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Abstra
t. We present a fast and se
ure mental poker proto
ol. It is twi
e

as fast as similar proto
ols, namely Barnett-Smart's and Castellà-Ro
a's pro-

to
ols. This proto
ol is provably se
ure under DDH assumption.

1. Introdu
tion

1.1. Mental Poker. Mental poker is the study of proto
ols that allow players

to play fair poker games over the net without a trusted third party. It 
an be


onsidered as a kind of multiparty 
omputation. In the study of mental poker,

there are very few assumptions on the behavior of adversaries. Adversaries are

typi
ally allowed to have 
oalition of any size and 
an make a
tive atta
ks.

The apparent appli
ation of mental poker is playing online poker game over the

Internet. However, it is not easy to design a fast enough proto
ol to satisfy pra
-

ti
al needs. Despite many proto
ols have been proposed ([2, 3, 7, 9, 8, 16, 15,

18, 20, 21, 23, 25, 27, 28, 29℄), online poker rooms are still based on 
lient-server

ar
hite
tures. Therefore, online players are assumed to trust the server. How-

ever, it is not un
ommon for players to question the integrity of online games.

These players might be right. In fall 2007, there is a major employee 
heat-

ing s
andal o

urred at a famous online poker room, Absolute Poker. In 2008,

similar s
andal o

urred at another famous online poker room, UltimateBet (see

http://en.wikipedia.org/wiki/Online_poker for detail and news sour
es).

Therefore, an e�
ient de
entralized poker proto
ol is desirable. We present a

fast proto
ol in this paper.

1.2. Previous Works. The �rst mental poker proto
ol was proposed by Shamir

et al in 1979 ([25℄), whi
h allows only two players to play. Unfortunately, it has

a se
urity �aw (see [24, 20℄). The �rst se
ure mental poker proto
ol is proposed

by Crépeau in 1987 ([15℄). Sin
e then, several other se
ure proto
ols have been

proposed([2, 3, 7, 9, 8, 16, 15, 18, 20, 21, 23, 25, 27, 28, 29℄, see [7℄ for a survey).

Barnett-Smart's proto
ol is proposed in 2003 ([3℄). It 
an be implemented by

using either ElGamal or Paillier en
ryption s
heme. However, Paillier en
ryption

based version depends on Boneh-Franklin's proto
ol ([4, 5℄), whi
h is only se
ure

under the assumption that adversaries are 
oalition of size at most

N−1
2 , where N is

the number of players. In this paper, we 
onsider a
tive adversaries with 
oalition

of size up to N − 1. Therefore, in the rest of this paper, we 
onsider only the

ElGamal-based version.

Castellà-Ro
a's proto
ol is proposed in 2004 ([7℄). It is similar to Barnett-Smart,

but faster than Barnett-Smart in the shu�e.

Both Barnett-Smart's and Castellà-Ro
a's are se
ure and e�
ient.
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1.3. Our Result. We present a fast and se
ure mental poker proto
ol. It shares

the similar basi
 stru
ture with Barnett-Smart's and Castellà-Ro
a's proto
ols,

only the 
ard en
ryption s
heme is di�erent. However, this di�eren
e is signi�
ant.

Conseqently, the se
urity proof of Barnett-Smart and Castellà-Ro
a does not work

on our proto
ol.

In Barnett-Smart and Castellà-Ro
a, every player generates a private key at

the beginning of the proto
ol. The private keys are used to turn the 
ards �fa
e

down�. In ea
h round of shu�ing, ea
h player generates a temporary se
ret to

hide the permutation of the 
ards. To shu�e a de
k of fa
e down 
ards, only

the temporary se
rets are needed. To turn a 
ard �fa
e up�, only the private key

is needed. Sin
e the shu�e only depends on the temporary se
rets and the 
ard

en
ryption s
heme only depends on the private key, we 
an prove the se
urity of

the shu�e, 
ard dealing and opening separately. Then use 
omposition theorem to

show the se
urity of whole proto
ol.

In our proto
ol, however, the same se
ret is used for both shu�e and 
ard de-


ryption.

Before further dis
ussion, let us brie�y des
ribe the idea of the 
ard en
ryption

pro
edure in our proto
ol. Let G be a 
y
li
 group and g ∈ G a generator. Ea
h


ard i is represented by an element ai ∈ G. These ai are 
hosen from G randomly

via a multiparty proto
ol, so that ai are indistinguishable from independent uniform

random variable (under DDH assumption, whi
h we dis
uss below). A fa
e-up de
k

of M 
ards 
an be 
onsidered as the set {ai}i≤M . When a player, say Player j,

wishes to shu�e the de
k {ai}, he privately 
hooses a new random se
ret xj and

then en
rypts the de
k as

{

a
xj

i

}

and the generator as gxj
.

At some point of dealing a 
ard, other players send an element b ∈ G to Player

j. Player j then send ba
k bx
−1

j
to other players. The owner of the 
ard then use

this information to de
rypt the 
ard. Obviously, if b 
an be freely 
hosen by other

players, they 
an easily break Player j's shu�e. Therefore, there must have some

restri
tions on b in the 
ard dealing proto
ol. So, there is no way to prove the

se
urity of the shu�e alone without investigating the 
ard dealing proto
ol.

On the other hand, ea
h 
ard en
ryption requires only one exponentiation in

our proto
ol. In Barnett-Smart and Castellà-Ro
a, ea
h 
ard en
ryption requires

two exponentiations. Therefore, our proto
ol is roughly twi
e as faster. Detail


omparison 
an be found in Se
tion 4.

The se
urity of our proto
ol depends on an intra
tability assumption, namely,

De
isional Di�e-Hellman (DDH) assumption. This assumption is widely used in


ryptography. There are many 
ryptographi
 primitives based on DDH assump-

tion. For example, ElGamal en
ryption s
heme ([17℄), Di�e-Hellman key ex
hange,

Cramer-Shoup 
ryptosystem ([13℄). The se
urity of Barnett-Smart and Castellà-

Ro
a is also depends on DDH assumption.

Let Γ be a family of 
y
li
 groups. DDH assumption (for Γ) states that, for any
generator g ∈ G ∈ Γ, the following two distributions

•
(

g, ga, gb, gab
)

, where a, b are independent uniformly random;

•
(

g, ga, gb, gc
)

, where a, b, c are independent uniformly random;

are indistinguishable.

DDH assumption is believed to be true for some families of groups. The typi
al

example is the group of quadrati
 residues modulo a safe prime (i.e. prime of the

form 2p+1 where p is a prime). It is also believed to hold on a prime-order ellipti
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urve E over the �eld GF (p), where p is prime and E has large embedding degree.

More detail 
an refer to [6℄.

DDH assumption implies that the following two distributions

• (a0, a1, a2, . . . , aM , ax0 , a
x
1 , . . . , a

x
M ), where ai, x are uniformly random;

• (a0, a1, a2, . . . , aM , b0, b1, . . . , bM ), where ai, bi are uniformly random;

are indistinguishable (see [1℄).

In other words, DDH assumption implies that the �shu�ed de
k�, {axi } is in-

distinguishable from random variables {bi}. This eviden
e strongly suggests the

se
urity of our proto
ol. However, as we dis
uss above, this result alone is not

enough to prove the se
urity of whole proto
ol. The proof is given in Se
tion 3.

2. Proto
ol Des
ription

2.1. Overview. The basi
 stru
ture and usage of our proto
ol is same as those of

Barnett-Smart and Castellà-Ro
a. Detail 
onsiderations and theoreti
al des
ription


an be found in [3℄.

The poker proto
ol 
an be divided into four parts: De
k Preparation (Proto-


ol 1), Shu�e (Proto
ol 3), Card Drawing (Proto
ol 6) and Card Opening (Proto-


ol 7).

To play a 
ard game, players �rst use De
k Preparation to prepare a de
k of


ards. Players only need to prepare the de
k on
e. After a de
k being prepared,

players 
an shu�e the de
k or draw 
ards from the de
k many times.

Players use Shu�e to shu�e the de
k. When dealing 
ards, players 
an draw


ards from the shu�ed de
k using Card Drawing. By using Card Opening, a

player 
an show his hole 
ards to other players. Dealing a 
ommunity 
ard 
an be

simulated by Card Drawing and Card Opening.

2.2. De
k Preparation. Let us �x a family of 
y
li
 groups Γ that satis�es DDH

assumption. We assume that there is a way to e�
iently generate a group G ∈ Γ
for arbitrary large order and the group operation of G 
an be 
omputed e�
iently.

For example, DDH assumption is generally believed to be true for the group of

quadrati
 residues modulo a safe primes (a prime of the form 2p + 1 where p is a

prime). For more detail 
onsideration on the e�
ien
y of G and Γ, please refer 4.1
of [14℄.

Let us �x a large prime n and a group G ∈ Γ of order n. Consider there are N
players playing with a de
k of M 
ards. We name the 
ards in the de
k as Card 1,
Card 2, . . . , Card M .

Proto
ol 1. De
k Preparation

(1) Players generate distin
t generators ai ∈ G for every 0 ≤ i ≤ M via

some multiparty proto
ol, so that ai are indistinguishable from independent

uniform random variables (from the view of any proper subset of players).

(2) 〈ai〉0≤i≤M = a0, a1, a2, . . . , aM is the prepared de
k of M 
ards.

〈ai〉0≤i≤M 
an be 
onsidered as the �fa
e up� representation of the de
k. a0 is

used as a �base� and for every i ≥ 1, Card i is represented by ai.
At step 1, players 
an 
hoose any suitable proto
ol to generate ai. For example,

the following proto
ol is se
ure under DDH assumption.

Proto
ol 2. Generate a random element

(1) For j = 1 to N , Player j does the following:
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(a) randomly 
hoose generators gj, hj ∈ G and randomly 
hoose 0 < xj <
n.

(b) broad
ast gj,g
xj

j , hj .

(2) For j = 1 to N , Player j does the following:

(a) broad
ast h
xj

j .

(b) use an auxiliary input zero-knowledge argument (see [11℄, for example)

to 
onvin
e other players that loggj g
xj

j = loghj
h
xj

j .

(3) The result element h =
∏

h
xj

j is indistinguishable from a uniform random

variable.

The result h is indistinguishable from an independent uniform random variable

if at least one player is honest.

2.3. Shu�e. Let 〈ai〉0≤i≤M be a prepared de
k of 
ards. To shu�e the de
k, a

player �rst en
rypts the de
k as 〈axi 〉0≤i≤M with a se
ret x. The en
rypted de
k

〈axi 〉0≤i≤M 
an be 
onsidered as a �fa
e down� representation of the de
k. Then the

player 
an mix the 
ards up, so that the shu�ed de
k be
omes

ax0 , a
x
π(1), a

x
π(2), . . . , a

x
π(M),

where π is a permutation. Conversely, given a properly shu�ed de
k

〈bi〉0≤i≤M = b0, b1, b2, . . . , bM ,

we 
an re
over x = loga0
b0 and π by 
omparing axi and bi (with unbounded 
ompu-

tation power). That is, there is a unique fa
e up de
k 
orresponding to a properly

shu�ed de
k. The player 
an use Proto
ol 4, whi
h is a zero-knowledge proof, to


onvin
e other players that the result of his shu�e is proper.

Following is the detail des
ription of the Shu�e proto
ol.

Proto
ol 3. Shu�e

(1) Let B0 = 〈b0,i〉, where b0,i = ai.
(2) For j = 1 to N , Player j does the following:

(a) randomly 
hoose a se
ret integer 0 < xj < n;
(b) randomly 
hoose a permutation πj of (0, 1, 2, . . . ,M), su
h that πj (0) =

0;
(
) 
ompute Bj = 〈bj,i〉, where bj,i =

(

bj−1,π(i)

)xj
;

(d) broad
ast Bj to other players;

(e) exe
ute Proto
ol 4 with other players to prove his shu�e.

(3) B = BN = 〈bN,i〉1≤i≤M
is the shu�ed de
k.

Player j use the following proto
ol to prove his shu�e to other players at step

2(e) of Proto
ol 3.

Proto
ol 4. Shu�e Veri�
ation

(1) Player j randomly 
hooses integers 0 < y1, y2, . . . , yK < n.
(2) Player j randomly 
hooses permutations π′

1, π
′
2, . . . , π

′
K of (0, 1, 2, 3, . . . ,M).

(3) Player j 
omputes Ck = 〈ck,i〉0≤i≤M
, where ck,i = byk

j,π′

k
(i) for k = 1, 2, . . . ,K.

(4) For ea
h k = 1, 2, . . . ,K
(a) Player j broad
asts Ck to other players.

(b) Other players 
ooperatively generate a random bit ek via the multiparty

proto
ol (see below)

(
) Send ek to Player j.
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(d) If ek = 0, Player j broad
asts yk, π
′
k and every player 
ompute dk,i =

(

bj,π′

k
(i)

)yk

for every i.

(e) If ek = 1, Player j broad
asts xkyk, π
′
kπj and every player 
ompute

dk,i =
(

bj−1,π′

k
πj(i)

)xkyk

for every i.

(f) If dk,i 6= ck,i for any i, then Player j does not pass the veri�
ation.

(5) Player j passes the shu�e veri�
ation.

Let us dis
uss the multiparty proto
ol whi
h is used to generates ek at step 4(b).

Players 
an, for example, use the following proto
ol:

Proto
ol 5. Generate a random bit

(1) Every Player j 
ommits a random bit bj.
(2) Every Player j reveals the random bit bj
(3) The output is b =

∑

bj mod 2.

So if at least one player is honest, then Pr (A (X) = b) < 1
2 + ǫ for any e�
ient

probabilisti
 algorithm A and any information X that one 
an get before the ex-

e
ution of Proto
ol 5. Therefore, if Player j does not shu�e properly, then the

probability of players a

epting Player j's shu�e is at most 2−K + ǫ.

2.4. Card Drawing and Opening. Fix an arbitrary e�
ient auxiliary input zero-

knowledge argument of equality of dis
rete logarithms (see [12, 3℄ for example).

Player j0 
an use the following proto
ol to draw a 
ard from the shu�ed de
k B.

Proto
ol 6. Card Drawing

(1) Player j0 pi
ks a c0 ∈ B.
(2) For j = 1 to N , one, Player j does the followings:

(a) if j 6= j0, then 
ompute cj = c
x
−1

j

j−1;

(b) if j = j0, then 
ompute cj = cj−1;

(
) broad
ast cj ;
(d) if j 6= j0, use the zero-knowledge argument to 
onvin
e other players

that logcj cj−1 = logbj−1,0
bj,0.

(3) Player j0 
omputes c = c
x
−1

j0

N and �nds the i for whi
h ai = c.
(4) Card i is the 
ard Player j0 drew.

After Player j0 has drew a Card i, he 
an reveal the 
ard to other players by the

following proto
ol.

Proto
ol 7. Card Opening

Player j0 
laims that he has Card i and use the zero-knowledge argument to show
that logai

cN = logbj0−1,0
bj0 .

3. Se
urity Analysis

3.1. Overview. We shall 
ompare our proto
ol to an ideal 
ard game, or ideal

game in short. In an ideal game, the shu�e is done by a trusted third party and no

player 
an tra
k the shu�e. No player 
an mark, steal, dupli
ate, or forge 
ards.

No player 
an peek any fa
e down 
ard other than his own 
ards. However, players


an 
ommuni
ate to ea
h other via reliable and safe private 
hannels and open


hannel. Moreover, every player is allowed to surrender by de
laring himself as
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heater any time in the game and loses the game immediatly. This is be
ause that

the adversary is allowed to 
heat and being 
aught on purpose.

Players, in
luding mali
ious players, are modeled as e�
ient auxiliary input Tur-

ing ma
hines. The goal of a mental poker proto
ol is to allow players to play a 
ard

game over the network resembling an ideal game. We use the terminology �hand

history� (or �game history�) to denote the trans
ript of the idea game that the

mental game tries to mimi
. The hand history 
an be 
onsidered as the �pure 
ard

game� part of the trans
ript of a mental game. If a player surrenders (by de
laring

himself as 
heater), then it should be re
oreded as �
heating� in hand history.

To prove the se
urity of our proto
ol, we show that the hand histories of men-

tal games are indistiguishable from those of idea games. We have the following

de�nition.

De�nition 1. Let Z be a subset of players. Assume other players are honest. A

mental poker proto
ol is said to be se
ure against Z if for any polynomial time

strategy S of the mental game for Z, we 
an e�
iently derive an expe
ted poly-

nomial time strategy S′
of the ideal game for Z, so that the hand histories are

indistinguishable.

A mental poker prot
ol is se
ure if it is se
ure against any proper subset of

players.

Note that S′
is expe
ted polynomial time, not a polynomial time strategy like

S. This is a situation not unlike that of the de�nition of zero-knowledge. Sin
e

the de�nition of zero-knowledge is generally a

epted, this may not be a big issue.

However, one may still wish to have the same notion of e�
ien
y for both S and

S′
. It is possible to allow both S and S′

being in a wider 
lass of e�
ient ma
hine

(see [19, 22℄).

We prove in Theorem 2 that our proto
ol is se
ure. Therefore, no player 
an

in
rease his 
han
e of winning a poker (or bridge, bla
kja
k) game in our proto
ol

by 
heating. No player 
an lose a mental game more than he 
an in an ideal game.

The information that a player learns in a mental game does not help his future

games more than what he 
an learn in an ideal game.

Sin
e players 
an private 
ommuni
ation 
hannels, there is no way to prevent


oalitions entirely. What a mental poker proto
ol 
an do is to �minimize the e�e
t

of 
oalitions�, as stated in Crépeau's requirements ([16℄). That is, having 
oalitions

should get no more advantage in a mental game than in an ideal game.

To simplify the proof of Theorem 2, we 
onsider the worst s
enario for the honest

player. We 
an assume that there are 3 players in the 
ard game and Player 2 is the
only honest player, Bob. Player 1 and Player 3 are both played by the adversary,

Ali
e. It is easy to 
he
k that it is enough to prove the se
urity for this setting.

In order to simplify our proof, we introdu
e a sequen
e of games in Se
tion 3.2.

This a 
ommon te
hnique to present an otherwise 
ompli
ate se
urity proof (see

[26℄ for more information). Fix an event A of the 
ard game. We de�ne a series of

games played by Ali
e and Bob, where the �rst game, Game 0, is the mental game

and last game, Game 8, is the ideal game. For every k, Ali
e wins Game k if A
o

urs and she is not 
aught on 
heating.

Fix a strategy S0 of Game 0 for Ali
e. We show in Theorem 2 that there is a


orresponden
e strategy Sk for Game k, su
h that Ali
e does no worse in Game k
then in Game k − 1.
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3.2. Games. Let us �x a 
ard game of 3 players. Sin
e Bob is honest, he has a


ard game strategy that depends only on hand history and other information he

supposed to know in the ideal game, like his hole 
ards. He use the same 
ard game

strategy to play all following games.

3.2.1. Game 0. Ali
e and Bob play the 
ard game using our mental poker proto
ol.

Bob plays the 
ard game as Player 2. Player 1 and Player 3 are played by Ali
e.

Bob follows the proto
ol properly but Ali
e may 
heat. Let A0 be the event that

Ali
e is 
aught on 
heating. When A0 o

urs, Game 0 is terminated.

3.2.2. Game 1. Game 1 is similar to Game 0, but after step 2(e) of Shu�e (Proto
ol

3), Bob attempts to extra
t x′
1 and x′

3 from Ali
e, if she passes Shu�e Veri�
ation

(Proto
ol 4). where x′
j = logbj−1,0

bj,0.

Suppose Ali
e passes the Shu�e Veri�
ation. Let 〈ek〉1≤k≤K be the bits gener-

ated at step 4(b) of Shu�e Veri�
ation. Bob uses Ali
e as a bla
kbox to extra
t

x′
j :

Proto
ol 8. Extra
t xj

For ea
h k = 1, 2, . . . ,K,

(1) Rewinds Ali
e ba
k to step 4(b) for k of Shu�e Veri�
ation.

(2) Run step 4(b)-4(f) of Shu�e Veri�
ation and let e′k be the random bit gen-

erated at step 4(b).

(3) If Ali
e does not passes the veri�
ation at step 4(f) of Shu�e Veri�
ation,

got to step 1.

If some e′k is di�erent from the ek, then Bob knows both yk and xjyk and he 
an

easily 
al
ulate x′
j = xjyk/yk. Note that if Bob 
an extra
t x′

j , then Bj is properly

shu�ed by 4(d)(e) of Proto
ol 4.

Let A1 be the event that Ali
e passes Shu�e Veri�
ation but Bob 
an not extra
t

both x′
1, x

′
3. Game 1 is terminated when A1 o

urs.

3.2.3. Game 2. Similar to Game 1, but Bob uses the knowledge of x1 = x′
1 and

x3 = x′
3 to dete
t 
heating. That is, in addition to the zero-knowledge argument at

step 2(d) in Card Drawing (Proto
ol 6) and Card Opening (Proto
ol 7), Bob also


he
ks whether logcj cj−1 = xj dire
tly for j = 1, 3 if j 6= j0.
Let A2 be the event that Ali
e is 
aught on 
heating by the additional 
heating

dete
tion. Game 2 is terminated when A2 o

urs.

3.2.4. Game 3. Same as Game 2, ex
ept that Bob uses a di�erent way to de
rypt


ards at step 2(a) and 3 of Card Drawing (Proto
ol 6). Suppose c0 = bN,π3π2π1(i).

Bob �rst use the knowledge of x1, x3 to re
over π1, π3 e�
iently.

If j0 6= 2, instead of 
omputing c2 = c
x
−1

2

1 , Bob 
ompute c2 as

{

ax1x3

i if j0 = 1

ax3

i if j0 = 3

at step 2(a) of Proto
ol 6.

If j0 = 2, instead of 
omputing c = c
x
−1

2

3 , Bob 
ompute c = ai at step 3 of

Proto
ol 6.

Note that the value of c2 and c remain the same, Bob merely uses a di�erent

way to 
ompute them.
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3.2.5. Game 4. Same as Game 3, ex
ept that

(1) At step 2(d) of Card Drawing (Proto
ol 6), Bob does not exe
ute the zero-

knowledge argument to prove logc2 c1 = logb1,0 b2,0. Instead, Bob runs the

simulator for the zero-knowledge argument and generates a trans
ript that

is indistinguishable to the real trans
ript.

(2) Bob does not use Shu�e Veri�
ation(Proto
ol 4) to prove his shu�e at

2(e) of Shu�e (Proto
ol 3). Instead, Bob uses the following simulator to

generate a trans
ript:

Proto
ol 9. Simulator for Shu�e Veri�
ation

For ea
h k = 1, 2, . . . ,K
(a) Choose a random bit e′, a random 0 < y < n and a random permuta-

tion π′

(b) If e′ = 0, 
ompute 〈ci〉0≤i≤M , where ci = by
j,π′(i).

(
) If e′ = 1, 
ompute 〈ci〉0≤i≤M , where ci = by
j−1,π′(i).

(d) Use Ali
e as a bla
kbox and run step 4(b) of Shu�e Veri�
ation to

generate a bit e by treating 〈ci〉0≤i≤M as Ck.

(i) If failed to generate e, generate a random bit f .
(ii) Otherwise, let f = e.

(e) If f 6= e′, go to step (a).

(f) Write 〈ci〉0≤i≤M , the trans
ript generated in step 2(d), e, y, π′
into

the trans
ript.

3.2.6. Game 5. Same as Game 4 ex
ept that Bob uses a di�erent way to generate

B2 = 〈b2,i〉0≤i≤M
in Shu�e (Step 2(a)-(
) of Proto
ol 3).

Bob does not do Step 2(a)-(
) of Proto
ol 3. Instead, re
all that 〈ai〉0≤i≤M is

the fa
e up de
k generated in De
k Preparation (Proto
ol 1). Bob generates a

random x and let fi = axi . He uses the knowledge of x1 to re
over π1 and 
omputes

b2,i = fπ2◦π1(i), where π2 is a random permutation that π2 (0) = 0.

3.2.7. Game 6. Same as Game 5, ex
ept that Bob generates uniformly random fi
and does not generate x.

3.2.8. Game 7. Same as Game 6, ex
ept that Bob uses a di�erent way to en
rypt


ards. Instead of 
omputing b2,i = fπ2(i), Bob 
omputes b2,i = fi. Bob still

generates π2 privately, whi
h is used for 
ard drawing (see the des
ription of Game

3).

Put all modi�
ation together, Ali
e and Bob play Game 7 as following:

De
k Preparation: Proto
ol 1.

Shu�e:

Proto
ol 10. Game 7 Shu�e

(1) Let B0 = 〈b0,i〉0≤i≤M
, where b0,i = ai.

(2) Run step 2 of Shu�e (Proto
ol 3) to generate B1.

(3) Rewind the game to extra
t x1 from Ali
e (Proto
ol 8).

(4) Generate a random B2 = 〈b2,i〉0≤i≤M
.

(5) Simulate the Shu�e Veri�
ation and generate an indistinguishable tran-

s
ript (Proto
ol 9).

(6) Run step 2 of Shu�e (Proto
ol 3) to generate B3 from B2.

(7) Rewind the game to extra
t x3 from Ali
 (Proto
ol 8).
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(8) Let B = 〈bN,i〉0≤i≤M
be the shu�ed de
k.

Moreover, Bob also privately generates a permutation π2 su
h that π2 (0) = 0.

After the shu�e, Bob 
an re
over π1, π3 by x1 and x3. Let π = π3π2π1. When

Ali
e and Bob run steps from the original proto
ols, Ali
e runs the steps the same

way as she would in Game 0.

Card Drawing:

Proto
ol 11. When Player j0 draws a fa
e down 
ard c0 = bi′ from a shu�ed de
k

B.

(1) Bob 
omputes i = π−1 (i′)
(2) If j0 6= 2 (when Ali
e draws the 
ard):

(a) Run step 2(a)-(d) of Card Drawing (Proto
ol 6) to generate c1.
(b) Bob broad
asts

c2 =

{

ax1x3

i if j0 = 1

ax3

i if j0 = 3

and uses the simulator to generate a fake trans
ript of zero-knowledge

argument.

(
) Run step 2(a)-(d) of Card Drawing (Proto
ol 6) to generate c3.
(d) Ali
e 
an run step 3, 4 of Card Drawing (Proto
ol 6) to �nd out i.

(3) If j0 = 2 (when Bob draws the 
ard):

(a) Run step 2 of Card Drawing (Proto
ol 6).

(b) Bob knows that the 
ard he drew is Card i.

Card Opening:

Ali
e uses Card Opening (Proto
ol 7). Bob opens the 
ard by showing i and
then use the simulator to generate a fake trans
ript of zero-knowledge argument.

3.2.9. Game 8. Ali
e and Bob play the 
ard game using the following proto
ol.

Shu�e: Bob randomly 
hoose a π.
Drawing: Player j0 pi
ks a number i0 ≤ M . Bob sends π−1 (i0) to Player j0.
Opening: When a player wish to open a fa
e down 
ard i0, Bob announ
es

π−1 (i0).
This is the idea game where Bob a
ts as a trusted party. Bob uses the same 
ard

game strategy of Game 0 to play Game 8. Ali
e uses the partial information of π
that Bob sent her and the real hand history of Game 8 to simulate a 
orrespondent

Game 7. Then she 
opies her next move in the simulation to play Game 8. If

A2 ∪A1 ∪ A0 o

urs in the simulation, Ali
e surrenders.

3.3. Se
urity Proof.

Theorem 2. Assume K is bounded by a polynomial of n and 2−K
is negligible,

where K = K (n) is the parameter in Shu�e Veri�
ation (Proto
ol 4). Assume the

running time T of the mental game is bounded by a polynomial of n and all players

are modeled as auxiliary input polynomial time Turing ma
hine. If there is at least

one honest player, then the mental game is se
ure.

Proof. As dis
ussed in Se
tion 3.1, we �x a 
ard game of 3 players. Ali
e plays as

Player 1 and Player 3. Bob plays as Player 2 honestly. Both Ali
e and Bob are

modeled as auxiliary input polynomial time Turing ma
hines.
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Fix an arbitrary polynomial time ma
hine T . Let Pk be the probability that the

output of T (X) is 1, where X is a random hand history of Game k. We shall show

that |Pk − Pk+1| < ǫ for k = 0, . . . , 7, where ǫ is a negligible fun
tion.

(|P0 − P1| < ǫ)
Game 1 and Game 0 are otherwise the same ex
ept A1 o

urs. Thus, |P0 − P1| ≤

Pr (A1).
Re
all that A1 is the event that Ali
e passes the Shu�e Veri�
ation but Bob 
an

not extra
t both x′
1, x

′
3.

Let Gt be the event that a Shu�e Veri�
ation starts at time t (in Game 0) and

Ali
e, as a prover, passes the Shu�e Veri�
ation.

Also let Et be the event that Gt o

urs and Bob 
an not extra
t x′
1 or x

′
3 for the

Shu�e Veri�
ation starts at time t.
Sin
e the mental game has a polynomial time bound, we only need to show

that supt Pr (Et) is negligible. The following lemma implies that supt Pr (Et) is

negligible

Lemma. supt Pr (Et) < 2−K + ǫ for all t, for some negligible ǫ.

Proof. Fix an arbitrary m and a Shu�e Veri�
ation starts at time t , in whi
h

Player j (who is played by Ali
e) is a prover. Suppose Ali
e just broad
asts the Ck

at step 4(a) of Shu�e Veri�
ation. Let p be the probability that ek = 0 and Player

j passes step 4(f) of Shu�e Veri�
ation. Let q be the probability that ek = 0 and

Ali
e passes step 4(f) of Shu�e Veri�
ation. So, the probability that Ali
es passes

the shu�e veri�
ation and e′k = ek is

p2+q2

p+q
(e′k is de�ned in of Proto
ol 8). Sin
e

0 ≤ p, q < 1
2+ǫ, p2+q2

p+q
< 1

2+ǫ (see Proto
ol 5). Et o

urs i� Player j passses 4(f) for

all K rounds and e′k = ek for all 1 ≤ k ≤ K. Thus, Pr (Et) <
(

1
2 + ǫ

)K
< 2−K + ǫ′

for some negligible ǫ′. �

(|P2 − P1| = ǫ)
Re
all that A2 is the event that Ali
e fools the veri�er in some of the zero-

knowledge arguments. Game 2 and Game 1 are the same ex
ept A2 o

urs, so

|P2 − P1| ≤ Pr (A2). By the soudness of the zero-knowledge argument, Pr (A2) is
negligible.

(P2 = P3)

Bob uses a di�erent way to de
rypt 
ards that does not a�e
t the result. There-

fore, the trans
ripts of Game 2 and Game 3 are the same.

(|P3 − P4| = ǫ)
Observe that Proto
ol 9 is a simulator for Shu�e Veri�
ation (Proto
ol 4) .

This is be
ause the probability distributions of 〈ci〉0≤i≤M and e in simulation are

identi
al to the genuine ones and independent to e′. Thus, the probability of f = e′

at step (e) is

1
2 , independent to 〈ci〉0≤i≤M , e, and f . Thus, the simulated trans
ript

has identi
al distribution as the genuine one.

So, the only di�eren
e between Game 3 and Game 4 is that zero-knowledge

arguments in Game 3 are repla
ed by simulations in Game 4. Sin
e simulated

tras
ripts are indistinguishable from the genuine trans
ripts, |P3 − P4| is negligible.
(P4 = P5)

Bob uses a di�erent way to generate B2 that does not a�e
t the result. Therefore,

P4 = P5.

(|P5 − P6| = ǫ)
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DDH assumption implies that the distribution of 〈fi〉0≤i≤M in Game 5 and Game

6 are indistinguishable. Sin
e the game is played e�
iently, |P5 − P6| = ǫ.
(P6 = P7)

Sin
e (fi)i≤M is random, this is only a 
on
eptional 
hange to emphasize that π
is information theoreti
ally se
ure. Clearly, P6 = P7.

(|P7 − P8| < ǫ)
The �rst di�eren
e between Game 7 and Game 8 is that when A0 ∪ A1 ∪ A2

o

urs in Game 7, Ali
e surrenders Game 8. The probability that A1 ∪ A2 o

urs

are negligible. Both A0 and surrendering are the same as �being 
aught on 
heating�

in hand history.

The se
ond di�eren
e between Game 7 and Game 8 is that 〈ai〉i≤M in Game 7 is

generated by De
k Preparation (Proto
ol 1) and may not be genuine random. Sin
e,

〈ai〉i≤M is indistinguishable to genuine random distribution from Ali
e's point of

view, this di�eren
e is negligible. �

Sometimes, we may wish to study the utility fun
tion of 
heaters.

Corollary 3. Let X be a bounded random variable that 
an be 
omputed e�
iently

from the hand history. Assume E [X |A0] = 0 and X ≥ 0. Then we have E0 [X ] ≤
E8 [X ] + ǫ, where Ek [X ] is the expe
tation of X for Game k.

Proof. Let m be an arbitrary integer and A be the event that

i
nm < X ≤ i+1

nm ,

where i is 
onsidered as an auxiliary input. By Theorem 2, P0 < P8 + ǫ. Sin
e we
may assume

i = argmax
j

∣

∣

∣

∣

Pr

(

j

nm
< X ≤

j + 1

nm

)

− Pr

(

j

nm
< X ≤

j + 1

nm

)∣

∣

∣

∣

,

we have

E0 [X ] < E8 [X ] + nmε+ n−m < E8 [X ] +
1

2
n−m

essentially. Therefore, E0 [X ] ≤ E8 [X ] + ǫ. �

4. Effi
ien
y Analysis

4.1. Computational 
ost. In this se
tion, we 
ompare the 
omputational 
ost

(time) of our proto
ol to similar proto
ols, namely, Castellà-Ro
a ([7℄), and Barnett-

Smart ([3℄).

All these proto
ols are dis
rete logarithm based. The most time 
onsuming

operations in these proto
ols are exponentiation and zero-knowledge argument of

equality of dis
rete logarithms. In order to 
ompare with the result of [7℄, the


omputational 
ost of multipli
ation is also 
onsidered. The 
omputational 
ost

of other operations are assumed to be mu
h 
heaper and 
an be ignored. Denote

by z, e, m the 
omputational 
ost of a zero-knowledge proof, an exponentiation, a

multipli
ation respe
tively.

Assume the game played by N players with a de
k of M 
ards. The 
ost of the

Shu�e is 
ompared in Se
tion 4.2, and the 
ost of Card Opening and Drawing is


ompared in Se
tion 4.2.

To give some ideas of empiri
al exe
ution time and how pra
ti
al these proto
ols

might be, we make some estimations of exe
ution time in 4.4.
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4.2. Shu�e. Shu�e is usually the most time 
onsuming part of a mental poker

proto
ol.

Re
all the se
urity parameter K in Shu�e Veri�
ation (Proto
ol 4). We have

the following table (the 
al
ulation of the 
omputational 
ost of Castellà-Ro
a and

Barnett-Smart 
an be found in [7℄) .

Table 1. Computational 
ost for Shu�e

Total 
ost Cost for ea
h player

Proto
ol 3

(

1 + 1
M

)

(KN + 1)MNe+ 1
2KNm

(

1 + 1
M

)

(KN + 1)Me+ 1
2Km

Castellà-Ro
a 2 (KN + 1)MNe+ 1
2KMNm 2 (KN + 1)Me+ 1

2MKm

Barnett-Smart 2 (KN + 1)MN(e+m) +Mm 2 (KN + 1)Me+ 2
(

N + 2N+1
2KN

)

MKm

Our shu�e is roughly twi
e as fast as others. If the 
omputational 
ost m of

multipli
ation is ignored, then Castellà-Ro
a and Barnett-Smart have the same


ost.

4.3. Card Opening and Drawing. Card Opening and Drawing are mu
h 
heaper


ompare to Shu�e. The following table 
ompares the 
omputational 
ost of Card

Opening and Card Drawing.

Table 2. Total 
omputational 
ost for drawing and opening

Card Opening Card Drawing

Ours z (N − 1) z +Ne

Castellà-Ro
a z + (N − 1) e (N − 1) z +
(

N + M
2

)

e
Barnett-Smart z +N (N − 1)m (N − 1) z +Ne+Nm

Our proto
ol is faster than the rest, but only slightly. If the 
omputation 
ost m
of multipli
ation is ignored, then the 
omputational 
ost of ours and Barnett-Smart

are the same.

4.4. Exe
ution time. To give some sense of empiri
al exe
ution time, let us as-

sume M = 52 and N = 9, whi
h is typi
al for a full table poker game.

On an AMD X2 3800+ 2Ghz, whi
h is fairly medio
rity in today's PC hardware

standard, e and m are about 4.4×10−4
and 1.3×10−6

se
onds for 512 bits integers
(when using both 
ores). We have the following estimation.

Table 3. Computational 
ost (se
onds) for ea
h player (512 bits)

K = 10 K = 20 K = 100

Proto
ol 3 2.12 4.22 21.01
Castellà-Ro
a 4.16 8.28 41.23
Barnett-Smart 4.18 8.31 41.35

On the same ma
hine, e and m is about 3× 10−3
and 3× 10−6

se
onds for 1024
bits integers. We have the following estimation.
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Table 4. Computational 
ost (se
onds) for ea
h player (1024 bits)

K = 10 K = 20 K = 100

Proto
ol 3 14.47 28.78 143.26
Castellà-Ro
a 28.39 56.47 281.12
Barnett-Smart 28.42 56.53 281.39

The di�eren
e between Castellà-Ro
a and Barnett-Smart are less than 1% and

ours is roughly twi
e as fast.

Considering it is reasonable to expe
t a human player taking 10 to 15 se
onds

to shu�e and 
ut a de
k physi
ally, these proto
ols seems to be nearly pra
ti
al

when using 512 bits primes and lower se
urity parameter K. Sin
e our proto
ol is

the fastest, it is more 
lose to be pra
ti
al than others.

When using 1024 bits primes and K = 100, all proto
ols are too slow.

To estimate the exe
ution time of Card opening and Card Drawing, assume

using Chaum-Pedersen's proto
ol (see [10℄) as the zero-knowledge argument. Thus,

z = (2N − 1) (2e+m). We have the following table.

Table 5. Total 
omputational 
ost when using Chaum-Pedersen

Opening + Drawing

Our proto
ol

(

4N2 −N
)

e+
(

2N2 −N
)

m

Castellà-Ro
a

(

4N2 − 1 + M
2

)

e+
(

2N2 −N
)

m

Barnett-Smart

(

4N2 −N
)

e+
(

3N2 −N
)

m

Note that theoreti
ally, Chaum-Pedersen's proto
ol is only known to be honest

veri�er zero-knowledge. However, it is widely used and it serves well for a rough

estimation of empiri
al exe
ution time. We have the following table.

Table 6. Total 
omputational 
ost (se
onds) when using Chaum-Pedersen

Opening + Drawing (512 bits) Opening + Drawing (1024 bits)

Our proto
ol 0.139 0.945
Castellà-Ro
a 0.154 1.047
Barnett-Smart 0.139 0.946

The 
omputational 
ost of ours and Barnett-Smart are roughly the same, while

Castellà-Ro
a is about 10% slower. The speed of Card Drawing and Opening of

these proto
ols seems to be a

eptable for pra
ti
al use.

5. Con
lusion

Our proto
ol is proved to be se
ure in Se
tion 3 under DDH assumption. Theo-

rem 2roughly states that 
heating will be dete
ted and other than that, the mental

game is indistinguishable from the ideal game.

However, there are limitations of the se
urity proof. For example, we assume

the 
heater loses if he is 
aught on 
heating for every event A. To make this

assumption pra
ti
al, the penalty and 
ompensation of 
heating should be high
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enough. Moreover, the exe
ution time of Game 8 is longer than Game 0. We

impli
itly assume the di�eren
e is insigni�
ant.

Our proto
ol is fast. Considering the advan
e of 
omputer hardware, e�
ient

proto
ols like Castellà-Ro
a and Barnett-Smart may be
ome fast enough to be pra
-

ti
al in a few years. Our proto
ol is even faster, requires only half of the 
omputing

power to a
hieve same performan
e. We didn't dis
uss the 
ommuni
ation 
osts of

our proto
ol. However, for it 
an be easily verify that the 
ommuni
ation 
ost of

our proto
ol is also 
heaper, roughly half as mu
h 
ompares to other proto
ols.

We hope our 
ontribution 
an shorten the gap between theoreti
al study and the

pra
ti
al appli
ation of mental poker.
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