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Abstract

A combiner securely implements a functionality out of a set implementations of another
functionality from which some may be insecure. We present two efficient combiners for oblivious
linear function evaluation (OLFE). The first is a constant-rate OLFE combiner in the semi-
honest model, the second combiner implements Rabin string oblivious transfer (RabinOT) from
OLFE in the malicious model.

As an application, we show a very efficient reductions in the malicious model of RabinOT
over strings to one-out-of-two oblivious transfer over bits (OT) that is only secure in the semi-
honest model. For string of size ` = ω(k2), our reductions uses only 4`+ o(`) instances of OT,
while previous results required Ω(`k2). Our new reduction leads to an efficiency improvement
for general multi-party computation (MPC) based on semi-honest OT, and makes it almost as
efficient as MPC based on malicious OT.

All reductions are unconditionally secure, black-box, universally composable and secure
against adaptive adversaries.
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1 Introduction

Secure two-party computation (introduced in [Yao82]) allows two parties to execute a computation
in a secure way, without the need of a trusted third party. While for most computations this is
impossible to achieve with unconditional security for both parties, any two-party computation can
be implemented in a secure way if a functionality called oblivious transfer [Wie83, Rab81, EGL85]
is available [Kil88] (see also [GMW87, GV88]). More efficient implementations have been presented
in [Cré90, CvdGT95, IPS08].

In [EGL85] it has been shown how to implement one-out-of-two oblivious transfer (OT) from
any (enhanced) trap-door permutation secure against a semi-honest adversary, i.e., an adversary
that follows the protocol, but tries to learn additional information during the execution of the
protocol. To make that protocol (or any other implementation of semi-honest OT) secure against
a malicious adversary, the compiler from [GMW87] can be used. As shown in [CLOS02], this also
works against adaptive adversaries. The problem if this approach is that the compiler uses the
semi-honest protocol in a non-black-box way, and is therefore very inefficient. A more efficient
protocol that only uses black-box access to the semi-honest OTs has been presented in [IKLP06,
Hai08]. In [CDSMW09], a similar reduction is shown to be constant round and secure against
adaptive adversaries in the universal composability model if the players have access to an ideal
bit-commitment. To implement a single malicious OT over bits, these reductions require Θ(k2)
instances of the semi-honest OTs over bits. To implement malicious OT or RabinOT (another
variant of oblivious transfer) over strings of size `, at least Ω(`k2) instances are needed.

Only recently, the first efficient direct implementations of OT have been presented in [PVW08,
GWZ09] that give full security against static and adaptive adversaries, respectively.

A combiner (formally introduced in [Her05]), is a protocol that takes some candidate implemen-
tations of a functionality and outputs an implementation that is secure if enough of the candidates
are secure. Implementations (and impossibilities) of OT-combiners have been shown in [HKN+05].
Some generalizations can be found in [MPW07]. In [HIKN08], a more efficient, constant rate com-
biner was presented, where the number of OTs implemented are a constant fraction of the number
of calls to the candidates, while a constant fraction of the candidates are allowed to be faulty.
While the semi-honest protocol in [HIKN08] is unconditionally secure, the protocol in the mali-
cious model requires additional computational assumptions. A constant-rate OT-combiner that
is unconditionally secure in the malicious model has finally been presented in [IPS08]. Oblivious
linear function evaluation (OLFE) is a generalization of OT over bigger finite fields, and seems
to be a functionality that is particularly well-suited for combiners. As shown in [PW08], a simple
OLFE-combiner can be obtained using Shamir secret sharings [Sha79]. The resulting combiner has
also the advantage that every instance of OLFE is only used once, a property that none of the
OT-combiner has.

1.1 Contribution

First, we show that the OLFE-combiner from [PW08] can be generalized to a constant-rate combiner
that is secure in the semi-honest model. As in [PW08], every candidate implementation is used
black-box and only once. From n instances out of which s remain secure, we are able to construct

m =
2s− n+ 1

2
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secure instances of OLFE. Since there cannot exist a perfect combiner for m > 2s− n, this is close
to optimal.

Then, we present an OLFE-to-RabinOT-combiner that is secure in the malicious model. From
n instances of OLFE out of which s remain secure, it implements a RabinOT over strings of length

` =
2s− n+ 1

4
· log q − 2k ,

where q is the size of the field and k is the security parameter. Our protocol uses a simple privacy-
amplification step to ensure that a malicious receiver does not get too much information. To
show security against an adaptive adversary, we use a special (but standard) implementation of
a 2-universal hash function that has a certain invertibility property1. Note that using the results
from [DFSS06, Wul07], OT over strings could be implemented in a similar way. We have chosen
RabinOT here because it is used in [IPS08], which we consider one of the main applications of our
reduction.

Finally, using a protocol presented in [IPS09] that implements in the semi-honest model OLFE
from OT, we show that our OLFE-to-RabinOT-combiner can be used to improve the efficiency of
the black-box reduction of malicious RabinOT to semi-honest OTs. If the string length ` is big
enough, i.e., if ` = ω(max(k2, log2 1/p)), our reductions uses only

4`+ o(`)

instances of OT, which is by a factor of Ω(k2) more efficient than [IKLP06, Hai08, CDSMW09]. Note
that if ` is big enough and p < 1/4, our reduction even beats a straight-forward2 implementation
of RabinOT based on ideal OT (that is secure against a malicious adversary), which would require
at least 2` log 1/p instances of OT.

RabinOT over strings secure against malicious adversaries is a key ingredient of the protocols
presented in [IPS08]. Our results imply that it is possible to base these protocols on semi-honest
OTs instead of malicious OT at almost no loss in efficiency.

2 Preliminaries

For a random variable X over X , we denote its distribution by PX . For a given distribution PXY ,
we write for the marginal distribution PX(x) :=

∑
y∈Y PXY (x, y) and, if PY (y) 6= 0, PX|Y (x | y) :=

PXY (x, y)/PY (y) for the conditional distribution. For any n > 0, let [n] := [1, . . . , n].
The statistical distance of two distributions PX and PX′ over a domain X is defined as

δ(PX , PX′) :=
1
2

∑
x∈X

∣∣PX(x)− PX′(x)
∣∣ = max

f

∣∣Pr[f(X) = 1]− Pr[f(X ′) = 1]
∣∣ .

Let X and Y be distributed according to PXY . We say that X is ε-close to uniform with respect
to Y , if δ(PXY , PUPY ) ≤ ε, where PU is the uniform distribution over X .

1Our proof-technique could probably also be used to show that many other protocols that use a similar privacy-
amplification step are also secure against adaptive adversaries.

2We first implement string-OT from bit-OT using [BCW03], convert it into a RabinOT with transmission proba-
bility 1/2, and xor them log 1/p times.
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2.1 Security

We use the universal composability security definitions from [Can01] (see also [PW01]). For simplic-
ity, we will assume that communication channels are authenticated and always deliver all messages,
and that the communication is synchronous. (The protocols and the proofs could easily be adapted
to cover asynchronous and unreliable communication as well.) Furthermore, we will omit session
id’s and player id’s, and assume that they are given additionally to any message sent, and are
verified by the receiver.

A protocol π securely implements a functionality F , if for any adversary A, there exists an
efficient simulator S (that runs A as a black-box), such that the input/output behavior of S
interacting with F is indistinguishable to the real execution of the protocol, where A interacts with
π. (S,F) and (A, π) are indistinguishable if for all environments Z that interact with the system
and output a single bit denoted by execF ,S,Z and execπ,A,Z , resp., we have∣∣Pr[execF ,S,Z = 1]− Pr[execπ,A,Z = 1]

∣∣ ≤ ε ,
for ε ≤ 2−k where k is a security parameter. We may also write execF ,S,Z ≈ execπ,A,Z , and ε = 0,
execF ,S,Z = execπ,A,Z . As there is no restriction on how A and Z communicate, S normally lets
A freely talk to Z and simulates only the communication of π with A.

We distinguish between the semi-honest and the malicious model. In the semi-honest model, the
adversary A follows the protocol, but tries to find out additional information about the uncorrupted
player’s input/output. Here, the simulator is required to use the same input as the honest player.
In the malicious model, A may behave arbitrarily, and the simulator can freely choose the input of
the corrupted players.

The adversary can corrupt players adaptively, which means that the adversary can decide to
corrupt a player during the execution of the protocol in which case he receives the whole internal
view of that player.

As shown in [Can01], this security definition implies that protocols can be composed, which
means that if a protocol π securely implements F , then in any F-hybrid protocol ρF (i.e, a protocol
that has access to F as a black-box), F can be replaced by π without affecting the security of
protocol ρ.

2.2 Ideal Functionalities

We will now present the functionalities we will be using in this work.

• One-out-of-two Oblivious transfer (OT) over string of size `: The sender has inputs (x0, x1) ∈
{0, 1}` × {0, 1}`, and the receiver input c ∈ {0, 1}. After sending these values to OT, the
receiver gets y := xc.

• Oblivious Linear Function Evaluation (OLFE) over a finite field GF (q): The sender chooses
a, b ∈ GF (q), and the receiver chooses c ∈ GF (q). After sending these values to OLFE, the
receiver get d := a+ b · c.

• Rabin oblivious Transfer (RabinOT) over string of size ` and with transmission probability p:
The sender has an input x ∈ {0, 1}`. After the sender has sent x to RabinOT, the receiver get
a value y, where

y :=
{

x with probability p
∆ with probability 1− p .
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Sometimes, we will omit the values `, p and q but they should be clear from the context. Note
that OLFE over GF (2) is equivalent to OT over strings of size 1, as we can write

y = xc = x0 + (x0 ⊕ x1) · c .

We will also need the following two variations of OLFE:

• OLFEm is the functionality that runs m parallel instances of OLFE, which means that the
receiver only gets his output once the inputs of all instances have been received.

• ROLFE is the same functionality as OLFE, with the only difference that the honest players
cannot choose their input, it is chosen by the functionality uniformly at random. On the
other hand, the adversary may freely choose the inputs of corrupted players.

The protocol where both players choose random inputs and send them to OLFE implements
ROLFE. Furthermore, as shown in the appendix, ROLFE can be converted input OLFE using the
Protocol Precomp-OLFE, which can also be used to transform OLFEm into m instances of OLFE.

2.3 Adaptive Security for Combiners

A (s, n)-combiner3 is a protocol that takes n instances of a functionality F as input, and outputs one
instance of a functionality G, which is secure if at least s instances are secure. Instead of formally
defining a combiner, we define the functionality F (s,n) that models the input of a combiner. A
(s, n)-combiner is then a F (s,n)-hybrid protocol that securely implements G.

• F (s,n) is equal to n instances of F , out of which s instances are secure. That means that
during the execution of the n instances of F , the adversary may corrupt up to n−s instances
of F , one by one. The choice which instances to corrupt next may depend on what he knows
so far. For every corrupted instance, he may listen to all the interaction of F with all the
players, i.e., he receives all the inputs and outputs of all players. (In deterministic primitives
such as OT or OLFE, it suffices to learn the inputs.)

Note that the adversary is allowed to corrupt instances even without corrupting players. If the
two players execute n protocols that implement F out of which s are secure, and the adversary
knows which of them are secure, then they implement F (s,n): Using the composition theorem, we
can replace all the secure instances with ideal F ’s, and let the adversary corrupt all the remaining
instances at the beginning of the protocol. He gets the input and output of the players for these
instances, and hence can simulate the entire view of the protocol himself. In our definition, every
implementation of F may only be executed once. To cover the situation where the implementations
of F can be executed several times, F must be replace by a functionality F∗ that executes F several
times.

2.4 Privacy Amplification against Adaptive Adversaries

A function h : X ×R → Y is called a 2-universal hash function [CW79], if for all x 6= x′ ∈ X , we
have

Pr[h(x,R) = h(x′, R)] ≤ 1
|Y|

, (2.1)

3In [HKN+05], combiners were defined in a more general way. Our type was called a third-party black-box combiner.
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if R is chosen uniform over R. The min-entropy of a random variable X distributed according to
PX is defined as

Hmin(X) := − log max
x

PX(x) .

To implement privacy amplification — to convert a partially secure key into a secure key —
we will need the leftover hash lemma. It shows that a two-universal hash function can be used to
extract almost uniform randomness.

Lemma 1 (Leftover hash lemma [BBR88, ILL89]). Let X be a random variable over X and let
` > 0. Let h : X ×R → {0, 1}` be a 2-universal hash function. If ` ≤ Hmin(X) − 2 log 1/ε and R
is uniform over R, then h(X,R) is ε-close to uniform with respect to R.

To achieve security against adaptive adversaries, we need a hash function h that is not only
2-universal, but has an additional property. We will therefore fix h to the following (standard)
implementation of h : {0, 1}n × {0, 1}n → {0, 1}`: To calculate h(x, r), we first encode x and r in
GF (2n) — choosing an arbitrary basis of GF (2) in GF (2n) — and multiply them, which gives a
number in GF (2n). Then, we map it back to a string in {0, 1}n, and output the least ` bits of this
string. It is easy to see that this function satisfies condition (2.1) of a 2-universal hash function:
Let x, x′ ∈ GF (2n), x 6= x′, and let d := x − x′. For any fixed d 6= 0, the function f(r) := d · r
is a permutation on GF (2n), which implies that there are exactly 2n−` values r ∈ GF (2n) where
the least ` bits of f(r) are 0. Hence, for any x 6= x′, there are exactly 2n−` values r where
h(x′, r) = h(x, r), and therefore,

Pr[h(x′, R) = h(x,R)] =
1
2`
,

if R is chosen uniformly from {0, 1}n. Note that if X and R are chosen uniformly from {0, 1}n,
then also h(X,R) is uniform, which is a nice property that not all 2-universal hash functions have.

Let us now choose X uniformly over a subset S ⊂ X of size at least 2`+2k, and R uniformly and
independently over R. Since Hmin(X) ≥ ` + 2k, Lemma 1 tells us that Y := h(X,R) is 2−k-close
to uniform, given R. Furthermore, PX|R=r,Y=y, the distribution of X conditioned on values r and
y, is uniform among all values x ∈ S that satisfy y = h(x, r). Hence, if instead we choose Ȳ and
R uniformly at random, and then choose X̄ uniformly from S such that Ȳ = h(X̄, R), we end up
with random variables (R, X̄, Ȳ ) which have

δ(PRX̄Ȳ , PRXY ) ≤ 2−k ,

since δ(PRY , PRȲ ) ≤ 2−k and PX̄|RȲ = PX|RY .4

Whether given ȳ and r, it is possible to efficiently choose a value X̄ uniformly from a set S such
that ȳ = h(x, r) depends on S and on the function h. In our case, S will be defined by some linear
equations that must be satisfied. But also the condition ȳ = h(x, r) are just linear equations for
our function h, so we only need to solve a system of linear equations and output a random solution
of these equations. This can be done efficiently.

4Note that with small probability it is possible that we have values r and y such that for no x we haver y = h(x, r).
In this case, we can choose X̄ arbitrarily.
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3 An OLFE Combiner in the Semi-Honest Model

In [PW08], a simple combiner for OLFE based on Shamir secret sharings [Sha79] has been presented.
The following protocol generalizes that protocol using ideas from [FY92] to share many secrets in
a single secret sharing. The protocol uses one instance of OLFE(s,n) as input, and implements one
instance of OLFEm. We limit the adversary to semi-honest behavior.

Let s > m > 0 and n := 2s − 2m + 1. Let q > n + m and z1, . . . , zn, r1, . . . rm ∈ GF (q) be
distinct constants.

Protocol OLFE-Combiner

sender’s input: ∀i ∈ [m]: (ai, bi) ∈ GF (q)×GF (q).

receiver’s input: ∀i ∈ [m]: ci ∈ GF (q).

receiver’s output: ∀i ∈ [m]: di ∈ GF (q).

1. The sender picks two random polynomials:

A(z) of degree n− 1 such that ∀i ∈ [m]: A(ri) = ai, and

B(z) of degree n− s+m− 1 such that ∀i ∈ [m]: B(ri) = bi.

2. The receiver picks a random polynomial C(z) of degree n − s + m − 1, such that ∀i ∈ [m]:
C(ri) = ci.

3. ∀i ∈ [n]: The parties run OLFEi, with sender holding input (αi, βi) := (A(zi), B(zi)), and
receiver holding input γi := C(zi). The receiver receives ∀i ∈ [n] values δi.

4. Receiver uses the n values δi to interpolate a polynomial D(z) of degree n − 1 such that
∀i ∈ [n] : D(zi) = δi, and outputs ∀i ∈ [m] : di = D(ri).

Lemma 2. We have D(z) = A(z) +B(z) · C(z).

Proof. The polynomial A(z) +B(z) ·C(z) has degree max(n− 1, 2(n− s+m− 1)) = n− 1. Hence,
the interpolation of n points gives the receiver D(z) = A(z) +B(z) · C(z).

Lemma 3. Given the inputs (ai, bi, ci) and the output di = ai+bici for i ∈ [m], the same distribution
of the polynomials A(z), B(z), C(z) and D(z) as in Protocol OLFE-Combiner can be obtained, if
B(z) and C(z) are chosen the same way, i.e. uniformly at random such that B(ri) = bi and
C(ri) = ci and both have degree n − s + m − 1, D(z) is chosen uniformly at random such that
D(ri) = di, and A(z) := D(z)−B(z)C(z).

Proof. The polynomial A(z) is chosen uniformly at random of degree n − 1 such that A(ri) = ai
for i ∈ [m]. Therefore, for a fixed set of n −m points zi, the values αi = A(zi) are uniform and
independent of the inputs. Since δi = αi+βiγi, also the n−m values δi are uniform and independent
of the inputs. Since D(z) has also degree n − 1 and m values are fixed by D(ri) = di, it follows
that D(z) is a uniform polynomial of degree n − 1 with D(ri) = di. The statement follows now
together with Lemma 2.

Theorem 1. Protocol OLFE-Combiner securely implements OLFEm in the semi-honest model,
using one instance of OLFE(s,n).
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Proof. In the following, let π be the protocol that runs in the OLFE(s,n)-hybrid model. A denotes
the adversary in that model, and Z the environment. During the execution of π, A may corrupt
n − s instances of OLFE, for which he receives the inputs (αi, βi, γi). At some point, he may also
corrupt the sender or the receiver, in which case he gets his internal state.

The simulator S does the following:

• If A corrupts the sender, S also corrupts the sender and gets the inputs (ai, bi). He chooses the
polynomials B(z) uniformly at random of degree n−s+m−1, such that for all the input values,
we have B(ri) = bi and for all instances of OLFE that have been corrupted so far, we have
B(zi) = βi. If the receiver has been corrupted already, it chooses A(z) := D(z)−B(z) ·C(z).
Otherwise, it also chooses A(z) uniformly at random of degree n−1 such that A(ri) = ai and
A(zi) = αi for all the corrupted instances. From A(z) and B(z), S reconstructs the sender’s
view and sends it to A.

• If A corrupts the receiver, S also corrupts the receiver and gets the inputs ci and the outputs
di. He chooses the polynomials C(z) of degree n− s+m− 1 uniformly at random such that
for all the inputs C(ri) = ci and for all instances of OLFE that have been corrupted so far
C(zi) = γi. If the sender has been corrupted already, he chooses D(z) = A(z) +B(z) · C(z).
Otherwise, he chooses a random polynomial D(z) of degree n− 1 where D(zi) = αi + βi · γi
for all the corrupted instances of OLFE and for all the inputs D(ri) = di. From C(z) and
D(z), S reconstructs the receiver’s view and sends it to A.

• Whenever A corrupts an instance of OLFE, S sends A values (αi, βi, γi). If one or both of the
players are corrupted, then these values are calculated from the polynomials, otherwise they
are chosen uniformly at random.

From Lemma 2 follows that

∀i ∈ [m] : di = D(ri) = A(ri) +B(ri) · C(ri) = ai + bi · ci .

So the protocol outputs the correct values. We now distinguish the following three cases.

• If no player gets corrupted: All n−s values (αi, βi, γi) of the corrupted instances of OLFE are
uniform and independent of the m inputs values (ai, bi, ci), since the degrees of A(z), B(z)
and C(z) are at least n− s+m− 1. Hence, execOLFEm,S,Z = execπ,A,Z .

• If the sender gets corrupted first: Since C(z) has a degree of n−s+m−1, the n−s values γi
of the corrupted instances are uniform and independent of the inputs ci. It is easy to check
that execOLFEm,S,Z = execπ,A,Z .

• If the receiver gets corrupted first: Since B(z) has a degree of n− s+m− 1, the n− s values
βi of the corrupted instances are uniform and independent of the inputs bi. With Lemma 3,
it is easy to check that execOLFEm,S,Z = execπ,A,Z .
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3.1 Impossibility

Protocol OLFE-Combiner is perfect, i.e., it does not have any error. For such reductions it is close
to optimal, as there cannot exist a perfect OLFE combiner that is unconditionally secure for

m > 2s− n = n− 2(n− s) ,

i.e., where m is twice as big as in our protocol. If there were such a combiner, we could use it on
n− 2(n− s) secure instances, n− s trivial instances that are secure for the sender and n− s trivial
instances that are secure for the receiver. The resulting combiner would implement m > n−2(n−s)
secure instances, and therefore would give us a way to extend OLFE in an unconditionally secure
way. Since OLFE can be build from OT without any errors in the semi-honest model (for example,
using the protocol from [GV88]), and OT can be implemented from OLFE by restricting the input to
0 and 1, this would lead to a contradiction of the impossibility of extending OT shown in [Bea96].

4 A OLFE-to-RabinOT Combiner in the Malicious Model

Unfortunately, the OLFE-combiner from Section 3 is only secure in the semi-honest model. In the
malicious model the reduction is not fully secure, but it does give some security against malicious
adversaries: If the adversary corrupts the sender and n − s instances, he does not get to know
any information about the receiver’s input (c1, . . . cm), as the degree of C(z) is n− s+m− 1. To
shows a similar statement for the receiver, we must require that the input values ai are chosen
uniformly at random, which is equivalent to say that A(z) must be chosen uniformly at random.
Then, the values δi are uniform and independent of the polynomial B(z). Since the degree of B(z)
is n − s + m − 1, the adversary does not get to know any information about (b1, . . . bm). We will
now show this is sufficient to implement a combiner that implements RabinOT from OLFE(s,n) in
the malicious model. We will first apply Protocol OLFE-combiner from Section 3, and use the
resulting (partially secure) OLFEm to implement RabinOT. Of course, our security proof will need
to give a proof against the combined, OLFE(s,n)-hybrid protocol, as Protocol OLFE-combiner is not
fully secure.

Let s > m > 0, n := 2s−2m+1, and let ` := m/2 · log q−2k, where k is the security parameter.
We require that q > max(n + m, p̄), where 1/p̄ = p is the probability that the receiver gets the
senders input. We also require that p̄ ∈ N, that there exists a q̂ such that q = 2q̂, and that ` is a
multiple of q̂. Let h : {0, 1}q̂m×R → {0, 1}` be the 2-universal hash function defined in Section 2.4.
Note that h can also be interpreted as a randomized function that takes m elements of GF (q) as
input and outputs m′ := `/q̂ elements of GF (q).

Protocol OLFE-to-RabinOT-Combiner

sender’s input: x ∈ {0, 1}`.

receiver’s output: y ∈ {0, 1}` ∪∆.

1. The sender chooses a random value e ∈R [p̄]. ∀i ∈ [m]: He chooses the values (ai, bi) ∈R
GF (q)2 uniformly at random. The receiver chooses c ∈R [p̄] uniformly at random.

2. The sender and the receiver execute Protocol OLFE-Combiner, where for the ith instance of
OLFE, i ∈ [m], they use (ai, bi) and ci := c as input. The receiver gets di as output.
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3. Let w := (a1 + b1 · e, . . . , am + bm · e). The sender chooses r ∈ R at random and sends (e, r, u)
to the receiver where u := x⊕ h(w, r).

4. The receiver gets (e, r, u). If e 6∈ [p̄], he aborts. Otherwise, he outputs y := u⊕h((d1, . . . , dm), r)
if c = e, and y := ∆ otherwise.

Theorem 2. Protocol OLFE-to-RabinOT-Combiner uses one instance of OLFE(s,n) and implements
one instance of RabinOT that is secure against a malicious, adaptive adversary.

The statement of Theorem 2 for the static cases follows from the following Lemmas 4 – 6.
The adaptive cases are shown in Lemmas 8 – 12 in the appendix. In the following, let π be the
protocol that runs in the OLFE(s,n)-hybrid model. A denotes the adversary in that model, and Z
the environment. Our simulator S will only talk to the ideal RabinOT and A. Note that if both
players are corrupted from the beginning of the protocol, the simulation is easy.

Lemma 4. The protocol is secure if the adversary never corrupts any player.

Proof. The probability that c = e is p = 1/p̄. If c = e, it follows from Lemma 2 that di = ai + bi · c,
and hence the output is

y = u⊕ h((d1, . . . , dm), r) = x⊕ h(w, r)⊕ h(d, r) = x .

If c 6= e, the output is z = ∆.
All values (αi, βi, γi) sent by the honest players to the corrupted instances of OLFE are inde-

pendent of the values (ai, bi, c) and (e, r, u) chosen by the players during the protocol. Since the
values ai and bi are chosen uniformly, also the value w is uniform, and hence (for our choice of
h, see Section 2.4) also the value h(w, r) is uniform. It follows that the values u is uniform and
independent from the inputs of the sender and the values (αi, βi, γi) of the corrupted instances.

Therefore the simulator just needs to choose the values (αi, βi, γi) at random whenever an in-
stance gets corrupted, and choose the values (e, r, u) uniform at random. We get execRabinOT,S,Z =
execπ,A,Z .

Lemma 5. The protocol is secure if the adversary corrupts the sender at the beginning of the
protocol.

Proof. The adversary corrupts the sender at the beginning of the protocol. Furthermore, he cor-
rupts at most n− s instance of OLFE. For each of them, A receives the input γi from the receiver.

The simulator S does the following: For every instance of OLFE that A corrupts, he sends him
a random value γi. Either A aborts, in which case also S aborts. Otherwise, A outputs n values
(αi, βi) and (e, r, v). If e 6∈ [p̄], S aborts. Otherwise, he chooses c := e and a random polynomial
C(z) such that C(ri) = c for i ∈ [m] and C(zi) = γi for all instances that have been corrupted
so far. Thereafter, S chooses γi := C(zi) if additional instances get corrupted. S then calculates
δi := αi + βiC(zi). Then he calculates y from the values δi as the honest receiver would, and sends
y to RabinOT.

Since the degree of C(z) is n−s+m−1, the n−s values γi are uniform and independent of c. In
the protocol, the receiver chooses c = e with probability p, and receives the value y which has the
same distribution as the value y in the simulation. It follows that execRabinOT,S,Z = execπ,A,Z .

Lemma 6. The protocol is secure if the adversary corrupts the receiver at the beginning of the
protocol.
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Proof. The adversary corrupts the receiver at the beginning, and at most n− s instance of OLFE,
from which he receivers the values (αi, βi).

Since the degree of B(z) is n− s+m− 1, the n− s input values βi of the corrupted instances
are random and independent of the values bi. Furthermore, since A(z) is a random polynomial of
degree n−1 chosen independent of the values bi and βi, all values δi (since they are one-time-padded
by the values αi) are random and independent of the values βi and bi. Therefore, all n− s values
(αi, βi) of the corrupted instances and the s values δi of the uncorrupted instances are uniform and
independent of the m values bi.

Let v be the string that contains values γi and δi the adversary has sent and received to/from
the uncorrupted instances of OLFE, and the values (αi, βi) of the corrupted instances.

Let wj,i := ai + j · bi, for i ∈ [m] and j ∈ [p̄]. The values γi determine which values of wj,i the
adversary can calculate from v, and which are uniform given v. (One of the two must hold, it is not
possible that the adversary get only partial knowledge over wj,i.) Since for every i ∈ [m] and any
pair j, j′ ∈ [p̄] with j 6= j′ we have (w1,i − w0,i)/(j − j′) = bi, either wj,i or wj′,i must be uniform
given v. Therefore, the exists a value c ∈ [p̄] (that can efficiently be calculated from the values γi),
such that for all j 6= c and j ∈ [p̄], at least m/2 values wj,i are uniform given v, which implies that

Hmin((Wj,1, . . . ,Wj,m) | V = v) ≥ m/2 · log q .

Therefore, if e 6= c, it follows from Lemma 1 that h(W,R) is 2−k-close to uniform with respect to
(R, V ).

The simulator S does the following: He simulates the honest sender in the steps 1 and 2.
Whenever the adversary corrupts an instance of OLFE, he sends him the corresponding values
(αi, βi). (Therefore, the simulator sends at most n− s values (αi, βi) to A, one for each corrupted
instance. For each uncorrupted instance, S receives the value γi from A and sends the value δi.)
From the values γi, S calculates the index c as described above. S receives y from RabinOT. If
y = ∆, S chooses e ∈R {1, . . . , c− 1, c+ 1, . . . , p̄} and u at random. If y 6= ∆, S chooses e := c and
u := h((a1 + c · b1, . . . , am + c · bm), r) ⊕ y. S sends (e, r, u) to A, where r is chosen uniformly at
random. From the arguments above follows that execRabinOT,S,Z ≈ execπ,A,Z .

5 Malicious RabinOT from Semi-Honest OT

In [IPS08], a protocol for general multi-party computation based on OT has been presented that is
unconditionally secure against a malicious adversary. Opposed to previous such results (for example
[Kil88, Cré90, CvdGT95]), it only requires the OTs used in the protocol to be secure against a semi-
honest adversary. To prevent a malicious adversary from cheating, it creates a so-called watch list
at the beginning of the protocol, that allows the players to verify the behavior of the other players,
without breaking the security of the protocol. To initialize the watch list, the protocol additionally
needs some instances of RabinOT that are secure against a malicious adversary.

In order to implement this protocol based only on OTs secure against a semi-honest adversary,
we need to implement RabinOT from such OTs. In this section, we give a new, more efficient
way to do this. Our reduction is black-box and uses a simple cut-and-choose approach similar to
[IKLP06, CDSMW09], but together with the combiner from Section 4. Our protocol runs in the
Fcom-hybrid model, which means that the players have access to an ideal commitment functionality.

The following Protocol Commit-Cut-And-Choose converts n instances of semi-honest OLFE
secure in the semi-honest model into one instance of ROLFE((1−λ)n,(1−2λ)n) — (1 − λ)n instances

11



of randomized OLFE, out of which at least (1 − 2λ)n are secure — that is secure in the malicious
model. Let λ, n > 0.

Protocol Commit-Cut-And-Choose

input: none.

output: the output of (1− λ)n instances of ROLFE.

1. The sender commits n times to random strings s′1, . . . , s
′
n, the receiver to random strings

r′1, . . . r
′
n.

2. The sender chooses random strings s′′1, . . . , s
′′
n and sends them to the receiver. The receiver

chooses random strings r′′1 , . . . r
′′
n and sends them to the sender.

3. They execute n times a protocol that implements OLFE in the semi-honest model, with
random inputs. The randomness for the sender comes from si := s′i ⊕ r′′i an the randomness
for the receiver comes form ri := r′i ⊕ s′′i .

4. Using commitments, the two players implement a coin-toss and randomly choose a set of λn
instances. They open all the commitments for these instances.

5. They check if the protocols have been executed correctly. If not, they abort. Otherwise, they
output the random input and the output of the remaining (1− λ)n instances of OLFE.

Theorem 3. Protocol Commit-Cut-And-Choose implements ROLFE((1−λ)n,(1−2λ)n) in the malicious
model, using n instances of OLFE that are secure in the semi-honest model, with an error of at most
e−λ

2n.

To prove Theorem 3, we need the following lemma.

Lemma 7. If one of the players in Protocol Commit-Cut-And-Choose does not follow the protocol
of at least λn instances of OLFE, the probability that the other player does not abort is at most
e−λ

2n.

Proof. Let t ≤ λn be the number of instances where the player does not follow the protocol, and let
p be the probability that he is not caught. We have p = p0 · p2 · · · pt−1, where pi is the probability
that the ith instance is not in the set of size λn, given that all the previous instances are also not
in that set. Since

pi =
n− i− λn

n
≤ n− λn

n
= 1− λ ≤ e−λ ,

it follows that p ≤ (1− λ)t ≤ e−λt ≤ e−λ2n.

Proof Sketch of Theorem 3. If the adversary corrupts one of the players before Step 4 and does
not follow the protocol of at least λn instances of OLFE, it follows from Lemma 7 that the other
player will abort with probability 1 − e−λ

2n. So the simulator can simply abort the protocol.
If A corrupts less than λn instance, the simulator can corrupt the corresponding instances in
ROLFE((1−λ)n,(1−2λ)n). He can simulate the corrupted instances because he now knows their inputs,
and the uncorrupted because they are secure. If the second player is corrupted at the end as well,
its view can be simulated because the values of the corrupted instances are already known, and the
uncorrupted instances are adaptively secure.
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If the adversary corrupts both players before step 4, the simulation is easy as there is no input.
If the adversary does not corrupt any of the players before step 4, all instances of OLFE are secure,
and hence any later corruption can easily be simulated.

Using the combiners from Section 4, we can now implement RabinOT, based on semi-honest
implementations of OLFE. As before, ` is the length of the message and p is the probability that
RabinOT transmits the message.

Corollary 1. Let n, k, q̂ > 0, q = 2q̂ and q > max(2n, 1/p). There exists a protocol that uses n
instances of OLFE over GF (q) and implements a RabinOT over strings of length

` ≥ (n/4−
√
kn) · q̂ − 2k

with an error of at most 2−k, secure against a malicious, adaptive adversary.

If we prefer to have a protocol based on OT instead of OLFE, we can use a protocol presented in
[IPS09] that implements a product-share functionality Fpdt-shr from OT in the semi-honest model.
It is easy to see that Fpdt-shr is equivalent to OLFE over the same field. (The only difference is
that instead of choosing the share zA at random, the sender receives it as input.) Furthermore,
in our setting that does not rely on black-box rings, it is easy to show that the protocol is in fact
adaptively secure.

Proposition 1 ([IPS09]). There exists a protocol that implements OLFE over GF (q) from log q+2k′

instances of OT with an error of 2−k
′
, secure against a semi-honest, adaptive adversary.

We get the following corollary, which implies that if ` = ω(max(k2, log2 1/p)), our reductions
uses only 4`+ o(`) instances of OT.

Corollary 2. There exists a protocol that implements a RabinOT over strings of length

` ≥ n/4− 2(kn)
2
3 − 3

√
n2/k · log n− 3

√
kn · log 1/p− 2k

with an error of at most 2−k that is secure against a malicious, adaptive adversary, using n instances
of OT that are secure against a semi-honest, adaptive adversary.

Proofs of Corollary 1 and 2 can be found in the appendix.
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[Cré90] C. Crépeau. Verifiable disclosure of secrets and applications. In Advances in Cryp-
tology — EUROCRYPT 1989, Lecture Notes in Computer Science, pages 181–191.
Springer-Verlag, 1990.
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A Appendix

A.1 Precomputing OLFE

Using a protocol from [BBCS92] it has been shown in [Bea95] that OT can be precomputed. The
following protocol is a straight-forward generalization of that protocol to OLFE.

Protocol Precomp-OLFE

sender’s input: (a, b) ∈ GF (q)×GF (q).

receiver’s input: c ∈ GF (q).

receiver’s output: d ∈ GF (q).

1. The sender and the receiver execute OLFE with random inputs (ā, b̄) and c̄. The receiver gets
value d̄ := ā+ b̄ · c̄. (Or they just execute one instance of ROLFE.)

2. The receiver sends e := c̄− c to the sender.

3. The sender sends f := a+ ā+ b̄e and g := b+ b̄ to the receiver.

4. The receiver outputs d := f + g · c− d̄.

It is easy to see that Protocol Precomp-OLFE is correct: We have

f + g · c = a+ ā+ b̄(c̄− c) + (b+ b̄)c = ā+ b̄c̄+ a+ bc = d̄+ d .

We do not give a security proof here. Intuitively, the protocol is secure for the receiver since e
does not have any information about c, as it is one-time padded with c̄. Also, g does not give any
information about b, because it is one-time padded with b̄. f does not depend on b, and hence the
receiver never gets to know b.
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A.2 Proof of Theorem 2, Adaptive Cases

We will now show the adaptive cases of Thereom 2, which proves Protocol OLFE-to-RabinOT-
Combiner. Note that if the sender or the receiver is corrupted during the protocol, but before
before u is sent (which is the first value that depends on the input), the simulation can be done in
the same way as in the case where the player is corrupted from the beginning. Therefore, it only
remains to show that the protocol is secure when one of the players gets corrupted at the end of
the protocol, or both players get corrupted.

Lemma 8. The protocol is secure if the adversary corrupts the sender at the end of the protocol.

Proof. The uncorrupted sender and receiver complete the protocol, while the adversary A gets
to see values (e, r, u), as well as up to n − s inputs (αi, βi, γi) from the instances of OLFE that
he corrupts. Then A corrupts the sender, and gets to see all the internal values of the sender,
including the input x. Finally, he may again corrupt some instances of OLFE, for which he gets to
see (αi, βi, γi).

Note that u is uniform and independent of x, and the values ai and bi for i ∈ [m] are uniformly
distributed among the values that satisfy

u⊕ x = h((a1 + e · b1, . . . , am + e · bm), r) .

At first, S does the same as in Lemma 4. When A corrupts the sender, S also corrupts the
sender and gets the input x. Using the invertibility property of h described in Section 2.4, he
chooses (a1, . . . , am) and (b1, . . . , bm) randomly such that

u⊕ x = h((a1 + e · b1, . . . , am + e · bm), r)

holds. For all the instances that get corrupted thereafter, he again chooses (αi, βi, γi) uniformly at
random.

Using Lemma 4, it is easy to verify that the distribution in the simulation is exactly the same
as in the protocol, and hence execRabinOT,S,Z = execπ,A,Z .

Lemma 9. The protocol is secure if the adversary corrupts the receiver at the end of the protocol.

Proof. The uncorrupted sender and receiver complete the protocol, while the adversary A gets to
see values (e, r, u), as well as up to n − s inputs (αi, βi, γi) from the instances of OLFE that he
corrupts. Then A corrupts the receiver, and gets to see all the internal values of the receiver,
including the output y. Finally, he may again corrupt some instances of OLFE, for which he gets
to see (αi, βi, γi).

Let us condition on the values (αi, βi, γi) for each corrupted instance and (e, r, u) the adversary
has received before corrupting the receiver, and the value y. If y = ∆, then c is uniformly distributed
among {1, . . . , e − 1, e + 1, . . . , p̄}, and if y 6= ∆, then c = e. Furthermore, C(z) is uniformly
distributed among the polynomials of degree n − s + m − 1 with C(ri) = c and C(zi) = γi
for the corrupted instances. D(z) is uniformly distributed among the polynomials that satisfy
D(zi) = αi + βiγi for all the corrupted instances, and

y = u⊕ h((D(r1), . . . , D(rm)), r) .

Hence, using the invertibility property of h described in Section 2.4, it is not hard to simulate
C(z) and D(z), and hence the entire view of the receiver.
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It remains to show that the protocol is secure if both players get corrupted at some point. Note
that any corruption of instances of OLFE after both players have been corrupted is easy to simulate,
as they do not reveal any additional information to the adversary.

Lemma 10. The protocol is secure if the adversary corrupts the sender at the beginning and the
receiver at the end of the protocol.

Proof. At first, simulator S does the same as in Lemma 5. Note that during the simulation he
constructs a polynomial C(z). Then, when A corrupts the receiver, S also corrupts the receiver
and get the output y. If y = x, he chooses C ′(z) := C(z). If y = ∆, he chooses c ∈R {1, . . . , e −
1, e+ 1, . . . , p̄} and a new polynomial C ′(z) uniformly of degree n− s+m− 1 such that C ′(ri) = c
for i ∈ [m] and C ′(zi) = γi. Using C ′(z), he can construct the whole view of the receiver. It is easy
to check that execRabinOT,S,Z = execπ,A,Z .

Lemma 11. The protocol is secure if the adversary corrupts the receiver at the beginning and the
sender at the end of the protocol.

Proof. At first, simulator S does the same as in Lemma 6. Note that during this simulation, he
chooses polynomials A(z) and B(z) and calculates a value c, and produces outputs (αi, βi) and
(e, r, u). Then, when A corrupts the sender as well, S corrupts the sender, and gets the input x. S
now needs to find polynomials A′(z) and B′(z), such that they fit to x and the view of A. If y = x,
he simply takes A′(z) := A(z) and B′(z) := B(z). If y = ∆, he chooses A′(z) and B′(z) uniformly
among all polynomials that satisfy

x⊕ u = h((A′(r1) + e ·B′(r1), . . . , A′(rm) + e ·B′(rm)), r) ,

for all the insecure instances A′(zi) = αi, B′(zi) = βi, and for all the secure instances A′(zi) +
γiB

′(zi) = δi. Since all these constraints are linear in the coefficients of A′(z) and B′(z), this can
be done efficiently (see also Section 2.4). From A′(z) and B′(z) he simulates the sender’s view
and sends it to the adversary. Since in the protocol u is 2−k-close to uniformly distributed, we get
execRabinOT,S,Z ≈ execπ,A,Z .

Lemma 12. The protocol is secure if both players get corrupted at the end of the protocol.

Proof. The simulator does the same simulation as in Lemma 8 for the sender, which gives him the
polynomials A(z) and B(z) and a value e. If y = ∆, S chooses c ∈R {1, . . . , e− 1, e+ 1, . . . , p̄} and
c := e otherwise. Then he chooses C(z) at random with degree n− s+m− 1 such that C(ri) = c
and C(zi) = γi for the corrupted instances. With C(z), S can simulate the view of the receiver.
We get execOT,S,Z = execπ,A,Z .

A.3 Proof of Corollary 1 and Corollary 2

Proof of Corollary 1. Protocol Commit-Cut-And-Choose implements ROLFE((1−λ)n,(1−2λ)n) with
an error of at most e−λ

2n. Using Protocol PreCompOLFE, we can implement OLFE((1−λ)n,(1−2λ)n),
which we can then use to implement RabinOT using Protocol OLFE-to-RabinOT-Combiner.

We choose λ :=
√
k/n, which implies that e−λ

2n ≤ 2−k. For s := (1− 2λ)n and n′ := (1− λ)n,
we get

m =
2s− n′ + 1

2
=

2n− 4λn− n+ λn+ 1
2

=
n− 3λn+ 1

2
,
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and
` :=

m

2
log q − 2k =

n− 3λn+ 1
4

log q − 2k ≥ n

4
log q − 3

4

√
kn · log q − 2k .

Proof of Corollary 2. By choosing k′ := k + log n′, the total error to implement n′ instances of
OLFE is n · 2−k′

= 2−k. In total, our protocol needs

n := n′ · (log q + 2k + 2 log n′)

calls to OT to implement a `-string RabinOT with an error of 3 · 2−k. We get

` ≥ (n′/4−
√
kn′) log q − 2k

= n/4− kn′/2− n′ log n′/2−
√
kn′ · log q − 2k .

We choose log q := max(
√
kn′, log 1/p) — where p is the transmission probability — and get

` ≥ n/4− 2kn′ − n′ log n′/2−
√
kn′ · log 1/p− 2k

since log q ≤
√
kn′ + log 1/p. Note that q ≥ 2n′ since

√
kn′ ≥

√
n′ ≥ log n′ + 1 for n′ > 1. Since

we have n′ ≤ n and n ≥ n′ log q ≥ n′
√
kn′ =

√
kn′3, we get n′ ≤ 3

√
n2/k and kn′ ≤ (kn)

2
3 . The

statement follows.
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