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Abstract. Key establishment between two parties that uses only one message transmission is referred
to as one-pass key establishment (OPKE). OPKE provides the opportunity for very efficient construc-
tions, even though they will typically provide a lower level of security than the corresponding multi-pass
variants. In this paper, we explore the intuitive connection between signcryption and OPKE. By es-
tablishing a formal relationship between these two primitives, we show that with appropriate security
notions, OPKE can be used as a signcryption KEM and vice versa. In order to establish the connection
we explore the definitions of security for signcryption (KEM) and give new and generalised definitions.
By making our generic constructions concrete we are able to provide new examples of signcryption
KEMs and an OPKE protocol.
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1 Introduction

One of the fundamental problems of cryptography is to establish a secret key between two parties
with no prior shared state. In a groundbreaking paper, Diffie and Hellman [20] provided an ele-
gant, yet simple way of solving this problem using public key cryptography. Later, many protocols
have been proposed with improved security properties [29, 24, 28, 26, 13]. Although most of these
protocols are interactive, many such protocols also provide simplified one-pass versions which use
only one message. One-pass key establishment (OPKE) provides the opportunity for very efficient
constructions, even though they will typically offer a lower level of security than the corresponding
multi-pass variants. OPKE protocols can be deployed in systems that do not require the parties to
participate interactively, such as E-mail or over networks with intermittent connectivity.

Another variant of two-party key establishment is non-interactive key establishment. The session
key in a non-interactive protocol is established using the long-term private keys of the parties and
optionally some session specific public information, like timestamps. As the secret values used
in computing the session key are only the long-term keys, non-interactive protocols cannot offer
forward secrecy i.e. revealing the long-term key of any of the parties would compromise the session
keys established in the past. On the other hand, forward secrecy for the sender is a desired security
property for OPKE protocols. Hence, OPKE protocols offer balanced security-efficiency trade off
when compared to the non-interactive and multi-pass variants. For example, when a message needs
to be encrypted with a session key, they require two less message flows than two-pass protocols and
at the same time provide better security properties than non-interactive protocols.

1.1 OPKE and Signcryption

Zheng [34] introduced signcryption as a public-key cryptographic primitive that provides both
privacy and authenticity at greater efficiency than the naive composition of signature and encryption
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schemes. Zheng [35] later observed that a signcryption scheme could be used in a key transport
protocol by simply choosing a new key for each session and sending it in a signcrypted message.
This intuitively gives the desired properties for key establishment since signcryption gives assurance
to the sender that the key is available only to the recipient and assurance to the recipient that the
key came from the sender. However, this work contains neither a security model nor a proof for
this construction and there remains currently no formal treatment. Since key establishment is
notoriously tricky to get right, it is important to decide exactly what security properties such a
construction can provide. The main purpose of this paper is to define appropriate notions of security
for signcryption and show how signcryption and OPKE can be related under those notions.

Since the introduction of signcryption, different definitions of security have emerged. An, Dodis
and Rabin [2] divided security notions for signcryption into two types: outsider security assumes that
the adversary is not one of the parties communicating while insider security allows the adversary to
be one of the communicating parties. Insider security for signcryption protects the authenticity of a
sender from a malicious receiver and privacy of a receiver from a malicious sender. Therefore insider
security implies the corresponding notion for outsider security. The notions of outsider security and
insider security with respect to authenticity are similar to third-person unforgeability and receiver
unforgeability defined for asymmetric authenticated encryption [1].

Because signcryption is intended to include functionality similar to that of digital signatures,
it is natural that non-repudiation is a desirable property. Non-repudiation requires insider security
since the sender of a signcrypted message must be prevented from showing that it could have been
formed by the recipient of that message. For key establishment there is no need for non-repudiation
as it is never required for a single party to claim responsibility for the shared key. On the other hand,
a commonly required property for key establishment is forward secrecy which ensures that if the
long-term key of a participant in the protocol is compromised then previously established keys will
remain secure. We can regard forward secrecy as analogous to insider security in signcryption with
respect to confidentiality. Compromise of the sender’s private key should not allow an adversary to
obtain previously signcrypted messages.

In addition to forward secrecy, another common security requirement for key establishment is
security against compromise of ephemeral protocol data. This is not considered in the existing
models for signcryption schemes and so it is not possible, in general, to convert from a signcryption
scheme to a key establishment protocol with this stronger security notion. We will argue later in
this paper that there is good reason that signcryption schemes should consider security against
compromise of ephemeral data. In particular this observation allows us to explain a potential
weakness observed by Dent in one of his own constructions [19].

Cramer and Shoup [16] formalised the concept of hybrid encryption which securely uses public
key encryption technique to encrypt a session key, and symmetric key encryption technique to
encrypt the actual message. This hybrid construction has a key encapsulation mechanism (KEM)
and a data encapsulation mechanism (DEM) as its underlying tools. A KEM is similar to a public
key encryption scheme and is used to generate a random key and its encryption. In a series of papers,
Dent [17, 19, 18] extended this hybrid paradigm to signcryption, resulting in the construction of
signcryption KEM and signcryption DEM with different security notions.

Although we could use plain signcryption to provide OPKE as suggested by Zheng [35], sign-
cryption KEM seems better suited to the purpose. This is because they do just what we need by
providing a new random key, yet have the potential to be more efficient than plain signcryption.
Note, however, that the remarks regarding the differences in security models between signcryption
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and key establishment apply equally when signcryption KEMs are considered in place of plain
signcryption.

1.2 Related Work

An et al. [2] defined security notions for signcryption schemes as insider and outsider security in
a two-user setting. They also described how to extend these notions to multi-user setting. Baek
et al. [4] independently provided similar notions of security for signcryption, but their model was
not completely adequate. Recently, the same authors [5] extended these notions to match the
corresponding definitions given by An et al. However, their security notions are still not complete,
as discussed in Section 3.

Zheng [35] informally showed how a signcryption scheme can be used as a key transport protocol.
Dent [17, 19] and Bjørstad and Dent [11] discussed how a signcryption KEM can be used as an
OPKE protocol. Bjørstad and Dent [11] proposed the concept of signcryption tag-KEM and claimed
that better key establishment mechanisms could be built with this. However, none of these papers
formally defined security in a model that is suitable for key establishment protocols. Moreover, the
confidentiality notion defined for all these KEMs does not offer security against insider attacks.
Insider security for confidentiality enables achieving forward secrecy i.e. the compromise of the
sender’s private key does not compromise the confidentiality of signcryptions created using that
key [2]. However, this has been ignored or its absence has been treated as a positive feature called
“Past Message Recovery” in earlier work [34, 5].

1.3 Contributions

We provide new definitions of insider confidentiality and outsider unforgeability for signcryption.
These notions complement Baek et al.’s [5] notions of outsider confidentiality and insider unforge-
ability. We also extend security notions for signcryption KEM defined by Dent [18, 19] to multi-user
setting. Furthermore, security notions for both signcryption and signcryption KEM are revised by
allowing the adversary to reveal the random coins used in computing signcryptext and encapsulation
respectively.

We then show the suitability of the new/revised notions in deriving OPKE from signcryption
KEMs. Generic constructions of OPKE protocols from signcryption KEMs and vice versa are
proposed. These constructions are instantiated using existing schemes. In particular, we use existing
OPKE protocols [26, 32, 22] to derive new signcryption KEMs with stronger security properties
than the current signcryption KEMs. One of the main observations of our paper is that the security
models for key establishment are stronger than those normally accepted for signcryption. Moreover,
the stronger security seems to be just as appropriate for signcryption as it is for key establishment.
Specific contributions of the paper are:

– new definitions for signcryption (KEM)s;

– generic construction from OPKE to signcryption KEM and vice versa;

– new signcryption KEMs with forward secrecy;

– an attack on a signcryption KEM of Dent [19].
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1.4 Organization

Section 2 reviews the security goals and formal models for OPKE protocols. We present new notions
of security for both signcryption and signcryption KEMs in Section 3. Section 4 examines the
outsider secure signcryption KEMs designed by Dent [19]. The generic construction of signcryption
KEM from OPKE is covered in Section 5, while the reverse construction is covered in Section 6.

2 Security Model for One-pass Key Establishment

Before introducing the formal notion of security for OPKE protocols, we first discuss security goals
desired of a key establishment protocol in general and then identify how these goals can be adapted
to OPKE protocols.

2.1 Security Goals

Blake-Wilson et al. [12] defined the desirable security goals of a two-party key establishment protocol
as below:

known key security: The knowledge of a session key should not enable an adversary to compromise
other session keys.

(perfect) forward secrecy: A protocol is said to have perfect forward secrecy if the compromise of
long-term keys of one or more entities does not lead to compromise of past session keys estab-
lished using those long-term keys.

unknown-key share: If a protocol resists unknown-key share attacks, an entity A cannot be coerced
into sharing a key with entity B without A’s knowledge, i.e., when A believes the key is shared
with some entity C 6= B.

key compromise impersonation: A protocol is resilient to key compromise impersonation attacks, if
compromising an entity A’s long-term private key does not enable the adversary to impersonate
other entities to A.

key control: Neither entity should be able to force the session key to be a preselected value

Out of the above goals, OPKE protocols can provide neither perfect forward secrecy nor key
compromise impersonation resilience. An adversary with the knowledge of a receiver B’s long-
term private key can always compute all the session keys for the sessions in which it was just
passively observing the communication to B. Moreover, if the ephemeral public key from A is not
explicitly authenticated, the adversary can always impersonate other users to B. These attacks are
inevitable due to lack of ephemeral contribution to the session key from B. However, a form of
partial forward secrecy described below is desirable for OPKE protocols [30].

sender forward secrecy: A protocol is said to have sender forward secrecy if the compromise of long-
term private key of a sender A does not lead to compromise of past session keys established
using that key.

Krawczyk [26] identified a generic attack, which shows that no two-pass key establishment
protocol authenticated via public keys and with no prior secret shared state can provide perfect
forward secrecy. Instead, this type of protocols can only achieve weak forward secrecy, where the
adversary remains passive during the protocol execution while the long-term private keys of both
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the parties can be revealed. This restriction equally applied to OPKE protocols and by sender
forward secrecy, we mean weak forward secrecy with respect to sender’s long-term key exposure.

Okamoto et al. [30] identified sender key compromise impersonation as a desired security goal for
OPKE protocols. However, we observe that mounting a key compromise impersonation attack on
the sender in a OPKE protocol does not make sense as there is only one message flowing from the
sender to the receiver i.e., there is no incoming message for the sender.

2.2 Security Model for Authenticated Key Exchange

Bellare and Rogaway [9] initiated the formal security treatment of key establishment protocols
in the complexity theoretic framework. Later models [10, 12, 6, 8, 15] extended this model to cap-
ture different attack scenarios. Although the model proposed by Canetti and Krawczyk [15](CK
model) can be regarded adequate to analyse the security of a key establishment protocol, it is
known that the CK model does not capture weak forward secrecy and resilience to key compromise
impersonation (KCI).

Krawczyk [26] proposed extensions to the CK model which capture the properties of weak
forward secrecy, KCI resilience and resilience to ephemeral private key leakage. Earlier models [9,
15] assumed strong corruption model, where the adversary is allowed to reveal session specific
information in addition to long-term private key through a single corrupt query. On the other hand,
the extensions proposed by Krawczyk assumed a weak corruption model in which the adversary is
allowed to compromise only the long-term private key of a party by issuing corrupt query. Later,
LaMacchia et al. [27] extended the CK model and proposed a unified model (called eCK model)
which captures most of the desired security properties of key establishment protocols. We now
briefly review the eCK model using some well known notations from earlier models.

A protocol π is modelled as a collection of programs running at n different parties. Let U be
the set of n parties. Each party is assumed to have a pair of long-term public and private keys,
(PKU ,SKU ) generated during an initialization phase prior to the protocol run. Each instance of
π within a party is defined as a session and each party may have multiple such sessions running
concurrently. Let πi

U be the i-th run of the protocol π at party U ∈ U .
Each protocol instance at a party is identified by a unique session ID. The session ID of an

instance πi
U is denoted by sidi

U . We assume that the session ID is derived during the run of the
protocol and also that each party knows who the other participant is for each protocol instance.
The partner ID pidi

U of an instance πi
U , is a set containing the identity of the party U and that of

the intended peer to the session.
An instance πi

U enters an accepted state when it computes a session key sk i
U . Note that an

instance may terminate without ever entering into an accepted state. The information of whether
an instance has terminated with acceptance or without acceptance is assumed to be public. Two
instances πi

U and π
j
U ′ at two different parties U and U ′ respectively are considered partnered iff (1)

both the instances have accepted, (2) sidi
U= sidj

U ′ and (3) pidi
U= pidj

U ′ .
The communication network is assumed to be fully controlled by an adversary A, which sched-

ules and mediates the sessions among all the parties. A is allowed to insert, delete or modify the
protocol messages. If the adversary honestly forwards the protocol messages among all the par-
ticipants, then all the instances are partnered and output identical session keys. In addition to
controlling message transmission, A is empowered with the ability to ask the following queries:

– Send(πi
U , m): sends a unique message m to the instance πi

U and the response is returned to A.
If m contains only the partner ID pidi

U , this query activates πi
U with pidi

U \ {U} as peer.
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– RevealKey(πi
U ): If πi

U has accepted, the session key established at πi
U is returned.

– LongTermKeyReveal(U): The long-term private key of the party U is returned.
– EphemeralKeyReveal(πi

U ): The ephemeral private key used during the execution of πi
U is returned

to A. This includes the random coins generated during the protocol. We assume that the
ephemeral private information is erased from the party’s memory once the session is accepted.

– Test(πi
U ): On this query a random bit b is chosen. If b = 0, the session key established at πi

U is
returned to A, otherwise a random value from the session key distribution is returned.

A is allowed to continue with its execution by issuing the above queries even after the Test
query. Finally, it terminates by outputting its guess b′ on distinguishing the session key from a
random value.

Freshness Let πi
U be an instance completed at party U and let π

j
U ′ be the partnered instance at

U ′ ∈ pidi
U (there may be no such π

j
U ′). An instance πi

U is said to be not fresh if any of the following
conditions holds:

– A issues RevealKey(πi
U ) or RevealKey(πj

U ′) (if there exists such a π
j
U ′)

– A partnered instance π
j
U ′ exists and

• A issues [LongTermKeyReveal(U) and EphemeralKeyReveal(πi
U )]

or [LongTermKeyReveal(U ′) and EphemeralKeyReveal(πj
U ′)]

– A partnered instance π
j
U ′ does not exist and

• A issues [LongTermKeyReveal(U) and EphemeralKeyReveal(πi
U )]

or LongTermKeyReveal(U ′)

In all other cases the instance is said to be fresh. A wins the game if the selected test session
remains fresh till the end of its execution and its guess b′ = b. The advantage of A is defined as
below:

AdvAπ = |2 · Pr[A wins ]− 1|

A protocol π is said to be secure in the above model if for all PPT adversaries A, AdvAπ is
negligible in the security parameter.

2.3 Security Model for OPKE

The above model can be easily adapted to capture the goals of OPKE protocols. The initial setup
phase, the adversarial and communication models remain the same as defined for multi-pass key
establishment protocols in the traditional public key setting. In independent work, Ustaoglu [32]
defined a notion of freshness for OPKE protocols. We now present a slightly different notion.

Freshness Let πi
U be an instance completed at party U and let π

j
U ′ be the partnered instance at

U ′ (there may be no such π
j
U ′). An instance πi

U is said not be opke-fresh if any of the following
conditions holds:

– A issues RevealKey(πi
U ) or RevealKey(πj

U ′) (if there exists such a π
j
U ′)

– A partnered instance π
j
U ′ exists and

• If πi
U is an initiator session, A issues [LongTermKeyReveal(U) and

EphemeralKeyReveal(πi
U )] or [LongTermKeyReveal(U ′)]
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• If πi
U is a responder session, A issues [LongTermKeyReveal(U)]

or [LongTermKeyReveal(U ′) and EphemeralKeyReveal(πj
U ′)]

– A partnered instance π
j
U ′ does not exist and

• A issues [LongTermKeyReveal(U)] or LongTermKeyReveal(U ′)

In all other cases πi
U is said to be opke-fresh. The advantage of A in winning the above game is

defined in the same way as defined for multi-pass protocols above.
The adapted model for OPKE protocols explicitly takes into the account the fact that there is

no ephemeral contribution from the responder. At a high level, the difference between this model
and the model for two-pass protocols is that an Ephemeral Key Reveal to a session at the responder
returns no information in an OPKE protocol.

2.4 Replay Attacks and Receiver’s Forward Secrecy

As mentioned in the security model above, we have defined session-ID as the concatenation of the
identities of the peers and the message sent in that session. Since the security model insists that
each session should have a unique session-ID, this formulation of session-IDs fails to model replay
attacks for OPKE protocols. If the adversary replays the single message of a successfully completed
past session, it will be accepted as that of the particular past session. This may be seen as an
artificial way of preventing replay attacks on OPKE protocols. The situation could be addressed
by including a time-stamp to uniquely identify a session. However, such an approach requires the
parties to have access to a reliable universal time oracle [31] or a trusted time stamping authority
which have to be online. Furthermore, as discussed earlier, OPKE protocols cannot provide forward
secrecy for the receiver.

Both the above problems can be addressed in an elegant way using a key evolving scheme for
the receiver. In a key evolving scheme [3, 7, 14] the private key of a party evolves over time; private
keys for future time periods can be generated from the current private key but it is uncondition-
ally/computationally infeasible to recover private keys of elapsed time periods from the current
one. If we use a key evolving scheme to generate the private key for the receiver, we can design an
OPKE protocol with receiver’s forward secrecy such that session keys established during elapsed
time periods cannot be recovered from the knowledge of the private key corresponding to the cur-
rent time period. However it should be noted that compromising the private key for a time period
τi allows the adversary to recover all the session keys already established during τi.

By employing the key evolving approach, replay attacks can also be thwarted to some extent.
The adversary in this case can only successfully replay messages exchanged during the current time
period, but not the ones from the sessions in the elapsed time period. If the parties execute only
one session per time period, replay attacks can be completely eliminated.

3 Security Model for Signcryption

We now present new definitions of security for signcryption based on the those of Baek et al. [5].
We introduce Open query into the security model of signcryption. Although session state reveal
query has been known in the security models for key establishment protocols, so far it has not been
considered for signcryption. The Open query effectively allows an adversary against a signcryption
scheme to selectively open a valid signcryptext. Informally, a signcryption scheme is considered
secure under a model which considers open queries, if opening a signcryptext does not effect the
security of other unopened signcryptexts.
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3.1 New security notions for signcryption

A signcryption scheme SC is specified by four polynomial-time algorithms: common-key-gen, key-
gen, signcryption and unsigncryption.

common-key-gen: is a probabilistic polynomial time (PPT) algorithm that takes the security pa-
rameter k as input and outputs the common/public parameters params to be used in the scheme.

key-gen: is a PPT algorithm that takes params as input and outputs a public-private key pair
(pk, sk) used for signcryption and/or unsigncryption.

signcryption: is a PPT algorithm that takes params, a private key sks of a sender, a receiver’s
public key pkr and message m to be signcrypted as input. It returns a signcryptext C.

unsigncryption: is a deterministic polynomial-time algorithm that takes params, a sender’s public
key pks, a receiver’s private key skr and a signcryptext C as input. It outputs either a plaintext
m or an error symbol ⊥.

For SC to be considered valid it is required that unsigncryption(pks, skr, signcryption(sks, pkr, m)) =
m for all sender key pairs (pks, sks), receiver key pairs (pkr, skr) and any message m.

In a signcryption scheme, the users need private keys for two purposes: for signcrypting messages
to be sent and for unsigncrypting messages received from other users. The private keys used for
each of these purposes, along with their corresponding public keys, can be the same or different.
This is much the same as the option to use the same, or different, keys for decryption and signing.
In this paper, we assume that the users have only a single key pair for both signcryption and
unsigncryption. At first look, this may seem to deviate from the common practice. However, we
explain in Section 3.4 why our assumption is appropriate, particularly for the case of signcryption.

We define insider and outsider security notions for signcryption in multi-user setting based on
the discussion given by An et al. [2]. It is natural to consider the security of a signcryption scheme
in a multi-user setting where an honest party can generate signcryptexts for any user and also
receive signcryptexts from any user in the system. In the security model, the adversary is given the
ability to obtain signcryptions of an honest party that are created for any user through a flexible
signcryption oracle (FSO). Similarly, it is also given access to a flexible unsigncryption oracle (FUO)
that unsigncrypts a given signcryptext created for an honest party by any user. Because of these
additional adversarial powers, security in the two-user setting does not imply security in multi-user
setting [5].

The adversary is also empowered with Open queries, which allow it to reveal the random coins
used while generating a signcryption by an honest party. This query can be seen as a way of
modelling faulty random number generators. As we treat the security of signcryption schemes in
multi-user setting, we explicitly allow the adversary to issue Corrupt queries to parties through which
it can obtain the long-term private keys. Note that after corrupting a party the adversary can act
on behalf of that user and interact with other honest users in the system. Intuitively, this query
models the attack scenario where an adversary tries to break the confidentiality/unforgeability of a
signcryption between two honest users with the knowledge of the signcryptions generated/obtained
by interacting with honest users. The Corrupt query is also crucial in modelling the insider security
notions for signcryption.

Let n be the number of users in the system, where n is polynomial in the security parameter k.
The key pairs of the honest parties are generated by the challenger according to the specified key
generation algorithm. The adversary is given the public keys of all the honest users initially. It is
also given access to FSO, FUO, Open and Corrupt oracles corresponding to all the honest parties.
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FSO: On the input (pks, pkr, m), FSO returns a signcryptext C generated using sks corresponding
to pks and the public key pkr on the message m.

FUO: On the input (pks, pkr, C), FUO returns a plaintext m or a ⊥ symbol after performing
unsigncryption on C using skr corresponding to pkr and pks.

Open: On the input (pks, pkr, C), Open oracle returns ⊥ if C was not an output of an earlier FSO
query. Otherwise, the random coins used while generating C under sks and pkr are returned.

Corrupt: On input Ui, this oracle returns the private key of the user Ui.

Baek et al. [5] defined the notions of outsider security for confidentiality and insider security
for unforgeability in multi-user setting. Note that they implicitly considered Corrupt queries, while
Open queries were not considered at all. In this section, we extend the desired security notions for
signcryption by introducing insider security for confidentiality and outsider security for unforge-
ability in multi-user setting.

Insider confidentiality Informally, the goal of ACCA is to break the confidentiality of messages
signcrypted for an honest target user by any user (including insiders).

– Phase 1: ACCA is allowed to issue FSO, FUO, Open and Corrupt queries.

– Challenge: At the end of phase 1, ACCA outputs two equal length messages m0, m1 and a pair
of public keys (pk∗

s , pk∗
r) and submits them to the challenger. The challenger chooses a random

bit b and gives ACCA a challenge signcryptext C∗ created on mb using the private key sk∗
s

(corresponding to pk∗
s) and pk∗

r .

– Phase 2: ACCA can continue executing as in phase 1, except asking the trivial FUO query on
the input (pk∗

s , pk∗
r , C

∗).

– Guess: Finally, ACCA outputs a bit b′. Let UA and UB be the owners of the public keys pk∗
s and

pk∗
r respectively. ACCA wins the game if b′ = b and if the following conditions hold.

1. ACCA has not issued Corrupt(UB) query,

2. Both Open(pk∗
s , pk∗

r , C
∗) and Corrupt(UA) have not been issued.

The advantage of ACCA in winning the insider confidentiality game is:

AdvACCA, SC = |2 · Pr[b′ = b]− 1|

Outsider confidentiality An adversary against outsider confidentiality of SC operates in the
same way as the adversary against insider confidentiality described above except that it is not
allowed to issue Corrupt(UA) query. Informally, the goal of the adversary in this notion is to break
the confidentiality of messages signcrypted by an honest user UA for another honest user UB. The
advantage of the adversary in winning the outsider confidentiality game is defined in the same way
as above.

Outsider unforgeability Informally, the goal of an outsider adversary ACMA against unforge-
ability of SC is to forge a valid signcryptext created by an honest user UA for another honest user
UB. ACMA is allowed to issue FSO, FUO, Open and Corrupt queries. At the end of its execution,
ACMA outputs (pk∗

s , pk∗
r , m

∗, C∗) as its forgery. Let UA and UB be the owners of the public keys
pk∗

s and pk∗
r respectively. ACMA wins the outsider unforgeability game if the following conditions

hold:

9



1. C∗ is a valid signcryption of m∗ under (pk∗
s , pk∗

r)
2. there has been no Corrupt query with the input UA or UB.
3. C∗ is not an output of an earlier FSO query

The above game models strong unforgeability notion for signcryption. The advantage of ACMA

in the outsider unforgeability game is the same as its probability of success in winning the game.

Insider unforgeability An adversary against insider unforgeability of SC operates in the same
way as an adversary against outsider unforgeability described above except that it is now allowed
to issue Corrupt(UB) query. Informally, the goal of adversary in this notion is to produce a valid
forgery of a signcryptext created by an honest user UA for any other user (including insiders). The
advantage of an adversary in the insider unforgeability game is the same as its probability of success
in winning the game.

3.2 New security notions for signcryption KEM

A signcryption KEM SK is specified by four polynomial-time algorithms: common-key-gen, key-gen,
encapsulation and decapsulation. The algorithms common-key-gen and key-gen are identical to those
defined in Section 3.1. The public-private key pair generated by the key-gen algorithm are now used
for encapsulation and/or decapsulation.

encapsulation: is a PPT algorithm that takes params, a sender private key sks and a receiver
public key pkr as input. It returns the pair (K, C), where K is a symmetric key and C is its
encapsulation.

decapsulation: is a deterministic polynomial-time algorithm that takes params, a sender public key
pks, a receiver private key skr and an encapsulation C. It outputs either a symmetric key K or
an error symbol ⊥.

For SK to be considered valid it is required that if (K, C) = encapsulation(sks, pkr), then
decapsulation(pks, skr, C) = K for all sender key pairs (pks, sks) and receiver key pairs (pkr, skr).

Dent [17, 19, 18] defined both insider and outsider security notions for signcryption KEM in
the two-user setting. He also provided an informal description of how to define security for sign-
cryption KEMs in multi-user setting [17]. Recently, Yoshida and Fujiwara [33] defined security
notion for signcryption Tag-KEMs in multi-user setting. Here, we present new notions of security
for signcryption KEMs in multi-user setting building on the definitions in Section 3.1.

In our security model, the adversary is given the power to obtain encapsulations created by
an honest party for any user through a flexible encapsulation oracle (FEO). The adversary is
also allowed to issue queries to a flexible decapsulation oracle (FDO) that decapsulates a given
encapsulation created for an honest party by any user. It can also issue Open and Corrupt queries
as explained earlier.

Let n be the number of users in the system, where n is polynomial in the security parameter
k. The key pairs of the honest parties are generated by the challenger according to the specified
key generation algorithm. The adversary is given the public keys of all the honest users initially.
It is given access to FEO, FDO, Open and Corrupt oracles corresponding to the honest parties as
described below.

FEO: On the input (pks, pkr), FEO returns a pair (K, C), where C is an encapsulation of K

generated using sks corresponding to pks and the public key pkr
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FDO: On the input (pks, pkr, C), FDO returns a symmetric key K or a ⊥ symbol after performing
decapsulation on C using skr and pks.

Open: On the input (pks, pkr, C), Open oracle returns ⊥ if C was not an output of an earlier FEO
query. Otherwise, the random coins used while generating C under sks and pkr are returned.

Corrupt: On input Ui, this oracle returns the private key of the user Ui.

Insider confidentiality Informally, the goal of ACCA is to break the confidentiality of encapsu-
lations created for an honest target user by any user (inlcuding insiders).

– Phase 1: ACCA is allowed to issue FEO, FDO, Open and Corrupt queries.

– Challenge: At the end of phase 1, ACCA outputs a pair of public keys (pk∗
s , pk∗

r). The chal-
lenger generates a valid symmetric key, encapsulation pair (K0, C

∗) using the private key sk∗
s

corresponding to pk∗
s and public key pk∗

r . It selects a key K1 randomly from the symmetric key
distribution. It then chooses b ∈R {0, 1} and gives (Kb, C

∗) as the challenge to ACCA.

– Phase 2: ACCA can continue executing as in phase 1, except asking the trivial FDO queries on
the input (pk∗

s , pk∗
r , C

∗).

– Guess: Finally, ACCA outputs a bit b′. Let UA and UB be the owners of the public keys pk∗
s and

pk∗
r respectively. ACCA wins the game if b′ = b and if the following conditions hold.

1. ACCA has not issued Corrupt(UB) query.

2. Both Open(pk∗
s , pk∗

r , C
∗) and Corrupt(UA) have not been issued.

The advantage of ACCA in winning the insider confidentiality game is:

AdvACCA, SK
def
= |2 · Pr[b′ = b]− 1|

Outsider confidentiality An adversary against outsider confidentiality of SK operates in the
same way an adversary against insider confidentiality described above except that it is not allowed
to issue Corrupt(UA) query. Informally, the goal of the adversary in this notion is to break the
confidentiality of encapsulations created by an honest user UA for another honest user UB. The
advantage of the adversary in winning the outsider confidentiality game is defined in the same way
as above.

Outsider unforgeability Informally, the goal of an outsider adversary ACMA against unforge-
ability of SK is to forge a valid encapsulation created by an honest user UA for another honest user
UB. ACMA is allowed to issue FEO, FDO, Open and Corrupt queries. At the end of its execution,
ACMA outputs (pk∗

s , pk∗
r , K

∗, C∗) as its forgery. Let UA and UB be the owners of the public keys
pk∗

s and pk∗
r respectively. ACMA wins the outsider unforgeability game if the following conditions

hold:

1. C∗ is a valid encapsulation of K∗ under (pk∗
s , pk∗

r)

2. there has been no Corrupt query with the input UA or UB.

3. (K∗, C∗) is not an output of an earlier FEO query

The above game models strong unforgeability notion for signcryption KEM. The advantage of
ACMA in the outsider unforgeability game is the same as its probability of success in winning the
game.
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Insider unforgeability An adversary against insider unforgeability of SK operates in the same
way as an adversary against outsider unforgeability described above except that it is now allowed
to issue Corrupt(UB) query. Informally, the goal of adversary in this notion is to produce a valid
forgery of an encapsulation created by an honest user UA for any other user (including insiders).
The advantage of an adversary in the insider unforgeability game is the same as its probability of
success in winning the game.

3.3 On the unforgeability notion for signcryption KEMs

Dent [19] defined a different notion, called Left-or-Right (LoR) security, for outsider unforgeability of
signcryption KEM. He showed that an adversary that can output a valid forgery (K∗, C∗) under the
notion described in the previous section could be efficiently turned into another adversary that can
win the LoR game. Dent pointed out that LoR security was a strong requirement for outsider secure
signcryption KEMs. An outsider secure signcryption KEM under our definition can be combined
with an outsider secure signcryption DEM in the notion defined by Dent [19] to achieve an outsider
secure hybrid signcryption scheme. However, this composition may not yield a tight reduction when
compared to the hybrid signcryption scheme that is composed of an LoR secure signcryption KEM
and an outsider secure signcryption DEM. However, in our generic constructions we show that our
notion of outsider unforgeability is enough when relating OPKE protocols with signcryption KEMs.
One may still use an LoR secure signcryption KEM to derive an OPKE protocol, as LoR security
guarantees security under our notion of unforgeability.

We emphasise that a hybrid signcryption scheme with insider security cannot be guaranteed
using a signcryption KEM secure under the insider unforgeability notion described in the previous
section. Dent [18] described the impossibility of achieving an insider secure hybrid signcryption
scheme by generic composition of such a signcryption KEM and an insider secure signcryption
DEM. The difficulty is that a signcryption KEM that generates symmetric keys and encapsulations
independent of the message to be signcrypted cannot provide the non-repudiation service and thus
cannot be insider secure. But our definitions of security for insider security of signcryption KEMs
are still useful when one observes their connection with OPKE protocols. A signcryption KEM that
is insider confidential in our definition can be used to derive a OPKE protocol with sender forward
secrecy. However, it is unclear what property is implied by our definition of insider unforgeability,
when a signcryption KEM secure under this notion is used to derive an OPKE protocol.

3.4 On using a single key pair for both signcryption and unsigncryption

We have assumed that the users employ only a single key pair for both signcryption and unsign-
cryption in a signcryption scheme and similarly for both encapsulation and decapsulation in a
signcryption KEM. As signcryption aims to provide both confidentiality and authentication simul-
taneously, our assumption may seem to contravene the practice of using a separate key pair each for
encryption and signing. It is known in the folklore that if we use a single key pair for both encryp-
tion and signing, a conflict between confidentiality and authentication may arise. The signing key
has to be under the sole control of the signer to guarantee non-repudiation, while the decryption
key may have to be backed up by a trusted authority for enabling it with key escrow capability or
for recovering the encrypted data in case the decryption key is lost.

Although signcryption aims to provide both confidentiality and authentication, note that the
definition of signcryption does not automatically guarantee non-repudiation. In particular, a sign-
cryption scheme with only outsider unforgeability does not imply non-repudiation as a receiver can
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always forge a valid signcryption. Hence, even if we have two separate key pairs, backing up users’
unsigncryption keys enables the trusted authority to forge the signcryption of a party intended
to any other party. Note that this can be done even if the signcryption keys are under the sole
possession of the corresponding parties. Since we concentrate on signcryption schemes with only
outsider unforgeability it is reasonable to assume that the users have only a single key pair for both
signcryption and unsigncryption. The above argument equally applies to signcryption KEM.

4 Outsider Secure Signcryption KEMs

Dent [19] proposed an outsider secure signcryption KEM called elliptic curve integrated signcryption
scheme KEM (ECISS-KEM1) based on the ECIES-KEM [25]. A potential problem with the ECISS-
KEM1 was identified by Dent who then proposed another signcryption KEM that was claimed to
overcome this problem, but without a proof of security. Both the schemes are described below.

4.1 ECISS-KEM1

Let (G, P, q) be the system parameters, where G is a large additive cyclic group of prime order q and
P is an arbitrary generator of G. Let (Ps = sP, s) and (Pr = rP, r) be the public-private key pairs
of the sender and receiver respectively, where s, r ∈R Z∗

q . ECISS-KEM1 is described in Figure 1.
The scheme uses a hash function H that outputs a symmetric key of desired length. ECISS-KEM1
is proven secure by Dent in the two-user setting against outsider security (for both confidentiality
and unforgeability) assuming the hardness of the computational Diffie-Hellman problem.

– Encapsulation
1. Choose an element t ∈R Z∗

q

2. Set K = H(sPr + tP )
3. Set C = tP

4. Output (K, C)

– Decapsulation
1. Set K = H(rPs + C)
2. Output K

Fig. 1. ECISS-KEM1

4.2 Potential problems with ephemeral data

Dent discussed a potential weakness with ECISS-KEM1 as follows. If an attacker is ever to obtain
sPr + tP (through a temporary break-in), the component sPr can be recovered easily. This allows
the adversary to indefinitely impersonate the sender.

It is interesting that Dent identified this as a problem although it is not recognized as one
by any of the current security models for signcryption. On the other hand, we can see that this
capability of the adversary to obtain ephemeral protocol data has already been known in the key
establishment models for many years. Hence, the plausibility of an attack by the adversary by
revealing ephemeral data, as well as its consequences, are equally valid for a signcryption KEM
as for a key establishment protocol. The Open query we have introduced into the security notions
of signcryption KEM models ephemeral data leakage and enables us to achieve a useful stronger
notion of security.
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The feasibility of an adversary revealing ephemeral data will certainly vary according to the
application scenario. Factors that might influence the feasibility include the security of storage
during processing and the quality of practical random number generators. It may also be argued
that applications such as signcryption or OPKE are of limited vulnerability to ephemeral data
leakage queries since local values can be erased immediately once they are used. In contrast, two-
pass protocols often require some ephemeral values to be stored until interaction with a protocol
peer are completed.

In our security model for signcryption KEM, Open query reveals only the random coins used
while generating encapsulation, but not any other session specific information. This query can
be seen as a way of modelling faulty random number generators. We assume that the operation of
computing encapsulation to be atomic and also that the local values are securely erased immediately
once they are used. Thus ECISS-KEM1 would still be secure under our new model. In fact we prove
a slightly modified version of ECISS-KEM1 to be secure under our new outsider security notions.

Note that leaking the value sPr + tP allows the adversary to compute the static Diffie-Hellman
key between the parties Ps and Pr with which the adversary can compromise the communication
between these two parties forever. Hence, we emphasize that the static Diffie-Hellman key between
two parties in this scheme should be protected with the same care as the long term private key
would be protected. We leave it an open problem to construct a Diffie-Hellman based OPKE
protocol/signcryption KEM even secure when the static Diffie-Hellman shared key is revealed.

4.3 ECISS-KEM2

Dent proposed another signcryption KEM (ECISS-KEM2) which was aimed to address the ephemeral
data exposure problem. The system parameters, key pairs and hash function are the same as those
in ECISS-KEM1. The symmetric key in the encapsulation algorithm of ECISS-KEM2 is computed
as K = H(sPr + tPr) and its encapsulation is C = tP . Given an encapsulation, the symmetric key
can be recovered using the deterministic decapsulation algorithm as K = H(rPs + rC).

Dent argued that even if an attacker discovered the value sPr + tPr, it would help in recovering
only a single message for which the hashed material was used to produce the symmetric key. This
is because it is not easy to compute sPr from the discovered value and C. Although the security of
the scheme was stated informally, Dent claimed that a proof could be given with a non-standard
security assumption. However, the attack below enables an active adversary to impersonate a sender
to any receiver indefinitely.

Attack on ECISS-KEM2 An active adversary calculates C∗ as P−Ps and sends it to the receiver
as a message from a sender with public key Ps. This forces the receiver to compute the symmetric
key as K = H(rPs + rC∗) = H(rsP + r(P − sP )) = H(rsP + rP − rsP ) = H(Pr), which can easily
be computed by the adversary. Now, the adversary can use a DEM along with ECISS-KEM2 and
signcrypt messages as having come from the original sender. This attack directly violates the Left
or Right security defined by Dent for outsider unforgeability.

4.4 ECISS-KEM1 in multi-user setting

We slightly modify ECISS-KEM1 to work in multi-user environment as shown in Figure 2. As
suggested by An et al. [2], the identities of the sender and receiver, Ŝ and R̂ respectively, are now
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embedded in the encapsulation and decapsulation processes. We also make an efficiency improve-
ment by directly choosing the encapsulation C uniformly at random from the group G. Note that in
the scheme described in Figure 1, the same effect has been achieved at an additional exponentiation.

– Encapsulation
1. Choose C ∈R G

2. Set K = H(sPr + C, Ŝ, R̂)
3. Output (K, C)

– Decapsulation
1. Set K = H(rPs + C, Ŝ, R̂)
2. Output K

Fig. 2. ECISS-KEM1 in the multi-user setting

We show that the modified ECISS-KEM1 satisfies the outsider notions confidentiality and un-
forgeability defined in Section 3.2. Before proceeding to security proofs, we briefly describe the
computational assumptions on which the security of ECISS-KEM1 in multi-user setting is based.

Computational Diffie-Hellman (CDH) problem: The CDH problem in a group G is to com-
pute abP , given an instance 〈P, aP, bP 〉, where P is an arbitrary generator of G and a, b ∈ Z

∗
q .

It is assumed that CDH problem is hard to solve in G if for any polynomial time adversary
the probability of computing the correct CDH, given a uniformly random CDH instance, is
negligible in the security parameter.

Decisional Diffie-Hellman (DDH) problem: Given an instance 〈P, aP, bP, cP 〉, the DDH prob-
lem is to output whether cP is the CDH of aP and bP or not. It is assumed that DDH problem
is hard to solve in G if for any polynomial time adversary the probability of solving the DDH
problem, given a uniformly random DDH instance from G, is negligibly close to 1

2 .

Gap Diffie-Hellman (GDH) problem: The GDH problem in a group G is to solve CDH in G

given access to an oracleODDH which solves the DDH problem for a given instance. It is assumed
that GDH problem is hard to solve in G if for any polynomial time adversary the probability of
solving GDH, given a uniformly random CDH instance, is negligible in the security parameter.

Theorem 1. ECISS-KEM1 in multi-user setting is secure in the outsider unforgeability notion

in the random oracle model assuming hardness of the GDH problem in G. The advantage of a

polynomial adversary ACMA against the outsider unforgeability notion of the scheme is bounded by

n(n − 1)ǫ, where ǫ is the advantage of a polynomial time GDH solver AGDH and n is the number

of users in the multi-user setting.

Proof. Let A = aP , B = bP be the problem instance given to AGDH . AGDH injects the values A

and B as public keys P ∗
s and P ∗

r of two users with identities Ŝ∗ and R̂∗ respectively. By selecting
these two users, AGDH guesses that ACMA will output a forgery between Ŝ∗ and R̂∗. For all the
other users AGDH chooses the private-public keys pairs. It also maintains two lists LH and LE

which are used to answer the random oracle H and the FEO queries. These lists are initially empty
and will be filled in while AGDH simulates answers to ACMA’s queries as below:

– H Queries: On input (X, Ŝ, R̂), AGDH first checks to see if there is an existing entry (X, Ŝ, R̂, K)
for some K in LH that stores the past returned hash values. If so, it returns the corresponding
K; otherwise it accesses the encapsulation list LE and does the following:
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if (C, K, Ŝ, R̂) ∈ LE for some K and C values then
compute Y = (X − C)
if ODDH(Ps, Pr, Y ) = True then

if Ps = A and Pr = B then
return Y as solution to the GDH challenger

else
return K to ACMA

update LH = LH‖(X, Ŝ, R̂, K)
end

else

Select K
R
← {0, 1}k and return it to ACMA

update LH = LH‖(X, Ŝ, R̂, K)
end

else

Select K
R
← {0, 1}k and return it to ACMA

update LH = LH‖(X, Ŝ, R̂, K)

end

– FEO: AGDH starts with an empty encapsulation list LE . On input (Ps, Pr), A
GDH first selects

C ∈R G. It then checks each entry (X, Ŝ, R̂, K) ∈ LH to see if ODDH(Ps, Pr, X − C) = True

for the same (Ps, Pr) as in the input to FEO. If so, it fetches the corresponding K from LH;

otherwise it selects K
R
← {0, 1}k. It returns (K, C) to ACMA. Finally, LE is updated to LE =

LE ‖(C, K, Ŝ, R̂).

– FDO: On input (Ps, Pr, C), AGDH first checks to see if there is an entry (C, K, Ŝ, R̂) ∈ LE . In
case of a match it returns the corresponding symmetric key K. Otherwise, it does the following:
if (X, Ŝ, R̂, K) ∈ LH for some X then
compute Y = (X − C)
if ODDH(Ps, Pr, Y ) = True then

if Ps = A and Pr = B then
return Y as solution to the GDH challenger

else
fetch corresponding K from LH and return it to ACMA

update LE = LE‖(C, K, Ŝ, R̂)
end

else

Select K
R
← {0, 1}k and return it to ACMA

update LE = LE‖(C, K, Ŝ, R̂)
end

else

Select K
R
← {0, 1}k and return it to ACMA

update LE = LE‖(C, K, Ŝ, R̂)

end

– Corrupt: AGDH aborts on a Corrupt query with input S∗ or R∗. For all the other users this query
can be trivially answered since AGDH generated the key pairs for them.

– Open: This query returns the random tape used during the encapsulation process.
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Answering the GDH challenger: Eventually, ACMA outputs a forgery (K∗, C∗) as an encapsulation
created by S∗ from R∗. For the forgery to be valid under the outsider unforgeability notion, C∗

must be a valid encapsulation of K∗. If C∗ is a valid encapsulation of K∗ then ACMA must have
queried the H with corresponding keying material, in which case AGDH would have answered the
GDH challenger already. The probability ACMA selecting S∗ as sender and R∗ as recipient from a
set of n users is 1

n(n−1) . Hence, the advantage of AGDH , ǫ in solving the GDH problem is ≥ ǫ′

n(n−1) ,

where ǫ′ is the advantage of ACMA.

Theorem 2. ECISS-KEM1 in multi-user setting is secure in the outsider confidentiality notion in

the random oracle model assuming hardness of the GDH problem in G. The advantage of a polyno-

mial adversary ACCA against the outsider confidentiality notion of the scheme is upper bounded by
(

2n(n− 1)ǫ + 2(qe+qd)
q

)

, where ǫ is the advantage of a polynomial time GDH solver AGDH , n is the

number of users in the multi-user setting and qe and qd are the maximum number of encapsulation

and decapsulation queries respectively that ACCA is allowed to ask.

Proof. Let A = aP , B = bP be the problem instance given to AGDH . AGDH injects the input
values as the public keys of two users and simulates answers to all H, FEO, FDO, Corrupt and Open
queries of ACCA in the same way as described above.

Answering the GDH challenger: In the Challenge phase, AGDH aborts if ACCA does not output

(pk∗
s , pk∗

r). Otherwise, it randomly selects an encapsulation C∗ ∈ G, a random key K∗ R
← {0, 1}∗

and returns (K∗, C∗) as the challenge to ACCA.
IfACCA can distinguish the random key K∗ from the real key corresponding to the encapsulation

C∗ with non-negligible advantage, either (1) it must have queried the random oracle H with the
input (X∗, Ŝ∗, R̂∗) such that (X∗ − C∗) is the CDH of P ∗

s and P ∗
r or (2) C∗ was an output of an

earlier FEO query or input to an earlier FDO query. In case 1, AGDH would have answered the
GDH challenger correctly as explained in the simulation above.

Let E1 and E2 be the events that the cases 1 and 2 occur respectively. Note that if the event
E1 happens, the success probability of AGDH , ǫ ≥ Pr[E1]

n(n−1) , while it does not have any advantage

when the event E2 occurs. Since C∗ was chosen at randomly from the group G, the probability of
occurrence for E2 is qe+qd

q
. The probability of success for ACCA is given as:

Pr[SuccACCA ] = Pr[SuccACCA |E2] Pr[E2] + Pr[SuccACCA |¬E2] Pr[¬E2]

≤ Pr[E2] + Pr[SuccACCA |¬E2]

≤
qe + qd

q
+ Pr[SuccACCA |¬E2] (1)

We also have

Pr[SuccACCA |¬E2] = Pr[SuccACCA |E1 ∧ ¬E2] Pr[E1] + Pr[SuccACCA |¬E1 ∧ ¬E2] Pr[¬E1]

≤ Pr[E1] + Pr[SuccACCA |¬E1 ∧ ¬E2]

≤ Pr[E1] +
1

2
(2)

From equations 1 and 2 we have
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Pr[E1] ≥
1

2

(

AdvACCA −
2(qe + qd)

q

)

Hence,

ǫ ≥
1

2n(n− 1)

(

AdvACCA −
2(qe + qd)

q

)

By rearranging the above equation, we have the claimed advantage for ACCA.

5 From OPKE to Signcryption KEM

Let π be an OPKE protocol. We show that π can be directly used as a signcryption KEM SK. The
session key computed in π serves as the symmetric key output of the signcryption KEM, while the
outgoing message of π becomes the encapsulation of the key in SK. The session key computation
process at the receiver end in π can be applied as the decapsulation algorithm in SK to retrieve the
symmetric key.

We now examine how the properties of an OPKE protocol transfer into the context of a sign-
cryption KEM scheme. Note that if an OPKE protocol has sender forward secrecy, the session key
remains uncompromised even if the long-term private key of the sender is revealed. This property
essentially is the same as the insider confidentiality notion defined for signcryption KEM, which
protects the confidentiality of symmetric key even when the sender’s private key is compromised.
Similarly, the implicit authentication property guarantees the parties in an OPKE protocol that
only the intended peers can compute the session key. This property is identical to the outsider
unforgeability notion of signcryption KEM, which guarantees that only the sender or the receiver
can produce valid encapsulation-symmetric key pairs between themselves. We now give a formal
proof for our generic construction.

Theorem 3. If π is an OPKE protocol secure as per the model in Section 2.3, then it can be used

as a signcryption KEM SK secure in the insider confidentiality and outsider unforgeability notions.

Proof. We prove the theorem by showing that if SK is not secure in the insider confidentiality or
outsider unforgeability notion, then π is also not secure as per the security model in Section 2.3.
Given an adversary ACCA against insider confidentiality or ACMA against outsider unforgeability
with non-negligible advantage, we construct an adversary Aπ against π, which can distinguish a
real session key from a random number in polynomial time.

Constructing Aπ from ACMA: We start by assuming the existence of ACMA against outsider
unforgeability, with a non-negligible advantage ǫu. Then, we prove that Aπ can distinguish a
real session key from a random value with the same advantage using ACMA as subroutine. The
running time of Aπ is t1 ≤ tu +(nfeo +nfdo)(ts + tk), where tu is the time required for ACMA to
forge SK, nfeo and nfdo are the number of FEO and FDO queries issued by ACMA respectively
and ts and tk are the response times for send and session-key queries respectively.

Let U = {U1, . . . , Un} be a set of n users, where n is polynomial in the security parameter k.
Aπ obtains the public keys of all the users from its challenger and forwards them to ACMA. Aπ

answers the queries asked by ACMA as below:
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– FEO Queries: For an FEO query asked by ACMA with input (pks, pkr), A
π initiates a session

by issuing a send(πi
Us

, pidi
Us

) query, where pidi
Us

= {Us, Ur} and Us and Ur are the owners of
the public keys pks and pkr respectively. Let C be the outgoing message returned by πi

U . Aπ

then issues a RevealKey(πi
U ) query and receives the session key K accepted in that session.

The pair (K, C) is returned as the output of the FEO query to ACMA.

– FDO Queries: On an FDO query with the input (pks, pkr, C),Aπ issues a send(πj
Ur

, (pidj
Ur

, C)),

where pidj
Ur

= {Us, Ur}. If the session is accepted, it issues a RevealKey(πj
Ur

) query and re-

turns the session key K to ACMA. Otherwise, it returns a ⊥ symbol.

– Corrupt Queries: On a Corrupt query with the input U , Aπ issues a
LongTermKeyReveal(U) and forwards the output to ACMA.

– Open Queries: On an Open query with the input πi
U , Aπ issues a

EphemeralKeyReveal(πi
U ) and forwards the output to ACMA.

Answering the challenger: ACMA finally outputs (pk∗
s , pk∗

r , K
∗, C∗) as its forgery such that C∗

is a valid encapsulation of K∗ created by U∗
s for U∗

r . Aπ now establishes a fresh session between
U∗

s and U∗
r , by issuing send(πj

U∗
r
, (pidj

U∗
r
, C)). It chooses this session as the test session. The

challenger computes the session key K0 of the test session and selects a random value K1 from
session key distribution. It then chooses b ∈R {0, 1} and gives Kb to Aπ. Aπ outputs its guess
as 0 if Kb = K∗ or 1 otherwise.

For ACMA to be successful it has to forge a valid encapsulation of U∗
s created for U∗

r such that
U∗

s and U∗
r have not been corrupted. As explained above, Aπ wins whenever ACMA outputs

such a forgery by establishing a test session between those two users. Hence, the advantage of
Aπ constructed from ACMA is

Advπ
1 (k) = ǫu (3)

For each FEO or FDO query, Aπ has to establish a session through a send query and retrieve
the session key through a session-key query. Hence, the running time of Aπ is bounded by
t1 ≤ tu + (nfeo + nfdo)(ts + tk).

Constructing Aπ from ACCA: Now, we assume that there exists ACCA against insider con-
fidentiality with a non-negligible advantage ǫc. Using ACCA as subroutine, we construct an
adversary Aπ that can distinguish real session key from a random value with an advantage of
at least ǫc

n(n−1) . The running time of Aπ is t2 ≤ tc + nfdo(ts + tk), where tc is the running time

of ACCA, nfdo is the number of FDO queries issued by ACCA and ts and tk are the response
times for send and session-key queries respectively.

Let U = {U1, . . . , Un} be a set of n users, where n is polynomial in the security parameter k.
Aπ obtains the public keys of all the users from its challenger and forwards them to ACCA.
Aπ selects two users U∗

s , U∗
r ∈ U . By selecting these users, Aπ guesses that U∗

s and U∗
r will be

the chosen as the sender and receiver respectively by ACCA in the challenge phase. Aπ now
initiates a session πt

U∗
s

by issuing a send(πt
U∗

s
, pidt

U∗
s
), where pidt

U∗
s

= {U∗
s , U∗

r }. It obtains the

outgoing message C∗ and establishes a matching session by issuing a send(πt′

U∗
r
, pidt′

U∗
r
) query,

where pidt′

U∗
r

= pidt
U∗

s
. Aπ now chooses either πt

U∗
s

or πt′

U∗
r

as the test session. The challenger
selects b ∈R {0, 1} and gives real session key computed in the test session if b = 0 or a random
value chosen from session key distribution otherwise. Let Kb be the value returned to Aπ.

– FDO, FEO, Corrupt and Open Queries: These queries are answered by Aπ in the same as
way described above. Note that ACCA is allowed to issues a Corrupt with the input U∗

s .
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Answering the challenger: After adaptively asking the queries ACCA outputs a pair of public
keys (pk′

s, pk′
r). If pks′ 6= pk∗

s and pk′
r 6= pk∗

r , A
π aborts its execution. Otherwise, it gives

(Kb, C
∗) as the challenge to ACCA. ACCA may continue to ask the queries in Phase 2 with

trivial restrictions stated in Section 3.2. It finally returns a bit θ as its guess with an advantage
ǫc. In case θ = 0, Aπ outputs b = 0, which implies C∗ is a valid encapsulation of Kb and thus
Kb is a real session key. Aπ outputs b = 1 otherwise.
Note that Aπ wins its game with non-negligible advantage only if its guess for the public
keys output by ACCA is correct i.e. only if U∗

s and U∗
r are chosen by ACCA as sender and

receiver respectively in the challenge phase. This occurs with the probability 1
n(n−1) . Hence, the

advantage of Aπ when constructed from ACCA is

Advπ
2 (k) ≥

ǫc

n(n− 1)
(4)

For each FDO query asked by ACCA, Aπ has to establish a session through a send query and
retrieve the session key through a session-key query. Hence, the running time of Aπ is bounded
by t2 ≤ tc + nfdo(ts + tk).

From (3) and (4), the advantage of Aπ when constructed from ACMA or ACCA is Advπ(k) ≥
min{Advπ

1 (k), Advπ
2 (k)}, which is non-negligible. The running time of such Aπ with the advantage

Advπ(k) is tπ ≤ max{t1, t2}. But, as the protocol π is secure Advπ(k) must be negligible. This is
a contradiction to the construction of Aπ from ACMA or ACCA. Hence, there exists no such ACMA

or ACCA that has non-negligible advantage against SK

Note that if π does not provide sender forward secrecy, then the resulting SK will be outsider
secure for both confidentiality and unforgeability notions.

5.1 New signcryption KEMs

OPKE protocols proposed by Krawczyk [26], Ustaoglu [32] and Gorantla et al. [22] can be used as
signcryption KEMs secure in the insider confidentiality and outsider unforgeability notions. The
new signcryption KEMs between the parties A and B in multi-user setting are presented in Figure 3.
The private-public key pairs of A and B are (s, Ps) and (r, Pr) respectively.

5.2 Security of the new KEMs

Krawczyk [26] gave a sketch of the proof of security for one-pass HMQV in the random oracle model.
The security model considers session-state reveal query instead of EphemeralKeyReveal query. It can
be easily shown that one-pass HMQV is secure under the model in Section 2.3. By combining this
result with Theorem 3, it follows that the new signcryption KEM obtained from one-pass HMQV
is secure in the insider confidentiality and outsider unforgeability notions.

We can also obtain signcryption KEMs from the OPKE protocols proposed by Ustaoglu [32]
and Gorantla et al. [22]. The one-pass CMQV protocol of Ustaoglu was proven secure in the eCK
model described in Section 2.3 assuming random oracles. On the other hand, the OPKE protocol
of Gorantla et al. [22] was proven in a weaker model that does not consider session-state reveal or
EphemeralKeyReveal queries. Therefore, the signcryption KEM derived from this OPKE protocol
does not guarantee security when the adversary is allowed to ask Open queries. However, unlike one-
pass HMQV/CMQV this protocol was proven secure in the standard model. In the earlier version
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Signcryption KEM based on one-pass HMQV

params: (G, P, q,H1,H2), H1 : {0, 1}∗ → Zq ,H2 : {0, 1}∗ → {0, 1}k

– Encapsulation
1. Choose t ∈R Z∗

q

2. Set C = tP

3. Set h = H1(C, (Â||B̂))
4. Set K = H2((t + sh)Pr)
5. Output (K, C)

– Decapsulation
1. Set h = H1(C, (Â||B̂))
2. Set K = H2 (r(C + hPs))
3. Output K

Signcryption KEM based on one-pass CMQV

params: (G, P, q,H0,H1,H2), H0 : {0, 1}k × Z
∗
q → Z

∗
q ,H1, H2 : as above

– Encapsulation
1. Choose t̃ ∈R {0, 1}k

2. Compute t = H0(t̃, s), C = tP

3. Set h = H1(C, Â, B̂)

4. Set K = H1((t + sh)Pr, C, Â, B̂)
5. Output (K, C)

– Decapsulation
1. Set h = H1(C, Â, B̂)

2. Set K = H2(r(C + hPs), C, Â, B̂)
3. Output K

Signcryption KEM based on the OPKE protocol of Gorantla et al.
params: (G, P, q,M,H2), M : a MAC scheme,H2 : as above

– Encapsulation
1. Compute Ksr = sPr

2. Choose u ∈R Z∗
q

3. Set U = uP

4. Compute τ = MKsr
(U, Â, B̂)

5. Set C = (U, τ)

6. Set K = H2(uPr, Â, B̂)
7. Output (K, C)

– Decapsulation
1. Compute Krs = rPs

2. Check τ
?
= MKrs

(U, Â, B̂)

3. Set K = H2(rU, Â, B̂)
4. Output K

Fig. 3. New Signcryption KEM

of this paper [23], we defined security for signcryption KEMs without considering Open queries
and also established connection between signcryption KEM and OPKE protocols using that model.
Hence, the signcryption KEM resulting from the OPKE protocol of Gorantla et al. [22] would be
the first signcryption KEM secure in the standard model under the security notions defined in the
earlier version of this paper.

Confidentiality Unforgeability Efficiency
Model

Outsider Insider Outsider Insider Encap. Decap.

ECISS-KEM1 [19] Y N Y N 2 Exp 1 Exp ROM

ECISS-KEM2 [19] broken ROM

Dent [18] Y N Y Y 1 Exp 2 Exp ROM

Bjørstad and Dent [11] Y N Y Y 1 Exp 2 Exp ROM

One-pass HMQV [26] Y Y Y N 2 Exp 1.5 Exp ROM

One-pass CMQV [32] Y Y Y N 2 Exp 1.5 Exp ROM

Gorantla et al. [22] Y Y Y N 1 Exp 1 Exp Std.
Table 1. Security and efficiency comparisons with existing signcryption KEMs

Table 1 compares the new signcryption KEMs with existing signcryption KEMs in terms of
security and efficiency. The security notions considered are insider and outsider security for both
confidentiality and unforgeability. The efficiency is measured by number of group exponentiations
required in encapsulation and decapsulation algorithms. Unlike the previous schemes, all the new
signcryption KEMs achieve insider security for confidentiality. The schemes based on one-pass
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HMQV/CMQV achieve this additional property only at the cost of an extra half-length exponenti-
ation 1 compared to the ECISS-KEM1 in the decapsulation algorithm. Moreover, these schemes also
have a proof of security when the adversary leaks session state/ephemeral key. Although the scheme
based on Gorantla et al.’s [22] protocol does not have a proof of security when the adversary has
access to ephemeral data, it is more efficient than the other signcryption KEMs, when the static
Diffie-Hellman key between the sender and the receiver is pre-computed. It should also be noted
that the security of the new signcryption KEMs is treated in multi-user setting.

Note that we have not considered ephemeral pubic key validation when comparing efficiency of
signcryption KEMs. In each of the schemes in Table 3 schemes, it requires an additional exponen-
tiation for the recipient to perform this operation.

6 From signcryption KEM to OPKE

We now consider the generic construction in the other direction. We first discuss how a signcryption
KEM SK can be used as an OPKE protocol π. When SK is used as π, the encapsulation algorithm
of SK becomes the session key computation process for the sender in π. The generated symmetric
key serves as the session key, while the encapsulation of the symmetric key as the outgoing message
to the receiver. The receiver can compute the same session key by executing the decapsulation
algorithm on the incoming message.

For SK to be suitable to be used as an OPKE protocol secure in the model defined in Section 2.3,
it should be secure in the insider confidentiality and outsider unforgeability notions. Informally, se-
curity under insider confidentiality and outsider unforgeability enables the resulting protocol to have
sender forward secrecy and implicit authentication respectively. If SK is secure when considering
open queries, the resulting π will be secure under against compromise of ephemeral data.

Theorem 4. If a signcryption KEM is secure in the insider confidentiality and outsider unforge-

ability notions, then it can be used as an OPKE π that is secure under the model defined in Sec-

tion 2.3.

Proof. The truth value of the above theorem is the same as the statement: if π is not secure in
the model defined in Section 2.3, then SK is not secure in either insider confidentiality or outsider
unforgeability notion. Hence, it is enough to show that given an adversary Aπ against π that can
distinguish a real session key from a random number with advantage ǫ, then either ACMA or ACCA

against SK can be constructed with advantage ǫ′ ≥ ǫ in polynomial time.

The proof is divided into two parts. In the first part ACMA is constructed with non-negligible
advantage only if an event Forgery (explained later) occurs. In the second part ACCA is constructed
from Aπ with non-negligible advantage if the event Forgery does not occur. Let {U1, U2, ..., Un}
be set of n users and assume each user is activated at most m times by Aπ, where n and m are
polynomials in the security parameter.

Constructing ACMA from Aπ: We assume the existence of Aπ that can distinguish a real session
key from a random value in time tf . We then construct ACMA within time t1 ≤ tf + m(n −
1)(tfeo + 2 · tfdo), where tfeo and tfdo are the response times for the FEO and FDO queries
respectively.

1 Krawczyk [26] explained that choosing the output length of the hash function H1 as q

2
provides the right

performance-security trade-off.
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The input to ACMA consists of a set of n users {U1, . . . , Un} and their public keys. Its aim is
to produce (K∗, C∗) where C∗ is a valid encapsulation of K∗ under the key pairs of two honest
users from U , using Aπ as subroutine. ACMA wins its game with non-negligible advantage only
if the event Forgery occurs. All the queries from Aπ can be answered by ACMA using the oracles
available as part of the outsider unforgeability notion. The simulation is described below:

– Send: When a Send(πi
Us

, pidi
Us

) query is asked, where pidi
Us

= {Us, Ur}, A
CMA queries its

FEO with input (pks, pkr), where pks and pkr are the public keys of the users Us and Ur

respectively. It obtains (K, C) and returns C to Aπ as the outgoing message. ACMA also
keeps an entry (i, Us, Ur, K, C) in its encapsulation list LE .

If Aπ issues send(πj
Ur

, (pidj
Ur

, C)), ACMA queries its FDO with the input (pks, pkr, C). If it

obtains a symmetric key K from the challenger, ACMA stores the value (j, Ur, Us, K, C) in
LE . If the output of FDO is⊥ then the session is not accepted and the entry (j, Ur, Us, ⊥, C)
is stored in LE . The result of whether the session is accepted or not is made known to Aπ.

– RevealKey: For a RevealKey query with the input (πi
Us

) query, it returns the key held in that
session as follows: Since a RevealKey key reveal query is issued only on a session that has
accepted, the session id s must have an entry in LE . ACMA checks to see if there is an entry
for (s, Us, Ur, ∗, ∗) in LE and returns the corresponding key K in case of a match. If there
is no key stored in LE for the record (s, Us, Ur, ∗, ∗), A

CMA query returns ⊥.

– LongTermKeyReveal: When Aπ wishes to reveal the long term key of a party Ui, A
CMA issues

a Corrupt query to its challenger with the input Ui. The value returned is given to Aπ.

– EphemeralKeyReveal: On an EphemeralKeyReveal query with the input πi
U , ACMA first checks

that there is an entry for the instance πi
U and if there is a match it extracts the encapsulation

C from the corresponding entry and issues an Open(pks, pks, C) to its challenger. The value
returned by the challenger is forwarded to ACMA.

– Test: A Test query with the input πt
Us∗

can be trivially answered by ACMA since it has access
to all the session keys in the list LE .

Let Forgery be the event that Aπ issues a send(πj
Ur∗

, (pidj
Ur∗

, C∗)) such that C∗ is a valid en-
capsulation under the key pairs of U∗

s and U∗
r such that C∗ is not a response to an earlier

(πi
Us∗

, pidi
Us∗

) query and both U∗
s and U∗

r are uncorrupted. If Forgery occurs, ACMA fetches the

corresponding K∗ from LE and outputs (K∗, C∗) as its forgery. Note that ACMA can check the
validity of C∗ under the key pairs of U∗

s and U∗
r by issuing a FDO(U∗

s , U∗
r , C∗) query.

Clearly, ACMA wins its game if and only if the event Forgery occurs. Thus, the advantage of
ACMA is given as:

AdvCMA
A (k) = Pr[Forgery] (5)

For each Send query to the instance πi
U , ACMA has to query the FEO and FDO oracles. The

maximum number of such queries involving UA can be m(n− 1). Similarly, for each send query
to πs

B,i a query to FDO is made. The maximum possible number of such queries involving UB

is m(n − 1). Hence, ACMA can forge SK with the above advantage in time t1 ≤ tf + m(n −
1)(tfeo + 2 · tfdo).

Constructing ACCA from Aπ: Now, we assume that Aπ can distinguish a real session key from
a random value in time td when the event Forgery does not occur. Using Aπ as a subroutine,
we construct ACCA within time t2 ≤ td + (m(n− 1)− 1)tfdo, where tfdo is the time required to
get a response from FDO.
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Let U = {U1, . . . , Un} be a set of n users, where n is polynomial in the security parameter k.
ACCA obtains the public keys of all the users from its challenger and forwards them to Aπ.
ACCA selects two users U∗

s , U∗
r ∈ U . By selecting these users, Aπ guesses that U∗

s and U∗
r will

be the chosen as the peers in the test session. Let pk∗
s and pk∗

r be the public keys of the users
U∗

s and U∗
r respectively. In the Challenge phase, ACCA outputs the public keys (pks, pk∗

r) to its
challenger. The challenger in turn gives (Kb, C

∗) to ACCA as described in Section 3.2.
ACCA chooses t ∈R {1, . . . , m}. With these choices ACCA is trying to guess Aπ’s choice of the
test session. The aim of ACCA is to break the confidentiality of encapsulations created for UB

by any other user using Aπ as subroutine. It is now ready to simulate the view of Aπ.

– Send: These queries are answered in the same way explained in the first part of the proof
except the t-th instantiation at the party U∗

s , which is handled as follows: If U∗
r is not the

peer in that session ACCA aborts. Otherwise, it returns C∗ as the outgoing parameter.
– RevealKey, EphemeralKeyReveal: These queries are handled in the same way as explained

above.
– LongTermKeyReveal: ACCA aborts on a LongTermKeyReveal query with input U∗

r . All other
queries are handled in the same as explained above.

– Test: If πt
Us∗

or its matching session πt′

Ur∗
is not the test session ACCA aborts. Otherwise, it

returns Kb to Aπ.

Eventually, Aπ halts with its guess θ. If θ = 0, ACCA outputs b = 0 implying that Kb is a real
session key and thus C∗ is an encapsulation of Kb. Otherwise b = 1 is returned.
If Forgery occurs Aπ may win its game without choosing the session in which the challenge
encapsulation C∗ is injected, as the test session. In this case ACCA gets no advantage. Hence,
if the event Forgery occurs or if Aπ chooses a different session other than the one expected by
ACCA as test session, ACCA outputs a random bit b with a probability 1

2 .
The probability of Aπ choosing a session t that has UA as initiator and UB as responder is

1
mn(n−1) . Hence, The advantage of ACCA is given as

Adv
CCA
A (k) ≥

(Advπ
A(k)|Forgery)

mn(n − 1)
(6)

For each send(πs
B,i) query, ACCA has to issue an FDO query. The maximum possible number

of such queries involving the user UB is m(n− 1)− 1; excluding one in the test session. Hence,
the running time of ACCA with the above advantage is t2 ≤ td + (m(n− 1)− 1)tfdo.

By the theorem of total probability, the advantage of Aπ is given by

Advπ
A = (Advπ

A|Forgery)× Pr(Forgery) + (Advπ
A|Forgery)× Pr(Forgery)

≤ Pr(Forgery) + (Advπ
A|Forgery)

However, from Equations 5 and 6, Pr(Forgery) and (Advπ
A|Forgery) are negligible when SK is

secure in the insider confidentiality and outsider unforgeability notions. Hence, the advantage of an
adversary Aπ against the OPKE protocol constructed from such an SK is also negligible.

A new OPKE Protocol. The ECISS-KEM1 in multi-user setting described in Figure 2 can be
used as an OPKE protocol. However, as the ECISS-KEM1 is secure only in the outsider security
model it does not provide sender forward secrecy. The security of the resulting OPKE protocol
follows from Theorems 1, 2 and 4.
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7 Conclusion

We have explored the connection between OPKE protocols and signcryption KEMs. In the process,
we have defined new notions of security for both signcryption and signcryption KEMs in multi-user
setting. Inspired by existing models for key establishment protocols, the security models for sign-
cryption and signcryption KEMs have been strengthened by considering ephemeral data leakage.
We have then shown that there exists a duality between OPKE protocols and signcryption KEMs.

By instantiating our generic construction, we have been able to use existing OPKE protocols to
derive new signcryption KEMs with stronger properties than those known before. However, even
though the new signcryption KEMs are stronger in terms of confidentiality, they do not provide
insider secure authentication (non-repudiation). It is an open question to investigate what properties
of an OPKE protocol imply insider unforgeability for signcryption KEM. In the other direction,
we have derived an OPKE protocol with weaker security than those already known. It is also
interesting to see if one can construct OPKE protocols from insider secure signcryption KEMs [18].

Our generic constructions can be easily adapted to the ID-based setting. To the best of our
knowledge, there exists no ID-based signcryption KEM in the literature. Hence, by applying our
generic construction of deriving signcryption KEMs from OPKE protocols, we can obtain the first
ID-based signcryption KEM from the ID-based OPKE protocol of Gorantla et al. [21].
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