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Abstract. We here describe a new Password-based Authenticated Key
Exchange (PAKE) protocol based on elliptic curve cryptography. We
prove it secure in the Bellare-Pointcheval-Rogaway (BPR) model. A sig-
nificant novelty in our work is that our proposal is conceived in a such
a way that it ensures that the elliptic curve public parameters remain
private. This is important in the context of ID contactless devices as, in
this case, there will exist most probably a way to link these parameters
with the nationality of the ID document owners.
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1 Introduction

To enable secure communication over insecure channels, two parties en-
crypt and authenticate their messages using a shared secret key, usually
obtained through key exchange. A key exchange protocol enables the
two parties to establish a common secret in an authenticated way (Au-
thenticated Key Exchange, AKE). The goal is for the session key to be
known only by the parties involved in the protocol; the session key should
be indistinguishable from a random data. Password-based key exchange
protocols are a convenient way to achieve this. The two parties rely on
a shared low-entropy secret (e.g. a four-digit PIN) to derive a common
high-entropy session key.

Password-Based Authenticated Key Exchange (PAKE) protocols are
today considered in the context of identity documents to ensure the secu-
rity of the communications between the chip and a reader [18]. With ma-
chine readable travel documents (MRTD, cf. International Civil Aviation
Organization specifications [14]), the data stored on the machine read-
able zone (MRZ) are seen as low-entropy shared information between the
reader and the chip to establish a secure link. For efficiency constraints,



the protocols usually rely on elliptic curves. Moreover, when these proto-
cols will be used in real ID documents, the parameters will almost surely
depend on the nationality of the document owner (each country keeps
usually its freedom of choice in matter of cryptographic parameters with
respect to its own evaluation of the associated level of security).

However, if one eavesdrops the communication resulting from execu-
tions of an AKE protocol based on elliptic curves, then he would learn
some elliptic curve points and would be able to obtain the elliptic curve
parameters [2]. He therefore retrieves the owner’s nationality as a side
information, thus leading to a privacy leakage and security issues. This
is a great motivation for finding PAKE protocols based on elliptic curves
while hiding the elliptic curve parameters. To the best of our knowledge,
our work is the first to provide a secure solution to this problem.

1.1 Related Works

AKE protocols. Password-based authenticated key exchange was con-
sidered first by Bellovin and Merritt [5]. The goal is to authenticate a key
exchange between two parties based on simple passwords possibly from a
small dictionary that an adversary may know. The basic idea behind the
different schemes described in [5] was to encrypt some messages of the key
exchange (hence the acronym EKE for Encrypted Key Exchange). This
work was followed by many variants and later on several security analy-
sis in different models, e.g. [3–6, 8–10]. The main issue is the resistance
against offline dictionary attacks.

One of the most well-known variant of EKE is Diffie-Hellman EKE
(DH-EKE) which is merely a DH key exchange where at least one message
exchanged under DH is encrypted via the password. Bellare et al. intro-
duced in [3] a formal security model to grasp the specificity of password-
based key exchange. This model was used later in [9, 10] to establish the
security of DH-EKE under ideal assumptions (namely the ideal cipher
model and the Random Oracle Model, ROM). However ideal cipher model
is not easily applicable to elliptic curves and thus in its classical version,
DH-EKE is not well adapted to elliptic curves. A naive application of the
encryption step of DH-EKE to elliptic curves points would lead to an in-
secure scheme. Indeed, due to the redundancy in a point representation,
partition attacks [15] are made possible to distinguish possible passwords
from impossible ones and the security against offline dictionary attacks
does not hold (the main idea is that a decryption with a bad password of
an encrypted point would most probably not be a point over the elliptic
curve). In [8], a modification of the scheme is suggested by using either



a point of the curve or a point over its twist. Although, this enables to
withstand the security issue, the scheme is not proved in the model of [3]
and becomes much less simple than DH-EKE.

Another well-known and widely used PAKE is SPEKE (Simple Pass-
word Exponential Key Exchange) [13]. It is part of the IEEE P1363.2
standard. Likewise, it is based on Diffie-Hellman key exchange but the
password is here used to select the generator of the DH key exchange,
which is then operated without encrypted messages. To do so, a hash of
the password is used to generate a group element, and the security is
based on the ROM. Here again security against offline dictionary attacks
does not hold if you do not have a way to hash into elliptic curves (cf.
also Remark 5).

Finally, in both cases, DH-EKE and SPEKE do not hide the curve
parameters as they can easily be deduced from 2 eavesdropped points.

The BPR (Bellare-Pointcheval-Rogaway) model. Several security
models have been suggested to analyze the security of password-based
AKE. The BPR model [3] is now considered as a standard model for
PAKE protocols. It captures well the security requirements that a PAKE
should satisfy. In particular even if protocols remain subject to online
guessing attacks, they should thwart offline dictionary attacks. Different
protocols have been shown secure in this model. The model is based on
the Find-Then-Guess principle where an adversary – mounting an active
attack against several protocol instances running concurrently – should
not be able to determine whether a session key is the actual one, i.e.
that the key should be indistinguishable from a random string. This also
ensures an implicit authentication between the two parties involved in the
protocol. The model is refined in [1] by requiring that all the concurrent
session keys look random (Real-Or-Random principle).

Admissible Encodings. The notion of admissible encoding has been
introduced by Boneh-Franklin in order to hash into elliptic curves since it
is required for their Identity-Based Encryption scheme [7]. Later, Coron
and Icart [11] have introduced a more general notion of admissible encod-
ings. These encodings are built out of deterministic functions that map
bit strings into elliptic curves such the ones of [12, 16].

An admissible encoding from {0, 1}∗ into a group is a function that
enables to transform any bit string into a group element. Moreover, to
comply with the definition, there must exist a polynomial-time inversion



algorithm that can compute a bit string from a group element. The exis-
tence of this algorithm ensures that a random group element is mapped
into a random bit string. Thanks to these encodings, [11] describes a way
to create a random oracle into an elliptic curve. From [11], we here only
use the fact that a random point can be represented by a random bit
string.

This property can be used within the DH-EKE protocol, as it is much
safer to encrypt random bit strings, especially when the key is directly
derived from a low entropy password.

1.2 Our Contribution

We provide the first PAKE protocol which ensures that the elliptic curve
public parameters remain hidden. This holds even against dictionary at-
tacks. This is made possible thanks to the existence of admissible encod-
ings. Since each elliptic curve point can be seen as a random bit string,
it enables to encrypt a point by processing a bit string through a block
cipher. The password can here be seen as a seed for computing the secret
key used in the block cipher. This has a direct application within DH-
EKE, as an eavesdropper cannot verify which elliptic curve parameters
are used. Since eavesdroppers only see “random” bit strings, whatever
are the elliptic curve public parameters, they cannot tell which ones are
used.

This first construction is a direct application of admissible encodings
on elliptic curves. Moreover, we provide a second PAKE protocol where
we exploit the fact that the knowledge of the elliptic curve parameters
can be interpreted as a shared secret. This is our main result as this
enables to drop out the encryption of EKE while the protocol can still
be proved secure. We introduce complexity assumptions based on the
discrete logarithm problem ensuring that finding one bit string which
represents 2 points with known discrete logarithm from 2 different curves
is hard. These assumptions enable us to prove the security of our Diffie-
Hellman AKE protocol where the password directly relies on the elliptic
curve parameters. The hardness of these new complexity assumptions
holds in the generic group model (as it is proved in the appendix of the
paper). Efficiency of implementation is also discussed in the appendix.

2 Definitions

2.1 Admissible Encoding and Admissible Representation

We here recall the definition of an admissible encoding.



Definition 1. Given 2 random variables X and Y over a set S, we say
that the distribution of X and Y are (ǫ)-statistically indistinguishable if:

∑

s∈S

|Pr(X = s) − Pr(Y = s)| < ǫ.

Moreover, given a security parameter, two distributions are statistically
indistinguishable if they are (ǫ)-statistically indistinguishable for an ǫ neg-
ligible in the security parameter.

Definition 2 (Admissible Encoding, [11]). A function F : S → R is
said to be an ε-admissible encoding if:

1. F is computable in deterministic polynomial time;

2. There exists such a probabilistic polynomial time algorithm IF : given
r ∈ R as input, IF outputs s such that either F (s) = r or s = ⊥,
and the distribution of s is ε-statistically indistinguishable from the
uniform distribution in S when r is uniformly distributed in R.

When an admissible encoding from {0, 1}L into a curve exists, its in-
version algorithm IF enables to transform uniformly distributed elliptic
curve points into uniformly distributed bit strings. Encrypting an elliptic
curve point thus becomes easier when it is represented as a bit string. In
particular, no trivial partition attack is possible.

Icart’s Mapping in Characteristic 2. The equation which defines an
elliptic curve Ea,b in characteristic 2 is of general form:

(Ea,b) Y 2 + XY = X3 + aX2 + b

where a and b are elements of F2n . For an odd n, the map x 7→ x3 is a
bijection. Let

fa,b : F2n 7→ (F2n)2

u 7→ (x, ux + v2)

where v = a + u + u2 and x = (v4 + v3 + b)1/3 + v. It is clear that,
whenever computing a cube root is an exponentiation, computing fa,b is
a deterministic polynomial time algorithm.

Lemma 1 (Hashing into Ea,b, [12]). Let F2n be a field with n odd. For
any u ∈ F2n, fa,b(u) is a point of Ea,b.



We here focus on characteristic 2 version of [12] for two reasons: the com-
putation is simpler than in the general case, and the inverting algorithm
is deterministic and quite easy to implement (cf. Appendix B). Note that
this encoding is not the only known general encoding for elliptic curves.
In [16], Shallue and van de Woestijne proposed another encoding. We
choose to introduce only the encoding from [12] as the encoding from [16]
is not as simple to describe. But it is possible to adapt our work to any
existing admissible encoding.

Let E be an elliptic curve over a field F2n . From such a point encoding
f and a generator G of the group of points, an admissible encoding F from
{0, 1}2n to E can be constructed. Let l be a 2n-bit long string. This string
is split in 2 substrings u||λ where λ is seen as a n-bit integer. We then
introduce what we call in the sequel the Coron-Icart admissible encoding:

F (l) = f(u) + λ · G (1)

The resulting function is proved to be an admissible encoding in [11] with
a negligible ǫ. The main condition on f is to be an encoding that satisfies
a condition weaker than in Definition 2, where the inversion algorithm
needs to work only on a polynomial fraction of the inputs and where
the statistically indistinguishability is measured only with respect to this
fraction. Such encoding is denoted in [11] a weak encoding.

Admissible Representation. We introduce below the notion of admis-
sible representations. These representations are the outputs of IF , when
it is applied to an elliptic curve point.

Definition 3 (Admissible Representation). Assume that F is an ad-
missible encoding from S to R. For any r ∈ R, we define as an admissible
representation of r any output of IF (r).

An element r ∈ R may have many different admissible representations.
Furthermore, an uniformly random r ∈ R has an uniformly random ad-
missible representation s ∈ S. For instance, following Eq. (1) a random
point P of an elliptic curve admits an admissible representation of the
form (u, λ) where u||λ is a random bit string of size 2n.

2.2 BPR Security Model

This model defines the notions of partnership, session key freshness and
security against dictionary attacks. The model considers a set of honest
players who do not deviate from the protocol. The adversary controls



all the communications network. This is an active adversary formalized
through queries. Users can have many protocol instances running concur-
rently. The adversary can create, modify, or forward messages and has
oracle access to the user instances.

Let A and B be two users which can be part of the key exchange
protocol P . Several concurrent instances may run in different executions
of P : they are denoted by Ai and Bj . The server and the user share a
low-entropy secret pw uniformly drawn from a dictionary of size N .

Oracles. The protocol P consists of the execution of a key exchange
algorithm. It is an interactive protocol between Ai and Bj that provides
the instances of A and B with a session key sk. The adversary A has
access to the following oracles for controlling the interactions.

– Execute(Ai, Bj) simulates a passive attack where A eavesdrops the
communication. It causes an honest execution of P between fresh in-
stances Ai and Bj .

– Send(Ui, m) models A sending a message m to instance Ui (U = A
or B). The output is the message generated by U in processing the
message m according to the protocol and the state of the instance. It
simulates an active attack.

– Reveal(Ui) returns the session key of the input instance. This query
models the misuse of the session key by instance Ui. The query is
only available to the adversary if the targeted instance actually holds
a session key (i.e. if the protocol has correctly terminated).

Security Notions. Two instances are defined as partnered if both in-
stances have terminated correctly with the same session key. The fresh-
ness notion captures the fact that a session key has not been directly
leaked. An instance is said to be fresh in the current protocol execution if
the instance has terminated and neither a Reveal query has been called
on the instance nor on a partnered instance.

The Test(Ui) query models the semantic security of the session key.
It is available to the adversary only if the aimed instance is fresh. When
called, the oracle tosses a coin b and returns the session key sk if b = 0
or a random value (from the domain of keys) if b = 1.

The AKE security is then defined as follows. By controlling execu-
tions of the protocol P , the adversary A tries to learn information on the
session keys. The game is initialized by drawing a password pw from the
dictionary and by letting A ask a polynomial number of queries. At the



end of the game, A outputs its guess b′ for the bit output by the Test

oracle.

The AKE advantage of the adversary A for the key exchange protocol
P is denoted

Advake
P (A) = |Pr[b′ = b] −

1

2
|

Definition 4. The protocol P is said to be AKE-secure if the adver-
sary’s advantage is negligible in the security parameter, for any polyno-
mially bounded adversary.

A strategy of proof consists generally in the simulation of all the oracles
to show that there is no leakage.

Remark 1. An oracle Corrupt is also available in this model to analyze
the forward secrecy. When called with respect to one player, the ad-
versary will obtain the player’s password. For AKE with forward secrecy,
the Test query should not be related to a player corrupted before the
Test query. Nevertheless, corruption after the query is allowed.

2.3 Classical Assumption

We recall the classical Computational Diffie-Hellman (CDH) assumption.

Definition 5 (CDH Assumption). Let E be an elliptic curve and G be
a generator of a subgroup of points of prime order. Let A be an algorithm
that:

– inputs two random points P = a · G and Q = b · G;

– and outputs R = ab · G.

The CDH assumption ensures that the best polynomial time adversary
has a negligible probability of success, when the probability is taken over
P and Q.

Throughout this work, we define CDHG(P, Q) to be the correct value of
R. We introduce in the next section assumptions related to this problem
when the elliptic curve parameters are unknown. In particular, given two
elliptic curves E1, E2, we rely on the hardness of finding two admissible
representations l and l′ such that the points CDH(F1(l), F1(l

′)) ∈ E1 and
CDH(F2(l), F2(l

′)) ∈ E2 are known (with Fi an admissible encoding into
Ei, i ∈ {1, 2}).



3 A New Family of Complexity Assumptions

In order to prove the strength of our protocol, we introduce complexity
assumptions that arise from the fact that we are using in the same scheme
different elliptic curve parameters. As already mentioned, these assump-
tions are new due to our specific setting. However, we strongly justify the
difficulty of these assumptions in the sequel. Moreover, in Appendix A
we prove that they hold in the generic group model.

Throughout this section, we use the following definitions. Let k be a
security parameter. Let S be a set of N = poly(k) sets of elliptic curve
parameters: {ai, bi, qi, Gi}i∈[1,N ] over a field F2n (i.e. elliptic curves Ei :=
Eai,bi

over F2n with a point Gi, generator of a subgroup of points of order
qi) such that:

– for each i, an admissible encoding (cf. Definition 2) exists over Eai,bi
;

– qi is a prime integer and its cofactor is 2 (more generally we need the
same cofactor for all curves);

– for all i 6= j, we have qi 6= qj .

The last point ensures that there does not exist an isomorphism between
the different curves. It is important since it ensures that the discrete
logarithm of a point over Ei is not related to a discrete logarithm over
another Ej .

Let Fi be the admissible encoding associated to Ei. In the sequel,
we mainly focus on the Coron-Icart admissible encoding obtained via
Equation. (1) (Section 2.1) with the point encoding from [12]. It ensures
that an admissible representation of size 2n exists for almost all points.

3.1 Hard Problems around the Discrete Logarithm of the
Points Pi

One question arises from this setting: Given a bit string l, is the discrete
logarithm of each Pi = Fi(l) in basis Gi still hard to compute?

Since an admissible encoding has an inversion algorithm, over each
curve Ei, given a point with an unknown discrete logarithm, we can al-
most always (except with a negligible probability) compute one of its
admissible representations and thus we have:

Lemma 2. Assume that Fi is an admissible encoding. Computing the
discrete logarithm of any Pi = Fi(l) with the knowledge of l is as hard as
solving the discrete logarithm problem over the curve Ei.



When an adversary computes an admissible representation l of a point
Pi over Ei, we also want that for each admissible representation, his ad-
vantage on the discrete logarithm of Pj = Fj(l) in basis Gj over Ej , for
some j 6= i, remains negligible.

Definition 6 (Admissible Encoding Twin Discrete Logarithm As-
sumption). Let A be an algorithm that:

– inputs S;

– outputs l and a pair (ri, rj) ∈
(

Z/qiZ
× × Z/qjZ

×
)

such that

Pi = Fi(l) = ri · Gi and Pj = Fj(l) = rj · Gj.

The AET-DL assumption holds if any polynomial algorithm succeeds with
a negligible probability, when the probability is taken over S.

Remark 2. This assumption can be expressed differently for the Coron-
Icart admissible encoding of Eq. (1). Indeed, for this encoding, l is a pair
of values (u, λ) such that Fi(l) = fi(u) + λ · Gi. Clearly, finding u and
a pair (ri, rj) such that fi(u) = ri · Gi and fj(u) = rj · Gj is equivalent
to solving the AET-DL problem. The problem is thus to find r1, r2 such
that f−1

1 (r1 · G1) ∩ f−1
2 (r2 · G2) is a non-empty set. For a random pair

(G, G′) ∈ Ei × Ej the probability to have a u such that fi(u) = G and
fj(u) = G′ is at most 4× 4

2n = 2−(n−4) for the Icart mapping, because any
point has at most 4 preimages (see [12]) through this mapping. Since the
scalar multiplication is a one-way map in each Ei, it is computationally
hard to find such pairs.

In addition to the above justification of the difficulty of the AET-DL
problem, we formally prove in the generic group model the hardness of
this AET-DL problem in Appendix A.

Definition 7 (Admissible Encoding Twin Computational Diffie-
Hellman Assumption). Let A be an algorithm that:

– inputs S and l;

– outputs l′ and a pair of points (Ri, Rj) (both points different from the
neutral element) such that

CDHGi
(Fi(l), Fi(l

′)) = Ri and CDHGj
(Fj(l), Fj(l

′)) = Rj.

The AET-CDH assumption holds if any polynomial time adversary has a
negligible probability of success, when the probability is taken over S and
l.



This assumption is stronger than the AET-DL assumption because the
AET-CDH problem can be solved using the l, ri, rj of the AET-DL as-
sumption.

Remark 3. Due to the special form of admissible encodings defined by
Eq. (1), Fi can be replaced by fi in this assumption. For this reason,
the AET-CDH assumption ensures that an adversary, who receives a
bit string u, cannot compute u′ such that over Ei and Ej he knows
both CDHGi

(fi(u
′), fi(u)) and CDHGj

(fj(u
′), fj(u)). It is easily seen that

CDHGi
(fi(u

′), fi(u)) = Ri implies CDHfi(u)(Gi, Ri) = fi(u
′). The AET-

CDH problem is thus to find Ri ∈ Ei and Rj ∈ Ej such that

f−1
i (CDHfi(u)(Gi, Ri)) ∩ f−1

j (CDHfj(u)(Gj , Rj)) 6= ∅

As above, the probability for a random pair (G, G′) ∈ Ei × Ej to have
a u′ such that fi(u

′) = G and fj(u
′) = G′ is at most 4 × 4

2n = 2−(n−4)

for the Icart mapping. Thanks to AET-DL, choosing u such that the
adversary knows both logarithms of Gi in basis fi(u) and Gj in basis
fj(u) is hard. Thus either the map Ri 7→ CDHfi(u)(Gi, Ri) or the map
Rj 7→ CDHfj(u)(Gj , Rj) is one way. Consequently, it is computationally
hard to find a pair (Ri,Rj).

As for the AET-DL assumption, the proof of the validity of the AET-
CDH assumption in the generic group model is given in Appendix A.

Remark 4. The AET-DL assumption is stronger than the DL assumption.
Likewise, AET-CDH is a stronger assumption than the CDH assumption
over any elliptic curve Ei. Indeed, AET-CDH is trivial if, for one curve
Ej , CDH is an easy problem. The following algorithm illustrates this.

1. Randomly select ri, compute Pi = ri · Gi, Ri = ri · Fi(l).

2. Compute l′ = IFi
(Pi).

3. Compute Rj = CDHGj
(Fj(l), Fj(l

′)) and return l′, Ri, Rj .

We finally introduce a last assumption, which is the password based
variant of the AET-DL assumption.

Definition 8 (n-Password Based Admissible Encoding Twin Com-
putational Diffie-Hellman Assumption). Let Pπ be a point over
Eaπ,bπ

. Let l be an admissible representation of Pπ (Pπ = Fπ(l)). Let
A be a polynomial algorithm that:

– inputs S and l;



– outputs l′, K1, . . . , Kn, where each Ki is a point of one of the curves
in S.

The n-PAET-CDH assumption holds if any polynomial adversary A has
a probability 1/N + ε to have returned one Ki such that

CDHGπ(Fπ(l), Fπ(l′)) = Ki,

where ε is negligible and N corresponds to the dictionary size (i.e. the
number of possible curves).

In this assumption, ε is the advantage of the algorithm over the value of
π. Indeed, a trivial way to solve the n-PAET-CDH problem is, from S and
l, to randomly choose a j ∈ [1, N ] and to assume that j = π. This has a
probability at least 1/N to succeed. Further, this assumption implies the
AET-CDH assumption. Indeed an algorithm Aaet−cdh, which solves the
AET-CDH problem, can be transformed into an adversary which solves
the n-PAET-CDH problem with ε = 1/N . The following lemma proves
that the converse is also true.

Lemma 3. The AET-CDH assumption implies the n-PAET-CDH as-
sumption, for any n.

Proof. Let Succx be the probability of success of the best adversary
against the problem x. Let Eventi be the event that an algorithm out-
puts i ≤ n points Kj1 , . . . , Kji

such that

CDHGji
(Fji

(l), Fji
(l′)) = Kji

We have:

Pr
[

Succpaet−cdh
]

≤

min(N,n)
∑

i=1

Pr [Eventi]
i

N

It is easily seen that for all i ≥ 2, Pr [Eventi] ≤ Pr
[

Succaet−cdh
]

. This
leads to:

Pr
[

Succpaet−cdh
]

≤ Pr [Event1]
1

N
+ Pr

[

Succaet−cdh
] N − 1

2

≤
1

N
+ Pr

[

Succaet−cdh
] N − 1

2

If Pr
[

Succaet−cdh
]

is negligible, since N is polynomial, then:

Pr
[

Succpaet−cdh
]

=
1

N
+ ε

⊓⊔



4 The EC-DH-EKE Protocol with an Admissible

Encoding

The Diffie-Hellman Encrypted Key Exchange (DH-EKE) protocol is roughly
a DH key exchange where each data sent is encrypted by a block cipher
with a key derived from a shared secret. This protocol has been intro-
duced in [5], extended in [3], and proved in the ideal cipher model and
random oracle model under the CDH assumption in [9]. Its basic flows are
presented in Figure 1 (a complete execution, with the final authentication
checks, is given in Figure 2 in our elliptic curve instantiation).

Device parameters : E, N, G Reader
password π password π
Compute Kpw = H(π) Compute Kpw = H(π)
Pick α Pick β

Compute G1 = α ·G
z1=EKpw

(G1)
−−−−−−−−−−−−−−−−→ Compute G2 = β ·G

z2=EKpw
(G2)

←−−−−−−−−−−−−−−−−

Compute K = α · DKpw
(z2) Compute K = β · DKpw

(z1)

Fig. 1. Basic flows of the DH-EKE scheme

Note however that it is assumed that the ideal cipher inputs group ele-
ments. Consequently, a naive implementation of the DH-EKE over elliptic
curves could be insecure. Indeed, the encryption of a point P = (x, y) with
a key Kpw = H(π) leads to a ciphertext z = EKpw(x||y). However, for any
password π′ 6= π, the decryption of z is not a point over the elliptic curve
with an overwhelming probability. This leads to an offline dictionary at-
tack (see for instance [8]). More generally, since there exists a redundancy
in the representation of P = (x, y), it is difficult to encrypt P without
having a dictionary attack. The encryption over the elliptic curves points
should in fact be a permutation. One possibility to address this problem
is to represent P thanks to an admissible representation. Hence applying
a classical cipher would become possible.

4.1 Parameters

Let k be a security parameter. Let H be a hash function with {0, 1}l as
range. Let N be the size of D, the dictionary of the different passwords.
Let Ea,b be an elliptic curve over F22k+1 with an admissible encoding F
(and a related inversion algorithm IF ) and G be a generator of its prime
order subgroup of order q, with a cofactor 2.



We assume that the protocol takes place between different devices D
and a reader R. Each device possesses a password π ∈ D.

4.2 EC-DH-EKE

The DH-EKE scheme has been proved secure in [9] in the ideal cipher
model and the random oracle model under the CDH assumption. How-
ever, the ideal cipher requires to manage group elements as inputs.

Thanks to the admissible encoding, a group element can be seen as a
bit-string. For this reason, a real implementation of the protocol is much
more realistic because the ideal cipher can be instantiated by a cipher
such as AES-128 in ECB mode, while an ideal cipher over elliptic curve
points is still to be found. The resulting protocol is described by Figure 2.

Device Reader
parameters : Ea,b, N, G

password π password π
Compute Kpw = H(π) Compute Kpw = H(π)
Pick α Pick β
Compute G1 = α ·G Compute G2 = β ·G
Compute l1 = IF (G1) Compute l2 = IF (G2)

z1=EKpw
(l1)

−−−−−−−−−−−−−−−→

z2=EKpw
(l2)

←−−−−−−−−−−−−−−−

Compute l2 = DKpw
(z2) Compute l1 = DKpw

(z1)
Compute K = α · F (l2) Compute K = β · F (l1)
Compute K = H(K, z1, z2) Compute K = H(K, z1, z2)
Compute Kenc = H(K, 1) Compute Kenc = H(K, 1)
Compute Kmac = H(K, 2) Compute Kmac = H(K, 2)
Compute TD = H (Kmac, z2) Compute TR = H (Kmac, z1)

TD
−−−−−−−−−−−−−−−→

TR
←−−−−−−−−−−−−−−−

Abort if TR invalid Abort if TD invalid

Fig. 2. The EC-DH-EKE scheme with an Admissible Encoding

This finally leads to an efficient and secure protocol. Additionally, the
elliptic curves parameters remain hidden from an eavesdropper, since it
only sees some encryption of statistically indistinguishable bit string.

Remark 5. In the masked DH-EKE variant, which is proved in [10] in the
ROM only, the encryption primitive is a mask generation function instead
of an ideal cipher; the Diffie-Hellman values sent are masked by addition
with a full-range hash of the password. Here a similar problem arises: the



hash needs to be a ROM into elliptic curves. It is possible to use the [11]
ROM construction, which is based on Admissible Encoding, to hash the
password. But in that case the elliptic curves parameters will not be kept
hidden as the resulting ciphertexts are points on the curve.

Remark 6 (Eavesdroppers without the Elliptic Curve Parameters). The
family of DH-EKE protocol is secure against offline dictionary attacks un-
der the CDH assumption: an adversary has to compute K = CDHG(G1, G2)
to get some information on the password. Indeed, based on CDH and the
ROM, the distribution of G1, G2, TD, TR is computationally indistinguish-
able from the uniform distribution over E2

a,b×{0, 1}2l. Using this property
and the property of the admissible encoding (cf. Definition 2), we know
that l1 and l2 are bit strings computationally indistinguishable from ran-
dom ones. In the ideal cipher model, this implies that the z1, z2, TD, TR

are indistinguishable from random strings as well. For this reason, an ad-
versary who does not know the elliptic curve parameters, cannot compute
them, even if he has a list of curves parameters.

5 Our Proposal of Password Based EC-DH Key Exchange

without Encryption

In the EC-DH-EKE scheme (Figure 2), we use the admissible representa-
tion in order to encrypt properly elliptic curves points. As an additional
benefit, this protocol also ensures the privacy of the elliptic curve pa-
rameters. Following this last idea, we modify further the EC-DH-EKE
protocol in order to base the authentication directly on the knowledge of
the elliptic curve parameters instead of the knowledge of an additional
password.

Our proposal is similar to our EC-DH-EKE variant: points are rep-
resented by an admissible representation. But we did not encrypt the
representations anymore. Since the distribution of l1, l2, TD, TR is com-
putationally indistinguishable from the uniform distribution, exchanging
these values in clear makes no difference from an eavesdropper point of
view. This enables to avoid the use of an ideal cipher in the security anal-
ysis. In the sequel, we denote our scheme EC-DH-ARKE which stands for
Elliptic Curve Diffie-Hellman Admissibly Represented Key Exchange.

In our scheme, the dictionary of passwords becomes a set of different
elliptic curves parameters indexed by a table.



5.1 Parameters

Let k be a security parameter and N a polynomial integer in k. Let
H0,H1,H2 be 3 hash functions with {0, 1}l as range. Let F2n be a field
such that there exist efficient admissible encodings and such that 2n =
O(22k). Let S = {ai, bi, Gi, qi}i∈[1,N ] be a set of elliptic curve parameters
such that Gi is a generator of the prime order group of Ei = Eai,bi

of
order qi and let Fi be the associated admissible encoding. It is assumed
that the cofactor is the same (2) for each group of points. We also assume
that the prime integers qi are pair-wise distinct. This last condition is
sufficient to ensure that no isomorphism exists between any pair (Ei, Ej)
with i 6= j.

5.2 The EC-DH-ARKE Protocol

During the initialization phase, each reader receives the set S as input
and each device receives one element of S as parameters. It can further
define its own public discrete logarithm based pair of public/secret keys
with these parameters. The index i related to these parameters is given
to the device owner. We stress that the set S does not need to remain
secret. We use the index in order to enable a user to typeset data related
to the parameter.

At the beginning of each authentication, the device holder has to type-
set one index and then the reader verifies that the index corresponds to
the elliptic curve parameters used by the device. The protocol is illus-
trated in Figure 3.

Implementation issues are discussed in Appendix B to illustrate that
the protocol EC-DH-ARKE can be made efficient to use.

5.3 Security Result

Our proposal is secure in the random oracle model under the AET-CDH
assumption. More concretely:

Theorem 1 (AKE security). Let S be a randomly chosen set of N
elliptic curve parameters as above. Let π be an uniformly chosen index in
[1, N ]. Assume that H0, H1, H2 are random oracles. Let A be an adver-
sary in the BPR model against the AKE security of our scheme within a
time T , with less than qs interactions with the parties, qp eavesdroppings
and qh hash queries. We have:

Advake
EC−DH−ARKE(A) ≤ qsSuccqh−paet−cdh(T ′) + qpSucccdh(T ′) + ε



Device Reader
password : Eaπ,bπ

, qπ , Gπ password : Eaπ,bπ
, qπ , Gπ

Pick α Pick β
Compute G1 = α ·Gπ Compute G2 = β ·Gπ

Compute l1 = IFπ
(G1) Compute l2 = IFπ

(G2)
l1

−−−−−−−−−−−−−−−→

l2
←−−−−−−−−−−−−−−−

Compute K = α ·G2 Compute K = β ·G1

= α · Fπ(l2) = β · Fπ(l1)
Compute K = H0(K, l1, l2) Compute K = H0(K, l1, l2)
Compute Kenc = H1(K, 1) Compute Kenc = H1(K, 1)
Compute Kmac = H1(K, 2) Compute Kmac = H1(K, 2)
Compute TD = H2 (Kmac, l2) Compute TR = H2 (Kmac, l1)

TD
−−−−−−−−−−−−−−−→

TR
←−−−−−−−−−−−−−−−

Abort if TR invalid Abort if TD invalid

Fig. 3. Our proposal EC-DH-ARKE

where T ′ = T +O(Q2), where Q = qs + qh + qp and ε is negligible if qs, qp

and qh are polynomial in k.

The security of this protocol relies on two ideas:

1. a passive eavesdropper does not get any information on the exchanged
data whenever the CDH is a hard problem for any curve in S;

2. an active adversary can find the password by an online dictionary
attack with a probability 1/N . In fact, an adversary can always be
turned into an algorithm, which solves the PAET-CDH problem with
almost the same probability.

Remark 7. By definition of an admissible encoding, the inversion algo-
rithm runs in probabilistic time (see Definition 2), thus the implemen-
tation of the protocol could result on a non-constant execution runtime
(that is depending of the curve used, i.e. of the password); which in a
practical application may represent a privacy risk. In Appendix B.2, we
explain that a polynomial adversary cannot exploit this information to
distinguish two curves.

5.4 Security Proof

Proof. We use a sequence of game in order to prove the security of the
protocol. In the sequel Pr[Gi] denotes the probability in the game Gi that
the adversary outputs the good guess b′ = b.



Game G0: This is the real security game. A set of N parameters is
chosen, the device receives one element of S and the reader receives the
same, while the set S is given to the adversary. The reader and the device
act as described in Figure 3. We assume that H0,H1,H2 are random
oracles into {0, 1}l.

Once the Test query is sent, following a randomly chosen bit b, the
key Kenc or a random string is returned. Hence

Advake
EC−DH−ARKE(A) = |Pr[G0] − 1/2|

Game G1: We simulate the device and the reader for each query to the
Send, Execute, Test and Reveal oracles, as the real players would do.
We also simulate the random oracles H0,H1,H2. This does not change
the adversary advantage but modifies the duration of the simulation be-
cause of the necessary table lookups. We thus have T ′[G1] = T + O(Q2).

Game G2: We abort the simulation if a collision occurs while simulating
one of the random oracles. A collision occurs with a probability Q2/2l+1

for each random oracle. We thus have:

|Pr[G2] − Pr[G1]| ≤ 5 ×
Q2

2l+1

From this game, we are almost sure that the values of K are different.
This property is also true for Kenc, Kmac, TD, TR.

Game G3: We simulate the Execute oracle using random values. To
distinguish this game from the previous one, the adversary needs to solve
the CDH problem over a curve for at least one pair (l1, l2) exchanged
during one of the Execute queries. For this reason, we have:

|Pr[G3] − Pr[G2]| ≤ qpSucccdh(T ′)

Game G4: We abort the simulation when we get a collision on elliptic
curve points chosen at the beginning. Since there are qπ points in the
curve, we have that:

|Pr[G4] − Pr[G3]| ≤
Q2

qπ

From this game, we know that the admissible representations returned
by the simulation are pair-wise distinct.
Game G5: We abort when one triplet (CDHGπ(Fπ(l1), Fπ(l2)), l1, l2) is
queried a second time to H0, while l1, l2 are values exchanged during one



instance I initiated by the query Send. When this second query to H0

occurs, we know that the adversary knows the value K of the instance I.
We have assumed that the adversary does not make two identical queries
to any random oracle.

Before this abortion, the adversary does not have any advantage over
the password π since he has observed random values (due to the admis-
sible representations property, see Section 2.1) that he could not verify,
without querying H0 with a correct query. Once this event happens, we
determine l, the value amongst l1 or l2, that we sent when we simulated
the Send query. We then get all the triplets queried to the random oracle
H0 by the adversary, which contains l. These triplets form an answer to
the PAET-CDH problem. For this reason we have:

|Pr[G5] − Pr[G4]| ≤ qsSuccqh−paet−cdh(T ′)

Game G6: We do not use H1 and H2 anymore when we simulate the
execution of the protocol. For this reason, the Reveal query does not
give any information such as the Send query concerning TR and TD. We
thus have:

Pr[G6] = 1/2

Furthermore, since the adversary did not compute K in any instance,
there is no difference from the adversary point of view between G5 and
G6. So Pr[G5] = Pr[G6]. ⊓⊔

Note that in the above security result, the ROM hypothesis is needed
only to simulate the flow part (TD, TR), the ROM is not used in the
simulation of the first part (key exchange, l1, l2) of the protocol. Only
our complexity assumptions (cf. Section 3) are necessary for this part.
This result holds in the forward secrecy setting (cf. Remark 1) as well.

6 Conclusion and Further Works

This paper describes a new and efficient Password-based Authenticated
Key Exchange protocol which is especially adapted for elliptic curves. Par-
ticularly, it enables to keep the elliptic curves parameters hidden. In the
context of contactless ID documents, this opens a way for implementing
realistic solutions which preserve privacy of the owners; especially their
nationality. As extensions of this work, a good perspective is to apply our
technique on the enhanced versions of EKE which are secure in a more
general model (e.g. UC) or with standard assumptions (standard model).



An implementation in a PKI context with the property that the curve
parameters remain hidden is also a possible application of our idea. For
instance, a smartcard could contain a certified public key which is stored
directly in its admissible representation.

Note that the implementation issues are discussed in the characteristic
2 context for simplicity. Applications to characteristic p > 2 when p is
approximately a power of 2 (i.e. a pseudo-Mersenne prime as for the
curves recommended by NIST) are also possible.
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A Analysis of our Security Assumptions in the Generic

Group Model

The generic group model is an idealized model, where the adversary is
only given access to representation of elements of the group. Indeed, the
representation is computed by a random one-to-one encoding σ from the
group G to an arbitrary set S. To make some group computations, the
adversary has only access to two oracles: Add and Inv. For instance, we
have:

Add(σ(x1), σ(x2)) = σ(x1 + x2) Inv(σ(x1)) = σ(−x1)

Since the encoding is chosen at random, the value σ(x1) in S does not give
any information on x1. The aim of this model is to prove the hardness
of security assumption as in [17] for the generic hardness of the Discrete
logarithm problem and the Diffie-Hellman problem. Our aim here is to
prove that our assumptions, AET-DL and AET-CDH, hold in this model.

A.1 The AET-DL Assumption

Since we rely on the existing construction from [11] of admissible encod-
ings which is based on weak encodings (cf. Eq. (1), Section 2.1), we give
here the definition of an equivalent problem to the Admissible Encoding
Twin Discrete Logarithm (AET-DL) problem defined in Section 3 with
the use of weak encoding. Let {fi} be the family of the different weak
encodings related to the family of curves. We here give a version with
only 2 elliptic curves but the proof with N curves is similar.



Definition 9. Let A be an algorithm that:

– inputs S;
– outputs l and a pair (r1, r2) ∈

(

Z/q1Z
× × Z/q2Z

×
)

such that
P1 = f1(l) = r1 · G1 and P2 = f2(l) = r2 · G2.

The AET-DL assumption holds if any polynomial algorithm succeeds with
a negligible probability, when the probability is taken over S.

To prove that this assumption holds in the generic group model, we
assume that each point on both curves is represented thanks to an en-
coding σi from Ei to Si, with |Si| = |Ei|. We assume that the generator
Gi is represented by si,Gi

∈ Si. In this setting, a weak encoding fi maps
elements of F2n to elements in Si, which can be used within the group
operation oracles. We also assume that each fi has at most B preimages
for each curve (B = 4 with the weak encoding defined in Section 2.1) and
that the cofactor is 2 for each curve.

Theorem 2. Assume that an algorithm A has made Q queries to the
group oracles, then its probability over the choice of {σi}i∈[1,N ] to compute

ri and rj such that f−1
i (σi(ri ·Gi))∩f−1

j (σj(rj ·Gj)) 6= ∅ is at most B3·Q2

2n .

This theorem proves that the AET-DL assumption holds in the generic
group model. We prove it for N = 2 and then we generalize it to larger
N .

Proof. Let C be a set of pairs c ∈ S1 ×S2 such that for each c ∈ C, there
exists l ∈ F2n with c = (f1(l), f2(l)). However, fi is only a weak encoding
and thus an element of C may have up to B preimages. For this reason,
|C| > 2n/B.

Hence A needs to find the discrete logarithms of one pair c = (f1(l), f2(l))
of C. Let Q1 and Q2 be the number of queries made to the oracles for
the group E1 and the group E2.

The Q1 queries made to the E1 oracle can be divided into 2 types:

– Q′1 queries made from s1,G1 : any query such that the discrete loga-
rithm in basis G1 of the result is known to A,

– Q′′1 = Q1 − Q′1 other queries.

We want to bound the number of discrete logarithms in basis G1 known
to A. After Q′′1 non trivial queries to the group law oracles, A may have
computed discrete logarithms with probability at most (Q′′1)

2/q1. After
the Q′1 +Q′′1 to the oracles, a non-trivial collision may have occur between



the outputs of the Q′1 and Q′′1 queries. This occurs with probability Q′1 ·
Q′′1/q1.

Until these events occur, A only knows Q′1 discrete logarithm of el-
ements in S1 in basis G1, and each element can be part of at most B
elements of C. This probability can be also computed for the second
group and we define the same way Q′2 and Q′′2.

We eventually bound the probability that A finds the discrete loga-
rithms of an element of C:

Pr[Succ(A)] <
Q′′1 · Q1

q1
+

Q′′2 · Q2

q2
+ (B · Q′1) · (B · Q′2) ·

1

|C|

Since Q1 + Q2 = Q, Q′1 + Q′′1 = Q1 and Q′2 + Q′′2 = Q2, it is easily seen
that4:

Pr[Succ(A)] <
B3 · Q2

2n

For larger N > 2, we have:

Pr[Succ(A)] <
N

∑

i=0

Q′′i · Qi

qi
+

∑

0<i<j<N

(B · Q′i) · (B · Q′j) ·
1

|Ci,j |

Carefully bounding the probability leads to:

Pr[Succ(A)] <
B3 · Q2

2n

⊓⊔

A.2 The AET-CDH Assumption

Once more, we give here the definition of the equivalent problem based
on a weak encoding with respect to the Admissible Encoding Twin Com-
putational Diffie-Hellman (AET-CDH) problem defined in Section 3.

Definition 10. Let A be an algorithm that:

– inputs S and l;
– outputs l′ and a pair of points (Ri, Rj) such that

CDHGi
(fi(l), fi(l

′)) = Ri and CDHGj
(fj(l), fj(l

′)) = Rj.

The AET-CDH assumption holds if any polynomial time adversary has a
negligible probability of success, when the probability is taken over S and
l.
4 We have assumed that B > 1 and that the cofactor is 2



Theorem 3. Assume that an algorithm A has made Q queries to the
group oracles, then its probability over the choice of {σi}i∈[1,N ] to compute
Ri and Rj such that
f−1

i (σi(CDHfi(l)(Gi, Ri))) ∩ f−1
j (σj(CDHfj(l)(Gj , Rj))) 6= ∅ is at most

B3·Q2

2n .

Proof. As for the proof of the AET-DL problem, we define the set C of
pairs (f1(l), f2(l)). We also distinguish different types of queries to the
group oracle:

– Q′1 queries made from s1,G1 : any query such that the discrete loga-
rithm of the result is known to the algorithm in basis G1,

– Q′′1 queries made from f1(l),
– Q′′′1 = Q1 − Q′1 − Q′′l other queries.

From these notations, we know that with probability 1− (Q′1 + Q′′1)
2/q1,

A does not have any information on the discrete logarithm of f1(l) in
base G1. We can also bound the probability that A computes discrete
logarithms in basis G1: Q′′′1 · Q1/q1

Assuming this, we know that A may solve at most Q′1 computational
Diffie-Hellman values of the form CDHfi(l)(Gi, Ri). Indeed, A has to com-
pute CDHfi(l)(Gi, Ri) from Gi even if it does not have computed Ri.

For this reason, we can bound the success probability of A:

Pr[Succ(A)] <
(Q′1 + Q′′1)

2 + Q′′′1 · Q1

q1
+

(Q′2 + Q′′2)
2 + Q′′′2 · Q2

q2
+(B·Q′1)·(B·Q′2)·

1

|C|

This leads to the expected bound. Eventually, we can generalize it to
N > 2. ⊓⊔

Hence, both of our new assumptions are secure in the generic group model.

B Implementation Issues

We here describe how to implement the inversion map IF for F defined
by Eq. (1) thanks to the Icart mapping. We focus on this point, since the
other computations are straightforward. We recall the complete algorithm
to compute IF , this algorithm is described by [11] and it uses the algo-
rithm Inv which is explained in the next section. q is the group order of
the elliptic curve group of points. Concerning the choice of curves, NIST
curves B-233 or B-283 are good examples of curves where our scheme
applies.



Algorithm If

Input: P ∈ Ea,b

Output: u ∈ F2n such that
fa,b(u) = P or u = ⊥

1. Compute the set U = f−1
a,b (P )

using algorithm Inv

2. Let δP = |U |/4
3. With probability 1 − δP re-

turn ⊥
4. Return a random element u

in U .

Algorithm IF

Input: P ∈ Ea,b

Output: (u, λ) ∈ F2n × Zq such
that P = F (u, λ) = fa,b(u)+λ.G,
or ⊥
1. For i = 1 to T = −k/ log(1−

2n−2/q):
(a) Randomly chooses λ ∈

ZN and computes Z =
λ.G

(b) Let X = P − Z ∈ G

(c) Compute a = If (X)
(d) If a 6= ⊥, return (a, λ)

2. Return ⊥.

B.1 Computing a Preimage with the Algorithm Inv

Inverting the Icart mapping [12] in characteristic 2 is possible by com-
puting the roots of a degree 4 polynomial. Given a point P = (x, y) on
an elliptic curve Ea,b of equation (X3 + aX2 + b = Y (X + Y )), we know
that u is a preimage of P if and only if y +a2 +ux+u2 +u4 = 0. One can
remark that this equation is F2 linear. For this reason, finding its roots
requires to solve a linear system over F2. The matrix related to the linear
function u 7→ u4 +u2 +ux is easy to compute. Solving a linear system can
be done thanks to Gaussian elimination. This operation requires O(n3)
binary operations. Furthermore, over a platform with registers of size w,
the running time is O(n3/w). Moreover, the inverting algorithm Inv is
thus deterministic.

To compute the inverse of the admissible encoding, it is not necessary
to compute the set U of solutions but only its cardinality, which is the
number of roots of the equation y +a2 +ux+u2 +u4 = 0. One possibility
is to compute each time the matrix and its row echelon. However, a more
clever way is to compute the greatest common divisor of P (U) = y+a2 +
Ux + U2 + U4 with U2n

− U . This does not change the complexity but
it reduces the memory requirement for the algorithm, from n2 bits to 4n
bits.

Remark 8. One can remark that the polynomial U2n
mod P is necessar-

ily a F2 linear polynomial. Furthermore, it can be expressed thanks to a
polynomial expression in x, y and a2.



B.2 The Overall Running Time

In the algorithm IF , the process has to be repeated at most T times. If one
wants a deterministic algorithm, one can run exactly T = −k/ log(1−α)
times the inversion process, where α = 2n−2/q. However, in the general
case, a deterministic algorithm is not necessary. The average number of
steps of the probabilistic algorithm is 1/α. This average running time
could leak information on the elliptic curve parameter since α = 2n−2/q.
However, since we have assumed that the cofactor of each curve is 2, we
know that q is near from 2n−1 thanks to the Hasse bound. This ensures
that for two different elliptic curves E1, E2, we have

∣

∣

∣

∣

1

α1
−

1

α2

∣

∣

∣

∣

≤ 23−n/2

Hence it requires an exponential number of observations to distinguish
the running times 1/α1 and 1/α2.

To summarize, the running time of the algorithm is O(n3/w), while
the memory requirement is O(n2), leading to the feasibility of practical
implementations.

B.3 Minimizing the Communication Cost

It is possible to reduce the size of the exchanged data whenever the ad-
missible encoding is the one defined by Equation (1), Section 2.1. In-
deed, instead of sending l = (u||λ) in the protocol, both participants can
send u only. Assume that the device receives u2, it then computes fπ(u2)
and to get the key, it computes (α − λ1) · fπ(u2). It is easily seen that
fπ(u2) = (β − λ2) · Gπ, thus K = (α − λ1)(β − λ2) · Gπ for the device.
The reader, from u1 can also compute this key, which is the seed for the
future session key.

This simple trick reduces the total amount of data exchanged during
the protocol and thus makes it more efficient. However, this trick is not
general and can only be use with some particular admissible encoding.
We remark that this enables to send only 1 element in F2n instead of 2
for a classical representation of an elliptic curve point. It is in fact less
than the classical compressed representation (one F2n element and one
additional bit).


