that the S-box given by Algorithm 1 really
computes an output τ ∈ N0 whose binary length is bounded above by s2 ≥ m+ s1.

Theorem 5. Let s1, s2,m,K be the numbers defined in the preceding sections.
In particular, equation s2 − s1 ≥ m holds (see (9)). Furthermore, let ρ ∈ N0 such
that ρ < 2s1 , i.e. ρ is an integer with binary length bounded above by s1. Then
the S-box σ described in Algorithm 1 computes an output σ(ρ) = τ ∈ N0 such that
τ < 2s2 , i.e. its binary length is bounded above by s2.

Proof. The Theorem follows easily with the equations (20) and (13). �

We now complete the description of the encryption scheme by two final remarks
on the choice of the parameters.
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Remark 1. From (10) we have that K = 2m−1 − 2. To guarantee that I 6= ∅
we choose the parameter m ≥ 3 since

I := [K, 2K − 1] 6= ∅ ⇔ m ≥ 3.

Remark 2. Although any S-box expands the length of its input, the additions
mod 264 and the XORs afford a round function

f : {0, 1}64 × K̃ → {0, 1}64

with a common input and output length. Therefore the number of parallel used
S-boxes must be s ≥ 2.

3.3. Decryption. Similar to any Feistel cipher the decryption algorithm is
the same as the encryption algorithm apart from reversing the sequence of round
keys.

This completes the definition of KronCrypt.

4. The Design Criteria of KronCrypt

Because of the cipher’s Feistel structure the mechanism of decryption is the
same as that one for encryption. The idea of using the approximation theorem of
Kronecker for symmetric cryptography is quite more useful in theory as described
for its practical application in KronCrypt in the last section. The proof of Kro-
necker’s theorem also provides a decryption scheme that can be used in structures
different from the Feistel structure, e.g. in a Substitution-Permutation-Network,
because the mapping defined by Algorithm 1 is invertible. This will be stated in
the following theorem, in which the terms of the last section will be used. Let

‖ξ‖ := ξ − [ξ] , ξ ∈ R≥0

be the fractional part of a non-negative real number ξ, and denote by

|ξ|Z := max
{
z ∈ Z : |z − ξ| ≤ 1

2

}
the nearest integer of a real number ξ. We shall prove the following theorem.

Theorem 6. Let ρ0 be a positive integer such that ρ0 ≡ Ω (mod 2s1) for some
integer Ω with 0 ≤ Ω < 2s1 . Moreover, let η = ρ0/2s1 . With a valid round key c/d
given by a convergent of the real number α (see (18)) and r defined by

r :=
∣∣ 2s1 ‖q · α‖

∣∣
Z

we have r = Ω, where ρ0 is considered as the S-box input. In the case 0 ≤ η < 1 we
even have r = ρ0. So, the S-box input can be computed with the S-box output and
by the round key, provided that 0 ≤ ρ0 < 2s1 .

Proof. For ρ0 = 0 we have q = r = 0 and the theorem trivially holds. So we
may assume that ρ0 > 0 and therefore Ω > 0. From (4), the recurrence formulas
and (11) we have

|dα− c| < 1
Kd

.

Applying the inequality (7) of the proof of Kronecker’s theorem and using |h− dη| ≤
1/2, we obtain

d |(d+ x)α− (c+ y)− η| < (d+ x) |dα− c|+ |h− dη| < (d+ x) · 1
Kd

+
1
2
.
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Let p := c + y and q := d + x. From the description of the S-boxes and (20) it
follows that

d |qα− p− η| < d+ x

d
· 1
K

+
1
2
<

1
K

+
1
2
.

Furthermore, dividing by d and using (13), we have

(21) |qα− p− η| < 1
d

(
1
K

+
1
2

)
<

1
(1 + 2/K) 2s1

(
1
K

+
1
2

)
=

1
2s1+1

.

In the following we abbreviate by ε := qα − p − η. Let ρ0 = w2s1 + Ω for some
integer w ≥ 0. Because η = w + Ω/2s1 ∈ (w, 1 + w) and 1 ≤ Ω ≤ 2s1 − 1, we get
the inequalities

w < w +
1

2s1
− 1

2s1+1
< η − |ε| < η + |ε|

< w +
2s1 − 1

2s1
+

1
2s1+1

= w + 1− 1
2s1+1

< w + 1 .

Therefore, we conclude on w < η + ε < w + 1. Because of qα = p + η + ε we get
‖qα‖ = η + ε− w and

r = |2s1 (η + ε− w)|Z =
∣∣∣∣2s1 ( Ω

2s1
+ ε

)∣∣∣∣
Z

= |Ω + ε · 2s1 |Z .

From (21) we derive that

−1
2
< ε · 2s1 < 1

2
.

Finally, we get

r = |Ω + ε · 2s1 |Z = Ω ,

which proves the theorem for ρ0 > 0 and some arbitrary w ≥ 0. For w = 0 (and
ρ0 > 0) we obtain r = Ω = ρ0. �

Generally speaking, the last theorem converts the constructive proof of Kro-
necker’s approximation theorem into a construction scheme for symmetric cryp-
tosystems. The question arises why the described encryption mechanism is not
used for KronCrypt. The answer to this question and a description of the design
principles of further components of KronCrypt are now given.

4.1. The Structure of an Iterated Block Cipher. The diffusion and con-
fusion properties of one S-box are not satisfying modern demands of new private-key
cryptosystems. Neither all input bits nor all partial quotients of the KronCrypt key
κ optimally influence the S-box output. In particular, the partial quotients close
to ν − 1 have a very small effect on the encryption. So, the well known principle of
creating a stronger cipher by iterating a weaker one is applied here – the delineated
problems are solved by transition to an iterated block cipher and by using the key
schedule defined in 3.1.
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4.2. The Feistel Cipher Structure and Parallel S-boxes. Because of the
iterated block cipher a further disadvantage appears, namely the enlargement of the
S-box input by applying it to the S-box. According to our present knowledge it is
not possible to omit the enlargement, but by the definition of KronCrypt in Section
3 we control it using the parameter m. Thus, the use of s ≥ 2 parallel S-boxes whose
enlargements can be controlled permit the construction of a round function f with
a common input and output bit size. This property is achieved by using the XORs
and additions mod 264, but the round function therefore loses its characteristic
feature of invertibility. This fact is the main reason for using a Feistel structure
for KronCrypt, because Feistel ciphers always define a cryptosystem despite of the
properties of the round function f .

4.3. The XORs and Additions mod 264. There are two main reasons for
the usage of these operations. First, the whole cipher gets an additional nonlin-
ear component, because the composition of two operations from different algebraic
structures leads to a nonlinear mapping. Second, the quality of KronCrypt con-
cerning concepts like diffusion and confusion is optimized by using both methods
(see section 6).

4.4. The Design of the Key Schedule. We mention a very important detail
from the simple design of the KronCrypt key schedule: the randomly and equally
distributed choice of the partial quotients from the interval I.

Another obvious idea may be the random generation of a 128-bit string and
after that the computation of the continued fraction expansion of this number by
interpreting the 128-bit integer as the decimal places of a number in (0, 1). However,
the depicted characteristics of KronCrypt concerning the concepts of diffusion and
confusion are optimized, if the enlargement controlled by m is bounded above by
s2 (see Theorem 5). The enlargement mainly depends on the partial quotients of
the continued fraction expansion. It is known from measure theory of continued
fractions that the small numbers dominate the partial quotient expansion [8]. This
is the reason why the enlargement in this case of key organization almost never
takes maximum values.

Therefore, we have the main reason for the current design of the key generation
and key schedule, in which we choose a series of equally distributed partial quotients
from a precomputed interval. In addition, this key generation is obviously more
secure against brute-force attacks.

4.5. Reversibility of More Than One Iteration of a S-box. It follows
from Theorem 6 and the condition 0 ≤ ρ < 2s1 that the output τ = q = d+ x of a
S-box (see Algorithm 1) can be decrypted simply by computing

(22) r =
∣∣ 2s1 ‖τ · α‖

∣∣
Z .

It is possible to iterate the process behind the S-box to strengthen the S-box. In
this case, we use the output q = τ of one iteration as input for the next iteration.
Here η ∈ [0, 1) must not hold and the outputs of the second, third and subsequent
iterations of the S-box cannot be decrypted by the above process – we only get an
decryption mod 2s1 as stated in Theorem 6. But adapting the encryption algorithm
in the following way, we again guarantee the reversibility of every round by using
the decryption formula (22). For this purpose it is necessary to generate round keys
c/d = ci,µ,j/di,µ,j for every iteration j of the S-box in addition to the round keys
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κi (i = 1, . . . , r). This can be done in the same way as described for the round keys
in Section 3.1. The key c/d is uniquely determined by the inequalities

di,µ−1,j ≤
(

1 +
2
K

)
2s1+m(j−1) < di,µ,j ≤ 2s1+mj (j = 1, . . . , l)

which we now apply instead of the conditions from (13) and where l represents the
number of iterations. Simultaneously, we define η in iteration j of the S-box by
η = τ/2s1+(j−1)m, where τ = ρ when j = 1, and τ represents the output of iteration
j − 1 when j ≥ 2. To ensure an output τ of the iterated process that is bounded
above by 2s2 we have to choose l such that s1 +ml ≤ s2.

Of course, the computation of such additional round keys will complicate the
whole cipher. The computations for the keys of each iteration of the S-boxes can
be done in a pre-processing step, whereas the new definition of η in every iteration
increases the time complexity of encryptions and decryptions.

5. Some Comments on the Security of KronCrypt

As already mentioned, in any S-box we compute a pair p, q of integers satisfying
an inequality given by (21),

|qα− p− η| < 1
2s1+1

, η =
ρ

2s1
.

The number p is ignored; for the decryption process using the formula

r =
∣∣ 2s1 ‖q · α‖

∣∣
Z

from Theorem 6 only the integer q is used, but not p. An attacker should not know
p, q and ρ simultaneously, since otherwise he has chances to find the correct value of
the partial quotient ak from the actual key αi = [0; ak, ak+1, . . . ] of the cipher. The
(geometric) probability P to conclude on ak from p, q, ρ is given by the following
theorem.

Theorem 7. Let α = [0; a0, a1, . . . ] be a round key. Let ρ be some nonnegative
integer, and let p, q be integers satisfying the inequality

|qα− p− η| < 1
2s1+1

.

Furthermore, let

α1 =
p+ η

q
− 1
q2s1+1

= [0; b0, b1, . . . ] ,

α2 =
p+ η

q
+

1
q2s1+1

= [0; c0, c1, . . . ]

be the continued fraction expansion of the two rationals α1 and α2. Then, we have

b0 = c0 =⇒ b0 = c0 = a0 .

Let p > 0. Then, the (geometric) probability P for the hypothesis b0 = c0 satisfies
the inequality

P (b0 = c0) ≥ 1− p+ q

p22s1
.
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Proof. (i) We know that

a0 =
[

1
α

]
, b0 =

[
1
α1

]
, c0 =

[
1
α2

]
,

and α1 < α < α2. Therefore, 1/α2 < 1/α < 1/α1, hence the hypothesis b0 = c0
implies that b0 ≤ 1/α2 < 1/α < 1/α1 < b0 + 1. Then, from a0 ≤ 1/α < a0 + 1 we
conclude on a0 = b0 (= c0), which proves the first statement of the theorem.
(ii) We may assume that p > 0. There is an unique integer n ≥ 1 satisfying

1
n+ 1

<
p+ η

q
≤ 1

n
.

Then, b0 = c0(= n) holds if and only if the inequalities
1

n+ 1
<

p+ η

q
− 1
q2s1+1

<
p+ η

q
+

1
q2s1+1

≤ 1
n

are satisfied. Again, this is equivalent with the fact that
1

n+ 1
+

1
q2s1+1

<
p+ η

q
≤ 1

n
− 1
q2s1+1

,

or
p+ η

q
∈ J :=

(
1

n+ 1
+

1
q2s1+1

,
1
n
− 1
q2s1+1

]
.

Defining the geometric probability P (b0 = c0) by

P (b0 = c0) := P
( p+ η

q
∈ J

)
,

we conclude using the basic interval E :=
(
(n+ 1)−1

, n−1
]

on

P (b0 = c0) =
|J |
|E|

=

(
1
n
− 1
q2s1+1

)
−
(

1
n+ 1

+
1

q2s1+1

)
1
n
− 1
n+ 1

= 1− n(n+ 1)
q2s1

.

Since p ≥ 1 and η ≥ 0, we have

n =
[

q

p+ η

]
≤ q

p+ η
≤ q

p
,

hence

P (b0 = c0) ≥ 1− 1 + q/p

p2s1
= 1− p+ q

p22s1
,

as desired. �

6. Confusion, Diffusion and Completeness of KronCrypt

Most symmetric cryptosystems have explicit design goals and the originators
work hard to achieve these goals. As mentioned above, in the case of KronCrypt,
our procedure was somewhat different. First, we realized that a constructive proof
of Kronecker’s approximation theorem can be changed into a private-key cryptosys-
tem. Then, we built up a modern designed private-key cryptosystem with the above
described S-boxes by implementing the proof as its core component. At least, we
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analyzed the quality of the resulting cryptosystem according to nowadays standard
techniques in cryptanalysis.

In this section, we present our analysis of KronCrypt concerning the concepts
arising from C. E. Shannon’s theory of secrecy systems from 1949 [1], i.e. especially
diffusion, confusion and completeness as well as the related concept of the (strict)
avalanche effect, respectively. Therefore, we first describe the algorithms we used
to analyze KronCrypt and then present the results.

6.1. Analysis of the S-boxes. As it is well-known, we use the term confusion
to measure the relationship between the cipher and plain text. Combined with the
term diffusion, which measures how strong the cipher text depends on the plain
text and on the key, we implemented some test scenarios. They were applied for
each s and some exemplary values for the parameter m. This implementation is
presented in the following.

6.1.1. Analysis Concerning Variability in the Input. Let the parameters m and
s be given. We randomly generate a KronCrypt key κ, compute a valid round key
c/d from it and also generate a 64/s-bit S-box input ρ1. Afterwards, ρ1 is swapped
in one randomly chosen bit i (i = 0, . . . , 64/s − 1), leading to ρ2. Then, ρ1 and
ρ2 are substituted by the S-box σ which is defined by the parameters m and s.
We get the outputs τ1 = σ(ρ1) and τ2 = σ(ρ2). For both substitutions, we use
the same round key c/d. Subsequently, we count the positions where the resulting
outputs τ1 and τ2 differ. This procedure is repeated n = 100000 times with different
randomly generated S-box inputs ρ1 und ρ2. In each run a new round key c/d is
randomly generated and it is used for both substitutions. Therefore, the results are
independent of a single round key.

In addition, a counter is incremented for each output bit j (j = 0, . . . , 63), if
this bit differs in the considered output pair τ1 and τ2. For such a large number
of runs like n = 100000 we may draw a conclusion on the probability for a certain
output bit to change because of an arbitrary change of a single input bit. So, by this
procedure we are informed on the diffusion, confusion and completeness properties
of the S-boxes as well as on the (strict) avalanche effect, respectively.

Table 1(a) and Figure 1(a) give an outline of the results. The tables and plots
can be found in Appendix A. The first two columns of Table 1(a) define the S-
box. k1 counts the number of output bits that change with a probability p1, where
0.45 < p1 < 0.55, after changing a single bit in the input. These bits are called
strong bits. k2 counts the number of output bits, which change with the probability
p2, where 0.05 ≤ p2 ≤ 0.45. These bits are called unexplicit bits. At last k3 counts
the output bits, that change with a probability p3, where p3 < 0.05. These are
called weak bits. Terms in brackets represent the positions of the considered bits.
Finally, k4 lists the amount of bit differences between the outputs τ1 and τ2. k4 can
be independent from the position of bit swapping in the input. If not, the whole
range of amount is listed when the bit changes occur at different bit positions in
the input.

Of course, the optimum result in this scenario would be a maximum k1 with
minimum k2 and k3 as well as a value of k4 close to s2/2 = 32. In this optimal case,
an attacker would have no chance to exploit some statistical relationships between
input and output bits.
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The characteristics of the S-boxes harmonize with the arranged analysis. The
amount of strong bits is significantly dominating for almost all parameter combina-
tions. We see that φ gets approximately 1 for each s ∈ {2, 4, 8} and m = 3. Hence,
the strict avalanche criterion is fulfilled and the S-boxes are complete. Every other
choice of m leads to a significantly smaller φ except of the case s = 2 and maximal
m = 32, where the S-box approximately achieves completeness, too.

At this point, the strongest point of criticism reveals: the unexplicit bits and the
weak bits are the leading ones without exception. The reason for this phenomenon
is based on the estimation for the enlargement of the S-box input in Theorem 5.
Therefore, we explain the failure of change in the leading bits by the fact that
these bits are only rarely needed in the binary representation of the S-box output.
Thus, they equal to zero in both τ1 and τ2. Obviously, the estimation in Theorem 5
gets more strict, if the number m is minimized, because we get a smaller difference
|di,µ − 2s2 | between the denominator of the round key and its upper bound with
higher probability.

The existence of leading zeros in the S-box output is another reason for using
XORs and additions mod 264 to combine the several S-box outputs. When only
using XORs, the leading zeros remain unchanged and a larger range of leading bits
equals to zero. Obviously, this problem is solved by the usage of additions mod 264.

6.1.2. Analysis Concerning Variability in the Key. Similar to the analysis con-
cerning variability in the S-box input, we also analyzed the S-boxes regarding the
variability in the round key, i.e. the key for the S-boxes. Therefore, we randomly
generate a 64/s-bit input ρ and a round key κ = c/d from which we derive a second
round key κ′ = c′/d′ by changing one randomly chosen position of κ. Here we have
to ensure that (c′, d′) = 1, because this is required by the S-boxes. Afterwards we
compute τ and τ ′ from ρ by using κ and κ′ within the S-box and accomplish the
same analysis as in the case of variability in the input.

Table 1(b) and Figure 1(b) give an outlook on the results (similar to Table 1(a)
and Figure 1(a) for the variability in the input).

We see that these results approximately reflect the results discussed above – the
tendency to minimize m for getting optimized statistical behaviour can be seen here,
too. Moreover, the (32, 64)-S-box is the only one that fulfills the strict avalanche
criterion with a choice of m differing from m = 3, namely m = 32. Again, the
existence of leading zeros can be seen here and has the analogous explanation.

Summing up, we have a little better results in the case of variability in the
input, i.e. the results for s = 8 and m ≥ 40. Nevertheless, both results of the S-
box analysis give us occasion to the usage of these S-boxes within a Feistel cipher.
They will lead to quite well statistical behaviour with a small number of rounds r
for some parameter combination.

6.2. Analysis of the Entire Cryptosystem. Both, analysis of variability
in the input and analysis of variability in the key, are useful to investigate the
statistical behaviour of the entire cryptosystem. As input pairs we now consider
128-bit plaintext blocks, which exactly differ in one randomly chosen position, and
the corresponding 128-bit ciphertext blocks. For the analysis of the variability in
the key we consider valid KronCrypt keys κ = c/d with numerator or denominator
changed in a randomly chosen position. By doing so, we have to ensure that the
resulting second key κ′ = c′/d′ is a valid KronCrypt key.
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For the investigation of the entire cryptosystem we focus on the degree of com-
pleteness of the resulting Feistel cipher, which is the quotient φ = k1/128. Here,
we only consider even round numbers only, i.e. cycles of the Feistel cipher. To
do so, we accomplish the described algorithms for each s to the same exemplary
parameters m as in 6.1 and r = 2, 4, 6.

Table 2 and Figure 2 show the results for k1, k2, k3, φ and r = 2, 4, 6.
It can be seen, that the statistical behaviour of the S-boxes governs the be-

haviour of the whole cryptosystem. Like in the preceding analysis, we have the
best results in the cases s = 2, 4, 8 and minimal m = 3 as well as m = 32 for s = 2.
Another interesting fact is that we have a great increase of φ by the transition from
2 to 4 rounds, but we have approximately the same curves for r = 4 and r = 6.

Finally, we can hold the fact that KronCrypt fulfills the strict avalanche cri-
terion and therefore achieves completeness for both variability in the input and in
the key for the following parameter combinations:

(1) m = 3, s = 2, 4, 8 and r ≥ 4
(2) m = 32, s = 2 and r ≥ 4

In order to increase the cipher’s speed as well as to ensure optimal statistical be-
haviour we propose to run KronCrypt with s = 2 parallel S-boxes and a minimum
of 4 rounds.

7. Differential Cryptanalysis of KronCrypt

Due to the fact that differential cryptanalysis [9, 10] is one of the most powerful
techniques for attacking a symmetric cipher we analyzed the security of KronCrypt
against it. For presenting our results we have to fix some notations from the area
of differential cryptanalysis. This is done in Section 7.1. In Section 7.2 we discuss
our numerical results. The corresponding plots are given in Appendix B.

7.1. Notations and Algorithms. Consider a S-box σ : {0, 1}m → {0, 1}n.
Let (x, x∗) ∈ ({0, 1}m)2 be an ordered pair with XOR-difference x′ = x ⊕ x∗. We
call x⊕x∗ a XOR input-difference and σ(x)⊕σ(x∗) a XOR output-difference of σ.
For a constant difference x′ ∈ {0, 1}m the set

∆(x′) := {(x, x⊕ x′) : x ∈ {0, 1}m}

is called the set of all ordered pairs (x, x∗) with XOR input-difference x′. Later, we
need the fact that |∆(x′)| = 2m holds.

The main idea of differential cryptanalysis is to analyze the so-called XOR
difference distribution table of the S-box σ (see [11] for a detailed description of
differential cryptanalysis). This 2m × 2n table consists of the entries

ND(x′, y′) = |{(x, x∗) ∈ ∆(x′) : σ(x)⊕ σ(x∗) = y′}| .

The probability that a given input difference x′ leads to a given output differ-
ence y′ can easily be computed by the formula

Rp(x′, y′) =
ND(x′, y′)

2m
.

Rp(x′, y′) is called propagation probability of the pair (x′, y′).
It is possible to compute the difference distribution table (DDT) by using Al-

gorithm 2. Its time complexity is O(22m) and its space complexity is O(2m+n). By
considering the values m and n in the case of KronCrypt, m = s1 ∈ {8, 16, 32} and
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n = s2 = 64, we obtain requirements on time and space complexity which are not
practicable.

input ((m,n)−S−Box σ ( constant ) )
for x′ := 0 to 2m − 1 do

for y′ := 0 to 2n − 1 do
D[x′, y′] := 0

for each Input−Di f f e r e n c e x′ := 0 to 2m − 1 do
for each Input−Pair (x, x∗) with D i f f e r e n c e x′ do

y := σ(x)
y∗ := σ(x∗)
y′ := y ⊕ y∗
D[x′, y′] := D[x′, y′] + 1

output (DDT D o f σ )

Algorithm 2

Because of the discussed complexities we focus ourselves on some single values
of the DDT instead of analyzing the whole table. First, these are the maximal
values in the table, which yield to the maximal values of Rp. Second, we analyze
the amount of non-zero values in the DDT. Both aspects are important for mounting
a feasible differential cryptanalysis of the whole cipher.

These values are the output of Algorithm 3 which we used in our analysis. We
see that the time complexity increases to O(22m + 2m+n) but that the memory
requirement is decreasing to O(2n). Because the space requirement is more crucial
for our computers, Algorithm 3 is more convenient for our practice.

input ((m,n)−S−Box σ ( constant ) )
for i := (0) to 2n − 1 do

R[i] := 0
max := 0
zeroCounter := 0
for each Input−Di f f e r e n c e x′ := 0 to 2m − 1 do

for each Input−Pair (x, x∗) with D i f f e r e n c e x′ do
y := σ(x)
y∗ := σ(x∗)
y′ := y ⊕ y∗
R[y′] := R[y′] + 1

for each i := 0 to 2n − 1 do
i f ( i 6= 0 and x′ 6= 0 and R[i] > max) then

max := R[i]
i f (R[i] = 0) then

zeroCounter := zeroCounter+1
R[i] := 0

output (max , zeroCounter )

Algorithm 3

7.2. Numerical Results. One of the main characteristics of our cipher are
the key-dependent S-boxes. This key-dependence naturally leads to a strong resis-
tance against differential cryptanalysis (see the attacks on Khufu and Khafre [12]
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in [13, 14] or on Blowfish [15] in [16]). Being completely uninformed on the struc-
ture of the DDTs, an attacker gets much weaker. A standard strategy for analyzing
the properties concerning differential attacks of key-dependent S-boxes is to assume
constant S-boxes by fixing a key that defines the S-box (see [16]).

For analyzing the properties of the KronCrypt S-boxes we apply Algorithm 3 on
n = 10000 fixed and randomly chosen round keys κi defining known and constant
S-boxes. Thereby we extract the following values:

• The maximum mmax of all maximal entries of the n DDTs. Thus we can
execute the maximal propagation ratio Rp,max of all maximal Rp of the
n DDTs.

• The minimum mmin of all maximal entries of the n DDTs. Thus we can
execute the minimal propagation ratio Rp,min of all maximal Rp of the n
DDTs.

• The average md of all maximal entries of the n DDTs. Thus we can
execute the average propagation ratio Rp,d of all maximal Rp of the n
DDTs.

• The maximum nmax of non-zero entries in the n DDTs.
• The minimum nmin of non-zero entries in the n DDTs.
• The average nd of non-zero entries in the n DDTs.

Because of its complexity, Algorithm 3 can only be applied to the (8, 64) S-boxes
on our computers. To get some more numerical results we additionally compute
the values for the smaller (8, 16), (8, 24) and (8, 32) S-boxes. In each of these cases
we compute all results for every valid parameter 3 ≤ m ≤ s2 − s1.

The results are shown in the tables in Appendix B using the notation listed
above. We recognize that values of Rp,min and nmax, Rp,max and nmin as well as
Rp,d and nd are associated with each other in an antiproportional way. Because of
the density of measurements this can cleary be seen in Figure 6. By analyzing the
most important value Rp,d it comes out that its shape is that of a saw tooth with
highest values at points for which nd gets minimal. A reason for this saw tooth
phenomenon could not be found yet.

KronCrypt should be used by a parameter combination that leads to minimal
values of Rp,min, Rp,max, and Rd, because this obviously complicates a differential
attack of the whole cryptosystem. For almost every considered S-box size (s1, s2)
we get minimal values for Rp,min, Rp,max and Rp,d by choosing m = 3 which corre-
sponds to the results in Section 6.

Additionally, the maximal values for Rp,d are monotonously decreasing with
the S-box output size s2, which is also known from the theory (see [17]).

These facts, the computational complexity of Algorithms 2 and 3 in the case of
KronCrypt-specific m and n as well as the restriction of our analysis to the situation
with known S-boxes, allow us to presume a strong security of KronCrypt against
differential attacks.

8. Conclusions and Further Work

In this paper we presented how to use an old mathematical concept of diophan-
tine analysis, the approximation theorem of Kronecker, in symmetric cryptography.
We proved the correctness of our idea and designed the 128-bit block cipher Kro-
nCrypt. The main parts of KronCrypt are its key-dependent and large S-boxes
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which are based on a constructive proof of Kronecker’s theorem used as a boolean
function.

Beyond its theoretical appeal we were able to show its practicability by the
statistical results and the first results concerning differential cryptanalysis. Further
work may be the investigation of a hardware implementation and other cryptanal-
ysis techniques, first of all linear cryptanalysis.



20 C. ELSNER, M. SCHMIDT

Appendix A. Numerical Results Concerning Confusion, Diffusion and
Completeness
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Figure 1. Degrees of completeness φ versus m/(s2 − s1) of
KronCrypt’s S-boxes for s = 2, 4, 8
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(a) Statistical analysis of KronCrypt’s S-boxes concerning variability in the input

(s1, s2) m k1 k2 k3 k4 φ
(8, 64) 3 63 (1-63) 1 (0) 0 32 0.984
(8, 64) 10 56 (8-63) 2 (6,7) 6 (0-5) 28-29 0.875
(8, 64) 20 58 (6-63) 2 (4,5) 4 (0-3) 28-29 0.906
(8, 64) 30 35 (5-7,32-63) 25 (4,8-31) 4 (0-3) 23-30 0.547
(8, 64) 40 35 (29-63) 5 (24-28) 24 (0-23) 17-20 0.547
(8, 64) 50 45 (19-63) 5 (14-18) 14 (0-13) 23-25 0.703
(8, 64) 56 51 (13-63) 5 (8-12) 8 (0-7) 25-28 0.797
(16, 64) 3 63 (1-63) 1 (0) 0 32 0.984
(16, 64) 10 56 (8-63) 2 (6,7) 6 (0-5) 28-29 0.875
(16, 64) 20 58 (6-63) 2 (4,5) 4 (0-3) 28-29 0.906
(16, 64) 30 59 (5-63) 1 (4) 4 (0-3) 23-30 0.922
(16, 64) 40 28 (36-63) 12 (24-35) 24 (0-23) 14-20 0.438
(16, 64) 48 36 (28-63) 12 (16-27) 16 (0-15) 17-24 0.563
(32, 64) 3 63 (1-63) 1 (0) 0 32 0.984
(32, 64) 10 56 (8-63) 2 (6,7) 6 (0-5) 28-29 0.875
(32, 64) 15 58 (6-63) 1 (5) 5 (0-4) 27-29 0.906
(32, 64) 20 58 (6-63) 2 (4,5) 4 (0-3) 27-30 0.906
(32, 64) 25 47 (17-63) 3 (14-16) 14 (0-13) 19-25 0.734
(32, 64) 32 63 (1-63) 1 (0) 0 25-32 0.984

(b) Statistical analysis of KronCrypt’s S-boxes concerning variability in the key

(s1, s2) m k1 k2 k3 k4 φ
(8, 64) 3 62 (1-62) 2 (0,63) 0 29-31 0.969
(8, 64) 10 56 (7-62) 2 (6,63) 6 (0-5) 26-33 0.875
(8, 64) 20 57 (6-62) 2 (5,63) 5 (0-4) 25-30 0.891
(8, 64) 30 58 (5-62) 2 (4,63) 4 (0-3) 26-29 0.906
(8, 64) 40 9 (53-61) 27 (28-52,62,63) 28 (0-27) 2-18 0.141
(8, 64) 50 8 (51-58) 36 (20-50,59-63) 20 (0-19) 2-21 0.125
(8, 64) 56 7 (50-56) 41 (16-49,57-63) 16 (0-15) 2-23 0.109
(16, 64) 3 62 (1-62) 2 (0,63) 0 29-31 0.969
(16, 64) 10 57 (7-63) 1 (6) 6 (0-5) 27-37 0.891
(16, 64) 20 58 (6-63) 1 (5) 5 (0-4) 27-31 0.906
(16, 64) 30 59 (5-63) 1 (4) 4 (0-3) 25-29 0.922
(16, 64) 40 11 (53-63) 25 (28-52) 28 (0-27) 2-20 0.172
(16, 64) 48 13 (51-63) 30 (21-50) 21 (0-20) 2-24 0.203
(32, 64) 3 63 (1-63) 1(0) 0 29-31 0.984
(32, 64) 10 57 (7-63) 1 (6) 6 (0-5) 27-28 0.891
(32, 64) 15 58 (6-63) 1 (5) 5 (0-4) 27-29 0.906
(32, 64) 20 58 (5-62) 1 (5) 5 (0-4) 27-29 0.906
(32, 64) 25 49 (15-63) 1 (14) 14 (0-13) 22-24 0.766
(32, 64) 32 63 (1-63) 1 (0) 0 28-31 0.984

Table 1. Statistical analysis of KronCrypt’s S-boxes
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Figure 2. Degrees of completeness φ versus m/(s2 − s1) of
KronCrypt with s = 2, 4, 8 and r = 2, 4, 6 rounds
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(a) Statistical analysis of KronCrypt concerning variability in the plaintext

r = 2 r = 4 r = 6
(s1, s2) m k1 k2 k3 φ k1 k2 k3 φ k1 k2 k3 φ
(8, 64) 3 64 64 0 0.500 128 0 0 1.000 128 0 0 1.000
(8, 64) 10 57 63 8 0.445 118 3 7 0.922 118 4 6 0.922
(8, 64) 20 59 63 6 0.461 120 4 4 0.938 122 2 4 0.953
(8, 64) 30 59 64 5 0.461 122 2 4 0.953 122 2 4 0.953
(8, 64) 40 37 47 44 0.289 82 2 44 0.641 82 2 44 0,641
(8, 64) 50 47 57 24 0.367 102 2 24 0.797 102 2 24 0.797
(8, 64) 56 53 63 12 0.414 114 2 12 0.891 115 1 12 0.898
(16, 64) 3 63 65 0 0.492 128 0 0 1.000 128 0 0 1.000
(16, 64) 10 57 61 10 0.445 116 4 8 0.906 116 4 8 0.906
(16, 64) 20 59 62 7 0.461 118 4 6 0.922 120 2 6 0.938
(16, 64) 30 59 63 6 0.461 120 2 6 0.938 120 2 6 0.938
(16, 64) 40 30 51 47 0.234 80 2 46 0.625 80 2 46 0.625
(16, 64) 48 38 59 31 0.297 96 2 30 0.750 97 1 30 0.758
(32, 64) 3 63 65 0 0.492 126 2 0 0.984 127 1 0 0.992
(32, 64) 10 57 60 11 0.445 114 4 10 0.891 114 4 10 0.891
(32, 64) 15 58 60 10 0.453 116 3 9 0.906 116 4 8 0.906
(32, 64) 20 58 61 9 0.453 117 3 8 0.914 118 2 8 0.922
(32, 64) 25 48 52 28 0.375 98 2 28 0.766 98 2 28 0.766
(32, 64) 32 63 65 0 0.492 126 2 0 0.984 126 2 0 0.984

(b) Statistical analysis of KronCrypt concerning variability in the key

r = 2 r = 4 r = 6
(s1, s2) m k1 k2 k3 φ k1 k2 k3 φ k1 k2 k3 φ
(8, 64) 3 128 0 0 1.000 128 0 0 1.000 128 0 0 1.000
(8, 64) 10 120 8 0 0.938 125 3 0 0.977 128 0 0 1.000
(8, 64) 20 60 68 0 0.469 122 6 0 0.953 123 5 0 0.916
(8, 64) 30 61 67 0 0.477 122 6 0 0.953 123 5 0 0.961
(8, 64) 40 42 86 0 0.328 102 26 0 0.797 117 11 0 0.914
(8, 64) 50 51 70 7 0.398 103 25 0 0.805 109 19 0 0.852
(8, 64) 56 57 70 1 0.445 115 13 0 0.898 116 12 0 0.906
(16, 64) 3 128 0 0 1.000 128 0 0 1.000 128 0 0 1.000
(16, 64) 10 118 10 0 0.922 123 5 0 0.961 126 2 0 0.984
(16, 64) 20 59 69 0 0.461 120 8 0 0.938 121 7 0 0.945
(16, 64) 30 60 68 0 0.469 120 8 0 0.938 121 7 0 0.945
(16, 64) 40 41 86 1 0.320 100 28 0 0.781 115 13 0 0.898
(16, 64) 48 48 70 10 0.375 97 31 0 0.758 106 22 0 0.828
(32, 64) 3 126 2 0 0.984 128 0 0 1.000 128 0 0 1.000
(32, 64) 10 116 11 1 0.906 121 7 0 0.945 124 4 0 0.969
(32, 64) 15 58 69 1 0.453 118 10 0 0.922 122 6 0 0.953
(32, 64) 20 58 69 1 0.453 118 10 0 0.922 120 8 0 0.938
(32, 64) 25 49 78 1 0.383 106 22 0 0.828 114 14 0 0.891
(32, 64) 32 63 65 0 0.492 126 2 0 0.984 126 2 0 0.984

Table 2. Statistical analysis of KronCrypt
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Appendix B. Plots of the Numerical Results Concerning Differential
Cryptanalysis
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Figure 3. Numerical results concerning differential cryptanalysis
of KronCrypt’s (8, 16)-S-boxes versus m/(s2 − s1)
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Figure 4. Numerical results concerning differential cryptanalysis
of KronCrypt’s (8, 24)-S-boxes versus m/(s2 − s1)
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Figure 5. Numerical results concerning differential cryptanalysis
of KronCrypt’s (8, 32)-S-boxes versus m/(s2 − s1)
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Figure 6. Numerical results concerning differential cryptanalysis
of KronCrypt’s (8, 64)-S-boxes versus m/(s2 − s1)
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Appendix C. Test vectors

C.1. Encryptions with s = 2,m = 3 und r = 4.

κ 29971484512172614953111722835 / 102348549427146258152151764879
P 0110000101100010011000110110010001100101011001100110011101101000

0110100101101010011010110110110001101101011011100110111101110000
r = 1
L0 0110000101100010011000110110010001100101011001100110011101101000
R0 0110100101101010011010110110110001101101011011100110111101110000
κ1 5018234687389167242 / 17136589972067380361
ρ1 01101001011010100110101101101100
ρ2 01101101011011100110111101110000
τ1 1100011110001110000100000011110011010010000011001100001100100101
τ2 0010110001001010010000101101111011001100100100001000010001001101
z 1110101111000100010100101110001000011110100111000100011101101000
r = 2
L1 0110100101101010011010110110110001101101011011100110111101110000
R1 1000101010100110001100011000011001111011111110100010000000000000
κ2 4984539458730689309 / 17118198018267727342
ρ1 10001010101001100011000110000110
ρ2 01111011111110100010000000000000
τ1 1100100111001011001100111100110101011111001111111111111100011011
τ2 0100010010010110010000001101000010111011010111001111011101001111
z 1000110101011101011100110001110111100100011000110000100001010100
r = 3
L2 1000101010100110001100011000011001111011111110100010000000000000
R2 1110010000110111000110000111000110001001000011010110011100100100
κ3 3641946298204066007 / 12506654049047454902
ρ1 11100100001101110001100001110001
ρ2 10001001000011010110011100100100
τ1 0100001001000100111001111011010011001110000000111011000000101110
τ2 0100111011001100111000110001101111111110111111111101110101010011
z 0000110010001000000001001010111100110000111111000110110101111101
r = 4
L3 1110010000110111000110000111000110001001000011010110011100100100
R3 1000011000101110001101010010100101001011000001100100110101111101
κ4 2860501376884794256 / 9414431604641819697
ρ1 10000110001011100011010100101001
ρ2 01001011000001100100110101111101
τ1 0010011000011111100001010000101011100011010001100001111101100111
τ2 1000000011110011111100101010001000110111100111110011111110000101
z 1010011011101100011101111010100011010100110110010010000011100010
C 0100001011011011011011111101100101011101110101000100011111000110

1000011000101110001101010010100101001011000001100100110101111101

C.2. Encryptions with s = 4,m = 3 und r = 4.

κ 21282526008087077425019331688 / 73089666176017277308918010773
P 0110000101100010011000110110010001100101011001100110011101101000

0110100101101010011010110110110001101101011011100110111101110000
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r = 1
L0 0110000101100010011000110110010001100101011001100110011101101000
R0 0110100101101010011010110110110001101101011011100110111101110000
κ1 2025241147057871419 / 6955198800562814117
ρ1 0110100101101010
ρ2 0110101101101100
ρ3 0110110101101110
ρ4 0110111101110000
τ1 0000010001011111000001110011100101111001001000101001110101010000
τ2 0011111110101100101000001001000100101100001010100101001001111100
τ3 0100010001011010101111101000101110011111000001000010110101101001
τ4 0100100100001000110111001000011000010001110111100000100001010110
z 1100100101000110101110101011010111100101110100101111010011000011
r = 2
L1 0110100101101010011010110110110001101101011011100110111101110000
R1 1010100000100100110110011101000110000000101101001001001110101011
κ2 3849375744588087084 / 13128282104354463059
ρ1 1010100000100100
ρ2 1101100111010001
ρ3 1000000010110100
ρ4 1001001110101011
τ1 0011111101011100110100011001001101000011001001001100100101011011
τ2 1010111000100100001010100101001101010101001111000010110011000000
τ3 0111101010010011111011011000111100010010111100100101101000010111
τ4 0101010100110100111101100101111000101000100011111011011010101100
z 0101100100111000000111110001000100000001100001001000100100011110
r = 3
L2 1010100000100100110110011101000110000000101101001001001110101011
R2 0011000001010010011101000111110101101100111010101110011001101110
κ3 5238135505307822960 / 17300425148116151117
ρ1 0011000001010010
ρ2 0111010001111101
ρ3 0110110011101010
ρ4 1110011001101110
τ1 0000001110101001010011011001111111111000111100110101010000111001
τ2 0001110011010110101000101101100001011011100110000010100011000101
τ3 1110011001001010011111011000001100001110100011000010110101001111
τ4 0110111000100010010000100100110100110110000011110010001010101101
z 0110101111101000001011101000011110000111111110001000100011100110
r = 4
L3 0011000001010010011101000111110101101100111010101110011001101110
R3 1100001111001100111101110101011000000111010011000001101101001101
κ4 3497795483847331591 / 12018664703155587250
ρ1 1100001111001100
ρ2 1111011101010110
ρ3 0000011101001100
ρ4 0001101101001101
τ1 0110010101110010000000010001100000100011000100100110011110011110
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τ2 0101000110100111100101110010001011110101001011010000100001101000
τ3 0100110001000101110100010101010011110010110001100011100010100110
τ4 0101001101101110000010000101110110100100100010000111100000101110
z 1101001001110101011011111101001001101101100011011101000010110010
C 1110001000100111000110111010111100000001011001110011011011011100

1100001111001100111101110101011000000111010011000001101101001101

C.3. Encryptions with s = 8,m = 3 und r = 4.
κ 30165371238712301410949887311 / 99657002308483445291596374608
P 0110000101100010011000110110010001100101011001100110011101101000

0110100101101010011010110110110001101101011011100110111101110000
r = 1
L0 0110000101100010011000110110010001100101011001100110011101101000
R0 0110100101101010011010110110110001101101011011100110111101110000
κ1 4054236783315847143 / 13393937083576672408
ρ1 01101001
ρ2 01101010
ρ3 01101011
ρ4 01101100
ρ5 01101101
ρ6 01101110
ρ7 01101111
ρ8 01110000
τ1 0100000100010101010100010101110001101111010100100111010100011010
τ2 0111010100000011100110101001110010011111111101011101011111011001
τ3 1010100011110001111000111101110011010000100110010011101010011000
τ4 0101101101000010001110111011001100100110011111001101100101011000
τ5 1000111100110000100001001111001101010111001000000011110000010111
τ6 0100000110000000110111001100100110101101000000111101101011010111
τ7 0111010101101111001001100000100111011101101001110011110110010110
τ8 1010100101011101011011110100101000001110010010101010000001010101
z 0110100101101010011010110110110001101101011011100110111101110000
r = 2
L1 0110100101101010011010110110110001101101011011100110111101110000
R1 0000001001010101111001111101101100011010001010100001111101011110
κ2 4712468829696520393 / 16089361046427246436
ρ1 00000010
ρ2 01010101
ρ3 11100111
ρ4 11011011
ρ5 00011010
ρ6 00101010
ρ7 00011111
ρ8 01011110
τ1 0011100111101110100111000011001100011101111010010000101100010011
τ2 1100010101100110101110010100111000100110000101011100100100001000
τ3 1011110100100000000100001011010010001111100001101100011101110011
τ4 0010010001000101001101101111011011011110110111000111101100101011
τ5 0000111001110000111011100010100000101010000010000101111111110000
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τ6 0011101111100000000110111010101110101011001101110010001011111010
τ7 0110111010010110010000001100101010110100000110111111111000010101
τ8 1011101000100000010111111011011010000000101011011101110111101111
z 1011110001110100011010011011100111001000110101101011001101101011
r = 3
L2 0000001001010101111001111101101100011010001010100001111101011110
R2 1101010100011110000000101101010110100101101110001101110000011011
κ3 3865162501421527814 / 8863525713655776461
ρ1 11010101
ρ2 00011110
ρ3 00000010
ρ4 11010101
ρ5 10100101
ρ6 10111000
ρ7 11011100
ρ8 00011011
τ1 0100110000011011111000101000000001000001100111100110011011000111
τ2 0010001111000111101001100111011001011001011011000111111101110110
τ3 0000011011000101110010101000010011010011110000101110000100101011
τ4 0100110000011011111000101000000001000001100111100110011011000111
τ5 0100100111001000100000011101110111110111110101100111100000111100
τ6 0010000010111111010000101011111010100100111010001110010011100100
τ7 0001000001011111101000010101111101010010011101000111001001110010
τ8 0010010010010110110101010011110011001000111100101010000010111000
z 1001000000001010000110111111100110011100101011001100001110011101
r = 4
L3 1101010100011110000000101101010110100101101110001101110000011011
R3 1001001001011111111111000010001010000110100001101101110011000011
κ4 3913009352745776291 / 9533874608435290511
ρ1 10010010
ρ2 01011111
ρ3 11111100
ρ4 00100010
ρ5 10000110
ρ6 10000110
ρ7 11011100
ρ8 11000011
τ1 0011100110011111100010111110110110011000111011001010101101000001
τ2 0111010111101001110000100100101101101101111010101101110110010001
τ3 0111100011011010111101000000111000100100111001001010001110011111
τ4 0001000101000010011010010011111100000111111111001001001101111010
τ5 0011111101001111100011101100101001100101111100010010111011110000
τ6 0011111101001111100011101100101001100101111100010010111011110000
τ7 0110110101010010101000010000000011010110111010010010111100011101
τ8 0001111110100111110001110110010100110010111110001001011101111000
z 1000011000100111110010011111101010001010000110100101000101101010
C 0101001100111001110010110010111100101111101000101000110101110001

1001001001011111111111000010001010000110100001101101110011000011
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