
Improving the Berlekamp algorithm for

binomials x
n

− a

Ryuichi Harasawa1, Yutaka Sueyoshi1, Aichi Kudo1, and Liang Cui2

1 Faculty of Engineering, Nagasaki University
2 Graduate School of Science and Technology, Nagasaki University

1-14 Bunkyomachi, Nagasaki-shi, Nagasaki, 852-8521, Japan
{harasawa, sueyoshi, kudo}@cis.nagasaki-u.ac.jp

Abstract

In this paper, we describe an improvement of the Berlekamp algorithm for
binomials xn−a over prime fields Fp. We implement the proposed method

for various cases and compare the results with the original Berlekamp
method. The proposed method can be extended easily to the case where
the base field is not a prime field.

Keywords: factorization, Berlekamp algorithm, binomial

1 Introduction

The factorization of polynomials over finite fields is one of the important

topics in computational number theory, for example, it is used in the
construction of (non-prime) finite fields and the prime ideal decomposition

in number fields and so on.

Applying the formal derivation, we can reduce the factorization of
polynomials over finite fields to that of square-free polynomials (i.e., poly-

nomials having no multiple factors) [5, 6]. For the factorization of square-
free polynomials over finite fields, the Berlekamp algorithm is well known

[2, 6].

In this paper, we propose an improvement of the Berlekamp algorithm
for binomials xn−a over prime fields Fp. More precisely, we give the solu-

tion of the equation h(x)p ≡ h(x) (mod xn −a) directly without applying
the sweeping-out method to the corresponding coefficient matrix. We fur-
ther implement the proposed method for various cases and compare the

results with the original Berlekamp method. The proposed method can
be extended easily to the case where the base field is not a prime field.

Note that there exist some efficient methods for computing the solu-

tion of xn = a over finite fields (e.g., [1, 7]).



The remainder of this paper is organized as follows: In Section 2, we

describe the Berlekamp algorithm. In Section 3, we propose an improve-
ment of the Berlekamp algorithm for binomials xn − a. In Section 4, we
implement the original Berlekamp algorithm and the proposed algorithm

for binomials, and compare the results. In Section 5, we give the conclu-
sion and future works.

2 Berlekamp algorithm

The Berlekamp algorithm [2, 6] is a well-known algorithm for factoring
square-free polynomials over finite fields, which we describe in Table 1.

Table 1. Berlekamp’s algorithm

Input: A square-free polynomial f(x) over Fp.
Output: The factorization of f(x).

Step 1: Compute the polynomials h(x) over Fp

of degree less than deg f(x) such that
h(x)p ≡ h(x) (mod f(x)).
The set V of h(x)’s above forms
an Fp-vector space.
Let {h1(x), . . . , hk(x)} be a basis of V .

Step 2: F ← {f(x)}.
if k = 1, go to Step 4.

Step 3: for i from 1 to k
For each v(x) ∈ F and each α ∈ Fq ,
compute d(x) := gcd(v(x), hi(x)− α).
if 0 < deg d(x) < deg v(x)

F ← (F \ {v(x)}) ∪ {d(x), v(x)/d(x)}.
if #F = k, go to Step 4.

end if

end for

Step 4: Return F
(the product of the elements in F equals f(x)).

In the next section, we focus on Step 1 in Table 1. More precisely, we
consider the equation

h(x)p ≡ h(x) (mod f(x)) (1)

for a square-free polynomial f(x) over a prime field Fp. For the linear

transformation h(x) 7→ h(x)p (mod f(x)) on the n-dimensional vector



space Fp[x]/(f (x)) over Fp, we consider the eigenspace V of the eigen-

value 1. Let f(x) =
∏

1≤i≤k fi(x) be the factorization of f(x) with each
fi(x) ∈ Fp[x] irreducible. Then we see that the vector space Fp[x]/(f (x))
is isomorphic to

⊕

1≤i≤k Fp[x]/(fi(x)) and that the solution space of the

equation (1) is isomorphic to the subspace of
⊕

1≤i≤k Fp[x]/(fi(x)) con-
sisting of (a1, · · · , ak) with each ai in Fp, which implies that the number

of irreducible factors of f(x) is equal to the dimension of V over Fp.
We remark that the most time-consuming step of the Berlekamp al-

gorithm is Step 3 in Table 1, which takes exponential time of log p. So
both the original method and the proposed method work well only for

small fields.

3 Proposed algorithm

In this section, we describe an improved method for solving the equation

h(x)p ≡ h(x) (mod xn − a) (2)

of Step 1 in Table 1. Without loss of generality, we may assume p 6 |n
because we have xpiℓ − a = (xℓ − a)pi

. Therefore, the binomial xn − a is

square-free.
Instead of dealing with the coefficient matrix corresponding to the

equation above, we consider the orbits of Z/nZ with respect to 〈p〉, the
subgroup of (Z/nZ)∗ generated by p. Let ᾱ denote the orbit containing

α ∈ Z/nZ, that is, ᾱ = {αpj mod n | j = 0, 1, 2, . . .}, especially 0̄ = {0}.
Then Z/nZ is the disjoint union of ᾱ’s.

For each orbit ᾱ, let ᾱ = {α0, . . . , αℓ−1}, where αj := αpj mod n

(0 ≤ j ≤ ℓ − 1) and αpℓ mod n = α(= α0). We consider a polynomial
hᾱ(x) = β0x

α0 + β1x
α1 + · · ·+ βℓ−1x

αℓ−1 over Fp. From the definition of

ᾱ, we have

hᾱ(x)p ≡ aγℓ−1βℓ−1x
α0 + aγ0β0x

α1 + · · ·+ aγℓ−2βℓ−2x
αℓ−1 (mod xn − a),

(3)

where γi is the quotient of pαi by n (i.e., pαi = γin+αi+1 mod ℓ). In other
words, considering Tᾱ = {β0x

α0 + β1x
α1 + · · · + βℓ−1x

αℓ−1 | βi ∈ Fp}

and the linear transformation πp : Fp[x]/(xn − a) → Fp[x]/(xn − a)
defined by h(x) 7→ h(x)p (mod f(x)), we see that Tᾱ is a πp-invariant

subspace, that is, πp(Tᾱ) ⊆ Tᾱ (in fact, we see πp(Tᾱ) = Tᾱ), and we have
Fp[x]/(xn − a) =

⊕

ᾱ Tᾱ.
So, letting k be the number of orbits of Z/nZ with respect to 〈p〉, we

see that the equation (2) can be devided into k equations in the form

hᾱ(x)p ≡ hᾱ(x) (mod xn − a) (4)



with h(x) =
∑

ᾱ hᾱ(x). Namely, we have V =
⊕

ᾱ Vᾱ, where Vᾱ := V ∩Tᾱ.

For the orbit ᾱ = 0̄, the solution space

V0̄ = {βx0 | (βx0)p ≡ βx0 (mod xn − a), β ∈ Fp}

of the equation (4) becomes Fp, which implies that the dimension of the

solution space of the equation (2) over Fp is at least one.
We consider the case where ᾱ 6= 0̄. Comparing the coefficients in both

sides of the equation (4), we have


















β0 = aγℓ−1βℓ−1

β1 = aγ0β0

...

βℓ−1 = aγℓ−2βℓ−2,

which leads to the relation

β0 = aγ0+γ1+···+γℓ−1β0.

Therefore, we obtain the solution(s) of (4) as follows:
{

0 (if aγ0+γ1+···+γℓ−1 6= 1)
β(xα0 + aγ0xα1 + aγ0+γ1xα2 + · · ·+ aγ0+γ1+···+γℓ−2xαℓ−1) (otherwise),

where β runs over all elements of Fp. The solution space Vᾱ of the

equation (4) is {0} if aγ0+γ1+···+γℓ−1 6= 1 and, otherwise, forms one-
dimensional subspace of Tᾱ generated by xα0 + aγ0xα1 + aγ0+γ1xα2 +

· · ·+ aγ0+γ1+···+γℓ−2xαℓ−1 .
We describe the proposed algorithm in Table 2.

4 Experimental results

In this section, we implement the proposed method for various cases,

which is listed in the following tables (Tables 3 – 6). We note some re-
marks: (1) We compute 100 times for each case and list the average time.

(2) The numbers in the parentheses imply the number of irreducible fac-
tors of the polynomials to be factored.

All computations are performed on a 3 GHz Pentium IV with 0.99
Gb RAM. The language is C with Borland C++ compiler 5.5.1 and with

no mathematical library.
We see, from these tables, that the proposed method is faster than

the original one for all cases. Especially, the difference between the run-

ning time of these two methods becomes very large in the case where



Table 2. Solutions of h(x)p ≡ h(x) (mod xn − a)

Input: A binomial xn − a over Fp with p 6 |n.
Output: A basis B of the solution space V of

h(x)p ≡ h(x) (mod xn − a).

Step 1: B ← {1},
G← {1, 2, . . . , n− 1}.

Step 2: if G = ∅, return B.

Step 3: i0 ← min{i | i ∈ G},
G← G \ {i0},
j ← i0,
f ← xj ,
b← 1.

Step 4: Compute the integers k, r
such that jp = kn + r with 0 ≤ r < n.

b← b · ak mod p.

Step 5: while r 6= i0
G← G \ {r},
f ← f + b · xr,
j ← r.
Compute the integers k, r
such that jp = kn + r with 0 ≤ r < n.
b← b · ak mod p.

end while

Step 6: if b = 1, B ← B ∪ {f}.
goto Step 2.

the number of irreducible factors of xn − a is two. We further observe

that the running time of both the original method and the proposed one
becomes shorter when we rearrange the basis {h1(x), . . . , hk(x)} of V so

that deg hi(x) ≤ deg hj(x) for 1 ≤ i ≤ j ≤ k (Step 1 in Table 1).

5 Conclusion and future works

In this paper, we described an improvement of the Berlekamp algorithm

for binomials xn − a over prime fields Fp. More precisely, we proposed a
method for solving the equation h(x)p ≡ h(x) (mod xn − a) directly. We

leave the comparison of our method with other factorization methods, for
example the Cantor and Zassenhaus method [3, 4], and further improve-
ments, for example applications to larger base fields and to more general

cases (e.g., trinomials). These are our future works.



Table 3. Running time (ms) for factoring xn − 1 over F2

the value of n with xn − 1 501 601 701 801 901 1001 1101 1201 1301 1401 1501
(number of irreducible factors) (6) (25) (2) (27) (12) (27) (6) (5) (2) (5) (10)

original method [2] 7.9 25.7 8.2 19.5 38.1 51.4 45.0 69.5 32.1 60.9 132.3
proposed method 4.0 20.9 0.1 9.8 25.0 35.4 24.0 43.4 0.4 23.5 88.9

Table 4. Running time (ms) for factoring xn − 2 over F3

the value of n with xn − 2 500 601 700 800 901 1000 1100 1201 1300 1400 1501
(number of irreducible factors) (14) (9) (30) (18) (7) (26) (62) (5) (50) (54) (9)

original method [2] 6.5 33.2 30.0 14.3 57.8 30.6 60.6 95.1 123.2 99.6 244.8
proposed method 2.9 27.6 18.4 3.5 45.4 12.8 40.6 66.2 91.4 61.8 197.5

References

1. L. Adleman, K. Menders and G. Miller, On taking roots in finite fields, Proc. 18th
IEEE Symposium on Foundations of Computer Science (FOCS), pp. 175 – 177,
1977.

2. E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, 1968.
3. D. G. Cantor and H. Zassenhaus, A new algorithm for factoring polynomials over

finite fields, Math. Comp,, 36, pp. 587 – 592, 1981.
4. H. Cohen, A Course in Computational Algebraic Number Theory, Graduate Texts

in Math., vol. 138, Springer-Verlag, Berlin Heidelberg, 1993.
5. K. Geddes, S. Czapor and G. Labahn, Algorithms for Computer Algebra, Kluwer

Academic Publishers, 1992.
6. A. J. Menezes, P. C. van Oorschot and S. A. Vanstone, Handbook of Applied Cryp-

tography, CRC Press, 1997.
7. T. W. Sze, On solving univariate polynomial equations over fi-

nite fields and some related problem, preprint, available at
http://people.apache.org/ szetszwo/umd/papers/poly.pdf.



Table 5. Running time (ms) for factoring xn − 3 over F5

the value of n with xn − 3 501 602 703 804 901 1002 1103 1204 1301 1402 1503
(number of irreducible factors) (5) (17) (22) (21) (7) (9) (2) (17) (3) (5) (8)

original mathod [2] 13.7 50.1 61.8 25.3 100.4 60.0 25.7 95.9 121.2 128.2 97.0
proposed method 9.3 44.2 53.9 14.0 85.3 40.4 0.9 61.7 85.3 85.0 47.5

Table 6. Running time (ms) for factoring xn − 3 over F7

the value of n with xn − 3 500 600 703 801 904 1007 1100 1200 1303 1401 1504
(number of irreducible factors) (46) (52) (83) (2) (68) (21) (78) (100) (2) (3) (12)

original method [2] 44.3 12.1 60.1 12.9 80.3 55.0 169.0 58.9 38.9 89.2 66.2
proposed method 41.4 7.5 54.5 0.6 69.3 35.0 149.0 34.8 0.6 45.1 15.3


