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Abstract. Byzantine Agreement (BA) and Broadcast (BC) are consid-
ered to be the most fundamental primitives for fault-tolerant distributed
computing and cryptographic protocols. An important variant of BA and
BC is Asynchronous Byzantine Agreement (ABA) and Asynchronous
Broadcast (called as A-cast) respectively. Most often in the literature,
protocols for ABA and A-cast were designed for a single bit message.
But in many applications, these protocols may be invoked on long mes-
sage rather than on single bit. Therefore, it is important to design ef-
ficient multi-valued protocols (i.e. protocols with long message) which
extract advantage of directly dealing with long messages and are far bet-
ter than multiple invocations to existing protocols for single bit. In syn-
chronous network settings, this line of research was initiated by Turpin
and Coan [27] and later it is culminated in the result of Fitzi et al. [15]
who presented the first ever communication optimal (i.e. the communi-
cation complexity is minimal in asymptotic sense) multi-valued BA and
BC protocols with the help of BA and BC protocols for short message.
It was left open in [15] to achieve the same in asynchronous settings.
In [21], the authors presented a communication optimal multi-valued A-
cast using existing A-cast [6] for small message. Here we achieve the same
for ABA which is known to be harder problem than A-cast. Specifically,
we design a communication optimal, optimally resilient (allows maximum
fault tolerance) multi-valued ABA protocol, based on the existing ABA
protocol for short message.

Keywords: Asynchronous Byzantine Agreement, Multi-valued, Unbounded
Computing Power.

1 Introduction

The problem of Byzantine Agreement (BA) (also popularly known as consensus)
was introduced in [22] and since then it has emerged as the most fundamental
problem in distributed computing. It has been used as a building block for sev-
eral important secure distributed computing tasks such as Secure Multiparty
? Financial Support from Center for Research in Foundations of Electronic Markets

(CFEM) Denmark Acknowledged. The work was done when the author was a PhD
student at IIT Madras, India.



Computation (MPC) [4, 5, 26], Verifiable Secret Sharing (VSS) [10, 4, 26] etc. In
practice, BA is used in almost any task that involves multiple parties, like voting,
bidding, secure function evaluation, threshold key generation etc [14]. Informally,
a BA protocol allows a set of parties, each holding some input bit, to agree on
a common bit, even though some of the parties may act maliciously in order to
make the honest parties disagree.

An important variant of BA problem is asynchronous BA (known as ABA)
that studies the BA problem in asynchronous network which is known to be more
realistic than synchronous network. The works of [3, 25, 6, 11, 8, 7, 1, 23] have re-
ported different ABA protocols. In this paper, we focus on ABA, specifically on
the communication complexity of the problem.

Our Model. We follow the network model of [8, 7]. Specifically, our ABA
protocol is carried out among a set of n parties, say P = {P1, . . . , Pn}, where
every two parties are directly connected by a secure channel and t out of the
n parties can be under the influence of a computationally unbounded Byzantine
(active) adversary, denoted as At. We assume n = 3t+ 1 which is the minimum
number of parties required to design any ABA protocol [17]. The adversary At,
completely dictates the parties under its control and can force them to deviate
from the protocol in any arbitrary manner. The parties not under the influence
of At are called honest or uncorrupted.

The underlying network is asynchronous, where the communication chan-
nels between the parties have arbitrary, yet finite delay (i.e. the messages are
guaranteed to reach eventually). To model this, we assume that At controls the
network and may delay messages between any two honest parties. However, it
cannot read or modify these messages as the links are private and authenticated,
and it also has to eventually deliver all the messages by honest parties. In asyn-
chronous network, the inherent difficulty in designing a protocol comes from the
fact that a party can not distinguish between a slow sender (whose message is
simply delayed in the network) and a corrupted sender (who did not send the
message at all). So a party can not wait for the values sent by all parties, as
waiting for all of them may turn out to be endless. Hence the values of up to t
(potentially honest) parties may have to be ignored for computation at any step.

Definitions. We now define ABA and its variant formally.

Definition 1 (ABA [8]). Let Π be an asynchronous protocol executed among
the set of parties P, with each party having a private binary input. We say that Π
is an ABA protocol tolerating At if the following hold, for every possible behavior
of At and every possible input: (a) Termination: All honest parties eventually
terminate the protocol. (b) Correctness: All honest parties who have terminated
the protocol hold identical outputs. Furthermore, if all honest parties had same
input, say ρ, then all honest parties output ρ.

We now define (ε, δ)-ABA protocol, where both ε and δ are negligibly small
values and are called error probabilities of the ABA protocol. Throughout our
paper, we assume ε = 2−Ω(κ) and δ = 2−Ω(κ), where κ is called as the error



parameter. To achieve the above bounds for error probabilities, our protocol will
operate on finite Galois field F = GF (2κ).

Definition 2 ((ε, δ)-ABA). An ABA protocol Π is called (ε, δ)-ABA if: (a) Π
satisfies Termination described in Definition 1, except with an error probability
of ε and (b) Conditioned on the event that every honest party terminates Π,
protocol Π satisfies Correctness property described in Definition 1, except with
error probability δ.

The ABA and (ε, δ)-ABA can be executed for long messages and these type of
protocols will be referred as multi-valued protocols. The important parameters of
any ABA protocol are: (a) Resilience: It is the maximum number of corrupted
parties (t) that the protocol can tolerate and still satisfy its properties; (b)
Communication Complexity: It is the total number of bits communicated
by the honest parties in the protocol; (c) Computation Complexity: It is
the computational resources required by the honest parties during a protocol
execution; and (d) Running Time: An informal, but standard definition of the
running time of an asynchronous protocol is provided in [8, 7].

The History of ABA. From [22, 17], any ABA protocol tolerating At is
possible if and only if n ≥ 3t + 1. Thus any ABA protocol designed with
n = 3t+1 parties is called as optimally resilient. By the seminal result of [13], any
ABA protocol, irrespective of the value of n, must have some non-terminating
runs/executions, where some honest party(ies) may not terminate at all. So in
any (ε, δ)-ABA protocol with non-zero ε, the probability of the occurrence of a
non-terminating execution is at most ε (these type of protocols are called (1−ε)-
terminating [8, 7]). On the other hand in any (0, δ)-ABA protocol, the probability
of the occurrence of a non-terminating execution is asymptotically zero (these
type of protocols are called almost-surely terminating, a term coined in [1]). In
Table 1, we summarize the best known ABA protocols in the literature.

Table 1. Summary of the Best Known Existing ABA Protocols

Ref. Type Resilience Communication Expected Running
Complexity (CC) in bits Time (ERT)

[6] (0, 0)-ABA t < n/3 O(2n) C = O(2n)

[11, 12] (0, 0)-ABA t < n/4 O((nt+ t7) log |F|)a C = O(1)

[8, 7] (ε, 0)-ABA t < n/3 Privateb: O(Cn11(log κ)4)c C = O(1)

A-castd: O(Cn11(log κ)2 logn)

[1] (0, 0)-ABA t < n/3 Private: O(Cn6 log |F|) C = O(n2)
A-cast: O(Cn6 log |F|)

[20] (ε, 0)-ABA t < n/3 Private: O(Cn6 log κ) C = O(1)
A-cast: O(Cn6 log κ)

[20] Multi-valuede t < n/3 Private: O(Cn5 log κ) C = O(1)
(ε, 0)-ABA A-cast: O(Cn5 log κ)

a Here F is the finite field over which the ABA protocol of [11, 12] works. It is
enough to have |F| ≥ n and therefore log |F| can be replaced by logn. In fact in
the remaining table, F bears the same meaning.

b Communication over private channels between pair of parties in P.
c In this table, κ is the error parameter of the protocols.
d Total number of bits that needs to be A-casted (see more discussion on A-cast in

subsection 2.1 under section 2).
e This protocol allows to reach agreement on (t+ 1) bits concurrently.



Multi-valued ABA. In many applications, ABA protocols are invoked on long
messages rather than on single bit. For example, in asynchronous MPC (AMPC)
[5, 7, 19], where typically lot of ABA invocations are required, many of the in-
vocations can be parallelized and optimized to a single invocation with a long
message. All existing protocols for ABA [25, 3, 6, 11, 12, 8, 7, 1, 20] are designed
for single bit message. A naive approach to design multi-valued ABA for ` > 1
bit message is to parallelize ` invocations of existing ABA protocols dealing with
single bit. This approach requires a communication complexity that is ` times
the communication complexity of the existing protocols for single bit and hence
is not very efficient. More intelligent techniques need to be called for in order to
gain in terms of communication complexity.

In synchronous network, Turpin and Coan [27] are the first to report a multi-
valued BC protocol based on the access to a BC protocol for short message.
Recently, Fitzi et al. [15] have designed communication optimal BA and BC
protocols for large message using BA and BC protocol (respectively) for small
message. While all existing synchronous BA protocols required a communication
cost of Ω(`n2) bits, the BA protocols of [15] communicate O(`n+poly(n, κ)) bits
to agree on an ` bit message. For a sufficiently large `, the communication com-
plexity expression reduces to O(n`), which is a clear improvement over Ω(`n2).
A brief discussion on the approach used in [15] for designing BA protocol is
presented in Appendix A.

Designing communication optimal, multi-valued ABA and A-cast protocol
was left as an interesting open question in [15]. The problem of A-cast has been
resolved in [21]. In this paper, we settle the case for ABA which is known to
be harder than A-cast. Our ABA calls for much more involved techniques than
A-cast of [21]. To the best of our knowledge, ours is the first ever attempt to
design multi-valued ABA.

Our Contribution. We propose a communication optimal, optimally resilient,
multi-valued (ε, δ)-ABA protocol that attains a communication complexity of
O(`n+poly(n, κ)) bits to agree on an ` bit message. Our protocol requires O(n3)
invocations to ABA protocol for small messages (we may use any one of the
ABA protocols listed in Table 1; the most communication efficient ABA is listed
in the last row of the same table). For sufficiently large `, the communication
complexity of our protocol becomes O(`n) bits. From the result of [15], any
BA protocol in synchronous networks with t ∈ Ω(n), requires to communicate
Ω(n`) bits for an ` bit message. The same lower bound holds for asynchronous
networks as well. Therefore our ABA is communication optimal for large enough
`. The degree of n and κ (and therefore the bound on ` for which our protocol
is communication optimal) in the term poly(n, κ) depends on the ABA for short
message under use.

In our ABA protocol, we employ player-elimination framework introduced in
[16] in the context of MPC. So far player-elimination was used only in MPC and
AMPC. Hence our result shows the first non-MPC application of the technique.
Apart from this, we present a novel idea to expand a set of t + 1 parties, with
all the honest party(ies) in it holding a common message m, to a set of 2t + 1



parties with all honest parties in it holding m. Moreover, the expansion process
requires a communication complexity of O(`n+ poly(n, κ)) bits, where |m| = `.
This technique may be useful in designing communication efficient protocols for
many other form of consensus problems.

2 Communication Optimal (ε, δ)-ABA Protocol

We now present our novel (ε, δ)-ABA protocol with n = 3t+ 1, called Optimal-
ABA. The protocol allows the honest parties in P, each having input message of
` bits, to reach agreement on a common message m∗ ∈ {0, 1}` containing ` bits.
Moreover, if all the honest parties have same input m, then they agree on m at
the end. We first describe the existing tools used in Optimal-ABA.

2.1 Tools Used
Hash Function [15, 9]. A keyed hash function Uκ maps arbitrary strings in
{0, 1}∗ to κ bit string with the help of a κ bit random key. So Uκ : {0, 1}∗ →
{0, 1}κ. Uκ can be implemented as follows: Let m and r be the input to Uκ,
where m is an ` bit string that need to be hashed/mapped and r is the hash key
selected from F. Without loss of generality, we assume that ` = poly(κ). Then
m is interpreted as a polynomial fm(x) over F, where the degree of fm(x) is
d`/κe − 1. For this, m is divided into blocks of κ bits and each block of κ bits
is interpreted as an element from F. Then these field elements are considered
as the coefficients of fm(x) over F. Finally, Uκ(m, r) = fm(r). We now have the
following important well-known theorem.

Theorem 1 (Collision Theorem [15]). Let m1 and m2 be two ` bit messages.
The probability that Uκ(m1, r) = Uκ(m2, r) for a randomly chosen hash key r is
`2−κ

κ = 2−Ω(κ) which is negligible.

A-cast or Asynchronous Broadcast. In brief, an A-cast protocol allows a
sender S ∈ P to send some message M identically to all the parties in P. An
A-cast protocol satisfies two properties: (1) Termination: If S is honest, then
all honest parties in P will eventually terminate; If any honest party terminates,
then all honest parties will eventually terminate. (2) Correctness: If the honest
parties terminate, then they do so with a common output M∗; (b) Furthermore,
if the sender S is honest then M∗ = M . The first ever protocol for A-cast is due
to Bracha [6] and the protocol is error free in both termination and correctness.
The A-cast protocol of [6] is t resilient with t < n/3 and communicates O(n2)
bits to A-cast a single bit in constant running time. The other protocol for A-cast
is reported in [21]. This protocol has error in both correctness and termination;
but it communicates O(`n) bits for an ` bit input where ` = ω(n2(n log n+ κ)).
For simplicity, in our ABA protocol we will prefer to use A-cast of [6]. We use the
following syntax to invoke A-cast: A-cast(S,P,M). The description of Bracha’s
A-cast protocol is available in [7].

Notation 1 (Convention for Using A-cast:) By saying that ‘Pi A-casts M ’,
we mean that Pi as a sender, initiates A-cast(Pi,P,M). Similarly ‘Pj receives
M from the A-cast of Pi’ will mean that Pj terminates A-cast(Pi,P,M), with



M as the output. By the property of A-cast, if some honest party Pj terminates
A-cast(Pi,P,M) with M as the output, then every other honest party will even-
tually do so, irrespective of the behavior of the sender Pi.

Asynchronous Verifiable Secret Sharing (AVSS). An AVSS scheme con-
sisting of two phases, namely sharing phase and reconstruction phase, can be
viewed as a distributed commitment mechanism where a (possibly corrupted)
special party in P, called dealer (denoted as D), commits a secret s ∈ F in the
sharing phase, where commitment information is distributed among the parties
in P. Later in reconstruction phase, the commitment s can be uniquely and
privately reconstructed by any specific party, say Pα ∈ P (we may call it as
Pα-private-reconstruction) even in the presence of At. Here Pα is called receiver
party. Moreover, if D and Pα are honest, then secrecy of s from At is maintained
throughout. AVSS is implemented by a pair of protocols (Sh, Rec) and it has
three properties called, Termination, Correctness and Secrecy ( for a formal
definition of AVSS, refer to [7, 19]).

If an AVSS satisfies its Termination and/or Correctness, except with error
probability ρ = 2−Ω(κ), then we arrive at the notion of statistical AVSS. From
[8], statistical AVSS tolerating At is possible iff n ≥ 3t + 1. The best known
communication efficient statistical AVSS with n = 3t+ 1 is due to [19]. We use
the following syntax to invoke AVSS: AVSS-Share(D,P, s) (protocol for sharing
phase) and AVSS-Rec(D,P, s, Pα) (protocol for reconstruction phase).

Agreement on a Common Subset (ACS). In our (ε, δ)-ABA protocol, we
come across the following situation: There exists a set of parties R ⊆ P with
|R| ≥ t + 1, such that each party in R is asked to A-cast (AVSS-Share) some
value(s). While the honest parties in R will eventually do the A-cast (AVSS-
Share), the corrupted parties in R may or may not do the same. So the (honest)
parties in P want to agree on a common set T ⊂ R, with 1 ≤ |T | ≤ |R| − t,
such that A-cast (AVSS-Share) instance of each party in T will be eventually
terminated by the (honest) parties in P. For this, the parties use ACS primitive
(stands for Agreement on Common Subset), presented in [5]. The ACS protocol
will use |R| instances of ABA invoked on single bit. We may use the best known
communication efficient (ε, 0)-ABA of [20] for this purpose. We use the following
syntax for invoking ACS: ACS(R, |T |).
Theorem 2. The communication complexity of ACS is equal to |R| executions
of ABA protocol each invoked on a single bit.

2.2 Protocol Optimal-ABA

Our protocol Optimal-ABA uses the so-called player-elimination framework, along
with several novel ideas. So far player-elimination [16] has been used only in the
context of synchronous and asynchronous MPC [16, 2, 24]. Ours is the first non-
MPC application of player-elimination. We would refer it by party-elimination,
rather than player-elimination in our context (as we use the term party in place
of player). In the party-elimination framework, the computation of Optimal-ABA



is divided into t segments, where in each segment the parties agree on an `
t bit,

considering `
t bits of their original input as the input message of the segment.

In particular, the parties divide their original message into t blocks, each of size
`
t bits and in αth segment Sα, the parties reach agreement on an `

t bit message,
considering only the αth block as the input message. Each segment terminates
eventually with the parties having common output of `

t bits; moreover if the
honest parties start a segment with the same block of `t bits, then they agree on
that common input.

The computation of a segment is carried out in a non-robust fashion, in the
sense that if all the parties including the corrupted parties behave according
to the protocol then the segment successfully achieves its task; otherwise the
segment may fail in which case it outputs a triplet of parties among which at
least one is corrupted. In the former case, the next segment will be taken up for
computation for reaching agreement with next block of `

t bits as input. In the
latter case, the same segment will be repeated among the set of parties after
excluding the parties in the triplet and this continues until the segment becomes
successful. It is to be noted that though the computations in a segment may be
done among a subset of parties from P (as parties in triplet might be eliminated
from P), the agreement in the segment is finally attained over all honest parties
in P. It is now easy to see that the t segments may fail at most t times in total as
t is the upper bound on the number of corrupted parties. After t failures, all the
corrupted parties will be removed and therefore there will be no more failure.

We denote the input of party Pi by mi ∈ {0, 1}`, which is divided into t
blocks, with αth block being denoted by miα, for α = 1, . . . , t. At the beginning
of our protocol, we initialize two dynamic variables n′ = n and t′ = t and one
dynamic set P ′ = P. P ′ denotes the set of non-eliminated parties and contains
n′ parties, out of which at most t′ can be corrupted. In every segment Sα the
computation is structured into three main phases: (a) Checking Phase, (b)
Expansion Phase and (c) Output Phase. The segment failure may occur
only in the second phase and hence only the first two phases of a segment may
be repeated several times (bounded by t); once the first two phases are successful
for a segment, the segment will always be successfully completed after robustly
executing the third phase. So at the end of segment Sα, every honest party will
agree on a common `

t bits, denoted by m∗α. Moreover if the honest parties start
with common input (i.e. miα’s are equal for all honest parties), then m∗α will be
same as that common input.

1. Checking Phase: Here the parties, on having private input message of `
t

bits each (i.e.miα’s), jointly perform some computation in order to determine
and agree on a set of t′ + 1 parties called P ′ch ⊆ P ′, such that the honest
parties in P ′ch hold a common `/t bit message, say m∗α. In case of failure due
to the inconsistencies among the inputs of the honest parties, the parties
abort any further computation for current segment and agree on a predefined
message m†α. So in this case current segment terminates with all honest
parties agreeing on common output m∗α = m†α. On the other hand, if P ′ch is
generated and agreed among the parties, then the computation for current



segment proceeds to the next phase. It is to be noted that P ′ch will be always
obtained if the initial messages of the honest parties in P ′ are same.

2. Expansion Phase: Here the parties in P ′ch on holding a common message
m∗α help other parties to receive m∗α. Specifically here the parties jointly
perform some computation in conjunction with the parties in P ′ch to expand
P ′ch to a set of 2t′ + 1 parties, denoted by P ′ex (with P ′ch ⊂ P ′ex ⊆ P ′) such
that all honest parties in P ′ex hold m∗α. The expansion technique is the most
crucial and novel part of our protocol. But the computation of this phase is
non-robust and hence either one of the following is guaranteed: (a) P ′ex is
constructed successfully or (b) a triplet of parties (Pi, Pj , Pk) is obtained,
such that at least one of the three parties is corrupted. If the former case
happens, then parties proceed to execute Output Phase. If the latter case
happens, then n′ and t′ are reduced by 3 and 1 respectively and the current
segment is repeated from the beginning (from the Checking Phase) with
updated n′ and t′ and P ′ = P ′ \ {Pi, Pj , Pk}. Note that n′, t′ and P ′ always
satisfy: n′ = 3t′ + 1 and |P ′| = n′.

3. Output Phase: Here the parties in P ′ex help the parties in P\P ′ex (not P ′\
P ′ex) to learn the common `/t message m∗α held by the honest parties in P ′ex.
After this phase, current segment terminates with common output m∗α and
the parties proceed to the computation of next segment. The implementation
of this phase is very similar to the implementation of the Output Phase of
[21] and the Claiming Stage of the BA protocol of [15].

Now the overall structure of Optimal-ABA is presented below.

Protocol Optimal-ABA(P)
Code for Pi: Every party in P executes this code.

1. Set n′ = n, t′ = t and P ′ = P. Initialize α = 1.
2. While α ≤ t, do the following for segment Sα with input miα and with n′, t′ and
P ′ to agree on m∗α:

(a) Checking Phase: Participate in the code Checking, presented in Fig. 1 to
determine and agree on P ′ch ⊆ P ′ of size t′+ 1 such that all the honest parties
in P ′ch hold common `

t
bits, say m∗α. If P ′ch is generated then proceed to the

next phase. Otherwise set m∗α to some predefined value m†α ∈ {0, 1}
`
t , set

α = α+ 1 and terminate the current segment with output m∗α.
(b) Expansion Phase: Participate in code Expansion presented in Fig. 2 to ex-

pand P ′ch to contain 2t′+ 1 parties, denoted by P ′ex such that P ′ch ⊂ P ′ex ⊆ P ′
and all honest parties in P ′ex hold m∗α. If P ′ex is generated successfully then pro-
ceed to the next phase. Otherwise output a triplet (Pm, Pl, Pk), set n′ = n′−3,
t′ = t′ − 1 and P ′ = P ′ \ {Pm, Pl, Pk} and repeat the current segment.

(c) Output Phase: Participate in code Output presented in Fig. 3 and output
m∗α upon termination, set α = α+ 1 and terminate the current segment.

3. Output m∗ which is the concatenation of m∗1, . . . ,m
∗
t and terminate the protocol.

In the sequel, we will pursue an in-depth discussion on the implementation
and properties of each of the above three phases.



Checking Phase. As mentioned before, the aim of this phase is to either agree
on a set P ′ch of size t′ + 1 such that all the honest parties in P ′ch hold common
message, say m∗α, or decide that such set may not exist. When all the honest
parties start with same input message, P ′ch can be always found out and agreed
upon. To achieve the above task, every party hashes his message with a random
key and A-casts the (random key, hash value) pair. The parties then agree on a
set I of n′ − t′ parties whose A-cast will be eventually received by every honest
party. This can be achieved by executing an instance of ACS.

Now every party Pi prepares a response vector −→vi , indicating whether the
hash value of every Pj ∈ I is indeed the hash value of his own message miα

with respect to Pj ’s hash key (this should ideally be the case, when Pi and Pj
are honest and their input messages are identical, i.e. miα = mjα). Pi A-casts
−→vi . Now the parties again agree on a set of n′ − t′ parties, say J whose A-cast
with their −→vi has been terminated. Now notice that if all honest parties start with
common input, then the vectors of the honest parties in J would be identical and
would have at least t′ + 1 1’s at the locations corresponding to the t′ + 1 honest
parties in I. So now the parties try to find a set of at least t′ + 1 parties in J ,
whose vectors are identical and have at least t′ + 1 1’s in them. If found, then
any subset of t′+ 1 parties from that set (say t′+ 1 parties with smallest index)
will be considered as P ′ch. It is easy to show that P ′ch will be always obtained
if the initial messages of the honest parties in P ′ are same. Moreover it can be
shown that the honest parties in P ′ch hold common message, say m∗α with very
high probability (see Lemma 2). But if P ′ch is not found, then the honest parties
know that their input messages are inconsistent and hence they agree that such
set can not be found. The steps performed so far are enough for achieving the
goal of our current phase.

But we need to do some more task for the requirement of next phase i.e.
Expansion Phase. In Expansion Phase, we require that every honest party
Pj in P ′ should hold a distinct secret random hash key and hash value of the
message corresponding to every party Pi in I, such that the hash key and hash
value that Pj has received from Pi should not be known to anybody other than
Pi and Pj . Though achieving this in synchronous network is easy, it needs some
amount of effort in asynchronous network. We do this by using AVSS-Share and
AVSS-Rec. The code that implements this phase is now given in Fig. 1.

Before proving the properties of Checking Phase, we define the following:

Event E: Let E be an event in an execution of Checking, defined as follows: All
invocations of AVSS scheme initiated by the parties in I have been terminated
with correct output. More clearly, E means that all the invocations of AVSS
initiated by the parties in I will satisfy termination and correctness property. It
is easy to see that E occurs with very high probability of (1− 2−Ω(κ)). 2

In the sequel, all the lemmas for all the three phases are proved conditioned on
event E.

Lemma 1 (Termination of Checking Phase). In a segment Sα, an exe-
cution of Checking Phase will be terminated, except with probability 2−Ω(κ),



Fig. 1. Code for Checking Phase.

Checking

To avoid notational clutter, we assume that P ′ is the set of first n′ parties

Code for Pi ∈ P ′: Every party in P ′ executes this code

1. On having input miα,
(a) choose a random hash key ri from F and A-cast (ri,Vi) where Vi = Uκ(miα, ri);
(b) choose n′ random hash keys ri1, . . . , rin′ from F and commit (rij ,Vij)

where Vij = Uκ(miα, rij), by executing AVSS-Share(Pi,P ′, rij) and AVSS-
Share(Pi,P ′,Vij).

2. Participate in AVSS-Share(Pj ,P ′, rjk) and AVSS-Share(Pj ,P ′,Vjk) for every Pj ∈
P ′ and k = 1, . . . , n′.

3. Participate in ACS(P ′, n′−t′) to agree on a set of n′−t′ parties from P ′, denoted as
I, whose A-cast and the 2n′ instances of AVSS-Share will be eventually terminated
(by the honest parties in P ′).

4. Wait to receive (rj ,Vj) from the A-cast of every Pj ∈ I.
5. Wait to terminate all 2n′ instances of AVSS-Share of every party in I. Participate

in AVSS-Rec(Pj ,P ′, rjk, Pk) and AVSS-Rec(Pj ,P ′,Vjk, Pk) for every Pj ∈ I and
every Pk ∈ P ′ for Pk-private-reconstruction of (rjk,Vjk).

6. Obtain (rji,Vji) pair from AVSS-Rec(Pj ,P ′, rji, Pi) and AVSS-Rec(Pj ,P ′,Vji, Pi)
corresponding to every Pj ∈ I.

7. Construct n length vector −→vi , where −→vi [j] =


⊥ If Pj 6∈ I
1 If Pj ∈ I and Vj = Uκ(miα, rj).
0 If Pj ∈ I and Vj 6= Uκ(miα, rj).

A-cast −→vi .
8. Participate in ACS(P ′, n′− t′) to agree on a set of n′− t′ parties from P ′, denoted

as J , whose A-cast with an n length vector has been terminated.
9. Check whether there is a unique set of at least t′ + 1 parties in J such that their

vectors are identical and have at least t′ + 1 1’s in them (Note that this can be
done in polynomial time).
(a) If yes, then let P ′ch be the set containing exactly t′+ 1 parties (say the parties

with first t′ + 1 smallest indices) out of those parties. Let −→v be the n length
vector, where −→v [i] = 1 if the ith location of the vectors of all parties in P ′ch
is 1, otherwise −→v [i] = ⊥. Moreover, let I1 = {Pi ∈ I such that −→v [i] = 1}.
Assign m∗α = miα if Pi ∈ P ′ch.

(b) If not, then decide that P ′ch can not be found.

where termination means that the code either outputs a set P ′ch of size t′ + 1 or
decide that such set can not be constructed.

Proof: Conditioned on event E, an execution of Checking Phase will always
terminate if both the executions of ACS terminate and all the instances of A-cast
terminate. Since A-cast has no error in termination and each execution of ACS
terminates except with probability 2−Ω(κ), an execution of Checking Phase
will terminate except with negligible probability. 2



Lemma 2 (Correctness of Checking Phase). In an execution of Checking
Phase in a segment Sα, the honest parties in P ′ch (if it is found) hold a common
message m∗α, except with probability 2−Ω(κ). Moreover, if the honest parties start
Sα with common message mα, then P ′ch will always be found with m∗α = mα.

Proof: We prove the first part of the lemma. If P ′ch contains exactly one honest
party, then first part is trivially true with m∗α being the input message of the
sole honest party in P ′ch. So let P ′ch contain at least two honest parties. We
now show that the messages of every pair of honest parties (Pi, Pj) in P ′ch are
same. Recall that the response vectors −→vi and −→vj of Pi and Pj are identical
and have at least t′ + 1 1’s in them. Moreover, I1 contains all Pk’s such that
−→vi [k] = −→vj [k] = 1. Evidently, |I1| ≥ t + 1. So there is at least one honest party
in I1, say Pk, such that −→vi [k] = −→vj [k] = 1. This implies that Vk = Uκ(miα, rk)
and Vk = Uκ(mjα, rk) holds for Pi and Pj respectively, where Pi has received
(Vk, rk) from Pk (by A-cast) and Pj has received (Vk, rk) from Pk (by A-cast).
Now by Collision Theorem (Theorem 1), it follows that miα = mkα and
mjα = mkα, except with probability 2−Ω(κ). Consequently miα = mjα, except
with probability 2−Ω(κ). Now let us fix an honest party, say Pi in P ′ch. If Pi’s value
is equal to every honest Pj ’s value in P ′ch, then it means that all honest parties
in P ′ch hold a common message m∗α, except with negligible error probability.

We now prove the second part. When all honest parties start with same
input mα, the vectors of all honest parties in J will have 1 at the locations
corresponding to the honest parties in I. Since there are at least t′ + 1 honest
parties in both I and J , P ′ch can always be found and now it is easy to see that
all honest parties in P ′ch will hold mα. 2

Expansion Phase. If P ′ch is found and agreed upon in previous phase, then
the parties proceed to expand P ′ch in order to obtain P ′ex. For that we first
initiate K = P ′ch and K = P ′ \ K. Then K will be expanded to contain 2t′ + 1
parties and we will assign K to P ′ex when K contains 2t′+ 1 parties. We call the
K containing t′ + 1 parties as ‘initial’ K and likewise the K containing 2t′ + 1
parties as ‘final’ K. The expansion (transition from ‘initial’ K to ‘final’ K) takes
place in a sequence of t′ iterations. In each iteration, either K is expanded by one
or in case of failure a conflict triplet is returned. In the latter case, the current
segment fails and it is again repeated (from checking phase) with renewed
value of n′, t′ and P ′ (i.e. after excluding the parties in the triplet from P ′).

So this phase starts as follows: First an injective mapping ϕ : K → K is
defined. Now a party Pi ∈ K sends his message m∗α to party ϕ(Pi) ∈ K. A
party Pi ∈ K on receiving a message m∗α from ϕ−1(Pi) ∈ K, calculates vector
−→vi with the (key, hash value) pair of the parties only in I1 (⊥ is placed at
all other locations) and with m∗α as the message. Pi then A-casts Matched-Pi
if −→vi is identical to −→v (which was calculated in Checking). Otherwise let k be
the minimum index in −→vi such that −→vi [k] 6= −→v [k], then Pi A-casts a conflict
triplet (ϕ−1(Pi), Pi, Pk). Clearly, one of the three parties in the triplet must
be corrupted. The parties now invoke an instance of ACS to agree on a single
party, say Pl from K whose A-cast has been terminated. Such a party from K



can always be found as there exists at least one honest Pm ∈ K which will be
mapped to another honest Pl = ϕ(Pm) ∈ K and Pl will eventually receive m∗α
from Pm and successfully A-cast some message (see Lemma 4).

Now there are two cases. If (ϕ−1(Pl), Pl, Pk) is received from the A-cast of
Pl, then the computation stops here and the triplet (ϕ−1(Pl), Pl, Pk) is returned.
If Matched-Pl is received from the A-cast of Pl, then Pl is included in K and
excluded from K. Pl now finds a unique party from the set of parties in K that
was never mapped before (say the unmapped party with smallest index) and
sends m∗α to it. Again the party who receives the message, calculates response
vector with the received message and A-casts either a conflict triplet or Matched
signal. Then the parties invoke an instance of ACS to agree on a single party
from K whose A-cast has been terminated and this process continues until either
|K| becomes 2t′ + 1 or the segment is failed with some triplet in some iteration.
Though it is non-intuitive that in every iteration the parties will be able to agree
on a single party from K by executing ACS, this will indeed happen and we prove
this in Lemma 4. If K becomes of size 2t′+ 1, it is assigned to P ′ex. The code for
this phase is given in Fig. 2. We now prove the properties of Expansion Phase.

Lemma 3. In a segment Sα, in any iteration of while loop (in an execution of
Expansion Phase), no two different parties in K are mapped to the same party
in K. Also in case while loop is completed with K containing 2t′ + 1 parties,
only the last entrant in ‘final’ K is not mapped to any party.

Proof: From the protocol steps, it is clear that a party in K is mapped only
once. Now we show that no pair (Pi, Pj) in K is mapped to same party. This
is true as ϕ is injective and also every time a party Pi from K is mapped to
a party Pk in M (set of unmapped parties), Pk is never mapped again as it is
immediately transferred to M (set of mapped parties).

Now we show that there will be enough number of parties inM to be mapped
in all iterations, except the last one. We consider the worst case, where the while
loop is executed completely for t′ iterations (as ‘initial’ |K| is t′ + 1 and t′ more
parties have to enter to make ‘final’ K of size 2t′ + 1), without outputting any
triplet. Now as per the protocol, at the beginning of the while loop, K = t′+ 1,
K = 2t′, M = t′ + 1 and M = 2t′ − (t′ + 1) = t′ − 1. In ith iteration, a party,
say Pl fromM (hence from K) enters into K and gets mapped to an unmapped
party inM (hence in K). As a result: (a) |K| increases by 1, (b) |K| decreases by
1, (c) |M| remains same and (d) |M| decreases by 1. So after t′ − 1 iterations,
the following hold: (a) |K| = 2t′, (b) |K| = t′ + 1, (c) |M| = t′ + 1 and (d)
|M| = 0. Hence M becomes empty only after the mapping is done in (t′ − 1)th

iteration. In the last iteration (t′th), another party from M (hence from K) is
finally included in K which need not be mapped to any more party as K becomes
exactly 2t′ + 1 at this point. 2

Lemma 4. In a particular execution of Expansion Phase in a segment Sα,
|K| will increase by one with probability at least (1− 2−Ω(κ)), in every iteration
of while loop until the while loop is completed due to |K| = 2t′ + 1 or broken
due to the output of a triplet.



Fig. 2. Code for the Expansion Phase.

Expansion

Code for Pi ∈ P ′: Every party in P ′ executes this code

1. Assign K = P ′ch and K = P ′ \ K.
2. Define an injective mapping ϕ : K → K where K = P ′ \ K as follows: the party

with smallest index in K is associated with the party with smallest index in K. Let
M = ϕ(K) (⊂ K, as |K| is exactly t′+ 1) be the set of currently mapped parties in
K. Let M = K \M be the set of currently unmapped partied in K.

3. If Pi ∈ K, then send m∗α to ϕ(Pi).
4. If Pi ∈ K and has received message m∗α from ϕ−1(Pi) ∈ K, then calculate vector −→vi

of length n as follows: −→vi [j] =


⊥ If Pj 6∈ I1
1 If Pj ∈ I1 and Vji = Uκ(m∗α, rji).
0 If Pj ∈ I1 and Vji 6= Uκ(mα, rji).

Recall that

(rji,Vji) pair was obtained by Pi in Checking from AVSS-Rec(Pj ,P ′, rji, Pi) and
AVSS-Rec(Pj ,P ′,Vji, Pi). If −→vi is identical to −→v then A-cast Matched-Pi; otherwise
let k be the minimum index in −→vi such that −→vi [k] 6= −→v [k], then A-cast (Pj , Pi, Pk),
where Pj = ϕ−1(Pi).

5. while |K| < 2t′ + 1 do:
(a) Participate in an instance of ACS(M, 1) to agree on a single party from M

whose A-cast has been terminated. Let the party be Pl.
(b) If (Pm, Pl, Pk) is received from A-cast of Pl, then stop any further computation

and output the triplet (Pm, Pl, Pk).
(c) If Matched-Pl is received from A-cast of Pl, then set K = K∪{Pl}, K = K\{Pl}

and M =M\ {Pl}.
(d) Define a mapping, which maps Pl to the party in M with the smallest index,

say Pm. Set M =M\ {Pm} and M =M∪ {Pm}.
(e) If Pi = Pl, then send m∗α to Pm.
(f) If Pi = Pm and Pi has received message m∗α from Pl, then calculate vector
−→vi of length n in the same way as in step 4. If −→vi is identical to −→v then
A-cast Matched-Pi; otherwise let k be the minimum index in −→vi such that
−→vi [k] 6= −→v [k], then A-cast (Pl, Pi, Pk).

6. Set P ′ex = K. If Pi ∈ P ′ex, then consider m∗α as the final message.

Proof: To prove the lemma, we show that in every iteration of the while loop,
the parties will be able to agree on a single party (using ACS) fromK (except with
negligible probability, as the instance of ACS may not terminate with negligible
probability), whose A-cast will be terminated. In other words, we assert that in
every iteration of the while loop, there will exist one party from K who will
eventually A-cast a response. Moreover, this will be true, until the while loop is
either over or broken due to the output of a triplet. For this, we claim that in
every iteration of while loop, there must be an honest party, say Pi, belonging
to K, such that Pi is mapped to another honest party, say Pj , belonging to K.
Moreover, honest Pi’s message will eventually reach to honest Pj , who will then
A-cast his response, which is either an n length vector or a triplet of parties.



At the time of entering into the loop for the first time, assume that among
t′ + 1 parties in K there are 0 ≤ c ≤ t′ corrupted parties. So the remaining
t′ − c corrupted parties are in ‘initial’ K. In the worst case, c corrupted parties
and t′ − c honest parties from K may be mapped to c honest parties and t′ − c
corrupted parties, respectively from K. Still K contains at least one honest party
which is bound to be mapped to another honest party from K, as there is no other
unmapped corrupted party in K. So our claim holds for first iteration. In general
in ith iteration, there are t′ + i parties in K out of which say c with 0 ≤ c ≤ t′

are corrupted parties. So extending the previous argument for this general case,
there are i honest parties in K who are mapped to i honest parties in K. Among
these i mappings, i − 1 might correspond to previous i − 1 iterations. But still
one mapping is left for ith iteration. Now let the mapping be from honest Pj ∈ K
to honest Pk ∈ K.

So Pj ’s message reaches to Pk eventually and Pk tries to prepare −→vk with
received message and the (key, hash value) of the parties in I1. Conditioned
on event E, Pk will receive the (key, hash value) of the parties in I1. Once Pk
prepares his vector, he A-casts his response (which could be either Matched-Pk,
if −→vk = −→v or a triplet of parties if −→vk 6= −→v ). If Pk’s response is Matched-Pk, then
|K| will be incremented by 1; otherwise, the loop will be broken with a triplet
as output. 2

Lemma 5 (Termination of Expansion Phase). In a segment Sα, an execu-
tion of Expansion Phase will terminate, except with probability 2−Ω(κ), where
termination means that the code either outputs a triplet or a set P ′ex of size
2t′ + 1.
Proof: From Lemma 4, in every iteration of the while loop, there will exist
one party from K who will eventually A-cast a response. Now conditioned on
event E, the termination of an execution of Expansion Phase depends on the
termination of the invoked ACS protocols and the A-casts. A-cast has no error in
termination. The invocations of ACS (there can be at most t′ invocations corre-
sponding to t′ iterations of while loop) will terminate, except with probability
2−Ω(κ). Therefore, an execution of Expansion Phase terminates, except with
probability 2−Ω(κ). 2

Lemma 6 (Correctness-I of Expansion Phase). In an execution of Ex-
pansion Phase in a segment Sα, all the honest parties in P ′ex (if found) will
hold a common message m∗α, which was also the common message held by the
honest parties in P ′ch, except with probability 2−Ω(κ). Moreover if the honest
parties start Sα with same input message mα, then m∗α = mα.

Proof: Let us consider party Pf , who is the first honest party to enter into
‘initial’ K during the Expansion phase. Recall that Pf enters into K (hence
P ′ex) when it receives a message m∗α from some already existing (possibly cor-
rupted) party Pj in K and Pf ’s generated −→vf is identical to −→v . We claim that
m∗α = m∗α, except with error probability 2−Ω(κ). Consider an honest Pk ∈ K
and an honest Pl in I1 with −→v [l] = 1 (there is at least one such honest Pl as
|I1| ≥ t′ + 1). By Collision Theorem, mkα = mlα = m∗α, except with error



probability 2−Ω(κ). Now since −→vf = −→v , it implies that −→v f [l] = 1, as −→v [l] = 1.
This further implies that m∗α = mlα. Hence it implies that m∗α = m∗α holds, with
very high probability. This is because the key and hash value pair (rlf ,Vlf ) is
not known to anyone (including possibly corrupted Pj) other than Pf and Pl.
Hence with very high probability, Pf has received m∗α from Pj .

Now let Ps be the second honest party to enter into ‘initial’ K. Ps may
receive its message either from Pf or from any party belonging to ‘initial’ K.
In both cases, Ps’s message will be m∗α, except with negligible error probability.
In general, if an honest party Pi enters into ‘initial’ K at sometime, then its
message will be equal to m∗α, except with negligible error probability. 2

Lemma 7 (Correctness-II of Expansion Phase). In an execution of Ex-
pansion Phase in a segment Sα, if a triplet (Pm, Pl, Pk) is A-casted by Pl then
at least one of Pm, Pl and Pk is corrupted, except with error probability 2−Ω(κ)

where Pm ∈ K, Pl ∈ K and Pk ∈ I1.

Proof: Let Pm, Pl and Pk be honest, where Pm ∈ K, Pl ∈ K and Pk ∈ I1. Since
Pk ∈ I1, it implies that −→v (k) = 1 holds. Also Pm ∈ K implies that −→v m(k) = 1.
This further implies that m∗α held by Pm is same as mkα held by Pk, except with
error probability 2−Ω(κ) (from Collision Theorem). Now during Expansion
phase, Pm sends his m∗α to Pl and Pl computes −→v l with respect to the received
m∗α and the pairs (rjl,Vjl), corresponding to every Pj ∈ I1. On computing −→v l,
party Pl will find that −→v l(k) = −→v (k), except with negligible error probability.
This is because Pk is honest and hence Vkl is the hash value of mkα, with
respect to the hash key rkl. However, as shown above, m∗α received by Pl from
Pm is same as mkα, except with negligible error probability. So Pl will find that
Vkl = Uκ(m∗α, rkl). Hence Pl will not A-cast triplet (Pm, Pl, Pk). So if at all Pl
A-casts (Pm, Pl, Pk), then at least one of Pm, Pl and Pk is corrupted. 2

Output Phase. Once the parties agree on P ′ex, with all honest parties in it
holding some common m∗α, we need to ensure that m∗α propagates to all (honest)
parties in Pex = P \P ′ex, in order to reach agreement on m∗α. This is achieved in
code Output (presented in Fig. 3) with the help of the parties in P ′ex. A simple
solution could be to ask each party in P ′ex to send his m∗α to all the parties in
Pex, who can wait to receive t′+1 same m∗α and then accept m∗α as the message.
This solution will work as there are at least t′ + 1 honest parties in P ′ex. But
clearly, this requires a communication complexity of O( `n · n

2) = O(`n) bits
for each segment (and thus O(`n2) bits for our ABA protocol; this violates our
promised communication complexity bound for Optimal-ABA). Hence, we adopt
a technique proposed in [15] for designing a BA protocol in synchronous settings
with n = |P| = 2t + 1 parties. Now the technique proposed in [15] requires a
set of parties, say H ⊂ P such that all the honest parties in H hold the same
message and the majority of the parties in H are honest. Under this condition
the technique allows the set of honest parties in P \ H to obtain the common
message of the honest parties in H with a communication cost of O(`n) bits. In
our context P ′ex has all the properties of H. Hence we adopt the technique of [15]
in our context in the following way: Every Pi ∈ P ′ex sets d = t′+1 and c = d `+1

td e



and transforms his message m∗α (with |m∗α| = `
t ) into a polynomial p(x) of degree

d− 1 over GF (2c). Now if somehow a party Pj ∈ Pex receives d values on p(x),
then he can interpolate p(x) and receive m∗α. For this, party Pi ∈ P ′ex sends ith

value on p(x), namely pi = p(i) to every Pj ∈ Pex. As the corrupted parties
in P ′ex may send wrong pi, Pj should be able to detect correct values. For this,
every Pi ∈ P ′ex also sends hash values of (p1, . . . , pn) for a random hash key to
every Pj ∈ Pex. Now Pj can detect ‘clean’ values with the help of the hash values
and eventually Pj will receive d ‘clean’ values (possibly from d = t′ + 1 honest
parties in P ′ex) using which he can compute m∗α.

Fig. 3. Code for Output Phase

Output

i. Code for Pi: Every party in P (not P ′) will execute this code.

1. If Pi ∈ P ′ex, do the following to help the parties in Pex = P \ P ′ex to compute m∗α:
(a) Set d = t′ + 1 and c = d `+1

td
e.

(b) Interpret m∗α as a polynomial p(x) of degree d−1 over GF (2c). For this, divide
m∗α into blocks of c bits and interpret each block as an element from GF (2c).
These elements from GF (2c) are the coefficients of p(x).

(c) Send pi = p(i) to every Pj ∈ Pex, where pi is computed over GF (2c).
(d) For every Pj ∈ Pex, choose a random distinct hash key Rij from F and send

(Rij ,Xij1, . . . ,Xijn) to Pj , where for k = 1, . . . , n, Xijk = Uκ(pk, Rij). Here,
to compute Xijk, interpret pk as a c bit string.

(e) Terminate this code with m∗α as output.
2. If Pi ∈ Pex, do the following to compute m∗α:

(a) Call pk received from party Pk ∈ P ′ex as ‘clean’ if there are at least
t′ + 1 Pj ’s in P ′ex, corresponding to which Xjik = Uκ(pk, Rji) holds, where
(Rji,Xji1, . . . ,Xjin) is received from Pj ∈ P ′ex.

(b) Wait to receive d ‘clean’ pk’s and upon receiving, interpolate d−1 degree poly-
nomial p(x) using those ‘clean’ values, interpret m∗ from p(x) and terminate
this protocol with m∗α as the output.

Lemma 8 (Termination of Output Phase). An execution of Output Phase
in any segment Sα will terminate, except with probability 2−Ω(κ).

Proof: From the steps of the code Output, the parties in P ′ex always terminate
after performing the steps as mentioned in step 1(a)-1(d) of the code. So we now
have to prove that the parties in P \P ′ex terminate, except with negligible error
probability. To show this, we first assert that if all the honest parties in P ′ex hold
common m∗α, then the above event happens with no error; but the parties in
P ′ex hold common m∗α, except with negligible error probability (from Lemma 6).
Hence it will follow that the parties in P \P ′ex terminate, except with negligible
error probability.

Now we are left to show that the parties in P \ P ′ex terminate without error
when all the honest parties in P ′ex hold common m∗α. Consider an honest party
Pi in Pex. Clearly, Pi terminates if it receives d = t′+1 ‘clean’ values eventually.
To assert that Pi will indeed receive d = t′ + 1 ‘clean’ values, we first show that



the value pk received from every honest Pk in P ′ex will be considered as ‘clean’ by
Pi. Consequently, since there are t′ + 1 honest parties in P ′ex, Pi will eventually
receive t′ + 1 ‘clean’ values even though the corrupted parties in P ′ex may never
send any value to Pi. If the honest parties in P ′ex have common m∗α, they will
generate same p(x) and therefore same pk = p(k). Hence, Xjik = Uκ(pk, Rji)
will hold, with respect to (Rji,Xjik) of every honest Pj in P ′ex. As there are at
least d = t′ + 1 honest parties in P ′ex, the pk received from honest Pk ∈ P ′ex will
be considered as ‘clean’ by Pi. This proves our claim. 2

Lemma 9 (Correctness of Output Phase). Every honest party in P will
output a common message m∗α in an execution of Output Phase in a segment
Sα, except with probability 2−Ω(κ). Moreover, if the honest parties start Sα with
same input mα, then m∗α = mα.

Proof: Lemma 6 shows that all the honest parties in P ′ex will output same m∗α
with very high probability. So we are left to prove that all the honest parties in
Pex will output same m∗α as well.

So let Pi ∈ Pex be an honest party. Now the pk value of each honest Pk ∈ P ′ex
will be eventually considered as ‘clean’ value by honest Pi. This is because there
are at least t′ + 1 honest parties in P ′ex, who hold same m∗α and therefore same
p(x) (and hence p(k)). So Xjik = Uκ(pk, Rji) will hold, with respect to (Rji,Xjik)
of every honest Pj in P ′ex. A corrupted Pk ∈ P ′ex may send pk 6= pk to Pi, but
pk will not be considered as a ‘clean’ value with very high probability. This is
because, in order to be considered as ‘clean’ value, pk should satisfy Xjik =
Uκ(pk, Rji) with respect to (Rji,Xjik) of at least t + 1 Pj ’s from P ′ex. The test
will fail with respect to an honest party from P ′ex with very high probability
according to Collision Theorem (see Theorem 1). Thus though the test may
pass with respect to all corrupted parties in P ′ex (at most t), the test will fail
for every honest party from P ′ex with high probability. Hence, honest Pi will
reconstruct p(x) using d ‘clean’ values (which he is bound to get eventually),
with very high probability. The second part is easy to follow. 2

Properties of Optimal-ABA. We now prove the properties of Optimal-ABA.

Lemma 10. In Optimal-ABA, in total there can be t segment failures. The
Checking Phase and Expansion Phase may be executed for at most 2t times.
But Output Phase may be executed at most t times, once for each segment.

Proof: Since there are t corrupted parties, in total there can be t segment
failures. These t failures may occur within a single segment or they may be dis-
tributed across t segments. After t failures, all corrupted parties will be removed
from P and hence segment failure can not occur any more.

Since a segment may fail in Expansion Phase, there can be 2t executions of
Checking Phase and Expansion Phase of which at most t may be non-robust
executions (conflict triplet is found) and remaining t may be robust executions.
Since segment can not fail in Output Phase, this phase may be executed at
most t times, once for each segment. 2



Lemma 11 (Termination of Optimal-ABA). Protocol Optimal-ABA will ter-
minate eventually, except with probability 2−Ω(κ).

Proof: This follows from Lemma 1, Lemma 5 and Lemma 8 and the fact that
event E occurs with very high probability. 2

Lemma 12. Conditioned on the event that segment Sα terminates, every honest
party outputs common m∗α at the end of Sα, except with probability 2−Ω(κ). More-
over if the honest parties start Sα with same input message mα, then m∗α = mα.

Proof: Sα may terminate at the end of Checking Phase or at the end of
Output Phase. If Sα terminates at the end of Checking Phase, then every
party assigns m∗α = m†α, where m†α is a predefined value. Hence in this case the
first part of the lemma holds without any error. Now let Sα terminate at the end
of Output Phase. Here we show that every party in P outputs common m∗α
at the end of Output Phase of Sα. By Correctness of the Output Phase
(Lemma 9), given event E, all honest parties in P will hold common m∗α, except
with negligible error probability. Now since event E happens with very high
probability, it follows that the parties in P will hold common m∗α, except with
negligible error probability.

The second part of the lemma follows from Lemma 2, 6 and 9. 2

Lemma 13 (Correctness of Optimal-ABA). Conditioned on the event that
Optimal-ABA terminates, every honest party outputs common m∗ at the end of
Optimal-ABA, except with probability 2−Ω(κ). Moreover if the honest parties start
Optimal-ABA with same input message m, then m∗ = m.

Proof: This follows from Lemma 12 and the fact that m∗ is the concatenation
of m∗1, . . . ,m

∗
t . 2

Theorem 3. Optimal-ABA is a (ε, δ)-ABA protocol.

Proof: Follows from Lemma 11 and Lemma 13. 2

Theorem 4. Optimal-ABA privately communicates O(`n + n4κ) bits and re-
quires O(n3) invocations to ABA (for single bit) and AVSS protocols (for one
field element) to agree on an ` bit message.

Proof: In Optimal-ABA, Checking Phase and Expansion Phase may be
executed for at most 2t times and Output Phase may be executed t times (by
Lemma 10).

In a single execution of Checking Phase, there are at most 2n′2 instances
of AVSS. Moreover, there are two executions of ACS to agree on a set of parties
of size t′ + 1 and n′ A-cast of n length response vectors. Since n′ = O(n), the
total communication complexity during one execution of Checking Phase is
2n2 · AVSS + 2n · ABA + n4 bits.

During the execution of Expansion Phase, the most expensive step in terms
of communication complexity is the execution of ACS, which will be executed
t′ times (the maximum number of iterations of while loop) in the while loop.



Since t′ = O(n), this step requires a communication complexity of n2 · ABA.
Moreover, during Expansion Phase each party in K will privately send his `/t
bit message to exactly one party in K to which it is mapped. As |K| = O(n),
this step requires a communication cost of O(n`/t) bits.

A single execution of Output Phase requires O(n′2c+n′3κ) bits of private
communication. Now O(n′2c + n′3κ) = O(` + n′3κ) as c = d `+1

td e = d `+1
tt′ e and

n′ = O(n), t′ = O(n).
So executing Checking Phase and Expansion phase 2t = Θ(n) times

and executing Output Phase t times require a communication complexity of
O(`n+ n4κ) bits plus O(n3) invocations to ABA and AVSS protocols. 2

3 Open Problems

The communication complexity of Optimal-ABA shows that the protocol is com-
munication optimal for sufficiently large ` and the bound on ` depends on the
communication complexity of the underlying ABA and AVSS protocols. One
may try to design communication optimal ABA protocol for all values of ` (if
possible) using completely different approach.
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Appendix A: Approach Used in the BA of [15]
Here we briefly recall the approach used in [15] for designing the communication
optimal multi-valued BA protocol in synchronous settings. The protocol of [15]
requires n = 2t + 1 parties. So |P| = 2t + 1. The BA protocol was structured
into three stages: (a) Checking, (b) Consolidation and (c) Claiming Stage. In the
Checking Stage, the parties in P compare their respective messages and jointly
determine an accepting subset Pacc ⊆ P of size at least n − t, such that all
‘accepting’ parties hold the same message, and all (honest) parties holding this
message are ‘accepting’. This stage can be aborted when inconsistencies among
honest parties are detected. If this stage is not aborted then the BA protocol
proceeds to Consolidation Stage where the parties in Pacc help to decide on a
happy subset Pok ⊆ P, such that all ‘happy’ parties hold the same message,
and the majority of ‘happy’ parties are honest. Also this stage may be aborted
in case of inconsistencies among the honest parties’ inputs. Consolidation Stage
is very important and introduces new ideas. But a careful checking will reveal
that the same ideas can not be implemented in asynchronous network even for
n = 3t + 1 parties. That is why we introduce a new sets of ideas in our ABA
protocol. Finally, if Consolidation Stage is not aborted then BA protocol of [15]
proceeds to the last stage called Claiming Stage. In the Claiming Stage, the
parties in Pok distribute their common message to the unhappy parties i.e. the
parties in P \ Pok. This stage will never be aborted and hence at the end every
party will output a common value. If the BA protocol aborts during Checking
and Consolidation Stages then every party decides on a predefined default value.


