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Abstract. We show how to express an arbitrary integer interval 7 =
[0, H] as a sumset Z = Zle Gi # [0,u — 1] + [0, H'] of smaller integer
intervals for some small values ¢, u, and H' < u — 1, where b* A = {ba :
a€ Ay and A+ B={a+b:a€ ANbe B}. We show how to derive
such expression of 7 as a sumset for any value of 1 < u < H, and in
particular, how the coefficients G; can be found by using a nontrivial
but efficient algorithm. This result may be interesting by itself in the
context of additive combinatorics. Given the sumset-representation of
Z, we show how to decrease both the communication complexity and
the computational complexity of the recent pairing-based range proof of
Camenisch, Chaabouni and shelat from ASTACRYPT 2008 by a factor of
2. Our results are important in applications like e-voting where a voting
server has to verify thousands of proofs of e-vote correctness per hour.
Therefore, our new result in additive combinatorics has direct relevance
in practice.

Keywords. Additive combinatorics, cryptographic range proof, sumset,
zero knowledge.

1 Introduction

In a cryptographic range proof, the prover proves in zero knowledge that for
given C' and H, C is a commitment of some element o € [0, H]. (Modifying it
to general ranges [L, H] is trivial when one uses a homomorphic commitment
scheme.) Range proofs are needed in various applications like e-voting [10, 11]
(where usually H + 1 is the number of candidates, that is, relatively small —
though in the case of certain elections, there may be thousands of candidates),
e-auctions [16] (where H + 1 is the number of number of possible bids, that is,
relatively large), e-cash, etc. Range proofs with communication complexity O(1)
were introduced in [4, 15].

However, such proofs work under very specific security assumptions, and
thus there is still interest in protocols that are based on the discrete logarithm
scenario. There exists a well-known folklore cryptographic range proof, see for
example [11], in the special case when H = u’ — 1 for some integers u,{ >
0. In this protocol, the prover writes ¢ as ¢ = Zajuj , commits—by using a
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homomorphic commitment scheme—to all values o;, and then proves in zero-
knowledge (using say a X-protocol) that o; € [0, u — 1] for all j. The asymptotic
communication complexity of this folklore range proof is ©(log H) times the
complexity of the range proof of smaller interval [0, u — 1].

Recently, Camenisch, Chaabouni and shelat [5] presented a new range proof
that works in the non-binary case. Assuming again H = u’ — 1, the verifier
in their range proof first publishes signatures on all integers in [0,u — 1]. The
prover gives a proof of knowledge on signatures of ¢ committed elements o;.
Analogously to the folklore protocol, this shows that the prover knows elements
o; € [0,u — 1] such that ¢ = Y o;u’ (the latter part is trivial with a public
homomorphic commitment to o).

However, if H # u’ — 1 then both the folklore protocol and the protocol
of [5] get more complicated, and require up to 2 times more communication. In a
nutshell, this is because they show that o € [0, H] by using an AND composition
of two range proofs, o’ € [0,u’ — 1] and ¢’ € [H — (u® — 1), H]. While such an
AND composition is standard [9], it requires roughly two times more resources
than the non-composed protocol for the case H = uf — 1.

In the special case u = 2, an efficient modification of the folklore proto-
col for general ranges was proposed (though its correctness was not proven)
n [16]. There it was noted that for any H > 1, ¢ € [0, H] if and only if
o = ZJLI;%"’ H] Gjoj, where o; € {0,1} and G; = |(H 4 27)/27"!|. For ex-
ample, o € [0,11] iff 0 = 60 + 301 + 02 + 03 for o; € {0,1}. Thus the folklore
protocol can be extended to arbitrary values of H with virtually no efficiency
loss. In particular, there is no need for the AND composition. No improvement
upon the folklore protocol in the general case u > 2 and H # u’ — 1 is known.

New Result in Additive Combinatorics. The principal contribution of this
paper is to show that for any integer interval Z = [0, H] and for any 1 < u < H,
there is a sumset-representation

—1
IT=> Gjx[0,u—1]+[0,H (1)

j=0

for some ¢ < [log,(H +1)] and H' € [0,u — 2], where bx A = {ba:a € A}
and A+ B = {a+b:a€ ANbe B}. We first derive a recursive formula for
computing G; for any v > 1. As an interesting technical contribution, we then
show a semi-closed form for G;, that is, we show how to compute G; given only
H, j and w. This algorithm is efficient and only requires simple arithmetic. More
precisely, we show that G; is equal to the sum of |H/u/*!| and a simple (but
nontrivial) function of the j 4+ 1 lowest u-ary digits of H. We think that the
presented algorithm may be interesting by itself say in the general context of
additive combinatorics [17]: decompositions of sets as sumsets are common in
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additive combinatorics, but our concrete result differs significantly from existing
results in that field.!

Note that in the language of additive combinatorics, the result of [16] says
that

[log, H |

0,H = > [(H+2)/2%]«[0,1] . (2)

J=0

Eq. (2) does not straightforwardly generalize to the case where we are interested
in a larger range [0, u — 1]. In fact, [16] did not even present a proof that Eq. (2)
holds. As a straightforward corollary of our sumset-representation of [0, H], we
obtain a proof that the presentation of Eq. (2) is correct.

Application of the Sumset-Representation in Range Proofs. We show
how to use the sumset-representation Eq. (1) to modify the pairing-based range
proof of [5] so that it will become at least 50% more communication-efficient
in practice (and so that it is always more efficient than the folklore proto-
col). For this we use a simple corollary of our general sumset-representation
that [0, H] = Zﬁ;é G; * [0,u — 1] whenever (u — 1) | H. Moreover, if we set
u = O(log H/loglog H), then the total communication of the range proof is
O(log H/ loglog H). We also point out some mistakes in [5], namely, that the so
called OR composition proposed there does not work in most of the cases, and
thus their protocols are somewhat less efficient than claimed. In addition, the
new protocol is also about 2 times more computation-efficient than the protocol
from [5]. A factor of 2 times improvement in communication and computation is
extremely relevant to practical applications like e-voting where a voting server
may have to verify thousands of proofs of e-vote correctness per hour.? Moreover,
the used sumset-representation is optimal, so the achieved speedup is optimal for
this kind of range proofs. (Note that in applications like e-voting, one requires
non-interactive zero-knowledge proofs. The latter can be efficiently constructed
from X-protocols using the well-known Fiat-Shamir heuristic [13].)

Finally, we hope there will be more applications of the new sumset-
representation in cryptography.

! Recall that typical questions of additive combinatorics are of type how large or small
can sumsets of type A £ A be, and how is the cardinality of this set related to the
cardinalities of A;. Note that our question can be reworded as follows: we are asking
for the maximal cardinality of Z = " G * [0,u — 1] + [0, H'] for fixed v and H’ but
variable G;.

2 Such e-voting servers are currently running at least in Estonia,
http://www.vvk.ee/index.php?id=11178, and will hopefully be more widespread in
the near future. For example, in the last e-voting in Estonia, 4 500 votes were cast
during the peak hour.
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2 Preliminaries

We summarize and copy some of the notation and definitions from [5] for con-
sistency and to make it easier for the reader to follow.

Notation. PPT means probabilistic polynomial-time. k is the security param-
eter. In all protocols, prover and verifier send elements from G, Gt and Z,. We
denote the length of representation (which may differ from the logarithm of the
cardinality of the groups) of such elements by rlen(G), rlen(Gr) and rlen(Z,)
respectively.

Additive Combinatorics. For any two integers L < H, let
[L,H:={zx€Z:L<zx<H} .

We use the usual “set-theoretic” arithmetic notation. For example, if A and B
are sets then A+ B = {a+0b:a € AAbec B}. Moreover, for an integer b and
ACZ,bx A= {ba:a € A}, this is also called the b-dilate of A [17].

Commitment Schemes. A (string) commitment scheme is a triple of algo-
rithms C' = (Gen, Com, Open) representing the generation, the commit and the
open algorithm. The Gen algorithm generates parameters p for a scheme. The
Com algorithm runs on input (p,m,r) where m is a string, and r is a random
tape, and produces a pair of values (¢, o) representing respectively the committed
string and an opening string. The Open algorithm runs on input (¢, m, o) and
outputs 0 or 1. The scheme should have a "hiding” property and a ”binding”
property which informally require it to be difficult (or impossible) for the adver-
sary to determine the message m from c or to open the value of a commitment
¢ to two different messages my, mo.

Zero-Knowledge Proofs and X-Protocols. We use definitions from [1, 8]. A
pair of interacting algorithms (P, V) is a proof of knowledge (PK) for a relation
R = {(o,0)} C {0,1}* x {0,1}* with knowledge error x € [0,1] if (1) for
all (a,8) € R, V() accepts a conversation with P(8) with probability 1; and
(2) there exists an expected polynomial-time algorithm E, called the knowledge
extractor, such that if a cheating prover P* has probability € of convincing V
to accept a, then E, when given rewindable black-box access to P*, outputs a
witness [ for a with probability € — .

A proof system (P, V) is computational honest-verifier zero-knowledge if there
exists a PPT algorithm Sim, called the simulator, such that for any («, ) € R,
the outputs of V(«a) after interacting with P(8) and that of Sim(a) are com-
putationally indistinguishable. When we will talk about honest-verifier zero-
knowledge we will assume the computational case.
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Note that standard techniques can be used to transform an honest-verifier
zero-knowledge proof system into a general zero-knowledge one [8]. This is espe-
cially true of special X-protocols that will be presented later in the paper. Thus,
for the remainder of the paper, our proofs will be honest-verifier zero-knowledge.
(This also allows us to make more accurate comparisons with the other proof
techniques since they are usually also presented as honest-verifier protocols.)

A XY-protocol for language L is a proof system (P,V) where the conver-
sation is of the form (a,c,z), where a and z are computed by P, and ¢ is a
challenge randomly chosen by V. The verifier accepts if ¢(a,a,c,z) = 1 for
some efficiently computable predicate ¢. A X-protocol must satisfy three secu-
rity requirements: correctness, special soundness and special honest-verifier zero
knowledge (SHVZK). A X-protocol is correct when a honest prover convinces
honest verifier with probability 1 — k~“(1). A Y-protocol has the special sound-
ness property when from two accepting views (a, ¢, z) and (a, ¢/, 2’), where ¢ # ¢/,
one can efficiently recover a witness w such that w = x € £. A YX-protocol has
the SHVZK property if there exists a PPT simulator Sim that can first ran-
domly pick ¢*, z* (from some fixed sets) and then compute an a* such that the
view (a*, c*,z*) is accepting and the distribution (a*,c*, z*) is computationally
indistinguishable from the distribution of accepting views between honest prover
and honest verifier.

We use the notation introduced by Camenisch and Stadler [6] for various
zero-knowledge proofs of knowledge of discrete logarithms and proofs of the
validity of statements about discrete logarithms. For instance, PK{(«,3,7) :
y=g*h" A y=gh" A (u<a<wv)} denotes a “zero-knowledge Proof of
Knowledge of integers a, 3, and v such thaty = ¢g®h? andy = g*h" holds, where
u < a <w,” where y, g, h,9,g, and b are elements of some groups G = (g) = (h)
and ® = (g) = (h). The convention is that Greek letters denote quantities the
knowledge of which is being proved, while all other parameters are known to the
verifier. Using this notation, a proof-protocol can be described by just pointing
out its aim while hiding all details. We note that all of the protocols we present
in this notation can be easily instantiated as X-protocols.

Definition 1 (Proof of Set Membership [5]).

Let C = (Gen, Com, Open) be the generation, the commit and the open algorithm
of a string commitment scheme. For an instance c, a proof of set membership
with respect to commitment scheme C and set @ is a proof of knowledge for the
following statement: PK{(c,p) : ¢ < Com(o; p) Ao € P}.

Definition 2 (Range Proof [5]). A range proof with respect to a commitment
scheme C' is a special case of a proof of set membership in which the set @ is a
continuous sequence of integers ¢ = [a,b] for a,b € N.

As discussed in the introduction, some efficient range proofs were proposed
in [4, 16,15, 5]. We will give a precise description of the proof from [5] in Sect. 4.
Any secure X-protocol can be efficiently transferred into a non-interactive
zero-knowledge proof (in the random oracle model) by using the Fiat-Shamir
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Fig. 1. Illustration of the first recursive step of Thm. 1. Here H = Hy = 17, and
u € {3,4,5}. For example, in the top graph, v = 3, Go = [(17+1)/3] = 6, and
Hi =17T-2-6=5

heuristic [13]. In many applications, the X-protocol needs to have nontransfer-
ability properties. In all such cases (like e-voting), one uses the corresponding
non-interactive zero-knowledge proof. Since the Fiat-Shamir heuristic is well-
known and its use is standard in say e-voting literature [10, 11], we will omit any
explicit mention of it in what follows.

3 Sumset-Representation of Integer Intervals

The goal of this section is to derive a sumset-representation [0, H] = Zf;é G, *
[0,u — 1] + [0, H'], where 1 < H' < u <« H, of an arbitrary integral interval
[0, H]. (Integral means that all involved parameters H, H', u and G; are positive
integers.) Moreover, we aim to find minimal ¢ for any fixed value of w.

First we give an intuitive derivation of our result. (See also Fig. 1.) Fix H
and u. Let Hy = H. Then clearly [0, Hy] = Go * [0,u — 1] + [0, H1], where
Go = [(Ho+1)/u] and Hy = Hyp — (u— 1) - Gp. This can be derived as follows:
we want to divide [0, Hy| into u smaller (possibly overlapping) intervals of equal
size Hy such that H; is minimal. The sub-intervals should start at periodic
positions jGp, for some Gy. Because all elements from [0, Hy] must belong to
at least one of those subareas, it must be the case that H; > Gy — 1 and
(u — 1)Go + Hy > Hy. Thus, in the optimal case when H; = Gy — 1, we get
uGo — 1 = Hy or Gy = (Hp + 1)/u. Since Go has to be an integer, we set
Go = |(Ho+1)/u]. Finally, H; = Hy — (u — 1)Gy as stated.

These formulas reduce the case [0, Hy] to a smaller case [0, H1] that can be solved
similarly. Recursively, [0, H] = [0,u —1] - }_. G; + [0, H'], where

H;+1
m |41 .
and Hj+1 I:Hj —(u—1)~Gj :Hj —(u—l)- {%J

This process stops when the interval [0, H;1] is small enough so that it cannot
be covered by u different non-empty intervals, that is, if H;;1 < u — 1. Then
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we define ¢(u, H) := j + 1 to be the number of steps in this recursive process.
Clearly, after we are done with the recursive process,

H';:HjH:H—{ H1J'(“_1) .

w—
This means in particular that if (u — 1) | H then H' = 0.

Ezample 1. For example, with H = 57 and u = 4, one can verify that [0,57] =
14 % [0,3] + 4 % [0, 3] + [0, 3]. As another example, [0, 160] = 40 x [0, 3] + [0,40] =
40 % [0,3] + 10 % [0,3] + [0,10] = 40 * [0,3] + 10 % [0,3] + 2 % [0,3] + [0,4] =
40 % [0,3] + 10 * [0,3] + 2 * [0,3] + 1 % [0,3] + [0,1]. Now we are done since
l<u—-1=3.

(Another, though non-recursive, example with H = 17 was already depicted by
Fig. 1.)

Finally, the sequence (...,Gj,...) clearly decreases the slowest when for all
Jyu| (H i1 +1), since then the floor operation is not applied. But u | (Hj4+1+1)
ifful| (Hj —(u—1)G; +1) iff u| (H; + G; + 1) iff (because also u | (H; + 1))
u | Gj. Thus the sequence is slowest to decrease if H + 1 = u® for some £. This
means, that the process is guaranteed to stop in £(u, H) < log, (H + 1) steps.

This leads us to the following theorem.

Theorem 1. Letw > 2, H > u. Let G;, H; and H' be defined as before. Denote
{="{(u,H) < [log,(H+1)] as above. Then [0, H] = E?;é G;*[0,u—1]+[0, H'].
If (w—1)| H then H = 0.

Proof. Clear from above. a

Semi-Closed Form for G ;. While the presented recursive formulas for G; and
Hj,, are efficient, it is desirable to have a closed form for G;. In the following
we construct a semi-closed form, that is, a formula for GG; that only depends on
u, 7 and H.

Assume that H = Y hyu? with h; € {0,...,u— 1}. For any j, write h;; =
|H/u?|, that is, H = u/hj; + ZJ_O u'h;. In partmular hjy = uh(ji1)+ + hy.

Define [z] := z (mod u — 1). Our proof is built up on the initial observatlon
that:

G0:h1++th0+1j and Hl—h1++h0—( —1) L1+h0J :h+ [[ ]]

The latter equation is obvious: if hg < u—1 then hg— (u—1) L 'Z J ho = [ho]
andifho:u—lthenho—(u—l)L%J u—l—( 1) = 0 = [ho]. We can

now prove that

u

Jlm]]-uJ

Theorem 2. G; = h(j;1)4 + VH‘[[Z-() '

Proof. By induction. We prove that H; = h; + [{ =0 hz}], from this the claim

for G; is obvious. Induction basis (j = 0) is obvious since Hy = ho.
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Induction step (j > 0). Assume that H; = hj; + [{ Z;& hz]] = uh(y+ +

hj + [{ZZ;& hl:ﬂ and Gj = h(j—i—l)—i— + \‘MJ Then

u

= b+ [Sisy ] +1
Hj+1:Hj—(u—l)Gj:h(j+1)++hj+ Zhl —(u—1)~

=0

Thus to finish the proof we only have to show that

i1 h; i1y, j
hj+|:[2hi](u1)~ J+|[Z“O HH _H hiﬂ (4)
=0 0

u

1=

for any h; € {0,...,u — 1}. We consider the next cases.
Case 1, [{Zi;ol hi| = 0. Then the left hand side of Eq. (4) is h; — (v — 1) -

[(1+ hj)/u] = [h;] and the right hand side is equal to the same value.

Case 2, [ Y2950 hi] # 0 and hy + [SI23 k] +1 < . Then the left hand
side of Eq. (4) is h; + [Zi;& hl}] and the right hand side is [{Zi;& h; + hj]] =
[{ZZ& hz]] + hy.

Case 3, [{Zf;ol hi]] #0and h; + [Zg;& hl}] +1 > w. Then the left hand side
of Eq. (4) is h;+ [{ZZ;& hz]] —(u—1) and the right hand side is [ZZ;& hi + hj]] =
(22 m] +hi - =), 0

In the binary case v = 2, a formula like this was already given in [16].
However, while [16] stated the closed form, they did not prove it. Fortunately,
their formula follows straightforwardly from the general result.

Corollary 1 (Binary case, [16]). If u = 2 then G; = h(j11)4 + VjuHJ =
|5 ]
25T |-

Proof. Straightforward corollary.

4 Preliminaries: CCS Range Proof

Computational Assumptions. The following protocols require bilinear
groups and associated hardness assumptions. These assumptions are summa-
rized from [5].

Let PG be a pairing group generator that on input 1* outputs descriptions
of multiplicative groups G; and Gt of prime order p where |p| = k. Let G} =
G1 \ {1} and let g € Gi. The generated groups are such that there exists an
admissible bilinear map e : G; x G; = G, meaning that (1) for all a,b € Z,
it holds that e(g%, ¢°) = e(g,9)®; (2) e(g,9) # 1; and (3) the bilinear map is
efficiently computable.
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Definition 3 (Strong Diffie-Hellman Assumption [3]). We say that the
q-SDH assumption associated to a pairing generator PG holds if for all PPT
adversaries A, the probability that A(g, g*,...,g*") where (G1,Gr) < PG(1%),
g+ G} and x < Z,, outputs a pair (c, gl/(‘”“)) where ¢ € Z,, is negligible in k.

As noted by [5], Cheon’s [7] attack against this type of assumption is not relevant
if ¢ < 50 as it is in this protocol.

Boneh-Boyen Signatures. Our scheme relies on the elegant Boneh-Boyen
short signature scheme [3] which we briefly summarize. The signer’s secret key is
2 4 Zp, the corresponding public key is y = g”. The signature on a message m
is o < ¢g*/(@*+™) verification is done by checking that e(o,y-¢™) = e(g, g). This
scheme is similar to the Dodis and Yampolskiy verifiable random function [12].

Security under /-weak chosen-message attack is defined through the following
game. The adversary begins by outputting ¢ messages my, ..., my. The challenger
generates a fresh key pair and gives the public key to the adversary, together
with signatures o1,...,00 on my,...,my. The adversary wins if it succeeds in
outputting a valid signature o on a message m ¢ {mq,...,my}. The scheme
is said to be unforgeable under an ¢-weak chosen-message attack if no PPT
adversary A has non-negligible probability of winning this game. Our scheme
relies on the following property of the Boneh-Boyen short signature [3] which we
paraphrase below:

Lemma 1 ([3]). Suppose the g-Strong Diffie Hellman assumption holds in
(G1,Gr). Then the basic Boneh-Boyen signature scheme is secure against an
existential forgery under a q-weak chosen message attack.

The Camenisch-Chaabouni-shelat range proof in the case when H = u’ — 1
is depicted by Protocol 1. In particular, e : G; x G; — G is an admissible
bilinear map for some multiplicative groups G1,Gr, and g is a generator of Gy
with h € (g).

Communication of CCS Range Proof for “Nice” H. The CCS range proof
for nice H requires the prover to compute 3¢ exponentiations and 2¢ pairings
(in [5], this was summed up as 5¢ exponentiations). It requires non-interactive
(static) communication of

NIComces(u, £) := (1 + u) - rlen(Gy) bits

(signatures and public keys that can be shared between different protocol runs),
and interactive communication (which is unique for every protocol run) of

[Comees(u, £) := (1 + ) - rlen(Gq) + £ - rlen(Gr) + (2 + 2¢) - rlen(Z,,) bits.
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Assume o = Z]L-]:g“(HHU oul.
Common input: g, h,u, ¢, and a commitment C.
Prover’s input: 0,7 such that C = ¢°h" and o € [0, H].

1. The verifier does: generate a random z < Zp, and set y < g°. For i € [0,u — 1],
set A; — gl/(mﬂ) € G1. She sends (y, Ao, ..., Au—1) to the prover.
2. The prover does: For all j € [0,¢—1], generate random v; < Zy, set V; « AZJJ €
G1. He sends (Vo, ..., Vi—1) to the verifier.
3. The prover uses the following X-protocol to prove to the verifier that C' = h" -
g>=7"" and V; = ¢“/@*93) for all j:
(a) The prover picks s;,t;,m; < Z, for j € [0, — 1]. He sets a; <
e(Vi,9) %ie(g,9)% € Gr, for j € [0,£ — 1], and D < g>i“'%i . p2i™i € G,.
He sends (ao, . ..,a¢—1, D) to the verifier.
(b) The verifier sends a random challenge ¢ < Z, to the prover.

(c) The prover sets 27 « s; — o;¢ mod p, z](.”) + t; —vjec mod p, for j €

J
[0,£ — 1]. He sets 2™ « m — r¢ mod p, where m = Zf;é m;. He sends
(zéa>, e zéi)l, zé”), e, zéi)l, z(m)) to the verifier.

m _‘,Z(_U)

(d) The verifier checks that D = cen )ng wlz;

(o) (v)
e(Vj,9) 7 -e(g,9)  for every j € [0,£ —1].

and a; = e(V;,y)° -

Protocol 1: The CCS cryptographic range proof for range [0, u* — 1].

Communication of CCS for Arbitrary Range [L, H]. As noted in [5], to
prove that o € [L, H] for arbitrary L and H, one can use an AND composition.
More precisely, suppose that u‘~! < H < u*. Then to show that o € [L, H], it
suffices to show that o € [L, L +u’) and ¢ € [H — u’, H). Equivalently, one has
to show that o — L € [0,u’) and o — H + u’ € [0,u").

For this, one uses the standard AND composition of Protocol 1 with itself.
Recall that an AND composition of two X-protocols A; and As is a X' protocol
where the first message is a composition of the first messages of A; and As, the
second message is a single challenge ¢, and the third message is a composition of
the third messages of A; and A, that correspond to the first messages and the
single challenge ¢. Moreover, static information (the public key y and all signa-
tures) and also the values V; are only sent once. Thus, in the AND composition

of the CCS protocol, there are two versions of a;, D, zj(-g), zj(-v) and z("™) which
makes the (static) communication of the AND composition of Protocol 1 with
itself equal to NIComccsand(u, £) = NIComees(u, £) = (1 4 ) - rlen(Gy), and the
dynamic communication is equal to

IComccesand (U, £)
=IComccs(u, £) + £ - rlen(Gr) + rlen(Gq) + (204 1) - rlen(Z,)
=+ 2) - rlen(G1) + 2¢ - rlen(Gr) + (40 + 3) - rlen(Z,,) .
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Remark on OR Composition. [5] also considered the OR composition. The
communication of an OR composition is twice the communication of the single
protocol, but with ¢ — 1 instead of ¢, and thus the OR composition has the
potential to be more efficient than the AND composition. In our case, for the OR,
composition to work, we have to assume that v is such that W< H<2-uf T
In this case, o € [0, H] iff ¢ € [0,u’"!] or ¢ € [H —u*~!, H]. This differs slightly
from the misstated requirement of [5], where it was said that one just needs that
u*~' < H. In particular, this means that the OR composition does not work for
values, considered in Sect. 4.4 of [5], and thus the communication-efficiency of
their range proof is (in most of the cases) slightly worse than claimed in [5].

Communication Analysis. Let us assume that rlen(Gr) = 12 - rlen(G;) =~
12 - rlen(Z,) [14]. Following [5] and plugging in parameters in terms of the
rlen(Gq), the communication can then be minimized by solving the following
system min (6 4+ u + 29¢) s.t. u® > H. Setting u = IO;OE)?H then we get a total
asymptotic communication complexity of

Com(u, ) = O (

log H
loglog H — logloglog H

which is asymptotically smaller than O(log H). For concrete parameters, we
substitute the constraint that u‘ ~ H into the equation u + ¢ above, set the
derivative with respect to u to 0 and attempt to solve the equation:

29log H
| el _,
ulog”u
which simplifies to

ulog®u = 29log H. (5)

This equation cannot be solved analytically. However, given H, we can use nu-
merical methods to find a good w as described in [2].

5 Modified Range Proof: New

The idea of the next proof follows from Thm. 1. We can assume that u > 1.
Clearly, o € [0, H] iff (u — 1)o € [0, (u — 1) H] iff, because of Thm. 1,

l(u,(u—1)H)—1
(u—1)o = Z 0;G;

§=0
for some o; € [0,u — 1], and G; are defined as in Thm. 1 with Hy = (v — 1)H.
Thus, we can propose a new range proof where we prove that C*~! commits
a value in (0, (u — 1) H] by using the CCS protocol for “nice” H, see Protocol 2.
Note that changing 0 to any meaningful L, 1 < L < (u — 1)H, is trivial. In the
description of the protocol, see Protocol 2, new parts (compared to the CCS

protocol) have been bolded for easy parsing.
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Rationale for multiplying by u — 1. If (u— 1) divides H, then it is not necessary
to multiply the commitment by (v — 1). Recall that if u — 1 does not divide H,
then H' < u (the leftover value) defines some small range [0, H’']. In this case,
one could (instead of multiplying by v — 1) add an extra step to the range proof
that shows that some new committed element belongs to the range [0, H']. Doing
this would require an extra H' 4+ 1 elements from rlen(Gq), one extra element
from rlen(Gr), and one extra element from rlen(Z,) to be transmitted. Thus, it
will always be more expensive to add this extra step. Another idea might be to
use a simple OR-proof to handle the last [0, H'] elements. This would require
extra communication of H'-rlen(G1)+ (1+ H’) - rlen(Z,) bits. Since one element
of rlen(Gr) is roughly 12 times larger than the size of one element from either
G or Z,, this approach is favorable when H' < 6.

Assume (u—1)-0c = Zﬁ;é 0j-Gj for £ = £(u,(u—1)H) <[log,((u—1) - H 4+ 1)].
Common input: g, h,u, ¢, and a commitment C.
Prover’s input: 0,7 such that C = ¢°h” and o € [0, H].

1. The verifier does: she generates a random x < Z,, and sets y < ¢“. For
i € [0,u — 1], she sets A; « ¢g"/@+) ¢ G,. She sends (y, Ao, ..., Ay_1) to the
prover.

2. The prover does: For all j € [0,¢—1], generate random v; < Zy, set V; + AZJJ S
G1. He sends (Vi,...,Vi_1) to the verifier.

3. The prover uses the following X-protocol to prove to the verifier that C*~ 1 =
=D 393G and V; = g%/ @93 for all j € [0,£ — 1]:

(a) The prover picks s;,tj,m; < Z, for j € [0, — 1]. He sets a; <+
e(Vj,9) %e(g,9)t € Gr, for j € [0,£—1], and D + g>i %G pa=D-25mi ¢
G1. He sends (ao,...,a¢—1, D) to the verifier.

(b) The verifier sends a random challenge ¢ < Z, to the prover.

(c) The prover sets ZJ(.O) +— s — 0jc, zj-v) +— t; —vje for j € [0, — 1] and
2™ m — re for m = >-;m;. He sends (287,287, 280, 280 20 to
the verifier.

(d) The verifier checks that D = U1 . pla=1)-=) g=i 76 and a; =

(o) (v)
e(Vi,y) - e(Vj,9)" " -elg,9)* for every j € [0,£—1].

Protocol 2: New, generalization of CCS protocol for arbitrary range [0, H].

Theorem 3. Assuming the q-SDH assumption, Protocol 2 is correct and has
the property of special soundness and SHVZK.

Proof (Sketch.). The proof is a straightforward extension of the security proof
from [5]. O

Concrete Efficiency of New. Clearly, both the static and dynamic communi-
cation of New is related to communication of the CCS protocol in the following
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simple way:
NICompew (u, £) := NlComees(u, £(u, (u — 1)(H + 1))) and
[Compew (1, £) := [Comees(u, £(u, (u — 1)(H + 1))).

This is easily seen to be a factor of 2 more efficient than having to use two proofs
to handle an arbitrary range H.

Efficiency of New. Asymptotically, the total communication of NICompen +
ICompew remains the same:

u A+ L(u, (u—1)(H + 1)) <u+log,((u—1)(H +1))
=u+log,(v—1) +log,(H + 1)

1
<u+1l+log,(H)+ =
H
As before, this value is (approximately) minimized when we set u <+ %.

Concretely, there is a factor of two difference. The communication can be mini-
mized by solving

min(4 + v+ 15¢)  such that ¢ >log, ((v—1)(H + 1))

As mentioned before, in some cases when u — 1 already divides H, it is not
necessary to multiply by u — 1; even when (u — 1) does not evenly divide H, a
standard OR-proof can sometimes be used to handle H’. We take this fact in
account when computing the protocol’s efficiency for a given range below. In the
graph below, we show how the complexity of our new protocol compares with
that of [5] for ranges [0, H] where H varies from 1000 to 2 - 108.

5.1 Comparison of Case Analysis

As a second way to compare the new protocol with protocol from [5] and other
previous work, we use the same numbers as in Sect. 4 of [5]. In particular we
assume that the size of Gq is 256 bits, the size of Gr is 3072 bits and the
size of Z, is upper-bounded by 256 bits. We also use the range R = [L,H) =
[347184000, 599644800) as in [5]. Also, clearly, the new protocol (as in the CCS
protocol) for R is exactly as efficient as protocol for range [0, H'], where H' =
H — L —1. That is, H' = 252460799.

The values of NIComccsand, 1Comecsand, NICompyeyw and [Compyey for a few differ-
ent choices of u and ¢ are shown in the following two tables. Note that the optimal
choice of u depends on how many times the range proof is going to be reused:
the larger is the number w of reuses, the larger should be w, and for w reuses,
one should choose a value of u for which NIComyew (u, £) + (w — 1)IComyew(u, £)
is minimal.

The values of NIComccsang and 1Comecsang for some chosen values of u, £ are
given below. (Here we only use the AND composition. As mentioned above, the
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Fig. 2. Relative Efficiency of the New Protocol vs. [5]. The number of group elements
are computed under the assumption that rlen(Gr) ~ 12 - rlen(G1) & 12 - rlen(Z;). The
complexity of our new protocol depends more sensitively on the exact value of H;
therefore the shaded area represents the convex hull of the values for our new protocol.
The vertical gaps in the curve for [5] are a result of the ratio 12 used above.

OR composition is sometimes more efficient but only under certain restrictions.)
The numbers in Tbl. 1 show that the CCS protocol is less efficient than claimed
but still more efficient than the previous range proofs.

u| £|NIComecsand || Comecsand | Comments

48|5 12544 38 400({Minimal NIComccsand + 1Comcesand * [1, 2]
5
3

57 14848  38400[|Same parameters as in [5]
633 162304 23 552|Minimal NIComccsand + 10000 - IComecsand, Comecsand

Table 1. Communication of the CCS protocol with some chosen values of u (and
implicitly chosen optimal ¢)

Communication of New for some concrete choices of v and ¢ is given in Tbl. 2.
Recall that we need to show that (u—1)(c +1)—1 € [0,(u — 1)(H' +1)] =
[0,252460800 - (u — 1)]. We have calculated ¢ according to the point where the
recursions of Thm. 1 end, and we note that sometimes its value differs from the
predicted value |log, (v — 1)(H +1))].

6 Conclusions

We showed that for any H and 1 < u < H, the interval [0, H] is equal to a sum
> G« [0,u — 1] + [0, H'], where 0 < H’ < H, and both u and ¢ are “small”
in terms of H. We gave efficient (closed form) algorithms for computing the
coefficients GG;. This result may be interesting by itself in the context of additive
combinatorics.
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u|£|NICompew (1, £)|ICompew (1, £) |[Comments
25|6 6656 27 648 Minimal NIComnew + 1Compnew
48|5 12544 23 808|Minimal NIComyew + [Compew
5715 14 848 23 808|Same parameters as in [5]
632|4 162048 16 128 Minimal NICompnew + 10000 - IComnew, ICompew

Table 2. Communication of New with some chosen values of v (and implicitly chosen
optimal £)

We then used this decomposition to show how to derive efficient range proofs
for arbitrary intervals [0, H]. Compared to the previous work [5], we thus avoided
the use of AND composition of X-protocols. In addition, (1) we showed also
that an earlier result from [16] (that only considered the case u = 2) is correct,
though it was left unproven in [16], and (2) we pointed out that the range proof
from [5] is (in most of the cases) less efficient than claimed there. In addition, the
new protocol is also about 2 times more computation-efficient than the protocol
from [5]. While 2 times is not much, it is important in practical applications like
e-voting where a voting server may have to verify thousands of proofs of e-vote
correctness per hour.

Finally, we hope that our techiques can be extended to construct other effi-
cient cryptographic protocols that use results from additive combinatorics.
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