
Efficient Oblivious Polynomial Evaluation with

Simulation-Based Security

Carmit Hazay∗ Yehuda Lindell†

September 18, 2009

Abstract

The study of secure multiparty computation has yielded powerful feasibility results showing
that any efficient functionality can be securely computed in the presence of malicious adver-
saries. Despite this, there are few problems of specific interest for which we have highly efficient
protocols that are secure in the presence of malicious adversaries under full simulation based
definitions (following the ideal/real model paradigm). Due to the difficulties of constructing
such protocols, many researchers have resorted to weaker definitions of security and weaker
adversary models. In this paper, we construct highly efficient protocols for the well-studied
problem of oblivious polynomial evaluation.

Our protocol is secure under standard cryptographic assumptions for the settings of malicious
adversaries, and readily transform to protocols that are secure under universal composability
and in the presence of covert adversaries. Our protocol is constant round and requires O(d · s)
exponentiations, where d is the degree of the polynomial and s is a statistical security parameter
(that should equal about 160 in practice).

Keywords: secure two-party computation, efficient protocols, full simulation-based security, obliv-
ious polynomial evaluation

∗Dept. of Computer Science, Bar-Ilan University, Israel. Email: {harelc,lindell}@cs.biu.ac.il.

1

1 Introduction

In the setting of secure two-party computation, two parties with private inputs wish to jointly
compute some function of their inputs while preserving certain security properties like privacy,
correctness and more. The standard way of defining security in this setting is through the so-called
ideal/real model paradigm [2, 19, 28, 7]. Here, an ideal model is first defined where a trusted party
is used to compute the function for the parties in “perfect security”. Then, a real protocol is said
to be secure if no adversary can do more harm in a real protocol execution than in an ideal one
(where by definition no harm can be done). This way of defining security is very appealing and
has many important advantages; for example, protocols proven secure in this way remain secure
under sequential modular composition [7]. We call this definition simulation-based security because
protocols are proven secure by simulating a real execution while running in the ideal model.

Despite the stringent requirements of simulation-based security definitions, it has been shown
that any probabilistic polynomial-time two-party functionality can be securely computed in the
presence of malicious adversaries who can arbitrarily deviate from the protocol specification [38,
31, 16]. The protocols yielded by these feasibility theorems are typically not efficient enough to be
used in practice (in part because they are general and so do not utilize any specific properties of the
protocol problem at hand). Unfortunately, the next step which is to design efficient protocols for
problems of specific interest has been slow in coming. Indeed, the current state of affairs (more than
two decades after the feasibility results of [38, 31]) is that we know of very few problems for which
there exist highly efficient protocols that are secure in the presence of malicious adversaries under
the ideal/real model definition of security; see [12] for one notable example. Rather, seemingly due
to the difficulty of achieving security in this model, researchers have resorted to considering weaker
adversaries (there has been an abundance of protocols constructed for the semi-honest model)
and weaker definitions of security (like guaranteeing privacy only, and not simulation under the
ideal/real paradigm). It is indicative to note that until very recently, we did not even have protocols
that were secure in the presence of malicious adversaries (with simulation-based security) for the
classic – and heavily studied – problem of oblivious transfer. This situation has been rectified with
the very recent results of [26, 5] for standard oblivious transfer, and [22, 20] for adaptive oblivious
transfer.1

Our results. In the face of the move to weaker adversaries and weaker definitions of security, we
return to the setting of malicious adversaries and security according to the (full) ideal/real model
paradigm. We study specific problems of interest, with the aim of achieving higher efficiency. We
achieve efficiency that is a significant improvement on the current state of the art for the problems
we study. We believe that our results demonstrate that it is too early to raise hands in despair of
this stringent model. Of course, in some cases, compromises will be necessary. However, it is our
position that more effort first needs to be made to construct secure protocols under these stringent
security definitions. We also believe that the road to success is paved with gradual improvements.
One cannot expect protocols with optimal efficiency without first achieving intermediate results
demonstrating the existence of protocols with better efficiency than those known before.

We construct secure protocols for the following problems:

• Oblivious polynomial evaluation: This problem was initially introduced by [30] and studied
also by [9, 39]. It considers a setting where one party holds a polynomial p and the other

1The protocols of [5] are actually designed for the setting of universal composability [8] and thus require a common
reference string. Nevertheless, their protocols remain highly efficient even if a coin-tossing protocol is used to first
generate the common reference string, as is possible when considering the standard stand-alone model.

2

holds an element t. The party holding p should learn nothing about t, while the party
holding t should learn p(t) and nothing else. Oblivious polynomial evaluation has proved
to be a useful building block, and can be used to solve numerous cryptographic problems;
e.g., secure equality of strings, set intersection, approximation of a Taylor series, RSA key
generation, oblivious keyword search and more [30, 27, 15, 29]. We present a constant round
protocol that requires O(d · s) exponentiations, where d is the degree of the polynomial and
s is a statistical security parameter that should equal about 160 in practice; we present an
exact efficiency analysis of our protocols, including the constants inside any “O” notation.
To the best of our knowledge, this is the first protocol for computing this functionality that
is (fully) secure in the presence of malicious adversaries under standard assumptions and is
not derived via a general construction. We compare the complexity of our protocol to that
achieved by the general constructions of [37, 24] and show that it is significantly more efficient
for d that is not too large.

• Scalar product: In this problem, one party learns the scalar product of the input vectors
(and nothing else) while the other party learns nothing. Scalar product has been used as
a building block in a number of protocols for privacy-preserving data mining [4]. It was
first considered by Goldreich and Vainish in [18] who described constructions for the semi-
honest setting and for an intermediate setting (which preserves correctness). Shared scalar
product was also studied by [1] who examined this problem in a weaker setting for privacy
only (i.e., each party cannot deduce any useful information about the other party’s input,
yet nothing is guaranteed beyond that). We show that a small modification of our protocol
for oblivious polynomial evaluation yields a secure protocol for scalar product (fully secure
against malicious adversaries).

Our main technical result is a protocol for securely computing the oblivious polynomial evaluation
functionality in the presence of malicious adversaries under simulation-based security definitions,
assuming the hardness of the decisional composite residuosity problem [32]. In addition, we extend
our result to the setting of universal composability [8] and obtain a protocol of comparable effi-
ciency (with security as before in the presence of malicious adversaries). This result uses the UC
commitment functionality (and, in particular, the efficient scheme of [11]), and as such relies on
a common reference string. The advantage of this construction is due to the fact that universal
composability guarantees that the security of the protocol is preserved in arbitrary network settings
where multiple secure and insecure protocols are run concurrently. Finally, we present a signifi-
cantly more efficient variant of our protocol for the setting of covert adversaries with deterrent
of ǫ = 1/2 [13]. Informally speaking, this guarantees that if a party attempts to cheat, it will be
caught with probability at least ǫ = 1/2. Thus, in settings where parties caught cheating can be
“punished” (say by excluding them from future computations), this level of deterrence may suffice.

Related work. In addition to the related work cited above, there has been a long history of
constructing efficient protocols for cryptographic tasks, and countless papers have considered this
problem. In this paper, our focus is specifically on protocols that achieve high efficiency and full
simulation-based security (according to the ideal/real paradigm). As we have mentioned, there has
been little work in this direction (with some exceptions mentioned above). We remark that the
problems of encryption and digital signatures have been greatly studied and many highly-efficient
schemes have been constructed. Furthermore, these can be modeled as two-party protocol problems.
However, our focus is on the more classic two-party setting of secure function evaluation.

3

2 Definitions

2.1 Preliminaries and Tools

We denote the security parameter by n. A function µ(·) is negligible in n (or just negligible) if for
every polynomial p(·) there exists a value N such that for all n > N it holds that µ(n) < 1

p(n) .

Let X = {X(n, a)}n∈IN,a∈{0,1}∗ and Y = {Y (n, a)}n∈IN,a∈{0,1}∗ be distribution ensembles. Then, we

say that X and Y are computationally indistinguishable, denoted X
c
≡ Y , if for every non-uniform

probabilistic polynomial-time distinguisher D there exists a negligible function µ(·) such that for
every a ∈ {0, 1}∗,

|Pr[D(X(n, a)) = 1]− Pr[D(Y (n, a)) = 1]| < µ(n)

We adopt the convention whereby a machine is said to run in polynomial-time if its number of steps
is polynomial in its security parameter alone. We use the shorthand ppt to denote probabilistic
polynomial-time. An important tool that we exploit in our construction is homomorphic encryption
over an additive group as defined below.

Homomorphic encryption. Intuitively, a public-key encryption scheme is homomorphic if given
two ciphertexts c1 = Epk(m1) and c2 = Epk(m2) it is possible to efficiently compute Epk(m1 + m2)
without knowledge of the secret decryption key. Of course this assumes that the plaintext message
space is a group; we actually assume that both the plaintext and ciphertext spaces are groups
(with respective group operations + and ·). A natural way to define this is to require that for all
pairs of keys (pk, sk), all m1,m2 ∈ P and c1, c2 ∈ C with m1 = Dsk(c1) and m2 = Dsk(c2), it
holds that Dsk(c1 · c2) = m1 + m2. However, we actually need a stronger property. Specifically,
we require that the result of computing c1 · c2 when ci is a random encryption of mi, is a random
encryption of m1 + m2 (by a random encryption we mean a ciphertext generated by encrypting the
plaintext with uniformly distributed coins). This property ensures that if one party generated c1

and the other party applied a series of homomorphic operations to c1 in order to generate c, then
the only thing that the first party can learn from c is its underlying plaintext. In particular, it
learns nothing about the steps taken to arrive at c (e.g., it cannot know if the second party added
m3 and then m4 where m2 = m3 + m4 or if it just added m2). We stress that this holds even if
the first party knows the secret key of the encryption scheme. We formalize the above by requiring
that the distribution of {pk, c1, c1 · c2}, where c1 = Epk(m1), c2 = Epk(m2), is identical to the
distribution of {pk,Epk(m1), Epk(m1 + m2)}, where in the latter case the encryptions of m1 and
m1 + m2 are generated independently of each other, using uniformly distributed random coins.
We denote by Epk(m) the random variable generated by encrypting m with public-key pk using
uniformly distributed random coins. We have the following formal definition.

Definition 2.1 A public-key encryption scheme (G,E,D) is homomorphic if for all n and all
(pk, sk) output by G(1n), it is possible to define groups M, C such that:

• The plaintext space is M, and all ciphertexts output by Epk are elements of C,2 and

• For every m1,m2 ∈M it holds that

{pk, c1 = Epk(m1), c1 ·Epk(m2)} ≡ {pk,Epk(m1), Epk(m1 + m2)} (1)

where the group operations are carried out in C and M, respectively.

2The plaintext and ciphertext spaces may depend on pk; we leave this implicit.

4

Note that in the left distribution in Eq. (1) the ciphertext c1 is used to generate an encryption
of m1 + m2 using the homomorphic operation, whereas in the right distribution the encryptions of
m1 and m1 + m2 are independent.

An important observation is that any such scheme supports the multiplication of a ciphertext
by a scalar, that can be achieved by computing multiple additions. An example of an encryption
scheme that meets Definition 2.1 is that of Paillier [32]. In this scheme, the public-key is an RSA
modulus N , and the matching private-key is φ(N). Encryption of a message m ∈ ZN is performed
by choosing r ∈R Z∗

N and computing c = (1+ N)m · rNmod N2. It is not hard to verify that for all
m1,m2 ∈ ZN it holds that Epk(m1) ·Epk(m2) = Epk(m1 + m2), and so here ◦C is multiplication in
Z∗

N2 and +P is addition in ZN . Furthermore, for any c ∈ ZN it holds that (Epk(m))c = Epk(c ·m)
with multiplication in ZN .

2.2 Secure Two-Party Computation – Definitions

In this section we briefly present the standard definition for secure multiparty computation and
refer to [16, Chapter 7] for more details and motivating discussion.

Two-party computation. A two-party protocol problem is cast by specifying a random process
that maps pairs of inputs to pairs of outputs (one for each party). We refer to such a process as a
functionality and denote it f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗, where f = (f1, f2). That is, for
every pair of inputs (x, y), the output-vector is a random variable (f1(x, y), f2(x, y) ranging over
pairs of strings where P1 receives f1(x, y) and P2 receives f2(x, y). We sometimes denote such a
functionality by (x, y) 7→ (f1(x, y), f2(x, y)). Thus, for example, the oblivious transfer functionality
is denoted by ((x0, x1), σ) 7→ (λ, xσ), where (x0, x1) is the first party’s input, σ is the second party’s
input, and λ denotes the empty string (meaning that the first party has no output).

Adversarial behavior. Loosely speaking, the aim of a secure multiparty protocol is to protect
honest parties against dishonest behavior by other parties. In this section, we outline the defini-
tion for malicious adversaries who control some subset of the parties and may instruct them to
arbitrarily deviate from the specified protocol. We also consider static corruptions, meaning that
the set of corrupted parties is fixed at the onset.

Security of protocols (informal). The security of a protocol is analyzed by comparing what an
adversary can do in a real protocol execution to what it can do in an ideal scenario that is secure by
definition. This is formalized by considering an ideal computation involving an incorruptible trusted
third party to whom the parties send their inputs. The trusted party computes the functionality on
the inputs and returns to each party its respective output. Loosely speaking, a protocol is secure if
any adversary interacting in the real protocol (where no trusted third party exists) can do no more
harm than if it was involved in the above-described ideal computation. One technical detail that
arises when considering the setting of no honest majority is that it is impossible to achieve fairness
or guaranteed output delivery. That is, it is possible for the adversary to prevent the honest party
from receiving outputs. Furthermore, it may even be possible for the adversary to receive output
while the honest party does not. We consider malicious adversaries and static corruptions in this
paper.

Execution in the ideal model. In an ideal execution, the parties send their inputs to the
trusted party who computes the output. An honest party just sends the input that it received

5

whereas a corrupted party can replace its input with any other value of the same length. Since
we do not consider fairness, the trusted party first sends the output of the corrupted parties to
the adversary, and the adversary then decides whether the honest parties receive their (correct)
outputs or an abort symbol ⊥. Let f be a two-party functionality where f = (f1, f2), let A be
a non-uniform probabilistic polynomial-time machine, and let i ∈ {1, 2} be the corrupted party
(either P1 is corrupted or P2 is corrupted). Then, the ideal execution of f on inputs (x, y), auxiliary
input z to A and security parameter n, denoted idealf,A(z),i(x, y, n), is defined as the output pair
of the honest party and the adversary A from the above ideal execution.

Execution in the real model. In the real model there is no trusted third party and the parties
interact directly. The adversary A sends all messages in place of the corrupted party, and may
follow an arbitrary polynomial-time strategy. In contrast, the honest parties follow the instructions
of the specified protocol π.

Let f be as above and let π be a two-party protocol for computing f . Furthermore, let A
be a non-uniform probabilistic polynomial-time machine and let i be the corrupted party. Then,
the real execution of π on inputs (x, y), auxiliary input z to A and security parameter n, denoted
realπ,A(z),i(x, y, n), is defined as the output vector of the honest parties and the adversary A from
the real execution of π.

Security as emulation of a real execution in the ideal model. Having defined the ideal and
real models, we can now define security of protocols. Loosely speaking, the definition asserts that a
secure party protocol (in the real model) emulates the ideal model (in which a trusted party exists).
This is formulated by saying that adversaries in the ideal model are able to simulate executions of
the real-model protocol.

Definition 2.2 Let f and π be as above. Protocol π is said to securely compute f with abort in the

presence of malicious adversaries if for every non-uniform probabilistic polynomial-time adversary
A for the real model, there exists a non-uniform probabilistic polynomial-time adversary S for the
ideal model, such that for every i ∈ {1, 2}, every x, y ∈ {0, 1}∗ where |x| = |y|, and every auxiliary
input z ∈ {0, 1}∗:

{

idealf,S(z),i(x, y, n)
}

n∈IN

c
≡
{

realπ,A(z),i(x, y, n)
}

n∈IN

The f-hybrid model. In order to construct some of our protocols, we will use secure two-party
protocols as subprotocols. The standard way of doing this is to work in a “hybrid model” where
parties both interact with each other (as in the real model) and use trusted help (as in the ideal
model). Specifically, when constructing a protocol π that uses a subprotocol for securely computing
some functionality f , we consider the case that the parties run π and use “ideal calls” to a trusted
party for computing f . These ideal calls are just instructions to send an input to the trusted party.
Upon receiving the inputs from the parties, the trusted party computes f and sends all parties their
output. Then, after receiving these outputs back from the trusted party, the protocol π continues.
We stress that honest parties do not send messages in π between the time that they send input to
the trusted party and the time that they receive back output (this is because we consider sequential
composition here). Of course, the trusted party may be used a number of times throughout the
π-execution. However, each time is independent (i.e., the trusted party does not maintain any state
between these calls). We call the regular messages of π that are sent amongst the parties standard

messages and the messages that are sent between parties and the trusted party ideal messages.

6

Let f be a functionality and let π be a two-party protocol that uses ideal calls to a trusted
party computing f . Furthermore, let A be a non-uniform probabilistic polynomial-time machine
and let i be the corrupted party. Then, the f -hybrid execution of π on inputs (x, y), auxiliary input

z to A and security parameter n, denoted hybrid
f
π,A(z),i(x, y, n), is defined as the output vector

of the honest parties and the adversary A from the hybrid execution of π with a trusted party
computing f .

Let f and π be as above, and let ρ be a protocol. Consider the real protocol πρ that is defined as
follows. All standard messages of π are unchanged. When a party Pi is instructed to send an ideal
message αi to the trusted party, it begins a real execution of ρ with input αi instead. When this
execution of ρ concludes with output βi, party Pi continues with π as if βi was the output received
by the trusted party (i.e. as if it were running in the f -hybrid model). Then, the composition
theorem of [7] states that if ρ securely computes f , then the output distribution of a protocol π in
a hybrid execution with f is computationally indistinguishable from the output distribution of the
real protocol πρ. Thus, it suffices to analyze the security of π when using ideal calls to f ; security
of the real protocol πρ is derived via this composition theorem.

3 Oblivious Polynomial Evaluation

In the following section we present three secure protocols for evaluating the oblivious polynomial
evaluation functionality Fpoly, naturally defined by (p(·), t) 7→ (λ, p(t)) (where p(·) is a polynomial
represented by integer coefficients p0, . . . , pd, t is an integer, and λ is the empty string). Our proto-
cols achieve security in the presence of malicious and covert adversaries in the stand-alone setting,
and security in the presence of malicious adversaries in the setting of universal composability.

Our starting point is the protocol of [29] for the semi-honest setting that uses homomorphic
encryption, and their construction for the intermediate setting where one of the parties is malicious
and the other is semi-honest. Loosely speaking, in the basic construction of [29] for the semi-honest
setting, party P2 sends P1 encryptions of {ti}di=0, where d is the degree of p(·) under P2’s own
public-key. Then, party P1 uses homomorphic computations in order to obliviously evaluate p(·)
on t. Specifically, given p0, . . . , pd, P1 can use scalar multiplication to compute encryptions of the
values {pi · t

i}di=0. Then, P1 can use the ability to add ciphertexts in order to obtain an encryption

of the value p(t) =
∑d

i=0 pi · t
i. We adopt the same basic idea in all of our protocols.

3.1 A Subtle Technicality

Before proceeding to our protocol, we note that this basic methodology of using homomorphic
encryption introduces a technical difficulty that must be overcome. Specifically, the protocol of [29],
our protocol (and other protocols that use Paillier’s encryption scheme) actually compute the result
in ZN , where N is an RSA modulus (as Paillier’s scheme is the most suitable additive homomorphic
encryption scheme that can be employed into our protocols). Now, when considering polynomial
evaluation, this means that P2 actually learns p(t) mod N and not p(t) over the integers. As a result,
if N is not part of the parties’ inputs, the output is not well defined! That is, the trusted party
computing the output cannot compute p(t) mod N without being given N . The natural solution
to this problem is therefore to have P2 provide its public-key (i.e., its modulus N) as part of its
input. However, if N is indeed part of the input, then the protocol is not secure in the presence of
adversaries with auxiliary input. This is due to the fact that the auxiliary input may be arbitrary,
and in particular may be the factorization of P2’s modulus. In this case, the adversary will be
able to decrypt the encryptions that P2 sends to {ti}di=0 and so it can learn t. This contradicts the

7

fact that P1 should learn nothing about P2’s input. We remark that security with auxiliary input
is crucial for obtaining sequential composition [7], and thus not allowing auxiliary input yields a
notion of security that is typically too weak to be useful. We stress that this issue arises even
in the semi-honest model and thus also for the protocols of [29]. To the best of our knowledge,
this technical difficulty has so far gone unnoticed in previous protocols that use homomorphic
encryption.3

We propose two ways of solving this problem. Although our solutions are general, we demon-
strate them for the specific case of Fpoly:

1. Solution 1 – have the functionality generate the modulus N : Rather than having one of the
parties choose the modulus N , the trusted party computing the functionality can choose it.
In this case, p(t) mod N is well-defined. See Figure 1 for an example of how such a func-
tionality can be defined. This clearly solves the technical problem, but it creates significant
computational overhead because it forces any secure protocol to include a subprotocol for
mutually generating the modulus N . (The important point here is that in order to simulate a
protocol computing Fpoly as defined in Figure 1, P2 should not be able to choose N by itself.)
Thus, we find this solution not satisfactory.

Functionality Fpoly

Functionality Fpoly proceeds as follows, running parties P1, P2 and an adversary S.

Key Setup: Upon receiving from party P2 a message (Gen, 1n) choose two random odd primes p and
q of length n and record pk = p · q and sk = (p− 1)(q − 1). Then send pk to P1 and (pk, sk) to
P2. Ignore all subsequent messages of the form (Gen, 1n).

Output: Upon receiving a message (output, id, t mod N) from P2 and (output, id, (p0 mod

N, . . . , pd mod N)) from P1, send (output, id, (
∑d

i=0 pi · t
i) modN) to P2 and halt. Otherwise

send ⊥ to P2 and halt.

Figure 1: The intermediate oblivious polynomial evaluation functionality

We remark that adding computational complexity to the protocol is a particularly annoying
solution because the problem that arises seems to be a technical one; we have no problem
having P2 generate the modulus by itself inside the protocol – our only concern is that doing
this makes it impossible for the trusted party to compute the “correct” output because it
does not know N (in the ideal model, the only way that the trusted party can receive N is if
P2 hands it N as part of its input).

2. Solution 2 – define the ideal functionality over the naturals, but compute the real result in
ZN : Typically, a real protocol computes the exact same function as defined for the ideal
model. One exception is the notion of secure approximations introduced in [23], where the
real protocol computes only an approximation of the function (the aim being to achieve higher
efficiency). The same idea can be used here to define the ideal functionality as p(t) over the
naturals N whereas the real protocol computes p(t) mod N where N is chosen by P2. The
important point to notice is that P2 learns no more in the real protocol than in the ideal
model because p(t) mod N can be computed for any N when given p(t) over the integers.
Thus, this does not detract from the security of the protocol.

3The problem can be more easily solved when using multiplicative homomorphic encryption like El Gamal [14],
because in that case the same subgroup can be defined for all keys and given as input, without giving the actual key.
However, this issue needs to be considered even in this case. Needless to say, when theorems and protocols are stated
for “any” homomorphic encryption scheme, which is usually the case, the problem has no immediate solution.

8

We adopt an intermediate solution here, and formalize the functionality as follows. Fpoly allows
a malicious P2 to choose a valid modulus N by itself. Otherwise, the functionality chooses it; see
Figure 2 for a formal definition.

Functionality Fpoly

Functionality Fpoly proceeds as follows, running parties P1, P2 and an adversary S.

Key Setup: Upon receiving from a corrupted party P2 a message (Gen, 1n, N, p, q), check if p and q
are odd primes and that N = p · q and record N . Then send pk to P1. Ignore all subsequent
messages of the form (Gen, 1n, ·, ·, ·).

Upon receiving from an honest party P2 a message (Gen, 1n), choose two random odd primes p
and q of length n and record pk = p · q and sk = (p− 1)(q− 1). Then send pk to P1 and (pk, sk)
to P2. Ignore all subsequent messages of the form (Gen, 1n).

Output: Upon receiving a message (output, id, t mod N) from P2 and (output, id, (p0 mod

N, . . . , pd mod N)) from P1, send (output, id, (
∑d

i=0 pi · t
i) modN) to P2 and halt. Otherwise

send ⊥ to P2 and halt.

Figure 2: The oblivious polynomial evaluation functionality

3.2 Tools

Our protocol uses the following primitives:

1. A perfectly-hiding commitment scheme (com, dec).

2. An additive homomorphic encryption scheme (G,E,D) with the following proofs:

(a) An efficient zero-knowledge proof of knowledge for the relation containing all valid pairs
of keys for (G,E,D), defined byRKEY = {((1n, pk), (sk, r)) | (pk, sk)← G(1n; r)}, where
G(1n; r) denotes the output of G using r for its randomness. We will be using Paillier’s
encryption, and thus the equivalent relation

RRSA = {(N, (α, β)) | N = α · β ∧ α, β are primes} .

(b) An efficient zero-knowledge proof for the language

LPOW =
{

(pk, e1, . . . , ed) | ∃ (r1, . . . , rd, t) : ∀i ei = Epk(t
i; ri)

}

,

where Epk(m; r) denotes the encryption of a message m using random coins r.

(c) An efficient zero-knowledge proof for the language

LDIFF =

{(

pk,
{

e0
i , e

′0
i , e

1
i , e

′1
i

}d

i=0

)

∣

∣

∣

∃1n, r : (pk, sk)← G(1n; r) and

∀i Dsk(e
0
i) + Dsk(e

1
i) = Dsk(e

′0
i) + Dsk(e

′1
i)

}

In addition to the above we require:

(d) The existence of an polynomial-time algorithm that is given pk and some value e and
outputs 1 if and only if e is in the range of Epk(·). An e in the range of Epk(·) is said to
be valid.

9

(e) Given the secret key sk and a ciphertext e, it is possible to extract r and m such that
Epk(m; r) = e. Alternatively, it is possible to efficiently prove that e is an encryption
of m.

We remark that the encryption scheme of Paillier [32] has all of the above properties and so
we use it in our protocol. Regarding the zero-knowledge proofs, in Section 3.3 we present highly
efficient zero-knowledge proofs for LPOW and LDIFF for Paillier’s encryption scheme. In addition,
efficient zero-knowledge proofs of knowledge for RRSA are known (e.g., a protocol can be achieved
by combining the zero-knowledge proofs of [36] and [21], or the protocol of [6] can be used directly).
We denote these protocols by πPOW, πDIFF and πRSA, respectively.

3.3 Zero-Knowledge Proofs

In the following section we present a set of useful round efficient zero-knowledge proofs that are
utilized in our constructions for oblivious polynomial evaluation. Note that the zero-knowledge
proof of knowledge functionality for some relation R, in the context of secure computation, is such
that the prover sends (x,w) to the trusted party. The trusted party then sends (x,R(x,w)) to the
verifier. By using the extended witness-emulation of [25], it is straightforward to show that any
zero-knowledge proof of knowledge securely realizes this functionality. Furthermore, for some of the
following proofs, knowledge extraction is not built-in inside the proof itself, rather it is achieved due
to the knowledge extraction of the secret-key within the key-generation phase of πpoly. Therefore
in this case, extraction can be achieved using decryption.

3.3.1 Zero-Knowledge Proof for a Sequence of Powers

In this section we consider a zero-knowledge proof for the following language:

LPOW =
{

(N, {e1, . . . , ed}) | ∃ ({r1, . . . , rd}, t) s.t. ∀i ei = EN (ti; ri)
}

which is utilized by P2 in step 2 of protocol πpoly. Note that our proof constitutes a proof of
knowledge as well, however we stress that this property is not necessary for the security proof of
πpoly. This is due to the fact that we assume that the simulator for πpoly knows the secret-key of
the corrupted party and thus is able to decrypt by itself the statement. Our proof is modular and
uses a zero-knowledge proof of knowledge for LMULT defined by,

LMULT =

{

(

(pk, (ea, eb, ec))
)
∣

∣

∣
∃(a, ra, b, rb, rc) s.t

ea = Epk(a; ra) ∧ eb = Epk(b; rb)
∧ ec = Epk(ab; rc)

}

.

A constant-round zero-knowledge proof πMULT for LMULT with 15 exponentiations can be found
in [10].4

We are now ready to present our proof:

Protocol 1 (zero-knowledge proof πPOW for LPOW):

• Joint statement: N and {e1, . . . , ed}.

• Auxiliary inputs for the prover: {r1, . . . , rd} and t.

• The protocol:

4The original construction of [10] is presented in the honest verifier setting. Deriving a statistical zero-knowledge
proof can be achieved using the technique of [17].

10

1. For every i ∈ {2, . . . , d}, the parties define the statement ηi = {e1, ei−1, ei} and invoke πMULT on
the common input (N, ηi), such that the auxiliary input of the prover P is (r1, rr−1, ri) and t.5

2. The verifier V accepts if and only if it accepts in all the above executions of πMULT.

Proposition 3.1 Assume that πMULT is a statistical zero-knowledge proof for LMULT, then Protocol
1 is a statistical zero-knowledge proof for LPOW with perfect completeness.

The proof is straightforward given the zero-knowledge proof of πMULT and is therefore omitted.
Intuitively, a simulator for πPOW can be constructed by invoking the simulator of πMULT on ηi for
all i ∈ {2, . . . , d}. Furthermore, the soundness of πPOW relies on the soundness of πMULT. Based on
the analysis of πMULT, our protocol requires 15(d− 1) exponentiations.

3.3.2 Zero-Knowledge Proof of the Same Difference

Finally, we consider a zero-knowledge proof for LDIFF defined by

LDIFF =

{(

pk,
{

e0
i , e

′0
i , e

1
i , e

′1
i

}d

i=0

)

∣

∣

∣

∃1n, r : (pk, sk)← G(1n; r) and

∀i Dsk(e
0
i) + Dsk(e

1
i) = Dsk(e

′0
i) + Dsk(e

′1
i)

}

This proof is utilized in step 5 of πpoly. Intuitively, we wish to check that for all i, the following

differences are equal: d0
i = Dsk(e

0
i) + Dsk(e

1
i) and d1

i = Dsk(e
′0
i) + Dsk(e

′1
i), which is the same

as checking wether d0
i − d1

i = 0. Now, recall that an encryption of zero when applying Paillier’s
encryption scheme equals rN mod N2 for random r ∈ Z∗

N . Therefore, proving that a certain valid
encryption e is an encryption of zero can be reduced to proving that e has an Nth residue modulo
N2, where pk = N . Then, our protocol is modular in the following zero-knowledge proof:

LZERO = {(pk, ea) | e = Epk(0; ra) for some ra} .

A constant-round zero-knowledge proof πZERO for LZERO with 8 exponentiations can be found
in [10].6 We continue with out proof,

Protocol 2 (zero-knowledge proof for LDIFF):

• Joint statement: N and
{

e0
i , e

′0
i , e

1
i , e

′1
i

}d

i=0
.

• Auxiliary inputs for the prover: q1(·), q2(·), p(·) ∈ ZN [x], and
{

r0
i , r′

0
i , r

1
i , r′

1
i

}d

i=0
.

• The protocol:

1. The verifier V chooses d + 1 random strings {ωi}
d
i=0 from ZN and sends them to the prover P .

2. Let

ci =
e0

i · e
1
i

e′0i · e
′1
i

, for all i ∈ {0, . . . , d}

where, due to the homomorphic properties of (G, E, D), we have that Dsk(ci) equals d0
i − d1

i

as above. Then the parties compute c =
∏d

i=0 (ci)
ωi (where Dsk(c) =

∑d

i=0 Dsk(ci) · ωi =
∑d

i=0

(

d0
i − d1

i

)

· ωi).

5Note that these executions of πMULT can be run in parallel where the verifier sends a single challenge c and the
prover proves all the statements relative to c. The soundness of this a proof is still negligible due to the fact that
the number of statements is polynomial. Moreover, the simulator is as the original simulator for LMULT except that
it computes its first message of all statements relative to the same challenge.

6See Footnote 4.

11

3. Finally, the parties engage in a zero-knowledge proof on the joint statement N and c, for which
P proves that (N, c) ∈ LZERO.

4. V accepts if and only if it accepts in the above proof for (N, c).

Proposition 3.2 Assume that πZERO is a statistical zero-knowledge proof for LZERO, then Protocol
2 is a statistical zero-knowledge proof for LDIFF with perfect completeness.

Proof Sketch: We first show perfect completeness. Note that in case

(

N,
{

e0
i , e

′0
i , e

1
i , e

′1
i

}d

i=0

)

∈

LDIFF, V always accepts since Dsk(ci) = 0 for all i ∈ {0, . . . , d} and therefore Dsk(c) = 0 as well.

Soundness. Let P ∗ be an arbitrary strategy for P , then we prove that P ∗ convinces V with
negligible probability. Let badIndx denotes the event for which there exist an index ℓ such that
d0

ℓ −d1
ℓ 6= 0 however V accepts the proof. Then we claim that Pr[badIndx] is negligible. Specifically,

let c̃ =
∏

i6=ℓ(ci)
ωi . Then V is convinced only if Dsk(cℓ) · ωℓ + Dsk(c̃) = (d0

ℓ − d1
ℓ) · ωℓ + Dsk(c̃) =

Dsk(c) = 0 which occurs only in case Dsk(cℓ) = −Dsk(c̃)
ωℓ

. However, this event occurs with negligible
probability due to that ωℓ is truly random.

Zero knowledge. Let V ∗ be an arbitrary probabilistic polynomial-time strategy for V . Then
a simulator SDIFF for this proof can be constructed using the simulator SZERO from the proof of
πZERO. That is, SDIFF invokes V ∗ and plays the role of P until the point where the parties execute
πZERO, then SDIFF invokes SZERO. Finally, SDIFF outputs a transcript that includes the first message
that V ∗ sends concatenated with SZERO’s output. Informally, the output distribution of SDIFF is
statistically close to the output distribution in the real execution due to the fact that πZERO is a
statistical zero-knowledge proof.

Based on the analysis of πZERO, our protocol requires d + 9 exponentiations.

3.4 Oblivious Polynomial Evaluation in the Stand-Alone Model

In this section we present a protocol that securely estimates Fpoly in the presence of malicious
adversaries, where the estimate function is E(y) = y mod N for N chosen to be a random RSA
modulus. A high level description of our protocol is presented in Figure 3. The protocol consists
of four main phases, each backed up by specific, highly-efficient zero-knowledge proofs to ensure
correct behavior. In the first phase the parties choose respective encryptions keys pk1 and pk2.
Next, P2 raises its input t to the power of every value within {1, . . . , d} and sends these values
encrypted under pk2, together with a proof that the values are formed correctly (note that P1

cannot learn t from here because t, t2, . . . , td are sent encrypted under P2’s encryption key). In
addition, P2 sends a commitment to a challenge τ = τ1, . . . τs to be used for checking P1 later.
Party P1 then chooses s random polynomials {q1, . . . , qs} of degree d and for every i, sends the
encryptions of qi and (p− qi)(·) using pk1 (as above, P2 cannot learn the polynomial p(·) from this
because P1 sends the values encrypted under its own encryption key). In addition, for every i,
party P1 sends P2 an encryption of qi(t) that is computed using the homomorphic operations of the
encryption scheme. Namely, P1 is given Epk2

(t), Epk2
(t2), . . . , Epk2

(td) and in addition it knows the
coefficients of the polynomials qi(·). Thus, it can use scalar multiplication and addition in order to
compute Epk2

(qi(t)). Finally P2 checks that P1 behaved correctly using a cut-and-choose procedure.
That is, P2 reveals τ . Then, for every i, if τi = 0, P1 reveals qi and the randomness it used to
compute qi(t). Otherwise, if τi = 1, P1 reveals p′(·) = (p − qi)(·). (Note that P2 learns nothing

12

P1(p(·)) P2(t)

(pk1, sk1)←− G(1n) pk1 = N1
✲

→ ZKPOK of sk1 →

✛

pk2 = N2 (pk2, sk2)←− G(1n)

← ZKPOK of sk2 ←

✛

{Epk2
(ti)}di=1

ZK proof of LPOW

✛

c = com(τ)
τ ←−R {0, 1}

s

{q1, . . . , qs} ←−R ZN2
[x]

{Epk1
(qξ)}

s
ξ=1

{Epk1
(p(·)− qξ)}

s
ξ=1

✲

→ ZK proof of LDIFF →

Using homomorphic,
compute :

{Epk2
(qξ(t))}

s
ξ=1

✲

✛

Decommit c revealing τ

Decrypts Epk1
(qξ) ifτξ = 0

Decrypts Epk1
(p(·)− qξ) Else

✲

Verifies and outputs majority of
{qξ(t) + (p(t)− qξ(t))}τξ=1

Figure 3: A high-level diagram of our protocol.

about p(·) from the revealed values because it receives either qi(t) or (p− qi)(·) but never both, and
qi is a random polynomial that blinds the value of p.) Party P2 can now check P1 as follows. For
every i for which τi = 0, P1 recomputes qi(t) using the knowledge of qi plus the randomness that
P1 claims was used. If the result is the same ciphertext that P2 received, then this proves that P1

followed the correct procedure using the homomorphic encryption in order to compute Epk2
(qi(t)).

Once P2 is convinced that P1 correctly computed these values, it can use its knowledge of sk2 to
decrypt the ciphertexts Epk2

(qi(t)) for τi = 1. Finally, it uses p′(·) = (p − qi)(·) revealed by P1,
and its knowledge of its own input t, in order to compute p′(t) = p(t) − qi(t). Thus, for every i
such that τi = 1, party P2 has the values p(t) − qi(t) and qi(t), and so P2 can compute p(t) by
adding one to the other, thereby obtaining the output. The reason that P2 does this many times
and takes the majority is because the cut-and-choose technique does not ensure that all values are
computed correctly; rather it guarantees only that the vast majority are computed correctly. The
formal specification of the protocol follows.

Protocol 3 (πpoly - oblivious polynomial evaluation):

13

Inputs: The input of P1 is a series of coefficients p0, . . . , pd defining p(·) and the input of P2 is an integer t.

Auxiliary inputs: A statistical error parameter 1s, a security parameter 1n, and an integer d for P2.

Convention: Both parties check every received ciphertext for validity, and abort if an invalid ciphertext is
received.

The protocol:

1. Key setup:

• P1 chooses two random odd primes p1 and q1 of length n and sets N1 as their product. It then
records pk1 = N1 and sk1 = (p1 − 1)(q1 − 1). P1 sends pk1 to P2 and the parties engage in a
zero-knowledge proof of knowledge πRSA, in which P1 proves that (pk1, sk1) ∈ RRSA.

• P2 chooses two random odd primes p2 and q2 of length n and sets N2 as their product. If
N2 > N1/2 then P2 repeats this step until it samples a public-key N2 for which N2 < N1/2. It
then records pk2 = N2 and sk2 = (p2−1)(q2−1). P2 sends pk2 to P1 that verifies that N2 < 2·N1

and aborts otherwise. Finally, the parties engage in a zero-knowledge proof of knowledge πRSA,
in which P2 proves that (pk2, sk2) ∈ RRSA.

2. P2 views t as an element in ZN2
, and sends P1 the encryptions (e1 = Epk2

(t), . . . , ed = Epk2
(td)).

Then P2 proves that (pk2, e1, . . . , ed) ∈ LPOW using πPOW.

3. P2 chooses a random τ ∈R {0, 1}s under the constraint that the number of bits in τ that equal 0 is
exactly s

2
. P2 then sends c = com(τ).

4. P1 views p(·) as a polynomial in ZN2
[x]. It then chooses s random polynomials of degree d, q1(·), . . . qs(·) ∈

ZN2
[x] and s random strings ρ1 . . . , ρs ∈ Z∗

N2
, and for every ξ ∈ {1, . . . , s} it sends P2:

{

c0
ξ,i = Epk1

(qξ,i), c
1
ξ,i = Epk1

(pi − qξ,i)
}d

i=0
and ĉξ = Epk1

(ρξ)

where qξ,i denotes the ith coefficient of qξ(·), pi is from P1’s input and the subtraction is computed
over ZN2

.

5. P1 uses πDIFF and proves that for every ξ ∈ {2, . . . , s},
(

pk1,
{

c0
1,i, c

0
ξ,i, c

1
1,i, c

1
ξ,i

}d

i=0

)

∈ LDIFF.

(Essentially, P1 proves that the amount is always the ith coefficient of p(·).)

6. For all ξ ∈ {1, . . . , s}, P1 computes ẽξ = Epk2
(qξ(t)) using the randomness ρξ and the homomorphic

properties of (G, E, D), with ciphertexts (e1, . . . , ed), and sends (ẽ1, . . . , ẽs) to P2.

7. P2 sends τ = dec(c); denote τ = τ1, . . . , τs.

8. P1 checks the decommitment and that there are exactly s
2

indices ξ ∈ {1, . . . , s} for which τξ = 0. If
no, it aborts. Otherwise it continues as follows, for all ξ ∈ {1, . . . , s}:

(a) If τξ = 0, P1 decrypts
{

c0
ξ,i

}d

i=0
and ĉξ and sends P2 the plaintext values and randomness used

for encryption.

(b) Else, P1 decrypts
{

c1
ξ,i

}d

i=0
and sends P2 the plaintext values and randomness used for encryp-

tion.

9. P2 verifies that the decryption values it received are all correct by re-encrypting using the randomness
(i.e.,P2 checks that each ciphertext was generated by the plaintext and randomness sent by P2). If no,
it aborts. Otherwise, for all ξ ∈ {1, . . . , s}:

(a) For τξ = 0, P2 recomputes ẽξ as P1 did using the randomness ρξ in the decryption of ĉξ and

the coefficients of qξ(·) in the decryption of
{

c0
ξ,i

}d

i=0
, and aborts if it does not receive the same

value of ẽξ or qξ(·) /∈ ZN2
[x].

14

(b) For τξ = 1, let
{

q′ξ,i

}d

i=0
denote the decryptions of

{

c1
ξ,i

}d

i=0
. Then if q′ξ,i ∈ ZN2

[x] for all i, P2

records the value Dsk2
(ẽξ) +

∑d

i=0 q′ξ,i · t
i mod N2. (Note that this should equal qξ(t) + q′ξ(t) =

qξ(t)− qξ(t) + p(t) = p(t) mod N2, as desired.) Otherwise it aborts.

10. P2 outputs the most frequently recorded value.

For the sake of clarity we summarize the notations of πpoly in the following table:

Notation Meaning

ei An encryption of ti (under pk2)

ẽξ An encryption of qξ(t) (under pk2)

c0
ξ,i An encryption of the ith coefficient of qξ, denoted qξ,i (under pk1)

ĉξ An encryption of a random string used for computing ẽξ, denoted ρξ (under pk1)

c1
ξ,i An encryption of the ith coefficient in (p− qξ)(·) (under pk1)

We note that P1 may use any perfectly binding commitment that preserves its homomorphic
properties relative to addition instead of (G,E,D), because the encryptions using pk1 are never
actually decrypted but rather are “opened” by P1. We chose to instantiate (G,E,D) with Paillier’s
encryption scheme [32], because it has all of the desired properties.

Before proceeding with the proof, we show that if both parties are honest, then P2 always out-
puts p(t) mod N2. This holds because for every ξ ∈ {1, . . . , s}, Dpk2

(ẽξ) = qξ(t) mod N2, and so P2

accepts the checks in step 9a. Furthermore for every ξ ∈ {1, . . . , s}, Dpk1
(c1

ξ,0), . . . ,Dpk1
(c1

ξ,d) define

the polynomial q′ξ(·) = (p−qξ)(·) in ZN2
. Thus, in step 9b, P2 computes

(

Dpk2
(ẽξ) +

∑d
i=0 q′ξ,i · t

i
)

=

qξ(t) + q′ξ(t) = qξ(t) + p(t)− qξ(t) = p(t) and P2 learns p(t) mod N2 as required.
We now prove that the protocol is secure.

Theorem 3.1 Assume that πRSA, πPOW and πDIFF are as described above, that (G,E,D) is a ho-
momorphic semantically secure encryption scheme relative to addition, and that (com, dec) is a
perfectly-hiding commitment scheme. Then Protocol 3, denoted πpoly, securely estimates Fpoly rel-
ative to E(y) = y mod N in the presence of malicious adversaries.

Proof: We will separately consider the case that P1 is corrupted, the case that P2 is corrupted
and the case where both parties are honest. A joint simulator can be constructed on the basis of
these cases. Unless written differently, i ∈ {0, . . . , d} and ξ ∈ {1, . . . , s}.

Party P1 is corrupted. Intuitively, a corrupted P1 cannot learn anything about t due to the pri-
vacy of the encryption scheme, thus it should follow the same strategy even when given encryptions
to an arbitrary value t′. The more challenging part of this proof is to show that the joint output
distribution of both parties is computationally indistinguishable in the real and ideal executions.
This is proven via a combinatorial argument. Essentially, a deviation must be in the majority (or
else it will not affect the output, because P2 takes the majority output value). However, in this
case, it will be detected with high probability, and P2 will abort. Let A be an adversary controlling
party P1; we construct a simulator S as follows:7

1. S has input p(·), 1s and 1n and invokes A on these inputs.

7As in the protocol, we assume that S checks that all encryptions sent by A are valid; if they are not, it aborts
and sends ⊥ to the trusted party.

15

2. S receives from A a public-key pk1 and plays the verifier in πRSA with A as the prover. If it
does not accept the proof, it sends ⊥ to the trusted party and outputs whatever A outputs.
If it accepts the proof, then it runs the knowledge extractor for πRSA in order to obtain the
witness sk1 used by A. If S does not succeed in extracting, it outputs fail. (Doing the above
naively as described may result in S running in super-polynomial time. This can be solved
using the witness-extended emulator described in [25].)

3. S chooses two random odd primes p2 and q2 of length n and sets N2 as their product. If
N2 > N1/2 then S repeats this step until it samples a public-key N2 for which N2 < N1/2.
It then records pk2 = N2 and sk2 = (p2 − 1)(q2 − 1), and sends pk2 to A. Finally, S invokes
the simulator of πRSA for proving the validity of pk2.

4. S chooses an arbitrary t′ ∈ ZN2
and sends A the set

{

ei = Epk2
(t′i)

}d

i=1
. Then it runs the

simulator for the zero-knowledge proof LPOW.

5. S chooses τ ∈R {0, 1}
s such that for s

2 indices ξ ∈ {1, . . . , s} it holds that τξ = 0, and sends
c = com(τ) to A.

6. S receives from A the sets of encryptions
{

c0
ξ,i, c

1
ξ,i

}

ξ,i
and {ĉξ}ξ. S plays the verifier in πDIFF

with A as the prover. If it does not accept the proof, it sends ⊥ to the trusted party and
outputs whatever A outputs. If it accepts the proof, it defines the polynomial p̂(·) as follows.
For all i ∈ {0, . . . , d}, it sets p̂i = (Dsk1

(c0
1,i) + Dsk1

(c1
1,i)) mod N1, and p̂(·) is defined by the

coefficients p̂0, . . . , p̂d. If there exists a coefficient p̂i′ /∈ ZN2
the simulator aborts (intuitively,

this means that at least one of the decryptions {Dsk1
(c0

1,i′),Dsk1
(c1

1,i′)} is not in ZN2
. Now,

since A proves that (c0
1,i + c1

1,i) ≡ (c0
ξ,i + c1

ξ,i) mod N1 for all ξ ∈ {1, . . . , s} and i ∈ {0, . . . , d},
A will be caught by the real P2 with overwhelming probability as well.).

7. S receives from A the set of encryptions {ẽ1, . . . , ẽs}.

8. S continues with the execution, checking A’s decryptions as an honest party would. That is,
if there exists an index ξ ∈ {1, . . . , s} for which A does not provide a valid response, then S
aborts sending ⊥ to the trusted party. Otherwise, it sends the polynomial p̂(·) to the trusted
party as P1’s input.

9. S outputs whatever A does.

Letting i = 1, we prove that for every p(·), every t and every z ∈ {0, 1}∗

{

idealFpoly,S(z),i(p(·), t, n, s)
}

s,n∈IN

c
≡
{

realπpoly,A(z),i(p(·), t, n, s)
}

s,n∈IN

S runs in expected polynomial-time (the only subtlety is in verifying and extracting in πRSA

and this is taken care of as shown in [25]). We also note that S outputs fail with at most negligible
probability, and we therefore ignore this from now on. Now, there are two substantial differences
between a real execution and the ideal-model simulation by S. First, S computes {ei}

1
i=0 using

an arbitrary value t′ instead of using P2’s real input t. Second, P2’s output in the ideal model

equals p̂(t) mod N2, where p̂(·) is the polynomial defined by p̂i =
(

Dsk1
(c0

ξ̃,i
) + Dsk1

(c1
ξ̃,i

)
)

mod N1.

In contrast, in a real execution P2 obtains its output by taking the majority value of {Dsk2
(ẽξ) +

∑d
i=0 q′ξ,i · t

i} for ξ such that τξ = 1. (Recall that q′ξ,i is defined as the decryption of c1
ξ,i.) We

remark that S does not need to verify whether the elements in {(Dsk1
(c0

1,i),Dsk1
(c1

1,i))} are in ZN2

16

since we assume that there exists at least one index ξ′ for which {(Dsk1
(c0

ξ′,i),Dsk1
(c1

ξ′,i))} ∈ ZN2

(or otherwise A will be caught with probability 1 − 2−s). Combining this with the proof πDIFF

it implies that p̂(·) can be viewed as the sum of two polynomials in ZN2
as required in the real

execution. Fix n and s. We consider a series of games where Hℓ
A(z)(p(·), t, n, s) denotes the joint

output distribution of A and P2 in the ℓth hybrid game, and prove that the simulated and real
executions are computationally indistinguishable through these games.

Game H1
A(z)(p(·), t, n, s): In the first game we define a non-interactive simulator S1 who does not

interact with a trusted party. Rather, it receives the honest P2’s real input t. S1 works exactly
like S, except that instead of sending p̂(·) to the trusted party it computes p̂(t) mod N2 using the
polynomial p̂(·) extracted by S and the value t that it received as additional input. S1 outputs S’s
output together with p̂(t). The output distribution generated by S1 is clearly identical to the ideal
model with S, because S1 just plays all roles itself. That is:

{

idealFpoly,S(z),i(p(·), t, n, s)
}

s,n∈IN
≡
{

H1
A(z)(p(·), t, n, s)

}

s,n∈IN

Game H2
A(z)(p(·), t, n, s): In this game, we define S2 who works exactly like S1 except that in-

stead of computing the set of encryptions {ei}
d
i=1 using an arbitrary t′, it uses the real input t

of P2. We prove that the output distribution in games H1
A(z)(p(·), t, n, s) and H2

A(z)(p(·), t, n, s) is

computationally indistinguishable, via a reduction to the security of (G,E,D). Assuming by con-
tradiction that a ppt distinguisher Dpoly can distinguish these with non-negligible probability, we
construct a distinguisher DE that distinguishes between two sets of encryptions with non-negligible
probability.8 DE receives a public-key pk2 = N and outputs vectors m0 = (t′, t′2, . . . , t′d) and
mX = (t, t2, . . . , td). It then receives back a vector of encryptions c under pk and works exactly like
S2 except that instead of generating {ei}

d
i=1 by itself, it forwards A the vector of encryptions c that

it received in its game. If c is a vector of encryptions of (t′, t′2, . . . , t′d), then the output distribution
generated by DE is exactly the same as the output distribution of S1 in game H1

A(z)(p(·), t, n, s). In

contrast, if c is a vector of encryptions of (t, t2, . . . , td), then the output distribution generated by
DE is exactly the same as the output distribution of S2 in game H2

A(z)(p(·), t, n, s). By the indistin-

guishability of encryptions, we have that the output distributions in H1 and H2 are computationally
indistinguishable. We stress that the reduction works due to the fact that the simulator does not
need to know sk2 in order to conclude the simulation.

Game H3
A(z)(p(·), t, n, s): In this game we define S3 exactly like S2 except that it plays the real

prover in the proofs of πRSA and πPOW that are run by P2, rather than running simulators. Clearly,
the output distribution in this game is computationally indistinguishable to the output distribution
of the previous game.

Before concluding the proof we note that there are only two differences between the execution
of S3 and that of the real P2. To be more exact: (i) the first difference refers to the process of
computing their output (where S3 first extracts p̂ and then outputs p̂(t), whereas the real P2 takes
the majority of its computations). (ii) The fact that the extractor πRSA is being invoked by S3

within the key setup in order to learn sk1.

Game H4
A(z)(p(·), t, n, s): In this game, we define a simulator S4 who is like S3 except that it

computes its output as the honest P2 would in a real execution, and not like S in the simulation.

8We consider the game where DE is given a public-key pk, outputs two vectors of plaintexts m0, m1, and receives
back a vector of ciphertexts c comprised of the encryptions of mb under Epk, where b ∈R {0, 1}. DE then outputs a
bit b′ and we say that it distinguishes successfully in this game if b′ = b.

17

We prove that the distributions in games H3
A(z)(p(·), t, n, s) and H4

A(z)(p(·), t, n, s) are statistically

close. Let bad denote the set of indices ξ ∈ {1, . . . , s} for which either ẽξ is not an encryption of
qξ(t), where qξ(·) is defined by the coefficients Dsk1

(c0
ξ,0), . . . ,Dsk1

(c0
ξ,d) or there exists an encryption

e ∈
{

c0
1,i, c

0
ξ,i, c

1
1,i, c

1
ξ,i

}

i
for which Dsk(e) /∈ ZN2

. We first prove that for every ξ /∈ bad it holds that

Dsk2
(ẽξ) +

d
∑

i=0

q′ξ,i · t
i ≡ p̂(t) mod N2. (2)

That is, the computation that is carried out by S4 yields the exacts same value output by S3.
Note that the value on the left is one of the values recorded by P2 in a real execution, whereas
p̂(t) mod N2 is the output generated by S3 in the simulation. By the specification of S3, polynomial

p̂(·) is defined by the coefficients p̂i =
(

Dsk1
(c0

ξ̃,i
) + Dsk1

(c1
ξ̃,i

)
)

mod N2. By the zero-knowledge

proof πDIFF, we know that for every ξ ∈ {1, . . . , s} and i ∈ {0, . . . , d} it holds that

Dsk1
(c0

ξ̃,i
) + Dsk1

(c1
ξ̃,i

) = Dsk1
(c0

ξ,i) + Dsk1
(c1

ξ,i)

and therefore Dsk1
(c0

ξ,i) + Dsk1
(c1

ξ,i) = p̂i, or equivalently

q′ξ,i = Dsk1
(c1

ξ,i) = p̂i −Dsk1
(c0

ξ,i) (3)

(the first equality is by the definition of q′ξ,i). Thus, for ξ /∈ bad,

Dsk2
(ẽξ)+

d
∑

i=0

q′ξ,i · t
i = qξ(t)+

d
∑

i=0

q′ξ,i · t
i = qξ(t)+

(

p̂i · t
i −

d
∑

i=0

Dsk1
(c0

ξ,i) · t
i

)

= qξ(t)−qξ(t)+ p̂(t)

where the first equality is because ξ /∈ bad and so Dsk2
(ẽξ) = qξ(t), the second equality is by Eq. (3),

the third equality is by the definition of qξ as the coefficients Dsk1
(c0

ξ,0), . . . ,Dsk1
(c0

ξ,d), and all the
computations are preformed in ZN2

. We have thus proved Eq. (2).
Before proceeding we note that S3 and S4 abort with the exact same probability because they

behave identically with respect to the checks in step 9a of the protocol. However, S3 always outputs
p̂(t) mod N2, whereas S4 outputs the majority of its recorded values. We therefore consider the
joint event for which S4 does not abort, denoted by noAbort, and yet outputs a different value than
p̂(t) mod N2 and denote this event by badMaj. Stated differently, we prove that Pr[noAbort∧badMaj]
is negligible.

Let bad0 ⊆ bad denote the set of indexes for which A cannot provide a valid response if it is
queried on 0 relative to this set. Then observe that it is only possible that the output generated
by S4 for P2 does not equal p̂(t) mod N2 if s

4 ≤ |bad0| ≤
s
2 . This follows because if |bad0| >

s
2 then

by the constraint that τ contains exactly s/2 zeros, there must exist an index ξ′ ∈ bad0 for which
τξ′ = 0. Thus A is certainly caught cheating causing P2 to abort. Furthermore, if |bad0| <

s
4 , then

because P2 returns a majority of its recorded values, the majority of indices are not in bad0 and
so, it either outputs p̂(t) mod N2 or aborts. Let bad1 denote the set of indexes for which A cannot
provide a valid response if it is queried on 1 relative to this set. Let noAborti denotes the event for
which S4 does not abort relative to the set of indexes for which A is queried on the bit i ∈ {0, 1}.
This implies that

Pr[noAbort ∧ badMaj] = Pr[noAbort0 ∧ noAbort1 ∧ badMaj]

18

≤ Pr[noAbort0 ∧ badMaj] =
s
∑

ℓ0=0

Pr[noAbort0 ∧ badMaj ∧ |bad0| = ℓ0]

=

s/2
∑

ℓ0=s/4

Pr[noAbort0 ∧ badMaj ∧ |bad0| = ℓ0]

Then for every s
4 ≤ ℓ ≤ s

2 we further claim that

Pr[noAbort ∧ badMaj ∧ bad0 = ℓ] =

(

s − ℓ
s/2

)

(

s
s/2

)
(4)

Now, the upper term denotes all possible ways of choosing s/2 zeros from the set of s− ℓ non-bad
indices. That is, we count the number of ways of choosing s/2 zeros after excluding all the bad0

indices. Furthermore, the lower term counts all possible ways of choosing s/2 zeros from the overall
set of size s. Thus when there are ℓ bad indices, the probability that a random choice of s/2 indices
are all non-bad is as shown in Eq. (4). Note that strictly speaking, the indices τ are committed to
and so fixed before A sends its encryptions (determining which indices are bad or not). However,
since τ is committed using a perfectly-hiding commitment scheme, this is the same. We now bound
this term. First:

1
(

s
s/2

) ·

s/2
∑

ℓ=s/4

(

s − ℓ
s/2

)

=
1

(

s
s/2

) ·

s/4
∑

ℓ=0

(

s/2 + ℓ
s/2

)

=
1

(

s
s/2

) ·

3s/4
∑

ℓ=0

(

ℓ
s/2

)

=
1

(

s
s/2

) ·
(3s

4
+ 1

s
2

+ 1

)

where the second equality holds due to the fact that
(

ℓ
s/2

)

= 0 for all 0 ≤ ℓ ≤ s/2 − 1, and the

third equality is from [35, Page 174]. Now,

(3s
4

+ 1
s
2

+ 1

)

(

s
s/2

) =

(

3s
4 + 1

)

!
(

s
2 + 1

)

! ·
(

s
4

)

!
·

(

s
2

)

! ·
(

s
2

)

!

s!
=

(

3s
4 + 1

)

!

s!
·

(

s
2

)

! ·
(

s
2

)

!
(

s
2 + 1

)

! ·
(

s
4

)

!

≤

(

s
2 − 1

)

·
(

s
2 − 2

)

. . .
(

s
4 + 1

)

s · (s− 1) . . .
(

3s
4 + 2

) =

s/4−2
∏

i=0

s
2 − i− 1

s− i
≤

s/4−2
∏

i=0

s
2 −

i
2

s− i
=

(

1

2

)
s
4
−1

which is negligible in s. We conclude that Pr[noAbort ∧ badMaj] is negligible and that the output
distributions of H3

A(z)(p(·), t, n, s) and H4
A(z)(p(·), t, n, s) are statistically close.

It remains to observe that in game H4
A(z)(p(·), t, n, s), simulator S4 plays the honest P2 except

that it runs the extractor from πRSA to obtain sk1. However, since it never uses this, the output
distribution is identical to a real execution between A and P2. We conclude that the real and
ideal executions are computationally indistinguishable.

Party P2 is corrupted. Intuitively, P2 does not learn anything beyond p(t̂) mod N2 for some
input t̂ due to the semantic security of (G,E,D). In particular, the proof πPOW forces P2 to
encrypt a series t̂, t̂2, . . . , t̂d so that the output is a valid computation of polynomial p on input
t̂. Furthermore, the values that it receives when P1 opens encryptions in step 8 are to random
polynomials (either qξ or p− qξ, but never both). Let A be an adversary controlling party P1. We
construct a simulator S as follows:

19

1. S receives t, 1s and 1n and invokes A on these inputs.

2. S chooses two random odd primes p1 and q1 of length n and sets N1 as their product. It
then records pk1 = N1 and sk1 = (p1− 1)(q1− 1), and sends pk1 to A. Finally, S invokes the
simulator of πRSA for proving the validity of pk1.

3. S receives from A a public-key pk2 = N2 and checks that pk1 < pk2/2. It then plays the
verifier in πRSA with A as the prover. If it does not accept the proof, it sends ⊥ to the trusted
party and outputs whatever A outputs. If it accepts the proof, then it runs the knowledge
extractor for πRSA in order to obtain the witness sk2 = (p, q) used by A. If S does not succeed
in extracting, it outputs fail. (Doing the above naively as described may result in S running
in super-polynomial time. This can be solved using the witness-extended emulator described
in [25].) S sends (Gen, 1n, N2, p, q) to the trusted party.

4. S receives from A the set of encryptions {ei}
d
i=1 and verifies the proof πPOW from A. If it

rejects, it sends ⊥ to the trusted party. Otherwise, it uses sk2 to decrypt e1 and defines
t̂ = Dsk2

(e1). S sends t̂ to the trusted party and receives back p(t̂) mod N2.

5. S receives from A its commitment c.

6. S defines an arbitrary polynomial p′(·) of degree d in ZN2
[x], such that p′(t̂) ≡ p(t̂) mod N2.

Then S chooses s random polynomials of degree d, q1(·), . . . , qs(·) ∈ ZN2
[x] and s random

strings ρ1, . . . , ρs ∈R Z∗
N2

, and for all ξ ∈ {1, . . . , s} sends encryptions of the coefficients in

the set {qξ,i(·), p
′
i(·)− qξ,i(·)}

d
i=0 and ρξ under pk1. Furthermore, S runs the simulator for the

zero-knowledge proof πDIFF with A as the residual verifier.

7. S computes Epk2
(qξ(t)) for all ξ ∈ {1, . . . , s} as in the real execution, and sends these encryp-

tions to A.

8. S receives from A the decommitment of c, denoted τ . If the decommitment is not valid or
τ does not contain exactly s

2 zeros, then S aborts sending ⊥ to the trusted party. Else, S
completes the execution as the honest P1 would.

9. S outputs whatever A outputs.

Letting i = 2, we prove that for every p(·), every t and every z ∈ {0, 1}∗

{

idealFpoly,S(z),i(p(·), t, n, s)
}

s,n∈IN

c
≡
{

realπpoly,A(z),i(p(·), t, n, s)
}

s,n∈IN

S runs in probabilistic polynomial time. Note that the only difference between the real and simu-
lated executions is within the encryptions of the polynomials {p′(·)−qξ(·)}ξ , which is the only point
in the protocol where P1 uses its input. Clearly the polynomials {p(·)−qξ(·)}ξ and {p′(·)−qξ(·)}ξ on
their own, are distributed identically in both executions, since {qξ(·)}ξ are truly random. However,
their joint distribution with the encryptions of {qξ(·)}ξ and {qξ(t̂)}ξ in both executions is different,
because p(·) 6= p′(·). Intuitively, indistinguishability is due to the indistinguishability of encryptions
where only qξ(·) or (p− qξ)(·) are opened, but never both. Formally, we will show that the output
distributions are computationally indistinguishable through a series of games. Fix n and s and let
Hi

A(z)(p(·), t, n, s) denote the joint output distribution of P1 and A in the ith hybrid game.

Game H1
A(z)(p(·), t, n, s): In the first game, we define a simulator S1 who is exactly like S except

that it rewinds to obtain two executions with the same τ . That is, when A decommits to c in the

20

first run of the simulation, revealing τ , S1 checks the decommitment like S. If it is fine, then S1

rewinds A back to step 6 in the simulation. Then, for every ξ ∈ {1, . . . , s} such that τξ = 1, S1

sets ĉξ = Epk1
(ρ′) for an arbitrary value ρ′ ∈ Z∗

N2
. We stress that it encrypts the same ρ′ for all

ξ, and this is not the randomness used in the homomorphic operations. We also note that for all
ξ ∈ {1, . . . , s} such that τξ = 0, ĉξ is computed as in the original simulation. After sending the
encryptions, S1 receives A’s decommitment. If the decommitment is not valid, it rewinds again
to step 6 and repeats the same process using fresh randomness (until a valid decommitment is
received). If the decommitment in the second opening is not equal to τ , then S1 outputs fail.
Otherwise it completes the execution as S does. We note that S1 can complete the execution like
S because for every τξ = 1, simulator S1 never needs to decrypt ĉξ (these encryptions are “opened”
only for ξ where τξ = 0).

It is not difficult to show that Pr[fail] is negligible; otherwise it is possible to construct a
polynomial-time adversary that decommits the value com(τ) in two different ways, in contradiction
to the computational binding property of com. Assuming that S1 does not output fail, we show
that the output distributions in the simulation and H1 are computationally indistinguishable.
Intuitively, this follows from the indistinguishability of encryptions under key pk1 (in the simulation
by S the ciphertexts ĉξ for τξ = 1 encrypt the randomness used in the homomorphic operations by
P1 and in H1 they encrypt a single arbitrary value ρ′). A formal reduction to the security of the
encryption scheme is straightforward and similar to that shown in the previous corruption case.

We remark that S1 as described above does not necessarily run in expected polynomial-time.
This is due to a negligible difference that can arise between the distribution in the first run of the
simulation and in later rewindings. Nevertheless, this can be solved using the techniques of [17],
guaranteeing an expected polynomial-time simulation.

Game H2
A(z)(p(·), t, n, s): In this game, we define a simulator S2 who is non-interactive. Specifically,

it does not interact with a trusted party. Rather, it receives the honest P1’s real input p(·) and runs
the simulator S1 with one difference. Instead of computing the set {c1

ξ,i}ξ,i using the polynomial
p′ (as defined in the simulation of S) it computes the set of encryptions using P1’s real input
polynomial p(·). We prove the following claim that is the crux of the proof of this corruption case.

Claim 3.3
{

H1
A(z)(p(·), t, n, s)

}

s,n∈IN

c
≡
{

H2
A(z)(p(·), t, n, s)

}

s,n∈IN

Proof: Assume that there exists an adversary A and a distinguisher Dpoly that distinguishes A’s
view in the above games with non-negligible probability. Then we construct a distinguisher DE,
who is able to distinguish between two sets of encryptions with the same gap. Fix n and s. Then
on input (1n, pk), and auxiliary input (p(·), p′(·), t, 1s), DE sets pk1 = pk (instead of choosing it
itself) and works as follows. Let τ denote A’s challenge as extracted by S2 (and S1), assuming that
fail does not occur, and let q1(·), . . . , qs(·) ∈ ZN2

[x] denote s random polynomials of degree d, and
let q′ξ(·) = p(·) + qξ(·)− p′(·). Distinguisher DE defines two vectors of encryptions x = (x1, . . . , xs)
and y = (y1, . . . , ys) as follows:

1. For every ξ ∈ {1, . . . , s} where τξ = 0, DE sets xξ = p′(·)− qξ(·) and yξ = p(·)− qξ(·). (Note
that each of these are actually d + 1 encryptions of d + 1 coefficients.)

2. For every ξ ∈ {1, . . . , s} where τξ = 1, DE sets xξ = qξ(·) and yξ = q′ξ(·). (As above, each of
these are actually d + 1 encryptions of d + 1 coefficients.)

DE receives back a vector of encryptions (either encryptions of all x or encryptions of all y), denoted
z1, . . . , zs. Recall that each element of x and y is actually d+1 coefficients, and so zi = (zi,0, . . . , zi,d).
DE sets encryption values as follows:

21

1. For every ξ ∈ {1, . . . , s} where τξ = 0 and for all i ∈ {0, . . . , d}, DE sets c1
ξ,i = zξ,i and

c0
ξ,i = Epk1

(qξ,i).

2. For every ξ ∈ {1, . . . , s} where τξ = 1 and for all i ∈ {0, . . . , d}, DE sets c1
ξ,i = Epk1

(p′i − qξ,i)

and c0
ξ,i = zξ,i.

DE completes the execution as S2 does and invokes Dpoly on A’s output. Before proceeding, we
remark that DE can complete the execution like S2 even though it doesn’t know sk1. This is because
the encryptions that it needs to open in step 8 it generates itself, and therefore it knows the plaintext
and randomness (e.g., for τξ = 1 it needs to open the c1

ξ,i values, which by the description above
it generates itself). We claim that if DE received encryptions of x then the distribution generated
is exactly that of game H1, and if it received encryptions of y then the distribution generated
is exactly that of game H2. In order to see this, consider the following table summarizing the
ciphertexts defined by DE:

Definition of xξ Definition of yξ Definition of c0
ξ,i Definition of c1

ξ,i

For τξ = 0: p′ − qξ p− qξ Epk1
(qξ,i) Epk1

(xξ) or Epk1
(yξ)

For τξ = 1: qξ q′ξ = p + qξ − p′ Epk1
(xξ) or Epk1

(yξ) Epk1
(p′ − qξ)

Now, recall that the difference between H1 and H2 is that in H1 the polynomial p′ is used
whereas in H2 the polynomial p is used. Now, if DE receives encryptions of xξ, then as can be
seen in the above table, for τξ = 0 the encryptions used are c0

ξ,i = Epk1
(qξ,i) and c1

ξ,i = Epk1
(xξ) =

Epk1
(p′ − qξ), and for τξ = 1 the encryptions used are c0

ξ,i = Epk1
(xξ) = Epk1

(qξ) and c1
ξ,i =

Epk1
(p′ − qξ). However, this is exactly how S1 works in H1 with the polynomial p′.

In contrast, if DE receives encryptions of yξ, then as can be seen in the above table, for τξ = 0
the encryptions used are c0

ξ,i = Epk1
(qξ,i) and c1

ξ,i = Epk1
(yξ) = Epk1

(p − qξ), and for τξ = 1 the

encryptions used are c0
ξ,i = Epk1

(yξ) = Epk1
(p + qξ − p′) and c1

ξ,i = Epk1
(p′ − qξ). Redefining

q̂ξ = p′ − qξ (where both are distributed identically because qξ is a random polynomial), we have
that c0

ξ,i = Epk1
(p− q̂ξ) and c1

ξ,i = Epk1
(q̂ξ). However, this is exactly how S2 works in H2 with the

polynomial p.
We conclude that the output distributions of H1 and H2 are computationally indistinguishable,

as required.

It is left to prove that A’s view in game H2
A(z)(p(·), t, n, s) and in a real execution is computationally

indistinguishable. There are two differences between these executions. First, S2 runs the simulator
for the zero-knowledge proofs rather than playing the honest prover. The second difference is how
the {ĉξ}ξ are computed for ξ such that τξ = 1 (S2 encrypts an arbitrary ρ′ whereas the honest P1

uses the randomness for computing the ẽξ values). Clearly, replacing the zero-knowledge simulation
with a real execution cannot be distinguished. Regarding the {ĉξ}ξ values, indistinguishability is
shown by a reduction to the encryption scheme, in exactly the same way that demonstrates the
indistinguishability of the simulation by S from the execution of S1 in H1. This completes the
proof of this corruption case.

Efficiency. We present an exact analysis of our protocol and compare its efficiency to the generic
protocols of [37, 24] for secure two-party computation in the presence of malicious adversaries.
In [37], Ishai et el. present a generic technique for securely evaluating arithmetic circuits over

22

finite rings (and fields). Their protocols combine two ingredients; an “outer protocol” and an
“inner protocol”. The inner protocol makes a simple use of homomorphic encryption or alternative
coding-based assumptions and is only required to be secure in the semi-honest model. The most
efficient construction in [37] is a protocol that employs a homomorphic encryption in a black-box
manner, such that the number of invocations of the encryption scheme is O(|C|+ s · depth(C)) and
the communication complexity is dominated by sending O(|C| + s · depth(C)) ciphertexts, where
s is a statistical security parameter that is not specified by the authors. Furthermore, its round
complexity is a function of depth(C), where an arithmetic circuit for Fpoly includes O(d) gates and
can be implemented in constant depth by using the reduction of [30], which converts a d-degree
polynomial into to d linear polynomials.

In [24], Jarecki and Shmatikov revisit the problem of constructing a protocol for securely com-
puting any two-party boolean circuit and present a new variant of Yao’s protocol [38] on committed
inputs using a public-key scheme. Their construction is constant round and requires O(|C|) public-
key operations and bandwidth of O(|C|) group elements. Using Horner’s rule, the evaluation of a
d-degree polynomial requires d modular multiplications, each of which costs n log n. Therefore, the
size of C is at least d · n log n. In comparison to [37, 24], we have the following:

1. Rounds of communication: Our protocol runs in a constant number of rounds because all of
the zero-knowledge proofs can be implemented in constant rounds. A careful count shows
that Fpoly can be realized using 17 rounds of communication.

2. Asymmetric computations: The overall number of exponentiations in πpoly, including the zero-
knowledge proofs, is equal to 8s(d + 1) + 17d + 18s, where d is the degree of the polynomial
and s is the statistical security parameter. By the proof of security, s must be large enough
so that 2−

s
4 is sufficiently small, and thus s = 160 suffices for this target (yielding an error of

2−40). Therefore the number of asymmetric computations is 1297d + 4160.

As for the protocol in [24], taking n = 1024 (as the protocol employs a public-key encryption
and a commitment schemes which require an RSA modulus), the number of asymmetric
computations is at least 10240d. Note that the analysis of [24] does not even take into
account the actual constants.

We now analyze the number of exponentiations in the protocol of [37] which asymptotically
equals Q(s + d). As in [24], the analysis does not look into the concrete parameters and does
not count the exact number of invocations of the encryption scheme per gate. In particular,
the analysis ignores the constant number of calls to the encryption scheme made by the outer
protocol for each gate. Moreover, it ignores additive terms that may depend polynomially
on the security parameter and the circuit depth, but not on the circuit size (it also ignores
the cost of O(s) oblivious transfers). We therefore strongly believe that the total number of
exponentiations of [37] is much higher when considering an exact analysis for small d. We
stress that many applications that use oblivious polynomial evaluations require polynomials
of small degree only, see [30] for few examples.

3. Bandwidth: Finally we consider the communication complexity. In our protocol, the parties
send each other ℓ = O(sd) encryptions, and therefore the bandwidth is ℓ times the length of
N , or O(sdn) where n is the length of N . In contrast, the bandwidth of the protocol in [24]
is at least d · n log n group elements which is O(d · n2 log n) bits. As for [37], the bandwidth
is O(|C|+ s · depth(C)) group elements.

In order to conclude the comparison, we note that implementing a circuit that computes modular
polynomial evaluation may be significantly harder than implementing our protocol. Furthermore,

23

our protocol is readily transform to protocols that are secure under universal composability and in
the presence of covert adversaries.

Computing multivariate polynomials. The techniques that is used in πpoly can be directly
applied to polynomials with more than one variable. That is, let Fpoly be the following mapping:

(p(·), (t1, . . . , tℓ)) 7→ (λ, p(t1, . . . , tℓ)).

We adjust protocol πpoly for this modified functionality as follows. P2 sends the encryptions of
{(tj)

i} for all 1 ≤ j ≤ ℓ and 1 ≤ i ≤ d, and proves their correctness (as in LPOW). Then it computes
and sends P1 the O((2d)ℓ) encryptions that correspond to the multiplications of every subset of at
most ℓ variables (and proves the correctness of its computations using LMULT; formally defined in
Section 3.3.1). These encryptions denote all possible combinations of variables and their exponents
within p(·). The rest of the protocol is unchanged.

4 Extensions to Other Models

In this section we present two protocols πUC

poly and πCOVERT

poly that estimate the functionality Fpoly :
(p(·), t) 7→ (λ, p(t)) in two additional and useful settings. The first protocol πUC

poly computes Fpoly

with security under universal composability [8] and is efficient as protocol πpoly (that was proven
secure against malicious adversaries in the stand alone setting). The second construction is an
extremely efficient protocol πCOVERT

poly with security in the presence of covert adversaries [13].

4.1 Universal Composability

A protocol that is universally composable maintains its security even when run in an arbitrary
network setting concurrently with other secure and insecure protocols [8]. The definition of universal
composability is formalized by considering an additional adversarial entity called the environment Z.
This environment generates the inputs to all parties, reads all outputs, and in addition interacts with
the adversary in an arbitrary way throughout the computation. A protocol π securely computes
an ideal functionality F in this framework if, for any adversary A that interacts with the parties
running the protocol, there exists an ideal process adversary (or ”simulator”) S that interacts with
the trusted party, so that no environment Z can distinguish the case that it is interacting with A
and the parties running the protocol, or with S in the ideal process with a trusted party. If the above
holds we say that π UC realizes F and that π is UC secure; see [8] for a formal definition and the
proof that the definition implies security under composition in an arbitrary network as described
above. We remark that secure two-party computation of most interesting functionalities in this
model requires an additional trusted setup assumption such as a common reference string [33].
Our protocol can use any UC-secure commitment protocol, and in particular we use the efficient
commitments of [11] that in turn use a common reference string.

The starting point of our construction here is the observation that the only places in the security
proof of πpoly in which the simulator uses rewinding are within the zero-knowledge proofs πPOW and
πDIFF, and in the extraction of the challenge string τ . We use this fact to modify the protocol so
that it is possible to construct a straight-line simulator (which is essentially enough to demonstrate
universal composability). In more detail, we first replace πRSA with a universally composable zero-
knowledge argument of knowledge that realizes functionality FRSA

ZK
; see Section 4.1.1 for a formal

definition of this functionality. Then we replace πPOW and πDIFF with new zero-knowledge proofs that
have non-rewinding simulators. The resulting protocols are not UC zero-knowledge because they

24

do not have non-rewinding extractors. Rather, we handle the witness extraction in a higher level
of protocol πUC

poly. This makes our proof of security less modular, but our protocol more efficient.
Finally, we replace the standard commitment scheme (com, dec) with a universally composable
commitment scheme (comUC, decUC) [11] that UC realizes functionality Fcom; see Section 4.1.1 for
its formal definition.

Thus, we begin by briefly describing the modification of these proofs. Note first that these
proofs (originally presented in [10]) are Σ-protocols. Meaning that they constitute a 3 rounds
honest verifier zero-knowledge proof of knowledge; see [11] for more details. Let (α, β, γ) denote
a trascript for a Σ-protocol, where β is a random challenge sent by the verifier. We apply the
transformation suggested by Damgard in [3] who showed how to construct a 3 rounds concurrent
zero-knowledge argument of knowledge out of any Σ-protocol in the common reference string model.
In his construction, the prover sends a commitment to α in the first round, and decommits it
only after the verifier sends β. This technique enables to construct a non-rewinding simulator by
instantiating the prover’s commitment scheme with a trapdoor scheme (where the knowledge of a
special information allows to open the commitment ambiguously). Stated formally, it implies the
following

Theorem 4.1 Let π be a zero-knowledge Σ protocol for a binary relation R. Then if one-way
functions exist, there exists a concurrent zero-knowledge argument for R in the common reference
string model, with a black-box straight-line simulator.

This construction is not UC zero-knowledge because it does not have non-rewinding extractor.
We therefore handle the witness extraction in a higher level of protocol πUC

poly. This makes our
proof of security less modular, but our protocol more efficient. That is, let πSL

MULT and πSL
ZERO

denote the concurrent zero-knowledge versions (with straight-line simulators) of the respective
proofs πMULT and πZERO, and let πSL

POW and πSL
DIFF denote the modified proofs of πSL

POW and πSL
DIFF when

employing πSL
MULT and πSL

ZERO. Furthermore, recall that the statements for these proofs are collections
of encryptions relative to a public-key pk (for which the prover proves a certain relation). Then in
order to achieve straight-line extraction, we assume that the extractor is given the secret-key sk
that corresponds to pk within its auxiliary input. The reason that it holds is due to the fact that
the simulator in the proof of πpoly always extracts sk before it enters these zero-knowledge proofs.
Thus extraction can be preformed by directly decrypting these statements.

We conclude with a UC zero knowledge for RRSA; πUC
RSA

. The problem of proving the validity
of an RSA modulus N has been widely studied in the literature; see [6, 36, 21] for few examples.
Nevertheless, none of these results seem to be naturally extended to the UC setting. We therefore
consider a new proof combined out of two subproofs, where in the first subproof the prover proves
that there exist two primes p and q for which N is of the form piqj and i, j > 0 (verifying that N
is not a prime power can be done efficiently). The proof is concluded with the prover convincing
the verifier that N is a square free, by proving that there does not exist a prime r for which r2

divides N ; see Section 4.1.1 for the detailed proof. We note that the technique of proving validity
of a modulus N in two steps was already considered in the past; see [6] for example. We now prove
the following theorem,

Theorem 4.2 Let πUC
RSA be a UC-secure zero-knowledge proof of knowledge of RRSA and let πSL

POW and
πSL

DIFF be zero-knowledge protocols for languages LPOW and LDIFF that have straight-line simulators.
Finally, assume that (G,E,D) is a homomorphic semantically secure encryption scheme relative
to addition, and that comUC is a universally composable commitment scheme. Then Protocol πUC

poly

UC realizes Fpoly in the {FRSA
ZK

,Fcom}-hybrid model in the presence of malicious adversaries.

25

Proof: Let A be an adversary that interacts with parties P1 and P2 running πUC

poly. We construct an
adversary S for the ideal process for Fpoly such that no environment Z can tell with non-negligible
probability whether it is interacting with A and πUC

poly or with S in the ideal process for Fpoly.
Recall that S interacts with the ideal functionality Fpoly and with the environment Z. Simulator
S starts by invoking a copy of A and running a simulated interaction of A with Z and parties P1

and P2. S proceeds as follows:

Simulating the communication with Z: Every input value that S receives from Z is written
on A’s input tape (as if coming from A’s environment). Likewise, every output value written by A
on its output tape is copied to S’s own output tape (to be read by S’s environment Z).

Simulating the case where party P1 is corrupted:

1. Whenever the simulatedA internally generates a message of the form (ZK− prover, id1, N1, (p, q))
from the corrupted P1 to FRSA

ZK
, simulator S checks that N1 = p · q and that p and q are odd

primes. If this holds, then S internally passes (ZK− proof, id1, N1) to A. If no, then S does
nothing. Let pk1 = N1 and sk1 = φ(N1).

2. S chooses two random odd primes p2 and q2 of length n and sets N2 as their product. If
N2 > N1/2 then S repeats this step until it samples a public-key N2 for which N2 < N1/2.
It then records pk2 = N2 and sk2 = (p2 − 1)(q2 − 1), and passes internally to A the message
(ZK− proof, id2, N2), emulating FRSA

ZK .

3. S chooses an arbitrary t′ ∈ ZN2
and internally invokes the straight-line simulator SPOW of

πSL
POW on the set

{

ei = Epk2
(t′i)

}d

i=1
.

4. S chooses τ ∈R {0, 1}
s such that for s

2 indices ξ ∈ {1, . . . , s} it holds that τξ = 0, and internally
sends the message (receipt, id, P2, P1) to A, emulating the commit phase of Fcom.

5. S receives from A the sets of encryptions
{

c0
ξ,i, c

1
ξ,i

}

ξ,i
and {ĉξ}ξ. S plays the verifier in πSL

DIFF

with A as the prover. If it accepts the proof, it defines the polynomial p̂(·) as follows. If
it accepts the proof, it defines the polynomial p̂(·) as follows. For all i ∈ {0, . . . , d}, it sets
p̂i = (Dsk1

(c0
1,i)+Dsk1

(c1
1,i)) mod N1, and p̂(·) is defined by the coefficients p̂0, . . . , p̂d. If there

exists a coefficient p̂i′ /∈ ZN2
the simulator halts.

6. S receives from A the set of encryptions {ẽ1, . . . , ẽs}.

7. S internally sends the message (open, id, P2, P1, τ) to A, emulating the reveal phase of Fcom.

8. S continues with the execution, checking A’s decryptions as an honest party would. That is,
if there exists an index ξ ∈ {1, . . . , s} for which A does not provide a valid response, then S
halts. Otherwise, it sends the polynomial p̂(·) to the trusted party for Fpoly as P1’s input.

The differences between this simulation and the simulation of πpoly are as follow. First, the
parties have ideal access to a trusted party for RRSA, the simulators for the zero-knowledge proofs
are straight-line, and finally, a UC commitment replaces the standard commitment scheme. Due
to these the exact same proof applies here as well.

26

Simulating the case where party P2 is corrupted:

1. S internally sends A the message that A expects to receive from FRSA
ZK

. S chooses two random
odd primes p1 and q1 of length n and sets N1 as their product. It then records pk1 = N1 and
sk1 = (p1−1)(q1−1), and passes internally to A the message (ZK− proof, id1, N1), emulating
FRSA

ZK .

2. Whenever the simulatedA internally generates a message of the form (ZK− prover, id2, N2, (p, q))
from the corrupted P2 to FRSA

ZK , simulator S checks that N2 = p · q, that N1 < N2/2, and
that p and q are odd primes. If this holds, then S internally passes (ZK− proof, id2, N2) to
A. Otherwise, S halts. Let pk2 = N2 and sk2 = φ(N) then S sends (Gen, 1n, N2, p, q) to the
trusted party.

3. S receives from A the set of encryptions {ei}
d
i=1 and verifies the proof πSL

POW of A. If it rejects,
it does nothing. Otherwise, it uses sk2 to decrypt e1 and defines t̂ = Dsk2

(e1). S sends t̂ to
the trusted party and receives back p(t̂) mod N2.

4. Whenever the simulated A internally generates a message of the form (commit, id, P2, P1, τ)
from the corrupted P2 to Fcom, simulator S internally passes (receipt, id, P2, P1) to A and
records τ .

5. S defines an arbitrary polynomial p′(·) of degree d such that p′(t̂) ≡ p(t̂) mod N2. Then S
chooses s random polynomials of degree d, q1(·), . . . , qs(·) ∈ ZN2

[x] and s random strings
ρ1, . . . , ρs ∈R Z∗

N2
[x], and for all ξ ∈ {1, . . . , s} internally sends A encryptions of the coeffi-

cients in the set {qξ,i(·), p
′
i(·)− qξ,i(·)}

d
i=0 and ρξ (computed under pk1), and the encryptions

of qξ(t̂) (computed under pk2). Furthermore, S runs the straight-line simulator for πSL
DIFF with

A as the verifier.

6. Whenever the simulated A internally generates a message of the form (Open, id, P2, P1) from
the corrupted P2 to Fcom, simulator S internally passes (open, id, P2, P1, τ) to A. S then
checks whether there exists exactly s

2 indices ξ ∈ {1, . . . , s} for which it holds that τξ = 0. If
no, then S does nothing.

7. S completes the execution as the honest P1 would.

Here the differences between this simulation and the simulation of πpoly are within the facts that
the parties have ideal access to RRSA and Fcom, and the straight-line simulator for πDIFF. Therefore
the proof of πpoly can be applied here as well, with the exception that in game H2

A(z)(p(·), t, n, s)
the simulator S2 does not need rewind the adversary in order to extract the decommitted value τ .

Simulating the case where neither party is corrupted: In this case, S generates a simulated
transcript of messages between the hybrid model parties using arbitrary inputs as in the above
simulations. We further claim that the simulated and the hybrid transcripts are computationally
indistinguishable in the presence of an eavesdropper A. The proofs details are similar to the proof
above and therefore omitted. We remark that there is no need to consider the joint output here
since we already proved that correctness holds, rather we only need to prove that the transcripts are
indistinguishable, and this follows using a straightforward reduction to the security of (G,E,D).

Simulating the case where both parties are corrupted: The simulator S just runs A
internally who generates the messages from both P1 and P2 by itself.

27

4.1.1 UC Zero-Knowledge for FRSA
ZK

In the following section we present a protocol πRSA that UC realizes FR
ZK; formally presented Fig-

ure 4, for proving the validity of an RSA modulus N . Specifically, we consider the following
relation:

RRSA = {(N, (α, β)) | such that N = α · β ∧ (α, β) are primes}

Functionality FR
ZK

Functionality FZK proceeds as follows, running with a prover P , a verifier V and an adversary S, and
parameterized with a relation R.

• Upon receiving a message (ZK − prover, id, x, ω) from P , do: if R(x, ω) = 1, then send
(ZK− proof, id, x) to V and S and halt. Otherwise, halt.

Figure 4: The zero-knowledge functionality

This proof is utilized within the key-generation phase in πUC

poly for which each party chooses a
public-key N and then proves that it is a product of two primes. As stated in Section 4.1 our proof
for RRSA is combined out of two subproofs. In the first subproof we provide a UC zero-knowledge
argument for the relation

R1
RSA

=
{

(N, (α, β, i, j)) | such that N = αi · βj ∧ (α, β) are primes ∧ i, j > 0
}

This proof is general in a sense that it holds for any two primes α and β. For the second subproof
we consider any proof with a straight-line simulator for proving that N is a square free (meaning
that there does not exist a prime r such that r2 divides N). Clearly, the combination of these two
subproofs yields the desirable proof for RRSA, details follow. We begin with a UC zero-knowledge
protocol for R1

RSA which operates in the Fcom-hybrid model. We present a formal definition of the
ideal functionality Fcom in Figure 5 as considered in [11] (where the domain of the messages is ZN

for RSA modulus N , and is determined by the functionality), and uses their construction for a UC
commitment scheme.

Functionality Fcom

Functionality Fcom proceeds as follows, running with parties P1 and P2 and an adversary S.

• Generate a uniformly random modulus N that is a product of two primes p and q. Send N to
parties P1 and P2, and send p, q to S.

• Upon receiving a message (commit, id, cid, Pi, Pj , m) from Pi, send (receipt, cid, Pi, Pj) to Pj and
S. Record (cid, Pi, Pj , m) and ignore subsequent messages of the form (commit, id, cid, . . .).

• Upon receiving a message (open, id, cid, Pi, Pj) from Pi where (cid, Pi, Pj , m) is recorded, send
(open, id, cid, Pi, Pj , m) to Pj and to S. Otherwise, do nothing.

Figure 5: The commitment functionality

Let QRN = {a | ∃ b ∈ Z∗
N such that a = b2 mod N} that is, QRN denotes the set of quadratic

residues modulo N . Then the proof relies on the fact that if N is of the correct form, every quadratic
residue a ∈ Z∗

N has exactly four square roots. Specifically, if the verifier chooses a random element

28

y ∈ Z∗
N and then computes ỹ = y2 mod N (which yields a random element in QRN), even an all

powerful prover P cannot guess y with probability better than 1
4 . Furthermore, in case N can be

factored into more than two primes, every quadratic residue in Z∗
N has at least eight different roots.

Therefore by asking the prover to commit first to all four roots of ỹ, and then decommitting one of
these commitments into y, we can assure that V accepts with probability at most 1

2 . In addition,
if V is convinced with probability strictly greater than 1

2 , then there exists a knowledge extractor
that always learns N ’s factorization. We proceed now with the full description of our proof:

Protocol 4 (UC zero-knowledge argument for R1
RSA

):

• Joint statement: N .

• Auxiliary inputs for the prover: (α, β, i, j).

• The protocol:

1. The verifier V chooses a random value y ∈ Z∗

N and sends the prover P , ỹ = y2 mod N .

2. P checks that ỹ ∈ QRN and continues as follows:

– If y ∈ QRN , then P computes the set of roots of ỹ; {y1, y2, y3, y4}. For each root yi (in
random order) P sends Fcom the message (commit, id, cidi, P, V, yi).

– Otherwise, P sends Fcom four messages (commit, id, cidi, P, V, ρ) of an arbitrary value ρ.

3. V sends y to P .

4. P checks that ỹ = y2 mod N and aborts in case equality does not hold. Otherwise, P sends Fcom

the message (open, id, cidi, P, V) for which yi = y.

5. V accepts if and only if it receives from Fcom the message (open, id, cidi, P, V, yi) and yi = y.

Proposition 4.1 Protocol 4 UC realizes FRSA1
ZK in the Fcom-hybrid model with soundness half.

Proof: We first show perfect completeness. For this we show that all of V ’s checks pass when
interacting with the honest P . This follows from the fact that every a ∈ QRN has exactly four
square roots and therefore there is always a commitment for y. In addition, in case N does not
equal the multiplication of two primes, every a ∈ QRN must have at least eight roots (since
there are at least three primes that are involved in the factorization of N). Now, since squaring
modulo N is a four-to-one mapping and since ỹ is a random element in QRN , even all powerful
prover cannot guess y with probability better than 1

4 .9 Therefore a malicious prover commits to
y with probability at most 1

2 . Let A be an adversary that interacts with the prover P and the
verifier V running Protocol 4. We construct an adversary S for the ideal process for FRSA1

ZK such
that no environment Z can tell with non-negligible probability whether it is interacting with A
and Protocol 4 or with S in the ideal process for FRSA1

ZK . Recall that S interacts with the ideal
functionality FRSA1

ZK and with the environment Z. Simulator S starts by invoking a copy of A and
running a simulated interaction of A with Z and parties P and V . S proceeds as follows:

Simulating the communication with Z: Every input value that S receives from Z is written
on A’s input tape (as if coming from A’s environment). Likewise, every output value written by A
on its output tape is copied to S’s own output tape (to be read by S’s environment Z).

9The reader can think of a mental experiment where the verifier first chooses ỹ, and only after the prover sends
its commitments, it chooses y. Clearly, the prover’s view in this game is identical to its view in the real execution.

29

Simulating the case where the prover P is corrupted:

1. S chooses a random element y ∈ Z∗
N and internally sends A the value ỹ = y2 mod N .

2. Whenever the simulatedA internally generates four messages of the form (commit, id, cidi, P, V, yi)
from the corrupted prover to FRSA1

ZK , simulator S internally passes (receipt, id, cidi, P, V) to A
and records {y1, y2, y3, y4}.

3. S internally invoke A on y.

4. Whenever the simulated A internally generates a message of the form (open, id, cid, P, V) from
the corrupted prover to FRSA1

ZK , simulator S internally passes toA the message (open, id, cidi, P, V, yi).
If yi 6= y, S halts.

5. If there exists y′, y′′ ∈ {y1, y2, y3, y4} such that (y′)2 ≡ (y′′)2 ≡ y2 mod N and y′ 6= ±y′′,
simulator S factors N into α and β and computes i and j such that N = αi · βj . S sends
(N, (α, β, i, j)) to the trusted party for FRSA1

ZK . Otherwise, it halts.

Note that in the hybrid execution if V accepts the proof with probability strictly greater than
1
2 , then it must be that the corrupted prover commits to more than half of ỹ’s roots, which only
occurs if the factorization of N contains exactly two distinct primes.10 Therefore, S ia able to learn
α and β.11 Giving the knowledge of α and β the simulator is able to find i and j using a binary
search (since the upper bound on their values in log N). We claim that A’s view in both executions
is identical. This is true since A sees ỹ which distributes identically in both executions, the receipt
that the verifier receives and the square root of ỹ. Finally, we claim that the simulation fails with
probability at most half. That is, the real verifier would accept the proof, whereas the simulator
would fail in extracting the witness. Note that the simulation fails only if N ’s factorization includes
more than two primes, or in case A commits to only two valid roots of ỹ; y1, y2 for which y1 = −y2.
Now, in the first case the honest verifier accepts the proof with probability at most half due to
reasons discussed above. As for the case where A does not commit to more than two valid roots,
due to the fact that it cannot guess y with probability greater than 1

4 , the probability for which
y ∈ {y1, y2} is at most half as well. This concludes the proof for which P is corrupted.

Simulating the case where the verifier V is corrupted:

1. Whenever the simulated A internally sends a message ỹ from the corrupted verifier, S inter-
nally passes four messages (receipt, id, cidi, P, V) to A for i = {1, 2, 3, 4}.

2. Whenever the simulated A internally sends a message y from the corrupted verifier, S checks
first that y2 mod N = ỹ and internally passes A the message (open, id, cidi, P, V, y) for a
random i = {1, 2, 3, 4}. Otherwise, it halts.

Note that A’s view in both executions is identical since all the messages A sees are within the
ideal execution of Fcom. Following that, the simulator always convinces A to accept as the real
prover, thus the distribution in these games is identical.

10The case for which N = a2, where a ∈ N can be efficiently ruled out.
11Here we rely on the fact that α and β can be efficiently derived given a ∈ QRN and a1, a2 ∈ Z∗

N such that
a1 6= ±a2.

30

Simulating the case that neither party is corrupted: In this case, S generates a simulated
transcript of messages between the hybrid model parties as in the above simulations. We further
claim that the simulated and the hybrid transcripts are identical in the presence of an eavesdropper
A following the same claims as above. Then, combined with the correctness argument we conclude
that the joint output distribution is identical in both executions.

Simulating the case that both parties are corrupted: The simulator S just runsA internally
who generates the messages from both P1 and P2 by itself.

Reducing the soundness: As discussed above this proof only achieves soundness half which is
insufficient for our purposes. In order to achieve negligible soundness in a statistical parameter s,
we invoke s independent copied of this proof such that the verifier chooses an independent new
value y ∈R Z∗

N for every execution.

Recall that this was only the first subproof for proving the validity of an RSA modulus N .
The next step is to prove N is a square free. That is, there does not exist a prime r for which r2

divides N . In [34], Gennaro et al. presented a non-interactive zero-knowledge proof in the common
reference string model for the following language

L2
RSA = {N | N ia a square free ∧∀ primes α, β such that α, β|N,β ∤ (α− 1)}

Their protocol, denoted π2
RSA

, achieves prefect completeness and soundness error 1/d where d is the
smallest factor of N (clearly, the soundness of this protocol can be reduced as well by repeating the
proof enough times). This proof can be utilized for the second subproof of πRSA and completes our
construction. We conclude with protocol πUC

RSA that is combined out of protocols πRSA1
and πRSA2

and prove the following statement,

Proposition 4.2 Let π1
RSA

and π2
RSA

be as above. Then Protocol πUC
RSA

UC realizes FRSA
ZK

in the
{Fcom,FCRS}-hybrid model with negligible soundness.

For completeness we present the formal definition of functionality FCRS is presented in Figure 6.

Functionality FCRS

Functionality FCRS runs with parties P1 and P2 and is parameterized by a distribution D.

• When activated for the first time on input (id, Pi, Pj) from Pi, choose a value crs ←R D, send
crs back to Pi, and send (crs, Pi, Pj) to the adversary. Next, when receiving (id, Pi, Pj) from Pj

(and only Pj), send (id, crs) to Pj and to the adversary, and halt.

Figure 6: The common reference string functionality

Efficiency analysis. Note first that the UC commitment of τ does not require any additional
setup since the key for the scheme is already given within the common reference string. Moreover,
here and below, we consider the instantiations suggested by [11] in which every commitment requires
two exponentiations (which is already the case when using standard schemes). As for the straight-
line zero-knowledge proofs πSL

POW and πSL
DIFF, that are discussed in details in Section 4.1, the additional

cost is embedded within an additional commitment that the prover sends in its first message. Thus

31

the total overhead is 4 · d exponentiations. Finally the computational complexity of the zero-
knowledge proof πUC

RSA
that is presented in Section 4.1.1 is 12 · s exponentiations where s is a

statistical parameter, which is the same order of magnitude as in the stand alone setting. We
conclude with the observation that the round complexity of our protocol is as in πpoly.

4.2 Covert Adversaries

In order to prove security in the presence of covert adversaries with deterrent ǫ = 1/2, it suffices
to ensure that any cheating is caught with probability 1/2. This enables us to use the cut-and-
choose technique in the protocol πpoly with s = 2. This greatly simplifies the protocol, and also
makes it an order of magnitude more efficient. This same idea can also be used to obtain more
efficient zero-knowledge proofs (it suffices to use a protocol with soundness 1/2) and also to prove
that the modulus chosen are correctly formed (see [13] as to how this can be achieved with very
high efficiency). We remark that since we use the statistical error parameter s = 2, party P1 only
chooses two random polynomials q1(·), q2(·) ∈ ZN2

[x]. In addition, τ is a single bit and so no prior
commitment to the challenge is needed. The above yields an extremely efficient protocol that is
fully simulatable in the model for covert adversaries with ǫ deterrent 1

2 . We have the following
theorem:

Theorem 4.3 Assume that LPOW and LDIFF have constant-round zero-knowledge proofs with sound-
ness 1

2 with a constant number of exponentiations, and that (G,E,D) constitutes an homomorphic
semantically secure encryption scheme relative to addition. Then Fpoly can be securely computed
in the presence of covert adversaries with ǫ-deterrent, for ǫ = 1

2 , with a constant number of rounds
and O(d) exponentiations where d is the degree of the polynomial input by P1.

We remark that an exact count of the number of exponentiations required is 15d. We therefore
achieve a level of efficiency far higher than anything previously known.

5 Scalar Product

The scalar product functionality is FSP((a1, . . . , an), (b1, . . . , bn)) = (λ, (a1 ·b1 + . . .+an ·bn)), where
λ denotes the empty string (and therefore P1 does not receive any output) and all computations are
in ZN . Note that the scalar product functionality is actually equivalent to polynomial evaluation in
the case that the values b1, . . . , bn correspond to a series (1, t, t2, . . . , tn−1) (in this case, the result
is a(t) where the coefficients of a(·) are a1, . . . , an). Thus, this functionality can be computed using
the same techniques as for the computation of Fpoly, except that P2 does not need to prove to P1

that the set {ĉi}
d
i=0 corresponds to the powers of a particular value t (indeed they do not need

to correspond). Thus the zero-knowledge proof πPOW is omitted, and everything else remains the
same. We conclude that we can securely compute the scalar product functionality in the presence
of malicious adversaries (with πpoly).

References

[1] H. Lipmaa B. Goethals, S. Laur and T. Mielikäinen. On private scalar product computation
for privacy-preserving data mining. ICISC, 3506:104–120, 2004.

[2] D. Beaver. Foundations of secure interactive computing. CRYPTO, 576:377–391, 1991.

32

[3] J. Vaidya X. Lin C. Clifton, M. Kantarcioglu and M. Zhu. Efficient concurrent zero-knowledge
in the auxiliary string model. EUROCRYPT, 1807:418–430, 2000.

[4] J. Vaidya X. Lin C. Clifton, M. Kantarcioglu and M. Zhu. Tools for privacy preserving
distributed data mining. ACM SIGKDD Explorations, 4(2):28–34, 2002.

[5] V. Vaikuntanathan C. Peikert and B. Waters. A framework for efficient and composable
oblivious transfer. CRYPTO, 5157:554–571, 2008.

[6] J. Camenisch and M. Michels. Proving in zero-knowledge that a number is the product of two
safe primes. EUROCRYPT, 1592:573–590, 1999.

[7] R. Canetti. Security and composition of multiparty cryptographic protocols. Journal of Cryp-
tology, 13(1):143–202, 2000.

[8] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols.
FOCS, pages 136–145, 2001.

[9] Y.C. Chang and C.J. Lu. Oblivious polynomial evaluation and oblivious neural learning.
Theoretical Computer Science, 84(1):38–54, 2005.

[10] I. Damgard and M. Jurik. A generalization, a simplification and some applications of paillier’s
probabilistic public-key system. Proceedings of Public-key Crypography, pages 119–136, 2001.

[11] I. Damgard and J. B. Nielsen. Perfect hiding and perfect binding universally composable
commitment schemes with constant expansion factor. CRYPTO, 2442:3–42, 2002.

[12] N. Mishra G. Aggarwal and B. Pinkas. Secure computation of the k’th-ranked element. EU-
ROCRYPT, 3027:40–55, 2004.

[13] N. Mishra G. Aggarwal and B. Pinkas. Security against covert adversaries: Efficient protocols
for realistic adversaries. TCC, 4392:137–156, 2007.

[14] T. El Gamal. A public-key cryptosystem and a signature scheme based on discrete logarithms.
CRYPTO, 196:10–18, 1984.

[15] N. Gilboa. Two party rsa key generation. CRYPTO, 1666:116–129, 1999.

[16] O. Goldreich. Foundations of Cryptography: Volume 2 – Basic Applications. ambridge Uni-
versity Press, 2004.

[17] O. Goldreich and A. Kahan. How to construct constant-round zero-knowledge proof systems
for np. Journal of Cryptology, 9(3):167–190, 1996.

[18] O. Goldreich and R. Vainish. How to solve any protocol problem - an efficiency improvement.
CRYPTO, 293:73–86, 1987.

[19] S. Goldwasser and L. Levin. Fair computation of general functions in presence of immoral
majority. CRYPTO, 537:77–93, 1990.

[20] M. Green and S. Hohenberger. Blind identity-based encryption and simulatable oblivious
transfer. Asiacrypt, 4833:265–282, 2007.

33

[21] K. Friedl J. Boyar and C. Lund. Practical zero-knowledge proofs: Giving hints and using
deficiencies. Journal of Cryptology, 4(3):185–206, 1991.

[22] G. Neven J. Camenisch and A. Shelat. Simulatable adaptive oblivious transfer. EUROCRYPT,
4515:573–590, 2007.

[23] T. Malkin K. Nissim M. J. Straussk J. Feigenbaum, Y. Ishai and R. N. Wright. Secure
multiparty computation of approximations. ACM Transactions on Algorithms, 2(3):435–472,
2006.

[24] S. Jarecki and V. Shmatikov. Efficient two-party secure computation on committed inputs.
EUROCRYPT, 4515:97–114, 2007.

[25] Y. Lindell. Parallel coin-tossing and constant-round secure two-party computation. Journal
of Cryptology, 16(3):143–184, 2003.

[26] Y. Lindell. Efficient fully-simulatable oblivious transfer. CT-RSA, 4964:52–70, 2008.

[27] Y. Lindell and B. Pinkas. Privacy preserving data mining. Journal of Cryptology, 15(3):177–
206, 2002.

[28] S. Micali and P. Rogaway. Privacy preserving data mining. Unpublished manuscript, 576:392–
404, 1991.

[29] B. Pinkas M.J. Freedman, Y. Ishai and O. Reingold. Keyword search and oblivious pseudo-
random functions. TCC, 3378:303–324, 2005.

[30] M. Naor and B. Pinkas. Oblivious transfer and polynomial evaluation. STOC, pages 245–254,
1999.

[31] S. Micali O. Goldreich and A. Wigderson. How to play any mental game – a completeness
theorem for protocols with honest majority. Journal of Cryptology, pages 218–229, 1987.

[32] P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. EURO-
CRYPT, 1592:223–238, 1991.

[33] E. Kushilevitz R. Canetti and Y. Lindell. On the limitations of universal composable two-party
computation without set-up assumptions. Journal of Cryptology, 19(2):135–167, 2003.

[34] D. Micciancio R. Gennaro and T. Rabin. An efficient non-interactive statistical zero-knowledge
proof system for quasi-safe prime products. Computer and Communications Security, pages
67–72, 1998.

[35] D.E. Knuth R.L. Graham and O. Patashnik. Concrete Mathematics, 2nd edition. Addison-
Wesley, 1994.

[36] J. van de Graaf and R. Peralta. A simple and secure way to show the validity of your public
key. CRYPTO, 293:128–134, 1987.

[37] M. Prabhakaran Y. Ishai and Amit Sahai. Secure arithmetic computation with no honest
majority. TCC, 5444:294–314, 2009.

[38] A. Yao. How to generate and exchange secrets. FOCS, pages 162–167, 1986.

34

[39] H. Zhu and F. Bao. Augmented oblivious polynomial evaluation protocol and its applications.
ESORICS, 3679:222–230, 2005.

35

