
Cryptanalysis of a Message Recognition
Protocol by Mashatan and Stinson

Madeline Gonzalez and Rainer Steinwandt

Department of Mathematical Sciences, Florida Atlantic University,
777 Glades Road, Boca Raton, FL 33431, USA,

{mgonza29,rsteinwa}@fau.edu

Abstract. At CANS 2008, Mashatan and Stinson suggested a message
recognition protocol for ad hoc pervasive networks. The protocol provides
a procedure to resynchronize in case of a (possibly adversarial) disruption
of communication. We show that this resynchronization process does
not provide the functionality intended and in fact enables an adversary
to create selective forgeries. The computational effort for the attack is
negligible and allows the insertion of arbitrary messages.

Keywords: cryptanalysis, message recognition, ad hoc network

1 Introduction

In [MS08], Mashatan and Stinson propose a new message recognition pro-
tocol for ad hoc pervasive networks, aiming at scenarios with resource re-
stricted devices. Their protocol relies on the use of a cryptographic hash
function providing suitable guarantees, and the protocol avoids the use
of asymmetric cryptography. In informal terms, the scenario in [MS08]
can be summarized as follows: during an initialization phase, two parties
A and B are connected through an authentic channel of low bandwidth.
While this narrow-band channel can be eavesdropped, the adversary is
confined to be passive, i. e., no messages can be altered, deleted or in-
serted. Later on, A and B are connected via a public broadband channel
that is completely controlled by the, now active, adversary. The protocol
in [MS08] tries to make sure that messages sent over this public insecure
channel by A are only accepted by B if they indeed originate from the
party A with which the initialization phase was performed. Further, ac-
cording to [MS08], the proposed protocol provides a practical procedure
for resynchronization in case of any adversarial disruption or communi-
cation failure

Mashatan and Stinson’s proposal can be be seen in the same line of re-
search as, for instance, Anderson et al.’s Guy Fawkes protocol [ABC+98],
Stajano and Anderson’s resurrecting duckling [SA00], Mitchell’s scheme

for remote user authentication [Mit03], Weimerskirch and Westhoff’s zero
common-knowledge authentication [WW04], and Lucks et al.’s Jane Doe
protocol [LZWW08].

Our contribution. Below we show that the resynchronization mechanism
suggested by Mashatan and Stinson unfortunately does not work as in-
tended, but actually enables an attack: an adversary can abuse the resyn-
chronization process to send forged messages that are accepted as legiti-
mate. The computational effort for the attack is negligible, and there is
no restriction on the contents of the messages that can be inserted.

2 The proposal from CANS 2008

This section recalls Mashatan and Stinson’s proposal from CANS 2008
to the extent necessary for describing our attack. The protocol splits into
three components, which we discuss in the subsequent three subsections.
For more details we refer to the original paper [MS08], which elaborates on
the underlying assumptions on the hash function H (pre-image resistance,
paired second pre-image resistance, paired collision resistance, binding pre-
image resistance), for instance. We denote passwords1 for party A by xi

and for party B by yi. Writing H for the underlying hash function, we set
Xi := H(xi), Yi := H(yi) and refer to the Xi and Yi as committing hash
values of the passwords. Finally, the binding hash values are denoted by
Xi(i+1) and Yi(i+1) for A and B respectively, where Xi(i+1) := H(xi, Xi+1)
and Yi(i+1) := H(yi, Yi+1).

At any given time, the internal state of A is given by an 8-tuple
(xi, xi+1, Xi, Xi+1,Xi(i+1), y

∗
i−1, Y

∗
i ,Y∗

i(i+1)) with y∗i−1, Y ∗
i , Y∗

i(i+1) being
B’s most recent password, committing hash value, and binding hash
value accepted by A. Likewise, the internal state of B is given by an
8-tuple (yi, yi+1, Yi, Yi+1,Yi(i+1), x

∗
i−1, X

∗
i ,X ∗

i(i+1)) with x∗i−1, X∗
i , X ∗

i(i+1)
being A’s most recent password, committing hash value, and binding hash
value accepted by B.

Adversarial model During the initialization phase of the protocol, the in-
volved parties A and B exchange information through an authenticated
channel which we will denote by =⇒. The adversary is restricted to pas-
sive eavesdropping of this channel, no delaying, deleting, inserting, or

1 Here we follow the terminology in [MS08] and stress that exhausting all possible pass-
words is assumed to be infeasible. In particular, this use of the term password differs
from the common use in the context of password authenticated key establishment.

2

altering of messages is allowed. During the execution of the protocol and
in the resynchronization process, A and B communicate over an insecure
channel which we denote by −→. The adversary has full control over the
insecure channel, and in particular can delete and insert messages. The
goal of the adversary is to create a forgery, i. e., to provoke a situation
where B accepts a message-recipient pair (A,m) where the message m
has never been sent by A.

2.1 Initialization phase

Figure 1 shows the steps performed by A and B in the initialization phase.

A B

Choose random x0 and x1 and form
X0 := H(x0), X1 := H(x1), and
X01 := H(x0, X1).

X0,X01====⇒ Receive X0,X01.

Receive Y0,Y01.
Y0,Y01⇐==== Choose random y0 and y1 and form

Y0 := H(y0), Y1 := H(y1), and
Y01 := H(y0, Y1).

Let y∗−1 :=⊥, so A’s initial state is
(x0, x1, X0, X1, X01,⊥, Y0,Y01).

Let x∗−1 :=⊥ so B’s initial state is
(y0, y1, Y0, Y1, Y01,⊥, X0,X01)

Fig. 1. Initialization phase of [MS08]

In summary, during the initialization phase, A does the following:

– Choose random x0 and x1.
– Compute X0 := H(x0), X1 := H(x1), and X01 := H(x0, X1).
– Send X0, X01 to B over the authenticated channel.
– Receive Y0, and Y01 from B over the authenticated channel.
– Set y∗−1 :=⊥, Y ∗

0 := Y0, Y∗
0 := Y0.

Similarly, B performs the following steps:

– Choose random y0 and y1.
– Compute Y0 := H(y0), Y1 := H(y1), and Y01 := H(y0, Y1).
– Send Y0, Y01 to A over the authenticated channel.
– Receive X0, and X01 from A over the authenticated channel.

3

– Set x∗−1 :=⊥, X∗
0 := X0, X ∗

0 := X0.

The values X0, X01, Y0, Y01 which are interchanged by A and B over
the authenticated channel can be eavesdropped—but not altered—by the
adversary.

2.2 Execution of the protocol

Once the initialization phase has been completed, the actual protocol
execution can take place as described in Figure 2.

A’s internal state: B’s internal state:
(x0, x1, X0, X1,X01, y

∗
−1, Y

∗
0 ,Y∗01) (y0, y1, Y0, Y1,Y01, x

∗
−1, X

∗
0 ,X ∗

01)

A B

Receive input (m, B). Choose
a random x2 and form X2 :=
H(x2), X12 := H(x1, X2). Com-
pute h := H(m, x0).

m,h−−→ Receive m′, h′.

Receive y′0, Y ′
1 , Y ′12.

y0,Y1,Y12←−−−−−− Choose a random y2 and form
Y2 := H(y2), Y12 := H(y1, Y2).

If H(y′0) = Y ∗
0 and

H(y′0, Y
′
1) = Y∗01, then send

x0, X1, X12 and update
your internal state as follows:
(x1, x2, X1, X2,X12, y

′
0, Y

′
1 ,Y ′12)

else initiate resynchronization.

x0,X1,X12−−−−−−−→ Receive x′0, X ′
1, X ′

12. If
H(x′0) = X∗

0 , H(x′0, X
′
1) = X ∗

01,
and h′ = H(m′, x′), then update
your internal state as follows:
(y1, y2, Y1, Y2,Y12, x

′
0, X

′
1,X ′

12)
and output (A, m′) else initiate
resynchronization.

Fig. 2. Protocol execution of [MS08]

Summarizing, on input a message-recipient pair (m,B), A does the fol-
lowing during a protocol execution:

– Choose a random x2 and form X2 := H(x2), X12 := H(x1, X2).
– Compute h := H(m,x0).
– Send (m, h) and wait to receive y′0, Y ′

1 , Y ′
01 from B. Resend if B does

not respond.
– If H(y′0) = Y ∗

0 and H(y′0, Y
′
1) = Y01, send x0, X1, X01 to B and up-

date the internal state to (x1, x2, X1, X2,X12, y
′
0, Y

′
1 ,Y ′

12), else initiate
resynchronization.

4

After receiving (m′, h′), B does the following:

– Choose a random y2 and compute Y2 := H(y2), Y12 := H(y1, Y2).
– Send y0, Y1, Y12 to A and wait to receive x′0, X ′

1, X12. Resend if A
does not respond.

– If H(x′0) = X∗
0 , H(x′0, X

′
1) = X01, and h′ = H(m′, x′0) then update the

internal state to (y1, y2, Y1, Y2,Y12, x
′
0, X

′
1,X ′

12) and output (A,m′),
else initiate resynchronization.

Note that all messages are sent over an insecure channel, where the
adversary can delete, modify, and insert messages at will. Further, it is
possible for A to update its internal state after sending x0, X1, X12 with-
out B updating its state. Therefore, the resynchronization process that
follows is not symmetric.

2.3 Resynchronization process

In the case of adversarial intrusion or communication failure, either A or
B can initiate the resynchronization process in Figure 3. As shown in this
figure, B has two sets of conditions that can update its internal state,
whereas A has only one.

A’s internal state: B’s internal state:
(x0, x1, X0, X1,X01, y

∗
−1, Y

∗
0 ,Y∗01) (y0, y1, Y0, Y1,Y01, x

∗
−1, X

∗
0 ,X ∗

01)

A B

Choose a random x2 and form
X2 := H(x2), X12 := H(x1, X2).

Choose a random y2 and form
Y2 := H(y2), Y12 := H(y1, Y2).

Receive y′0, Y ′
1 , Y ′12.

y0,Y1,Y12←−−−−−− Send y0, Y1, Y12.

Send x0, X1, X12.
x0,X1,X12−−−−−−−→ Receive x′0, X ′

1, X ′
12.

If y∗−1 = y′0 and Y ∗
0 = Y ′

1 , then
Y∗01 := Y ′12, else initiate resynchro-
nization.

If x∗−1 = x′0 and X∗
0 = X ′

1, then
X ∗

01 := X ′
12,

otherwise if H(x′0) = X∗
0 and

H(x′0, X
′
1) = X ∗

01, then x∗−1 := x′0,
X∗

0 := X ′
1, X ∗

01 := X ′
12

else initiate resynchronization.

Fig. 3. Resynchronization process of [MS08]

5

We can summarize the resynchronization process as follows:

– A and B respectively choose random x2, y2 and form X2 := H(x2),
Y2 := H(y2), X12 := H(x1, X2), and Y12 := H(y1, Y2).

– B sends y0, Y1, Y01 to A.
– A sends x0, X1, X01 to B.
– If y∗−1 = y′0 and Y ∗

0 = Y ′
1 , then A sets Y∗

01 := Y ′
12, else initiates

resynchronization.
– If x∗−1 = x′0 and X∗

0 = X ′
1, then B sets X ∗

01 := X ′
12, else if H(x′0) = X∗

0

and H(x′0, X
′
1) = X ∗

01, then B sets x∗−1 := x′0, X∗
0 := X ′

1, X ∗
01 := X ′

12,
else initiates resynchronization.

During resynchronization, A can only refresh the value Y∗
01, whereas B

can either refresh the value X ∗
01 or update x∗−1, X∗

0 , X ∗
01.

3 Provoking an unrecoverable situation

If A or B suspects a communication failure or a possible adversarial in-
trusion, it can initiate the resynchronization process. Here we show that

– an adversary can create a situation where A keeps on initiating the
resynchronization process, but the protocol does not recover, and

– an adversary can create a situation where B keeps on initiatiating the
resynchronization process, but the protocol does not recover.

It is worth noting that in both cases, modification of a single message
on the public channel is sufficient, i. e., the adversary does not have to
stay “online” for achieving this type of denial of service: these attacks
are qualitatively different from simply blocking communication between
A and B. Section 4 builds on these observations to create a successful
forgery.

3.1 Unrecoverability with resynchronization initiated by A

As depicted in Figure 4, assume that after a successful initialization phase,
A has internal state (x0, x1, X0, X1, X01,⊥, Y0,Y01) and B has internal
state (y0, y1, Y0, Y1, Y01,⊥, X0,X01). Now A starts executing a protocol as
specified in Section 2.2, sending a message m along with matching h-value
to B. In response to this, B sends y0, Y1 and Y12.

The adversary can replace y0 with a (random) value such that A’s va-
lidity check H(y′0) = Y0 and H(y′0, Y

′
1) = Y∗

01 fails. Following the protocol
specification, now A initiates the resynchronization process (see upper

6

part of Figure 4). Note that so far A never updated its internal state and
still has stored the values y∗−1 =⊥, Y0∗ = Y0, and Y∗

01 = Y01.
Now, in the resynchronization phase, B sends to A the values y′0,

Y ′
1 , and Y ′

12. These values do not match the values stored by A, how-
ever. Consequently, A initiates resynchronization again. Re-running the
resynchronization will not help the situation, so the protocol becomes
unrecoverable. Figure 4 summarizes the sequence of events.

3.2 Unrecoverability with resynchronization initiated by B

Consider a second scenario as in Figure 5. Assume that after a successful
initialization phase A has internal state (x0, x1, X0, X1,X01,⊥, Y0,Y01)
and B has internal state (y0, y1, Y0, Y1,Y01,⊥, X0,X01) as before. As be-
fore A initiates an execution of the protocol in [MS08] by sending a mes-
sage m along with matching h-value to B. In response, A receives y′0,
Y ′

1 , and Y ′
12 from B. Our adversary faithfully transmits these messages,

so that A’s validity check succeeds and A updates its internal state to
(x1, x2, X1, X2, X12, y

′
0, Y

′
1 ,Y ′

12). Further, A sends x0, X1 and X12 to B.
Our adversary can replace x0 with a (random) value so that the values x′0,
X ′

1, and X ′
12 received by B from A do not verify. Consequently, following

the protocol specification in Section 2.2, B will initiate the resynchroniza-
tion process. Note that so far B never updated its internal state and has
stored x∗−1 =⊥, X∗

0 = X0, and X ∗
01 = X01.

In the resynchronization process, A sends x1, X2, and X23 to B. Even
if the values x′1, X ′

2, and X ′
23 received by B are identical to the values sent

by A, x′1 6= x∗−1 and H(x′1) 6= X∗
0 cause B to initiate resynchronization

again. Re-running the resynchronization will not resolve the situation,
and analogously as in the previous section the protocol becomes unrecov-
erable. Figure 5 summarizes the sequence of events.

7

A’s internal state: B’s internal state:
(x0, x1, X0, X1,X01,⊥, Y0,Y01) (y0, y1, Y0, Y1,Y01,⊥, X0,X01)

execution of the protocol

A B

Receive input (m, B). Choose
random x2 and form X2 :=
H(x2), X12 := H(x1, X2).
Compute h := H(m, x0).

m,h−−→ Receive m′, h′.

Receive y′0, Y ′
1 , Y ′12.

y0,Y1,Y12←−−−−−− Choose a random y2 and form
Y2 := H(y2), Y12 := H(y1, Y2).

Suppose that H(y′0) 6= Y ∗
0 or

H(y′0, Y
′
1) 6= Y∗01, hence initiate

resynchronization.

A’s internal state: B’s internal state:
(x0, x1, X0, X1,X01,⊥, Y0,Y01) (y0, y1, Y0, Y1,Y01,⊥, X0,X01)

resynchronization process

A B

Choose a random x2 and
form X2 := H(x2), X12 :=
H(x1, X2).

Choose a random y2 and form
Y2 := H(y2), Y12 := H(y1, Y2)

Receive y′0, Y ′
1 , Y ′12.

y0,Y1,Y12←−−−−−− Send y0, Y1, Y12

Send x0, X1, X12.
x0,X1,X12−−−−−−−→ Receive x′0, X ′

1, X ′
12.

Since y∗−1 6= y′0 and Y0∗ 6= Y ′
1 ,

initiate resynchronization.

Fig. 4. Unrecoverability after a resynchronization initiated by A

8

A’s internal state: B’s internal state:
(x0, x1, X0, X1,X01,⊥, Y0,Y01) (y0, y1, Y0, Y1,Y01,⊥, X0,X01)

execution of the protocol

A B

Receive input (m, Bob). Choose
random x2 and form X2 :=
H(x2), X12 := H(x1, X2). Com-
pute h := H(m, x0).

m,h−−→ Receive m′, h′.

Receive y′0, Y ′
1 , Y ′12.

y0,Y1,Y12←−−−−−− Choose a random y2 and form
Y2 := H(y2), Y12 := H(y1, Y2).

Suppose that H(y′0) = Y ∗
0

and H(y′0, Y
′
1) = Y∗01, then

send x0, X1, X12 and up-
date the internal state to
(x1, x2, X1, X2,X12, y

′
0, Y

′
1 ,Y ′12).

x0,X1,X12−−−−−−−→ Receive x′0, X ′
1, X ′

12. Suppose
H(x′0) 6= X∗

0 , or H(x′0, X
′
1) 6=

X ∗
01, or h′ 6= H(m′, x′), then ini-

tiate resynchronization.

A’s internal state: B’s internal state:
(x1, x2, X1, X2,X12, y

′
0, Y

′
1 ,Y ′12) (y0, y1, Y0, Y1,Y01,⊥, X0,X01)

resynchronization process

A B

Choose a random x3 and form
X3 := H(x3), X23 := H(x2, X3).

Choose a random y2 and form
Y2 := H(y2), Y12 := H(y1, Y2)

Receive y′0, Y ′
1 , Y ′12.

y0,Y1,Y12←−−−−−− Send y0, Y1, Y12

Send x1, X2, X23.
x1,X2,X23−−−−−−−→ Receive x′1, X ′

2, X ′
23.

Since x∗−1 6= x′1 and H(x′1) 6=
X∗

0 , initiate resynchronization.

Fig. 5. Unrecoverability after a resynchronization initiated by B

9

4 Creating a forgery

To describe the attack, in subsequent figures we denote the adversary by
F . Messages delivered faithfully by F are denoted by ⇀ and the messages
created by F are denoted by ⇁. To begin our attack, we assume that A
and B have successfully completed the initialization phase of the protocol.
From here on, the attack unfolds in four steps:

1. executing the message recognition protocol
2. first resynchronization (unsuccessful)
3. second resynchronization (successful)
4. executing the message recognition protocol a second time

The subsequent four subsections elaborate on each of these steps.

4.1 Execution of the recognition protocol

In this first step, the goal of F is to learn the initial password x0 from A.
For this, F proceeds as shown in Figure 6.

A’s internal state: B’s internal state:
(x0, x1, X0, X1,X01,⊥, Y0,Y01) (y0, y1, Y0, Y1,Y01,⊥, X0,X01)

A F B

Receive (m, B) as input. Choose
a random x2 and form X2 :=
H(x2), X12 := H(x1, X2). Com-
pute h := H(m, x0).

m,h−−⇀ Receive m, h.

Receive y0, Y1, Y12.
y0,Y1,Y12↼−−−−−− Choose a random y2 and form

Y2 := H(x2), Y12 := H(y1, Y2).

Since H(y0) = Y ∗
0 and

H(y0, Y1) = Y01, send
x0, X1, X12 and up-
date the internal state to
(x1, x2, X1, X2,X12, y0, Y1,Y12).

ex,X1,X12−−−−−−⇁ Since H(ex) 6= X0 initiate resyn-
chronization.

Fig. 6. First step of the attack: execution of the protocol

Summarizing, in this first step of the attack F does the following:

10

– Forward m, h faithfully from A to B.
– Forward the values y0, Y1, Y12 sent from B faithfully to A.
– Choose a (random) x̃ 6= x0 so that that H(x̃) 6= X0.
– Send x̃, X1, X12 to B, i. e., replace the value x0 sent by A with x̃.

Since H(x̃) 6= X0 , B initiates resynchronization after A has already
updated its internal state to (x1, x2, X1, X2,X12, y0, Y1,Y12), and we are
in similar situation as discussed in Section 3.2.

4.2 First resynchronization (unsuccessful)

In this second step of the attack, F extracts the value x1 from A, using
the resynchronization process as shown in Figure 7.

A’s internal state: B’s internal state:
(x1, x2, X1, X2,X12, y0, Y1,Y12) (y0, y1, Y0, Y1,Y01,⊥, X0,X01)

A F B

Choose a random x3, and
form X3 := H(x3), X23 :=
H(x2, X3).

Choose a random y2 and form
Y2 := H(y2), Y12 := H(y1, Y2).

Receive y0, Y1, Y12.
y0,Y1,Y12↼−−−−−− Send y0, Y1, Y12.

Send x1, X2, X23
ex,X1,X12−−−−−−⇁ Since x∗−1 6= ex, and H(ex) 6=

X0, initiate resynchronization.

Fig. 7. Second step of the attack: unsuccessful resynchronization

Thus F ’s actions in this step of the attack can be summarized as follows:

– Forward the values y0, Y1, Y12 sent by B faithfully to A.
– Receive x1, X2, X23 from A.
– Send x̃, X1, X12 to B, i. e., the same values as above.

Since y0 and Y1 match what A has stored, A refreshes the value Y12

with the new one sent by B. Recall that B has two sets of conditions to
check as shown in Figure 3. As B has not accepted a password from A
yet, we clearly have x−1 6= x̃ and the first condition is not met. Further,
we have H(x̃) 6= X0, so the second condition is not met either. Hence
the resynchronization is unsuccessful and B initiates resynchronization a
second time. Note that at this point, F knows both x0 and x1.

11

4.3 Second resynchronization (successful)

During this second resynchronization, B will update its internal state. In
preparation of the subsequent forgery, F binds the x1-value received from
A to F ’s own value x̃. Figure 8 delineates the sequence of events during
this second (successful) resynchronization.

A’s internal state: B’s internal state:
(x1, x2, X1, X2,X12, y0, Y1,Y12) (y0, y1, Y0, Y1,Y01,⊥, X0,X01)

A F B

Receive y0, Y1, Y12.
y0,Y1,Y12↼−−−−−− Choose a random y2 and form

Y2 := H(y2), Y12 := H(y1, Y2).
Send y0, Y1, Y12.

Choose a random x3 and
form X3 := H(x3), X23 :=
H(x2, X3).

x0,X1, eX−−−−−⇁ Verifies that H(x0) = X0,
H(x0, X1) = X01, then updates
internal state.

Fig. 8. Third step of the attack: successful resynchronization

Summarizing, F does the following:

– Forward the values y0, Y1, Y12 sent by B faithfully to A.
– For the random x̃ from the first step of the attack, form X̃ := H(x̃)

and X̃ := H(x1, X̃) .
– Send x0, X1, X̃ to B.

Since y0 and Y1 match what A has stored, A refreshes the value Y12 with
the new one sent by B once again. As H(x0) = X0 and H(x0, X1) = X01,
the second set of B’s conditions is met, and B updates its internal state
to (y0, y1, Y0, Y1,Y01, x0, X1, X̃). Hence, the second resynchronization is
successful, and F can initiate an execution of the message recognition
protocol with B.

4.4 Executing the message recognition protocol a second time

In the final step of the attack, F uses x1 and the committing hash value X̃
with the x̃ chosen earlier. As seen in Figure 9, only F is communicating
with A at this stage, and the message m̃ can chosen arbitrarily (with
m 6= m̃ to achieve indeed a forgery).

12

B’s internal state:

(y0, y1, Y0, Y1,Y01, x0, X1, eX)

F B

Choose a message em 6= m. Com-
pute h := H(em, x1).

em,h−−⇁ Receive em, h.

Receive y0, Y1, Y12.
y0,Y1,Y12↼−−−−−− Choose a random y2 and form

Y2 := H(y2), Y12 := H(y1, Y2).
Send y0, Y1, Y12.

Choose a random bx and formbX := H(bx) and bX := H(ex, bX).

x1, eX, bX−−−−−⇁ Verify that H(x1) = X1

and H(x1, eX) = eX , then
update internal state to
(y1, y2, Y1, Y2,Y12, x1, eX, bX)
and output (A, em).

Fig. 9. Fourth step of the attack: inserting a forged message

The actions of F in this last part of the attack can be summarized as
follows:

– Choose a message m̃ 6= m and compute h := H(m̃, x1).
– Send m̃, h to B.
– Receive y0, Y1, Y12 from B.
– Choose a random x̂ and form X̂ := H(x̂) and X̂ := H(x̃, X̂).
– Send x1, X̃, X̂ to B.

5 Conclusion

The above discussion shows that the message recognition protocol sug-
gested by Mashatan and Stinson in [MS08] does not provide the intended
security guarantees: the resynchronization procedure can be abused to
provoke a situation where the protocol does not recover and enables a
successful forgery attack. Consequently, the protocol from [MS08] should
not be used in the present form.

Acknowledgments

We would like to thank the Fields Institute in Toronto and the organizing
committee of the Fields Cryptography Retrospecive Meeting in 2009: the

13

financial support for attending this meeting enabled us to meet Atefeh
Mashatan who made us aware of the work in [MS08]. We are indebted to
Atefeh for helpful discussions.

References

[ABC+98] Ross Anderson, Francesco Bergadano, Bruno Crispo, Jong-Hyeon Lee,
Charalampos Manifavas, and Roger Needham. A New Family of Authen-
tication Protocols. Operating Systems Review, 32(4):9–20, 1998.

[LZWW08] Stefan Lucks, Erik Zenner, André Weimerskirch, and Dirk Westhoff. Con-
crete Security for Entity Recognition: The Jane Doe Protocol. In Dipan-
wita Roy Chowdhury, Vincent Rijmen, and Abhijit Das, editors, Progress
in Cryptology – INDOCRYPT 2008, volume 5365 of Lecture Notes in Com-
puter Science, pages 158–171. Springer-Verlag, 2008.

[Mit03] Chris J. Mitchell. Remote User Authentication Using Public Information.
In Kenneth G. Paterson, editor, Cryptography and Coding, 9th IMA Inter-
national Conference, volume 2398 of Lecture Notes in Computer Science,
pages 360–369. Springer-Verlag, 2003.

[MS08] Atefeh Mashatan and Douglas R. Stinson. A New Message Recognition
Protocol for Ad Hoc Pervasive Networks. In Matthew K. Franklin, Lucas
Chi Kwong Hui, and Duncan S. Wong, editors, Cryptology and Network
Security, 7th International Conference, CANS 2008, volume 5339 of Lecture
Notes in Computer Science, pages 378–394. Springer-Verlag, 2008.

[SA00] Frank Stajano and Ross Anderson. The Resurrecting Duckling: Security
Issues for Ad-hoc Wireless Networks. In Bruce Christianson, Bruno Crispo,
James A. Malcolm, and Michael Roe, editors, Security Protocols, 7th In-
ternational Workshop, volume 1796 of Lecture Notes in Computer Science,
pages 172–182. Springer-Verlag, 2000.

[WW04] André Weimerskirch and Dirk Westhoff. Zero Common-Knowledge Au-
thentication for Pervasive Networks. In Mitsuru Matsui and Robert Zuc-
cherato, editors, Selected Areas in Cryptography, 10th Annual International
Workshop, SAC 2003, volume 3006 of Lecture Notes in Computer Science,
pages 73–87. Springer-Verlag, 2004.

14

