
Preimages for Step-Reduced SHA-2⋆

Jian Guo1⋆⋆ and Krystian Matusiewicz2

1 Division of Mathematical Sciences
School of Physical and Mathematical Sciences
Nanyang Technological University, Singapore

guojian@ntu.edu.sg
2 Department of Mathematics

Technical University of Denmark, Denmark
K.Matusiewicz@mat.dtu.dk

Abstract. In this paper, we present a preimage attack for 42 step-
reduced SHA-256 with time complexity 2251.7 and memory requirements
of order 212. The same attack also applies to 42 step-reduced SHA-512
with time complexity 2502.3 and memory requirements of order 222. Our
attack is meet-in-the-middle preimage attack.

Keywords: preimage attack, SHA-256, SHA-512, meet-in-the-middle, hash function

1 Introduction

A novel class of collision attacks on MD family developed by Wang et al [23, 25,
26] opened a new chapter in the history of cryptographic hash functions. Soon
after MD5 was broken, a theoretical break of SHA-1 was announced [24] and
refined [4].

Weaknesses of so many of these popular designs against collision attacks nat-
urally raised the question about their level of resistance against potentially much
more devastating preimage attacks. While collision attacks, especially practical,
are dangerous in some scenarios, violating the preimage resistance makes the
function practically useless. Unlike collision attacks, for which their impact can
be sometimes mitigated by using solutions like RMX [6], the preimage attacks
are more devastating. Once they are found, the only solution seems to be re-
placing the function with another, secure one. This motivated the community to
study the popular designs also from the point of view of preimage resistance.

Preimage attacks were soon found for MD4 [28, 12, 1], reduced round MD5
and other hashes, such as HAVAL [19, 2, 21]. Finally, a preimage attack on the
full MD5 was presented recently by Sasaki and Aoki [22].

The security of SHA-1 against preimage attacks was also investigated by De
Canniére and Rechberger and an attack on 45 rounds out of 80 was presented
in [3].

⋆ The paper was merged and will appear in ASIACRYPT 2009.
⋆⋆ This work was done while visiting Technical University of Denmark and was partly

supported by a DCAMM grant.



SHA-256 One of the very few well-known designs from the MD family that
has not been compromised yet is the current U.S. Government standard SHA-
256 [16]. Due to its much more complicated structure, especially of the message
expansion, attacking it seems quite a difficult task. The progress of cryptanalysis
of SHA-256 has been steady but rather slow [5, 27, 13, 14, 7, 18, 17]. The best
publicly known collision attack [7, 17] covers 24 steps out of the total 64. At the
rump session of CRYPTO 2008 Sasaki announced a 36-step preimage attack [20],
but the details have not been made public. Recently, a preimage attack on a
variant reduced to 24 steps was presented [8].

SHA-256 warrants the attention for at least two reasons. The first one is
its standardization and a recent move to replace the broken predecessor SHA-1
with it. The more we know about the security of reduced and simplified variants,
the better we understand the complete construction and the security margin it
offers.

Moreover, the NIST competition for the new hashing standard SHA-3 uses
SHA-2 as some kind of a benchmark for the relative performance of the candi-
dates. Advances in the cryptanalysis of SHA-2 may improve our understanding
of how fast a secure cryptographic hash function can be.

Our Contribution We contribute to the cryptanalysis of SHA-2 by presenting
a theoretical preimage attack on a variant of SHA-256 reduced to 42 steps,
around 66% of the total of 64 steps for this function. We build upon the general
framework developed for a number of MD hashes by Sasaki and Aoki, and add
more dedicated tricks exploiting the details of the construction of SHA-2. We
show how to use message expansion in both directions, achieve better partial
matching and how to transfer the influence of some of the message words to be
able to use them for word compensation somewhere else. Combining all those
methods allows us to achieve 42 steps.

This paper is organized as follows. We start with a description of SHA-2 in
Section 2 and move on to explain the general idea of the preimage attack in
Section 3. Then, in Section 4, we delve into the details of the improvements,
explaining how to use them to achieve more steps. Finally, we present the com-
plete attack algorithm in Section 5 and establish its computational complexity.
In the conclusions, we summarize the main points of this work and consider some
possible research directions to extend the current results.

2 Description of SHA-2

SHA-256 [16] is an iterated hash function based on the Merkle-Damg̊ard design
that uses a compression function mapping 256 bits of the state and 512 bits
of the message block to 256 bits of the new state. The compression function
consists of 64 identical steps presented in Fig. 1 that update 256-bit internal
state Si = (Ai, . . . , Hi) using one word of the expanded message Wi and a
constant Ki to produce a new state Si+1 = (Ai+1, . . . , Hi+1). After the last
step, a feed-forward operation is applied and the output of the compression



function is computed as a word-wise sum modulo 232 of the previous state S0

and the output of the last step S64, i.e. (A0 +A64, . . . , H0 +H64).
The step transformation employs bitwise Boolean functions

MAJ(A,B,C) = (A ∧B) ∨ (A ∧ C) ∨ (B ∧ C) ,

IF(E,F,G) = (E ∧ F ) ∨ (¬E ∧G)

and two diffusion functions

Σ0(x) = (x ≫ 2) ⊕ (x ≫ 13) ⊕ (x ≫ 22) ,

Σ1(x) = (x ≫ 6) ⊕ (x ≫ 11) ⊕ (x ≫ 25)

built from 32-bit word rotations towards least significant bit (≫) and bitwise
XORs denoted by ⊕.

Σ0

MAJ

Σ1

IF

Ki

Wi

Ai Bi Ci Di Ei Fi Gi Hi

Ai+1 Bi+1 Ci+1 Di+1 Ei+1 Fi+1 Gi+1 Hi+1

Fig. 1. One step of the SHA-256 compression function updates the state of eight chain-
ing variables A, . . . , H using one word Wi of the expanded message.

The message expansion function splits 512-bit message block into 16 words
Mi, i = 0, . . . , 15, and expands them into a vector of 64 32-bit words Wi accord-
ing to the following formula:

Wi =

{

Mi for 0 ≤ i < 16 ,

σ1(Wi−2) +Wi−7 + σ0(Wi−15) +Wi−16 for 16 ≤ i < 64 .
(1)

The functions σ0 and σ1 are defined as σ0(x) = (x ≫ 7)⊕ (x ≫ 18)⊕ (x≫ 3)
and σ1(x) = (x ≫ 17)⊕ (x ≫ 19)⊕ (x≫ 10), where ≫ denotes a shift towards
least significant bit and + is addition modulo 232.

3 The Preimage Attack

The general idea of the preimage attack, illustrated in Fig. 2, can be explained
as follows:



matchsplit

Target

Fig. 2. Pseudo-Preimage Attack for Davies-Meyer Hash Functions

1. Split the compression function into two chunks, where the values in one
chunk do not depend on some message word Wq and the values in the other
chunk do not depend on another message word Wp (p 6= q). We follow the
convention and call such words neutral with respect to the first and second
chunk, respectively.

2. Fix all other values except for Wp,Wq to random values and assign random
values to the chaining registers at the splitting point.

3. Start the computation both backward and forward from the splitting point
to form two lists Lp, Lq indexed by all possible values of Wp and Wq and
containing the computed values of the chaining registers at the matching
point.

4. Compare two lists to find partial matches (match for one or few registers
instead of full chaining) at the matching point.

5. Repeat the above three steps with different initial configurations (values for
splitting point and other message words) until a full match is found.

6. Note that the match gives a pseudo-preimage as the initial value is deter-
mined during the attack. However, it is possible to convert pseudo-preimages
to a preimage using a generic technique described in [15, Fact 9.99].

With the work effort of 232 compression evaluations (assuming 32-bit registers),
we obtain two lists, each one containing close to 232 values of the register to
match. When we consider all of the 264 possible pairs, we expect to get around
232 matches. This means that after 232 computations we get 232 matches on one
register, effectively reducing the search space by 232. Leaving all the other reg-
isters to chance allows us to find a complete match and thus a pseudo-preimage
in 2256−32 = 2224 computations if the internal state is 256 bits.

4 Finding independent chunks for SHA-2

The main challenge in this type of preimage attack is to find two sufficiently
long sequences of steps (chunks) that can be made independent from the two
different neutral words.

To this end, techniques such as local collisions and initial structures [22]
have been used previously to increase the number of steps that can be dealt



with during the attack. Such methods are unique for each particular function
and strongly depend on the details of the design.

In this section we present three tricks developed for SHA-2 that allow us to
get more steps.

4.1 Using Message Expansion

Two-way expansion The two neutral message words do not need to be taken
from the set {W0, . . . ,W15}. The message expansion (1) of SHA-2 works in such
a way that all the expanded message words can be determined from any consec-
utive 16 words Wz , . . . ,Wz+15, 0 ≤ z ≤ 48. Once we choose any 16 consecutive
words, we can determine the other ones recursively in both directions. Assume
we start with {Wz, . . . ,Wz+15}. To determine the optimal choice of the split-
ting point and the neutral words, let us first expand the message words in both
directions. For backward direction:

Wz−1 = Wz+15 − σ1(Wz+13) −Wz+8 − σ0(Wz) , (2)

Wz−2 = Wz+14 − σ1(Wz+12) −Wz+7 − σ0(Wz−1) , (3)

Wz−3 = Wz+13 − σ1(Wz+11) −Wz+6 − σ0(Wz−2) , (4)

Wz−4 = Wz+12 − σ1(Wz+10) −Wz+5 − σ0(Wz−3) , (5)

Wz−5 = Wz+11 − σ1(Wz+9) −Wz+4 − σ0(Wz−4) , (6)

Wz−6 = Wz+10 − σ1(Wz+8) −Wz+3 − σ0(Wz−5) , (7)

Wz−7 = Wz+9 − σ1(Wz+7) −Wz+2 − σ0(Wz−6) , (8)

Wz−8 = Wz+8 − σ1(Wz+6) −Wz+1 − σ0(Wz−7) , (9)

Wz−9 = Wz+7 − σ1(Wz+5) −Wz − σ0(Wz−8) , (10)

Wz−10 = Wz+6 − σ1(Wz+4) −Wz−1 − σ0(Wz−9) , (11)

Wz−11 = Wz+5 − σ1(Wz+3) −Wz−2 − σ0(Wz−10) . (12)

and for forward direction:

Wz+16 = σ1(Wz+14) +Wz+9 + σ0(Wz+1) +Wz , (13)

Wz+17 = σ1(Wz+15) +Wz+10 + σ0(Wz+2) +Wz+1 , (14)

Wz+18 = σ1(Wz+16) +Wz+11 + σ0(Wz+3) +Wz+2 , (15)

Wz+19 = σ1(Wz+17) +Wz+12 + σ0(Wz+4) +Wz+3 , (16)

Wz+20 = σ1(Wz+18) +Wz+13 + σ0(Wz+5) +Wz+4 , (17)

Wz+21 = σ1(Wz+19) +Wz+14 + σ0(Wz+6) +Wz+5 , (18)

Wz+22 = σ1(Wz+20) +Wz+15 + σ0(Wz+7) +Wz+6 , (19)

Wz+23 = σ1(Wz+21) +Wz+16 + σ0(Wz+8) +Wz+7 , (20)

From above, we see that choosing Wz+8 and Wz+9 as neutral words is reasonable
as those two message words appear late in forward and backward directions, re-
spectively. We can use {Wz−4, . . . ,Wz+8} as the first chunk which is independent
from Wz+9, and {Wz+9, . . . ,Wz+22} as the second chunk which is independent
from Wz+8.



Message compensation Using the message stealing technique explained below
in Section 4.2, we can move the splitting point four steps earlier, between Wz+4

and Wz+5, and “steal” Wz+8 back to the first chunk to preserve neutrality.
Now, the first chunks becomes {Wz−4, . . . ,Wz+4,Wz+8} and the second one
{Wz+5,Wz+6,Wz+7,Wz+9, . . . ,Wz+22}.

With the help of Wz+5 and Wz+7, we can extend the first chunk for several
more steps. We note that Wz+5 is used in (10) and (5), we compensate them by
using Wz+7 and Wz+12. By “compensating” we mean making the equation value
independent from Wz+5 by forcing Wz+7 − σ1(Wz+5) = C (C is some constant,
we use 0 for simplicity) andWz+12−Wz+5 = C. Wz+7 is also used in (8), however
we can use Wz+9 to compensate for it, i.e. set Wz+9 = σ1(Wz+7) = σ2

1(Wz+5).
Then Wz+9 and Wz+12 are used in steps above, so we continue this recursively
and finally have the following constraints that ensure the proper compensation
of values of Wz+5.

Wz+7 = σ1(Wz+5) , (21)

Wz+9 = σ2
1(Wz+5) , (22)

Wz+11 = σ3
1(Wz+5) , (23)

Wz+13 = σ4
1(Wz+5) , (24)

Wz+15 = σ5
1(Wz+5) , (25)

Wz+12 = Wz+5 , (26)

Wz+14 = 2 σ1(Wz+5) . (27)

Now, {Wz−10, . . . ,Wz+4} are all independent from Wz+5 (or Wz+9 as there is
a bijection between them). The first chunk becomes {Wz−10, . . . , Wz+4,Wz+8}
and the second one {Wz+5,Wz+6,Wz+7, Wz+9, . . . ,Wz+22}.

A similar compensation is difficult in the forward direction as message words
Wz , . . . ,Wz+7 are used in consecutive steps. If we use any of them, all of them
have to be used. However, we already used Wz+5 and Wz+7 above.

In total, there are 33 steps in both chunks, regardless of the choice of z. We
will pick a particular value of z later in Section 4.3.

4.2 Message Stealing

What we call a message stealing technique allows us to have more steps around
the splitting point by shifting some messages related to those two neutral message
words so that the neutrality property is preserved. Such shifting can only be done
when it does not alter the behavior of the step function.

Message stealing makes use of the absorption property of the function IF(x, y, z) =
xy ⊕ xz. If x is 1 (all bits are 1), then IF(1, y, z) = y which means z does not
affect the result of IF function in this case; similarly when x is 0 (all bits are 0),
y does not affect the result. When we want to control partial output (few bits),
we need to fix the corresponding bits of x instead of all bits of x.

We consider 4 consecutive step functions, i.e. from step i to step i + 3. We
show that, under certain conditions, we can move the last message word Wi+3



Σ0

MAJ

Σ1

IF

Ki

Wi

Σ0

MAJ

Σ1

IF

Ki+1

Wi+1

Σ0

MAJ

Σ1

IF

Ki+2

Wi+2

Σ0

MAJ

Σ1

IF

Ki+3

Wi+3

splitting point

0

1

(a)

Σ0

MAJ

Σ1

IF

Ki

Σ0

MAJ

Σ1

IF

Ki+1

Wi+1

Σ0

MAJ

Σ1

IF

Ki+2

Wi+2

Σ0

MAJ

Σ1

IF

Ki+3

Wi Wi

Wi+3 Wi

(b)

Fig. 3. Message stealing allows to (a) move the addition of Wi+3 upwards provided
that the IF functions absorb the appropriate inputs; (b) move Wi one step downwards.

to step i and move Wi to step i+1 while keeping the final output after step i+3
unchanged.

Assume we want to transfer upwards a message word Wi+3. Due to the
absorption property of IF, we can move Wi+3 to step i+ 2 (adding it to register
Gi+2) if all the bits of Ei+2 are fixed to 1. This is illustrated in Fig. 3(a).
Similarly, we can further move Wi+3 to step i+ 1 (adding it to register Fi+1) if
all the bits of Ei+1 are 0. Then, we still can move it upwards by transferring it
to register Ei after step transformation in step i.

The same principle applies if we want to transfer only part of the register
Wi+3. If l most significant bits (MSB) of Wi+3 are arbitrary and the rest is set
to zero (to avoid interference with addition on least significant bits), we need to
fix l MSB of Ei+2 to one and l MSB of Ei+1 to zero.

As l MSB of Ei+1 need to be 0, we need to use l MSB of Wi to satisfy this
requirement. This reduces the space of Wi to 232−l. Similarly, we need to choose
those Wi that fix l MSB of Ei+2 to one. This further reduces the space of Wi to
232−2l. We choose l = 10 so that we have more or less same space for both Wi

and Wi+3, the reason will be explained in Section 5.



The important thing to note here is that if we fix the values of Fi+1, Gi+1

and of the sum Di+1 +Hi+1 (this is possible since Si+1 is a splitting point we
have complete control over), we can precompute the set of good values for Wi

and store them in a table. Then, we can later recall them at no cost.
On the other hand, message word Wi can be moved to step i + 1 with no

constraint, as shown in Fig. 3(b).
This essentially swaps the order of the two words Wi and Wi+3 which was

used in message compensation.

4.3 Indirect Partial Matching

In this section we explain how to use a modified partial matching method to
extend the attack by 9 more steps. The basic partial matching technique would
give us 7 more steps [8], since we need at least one register to perform the
matching and the computation backward “looses” one register per step. However,
using some tricks we explain below we can get two more steps.

The partial matching is shown in Fig 4. Let us fix z = 11 (this choice will
become clear in a moment). The two neutral words areW16 andW19 and the cor-
responding chunks are {W1, . . . ,W15,W19} and {W16,W17, W18,W20, . . . ,W33}.
We want to gain two more steps, one step at each end of both chunks, where
message words W0 and W34 are used.

We compute the value of A35 from both directions and try to find matches,
other seven registers are computed and checked if A35 matches. In the forward
direction, A35 can be calculated from S34 and W34. S34 is independent from
W19, however W34 is not. Substituting z = 11 into (20) we get W34 = σ1(W32)+
W27 +σ0(W19)+W18 and see that although W34 is not neutral about W19, it can
be expressed as a sum of two independent functions of W19 and W16. Moreover,
the value of W34 is added to get the value of A35, so we can express A35 as
ψ(W16) + σ0(W19).

Similarly, we compute backward and express A35 as µ(W19) −W16. Now we
need to find matches such that ψ(W16) + σ0(W19) = µ(W19) −W16, which is
equivalent to ψ(W16) + W16 = µ(W19) − σ0(W19). Let us define ψ′(W16) :=
ψ(W16)+W16 and µ′(W19) := µ(W19)−σ0(W19). Instead of finding matches for
A35 directly, we can compute ψ′ and µ′ independently and match.

This is possible only when both message words used at the beginning and the
end of the partial match can be expressed as a sum of two independent functions.
This is true when z = 11 and it explains our choice.

4.4 Overview of the Attack

The overview of the separation of chunks is shown in Fig. 5. The pink/lighter
filled boxes ( ) denote registers from the first chunk that depend only on W19.
The blue/darker boxes ( ) denote variables from the second chunk that depend
only on W16. Mixed color boxes (both and ) denote registers that can be
expressed as a sum modulo 232 of two independent functions of neutral variables



B
a
c
k
w
a
rd

F
o
rw

a
rd

B
a
c
k
w
a
rd

Σ0

MAJ

Σ1

IF

K40

W40

Σ0

MAJ

Σ1

IF

K39

W39

Σ0

MAJ

Σ1

IF

K38

W38

Target

Σ0

MAJ

Σ1

IF

K0

W0

Σ0

MAJ

Σ1

IF

K41

W41

A35 Match?

Σ0

MAJ

Σ1

IF

K37

W37

Σ0

MAJ

Σ1

IF

K36

W36

Σ0

MAJ

Σ1

IF

K35

W35

Σ0

MAJ

Σ1

IF

K34

W34

Fig. 4. Partial Matching

W19 and W16. Register A35 is the matching point and is outlined with a bold line
( ). Finally, registers that depend on both neutral variables in a complicated
way are drawn as crossed-out boxes ( ) and empty boxes represent registers
independent from both neutral words.

5 Algorithm and Complexity

Once we have explained all the elements of our attack, we can put them together
in one algorithm as described below.

1. Randomly choose the values for internal chaining S17 (after the movement
of message words by message stealing) and message words not related to
neutral words, i.e. W11, W12, W13, W14, W15, W17, W21. Let us call this an
initial configuration.

2. For all possible W16 (there are 232−2l different values as described in Sec-
tion 4.2), compute the corresponding W18, W20, W22, W23, W24, W25, W26



A

1 19

second chunkfirst chunk

16 340 41

W:

indirect partial matching

splitting point

S17

matching point

S35

Fig. 5. Separation of chunks and dependencies of state words in the attack.

as in (21)-(27). Compute backward and find ψ′(W16) as described in Sec-
tion 4.3. Store the result (W16, ψ

′(W16)) in a list Lp.

3. For all possible W19 (there are 2l different values), compute forward and find
µ′ as described in Section 4.3. Store the result (W19, µ

′(W19)) in a list Lq.

4. Compare the values of ψ′ and µ′ and find matches. If a match is found,
compute other registers B35, . . . , H35 and see whether they match from both
directions. If they do, compute the pseudo-preimage as S0 and W0, . . . ,W15.

5. Repeat steps 1 - 4 with different initial configurations until a full match is
found.

6. Repeat step 5 to find sufficiently many pseudo-preimages, then find a preim-
age according to Fact 9.99 [15].

The computational complexity for step 2 and 3 is 2l−1 and 231−2l (We estimate
this by approximating one chunk as half of the compression function, it is less in
fact), and it generates 232−l pairs. The chance for one pair to be a good match is
2−256, so we need to repeat step 1-3 for 2256−32+l times. The overall complexity
for finding one pseudo-preimage becomes 2224+l · (2l−1 + 231−2l). Choosing the
optimal value l = 10, the complexity is 2245.32. According to Fact 9.99 [15],
sufficiently many pseudo-preimages in step 6 in our case is 2(256−245.32)/2 = 25.34,
then the overall complexity for finding preimage is 2(256+245.32)/2+1 = 2251.66.

Length of Preimages The preimages are of at least two blocks, last block
is used to find pseudo-preimages and the second last block links to the input
chaining of last block. Two block preimages is only possible if we can preset
the message words W13,W14 and W15 of last block according to the padding
and length encoding rules. In our case, this can be done in the first step of the
algorithm. On the other hand, we can leave W14 and W15 as random, later we
can still resolve the length using expandable messages [10].



Multi-Preimages and Second Preimages We note that the method con-
verting pseudo-preimage to preimages can be further extended to find multi-
preimages. We find first k block multi-collisions [9], then follow the expandable
message to link to the final block. This gives 2k multi-preimages with additional
k2n/2 computations, which is negligible when k is much less than 2(n−l)/2. We
need additional 128k bytes memory to store the k block multi-collisions.

We note most of the message words are randomly chosen, it naturally gives
second preimages with high probability. Above multi-preimages are most prob-
ably multi-second preimages.

6 Conclusions

In this paper we presented a preimage attack on a version of SHA-256 reduced
to 42 steps out of 64. This number of steps is possible thanks to four new
techniques we presented: message stealing, two-way message expansion, message
compensation and indirect partial matching. Each one of them allows to improve
over the standard preimage attack and allows to add more steps.

The same attack also works for SHA-512 as the message expansion is the
same and the attack does not depend on the details of functions σ0/1 and Σ0/1.
We also expect that a variant of this attack would work for the function DHA-
256 [11].

The preimage attack we presented creates a very interesting situation for
SHA-256 when a preimage attack, covering 42 steps, is much better than the
best known collision attack, with only 24 steps. Our attack does not convert to
collision attack because of the complexity above the birthday bound. However,
we believe that the existence of such a preimage attack suggests that a collision
attack of similar length could be also possible.

In that light, the problem of finding collisions for reduced variants of SHA-256
definitely deserves more attention.

Acknowledgement

We would like to thank Lars R. Knudsen, Christian Rechberger, and the anony-
mous reviewers of ASIACRYPT 2009 for the helpful comments. Jian Guo was
supported in part by the Singapore Ministry of Education under Research Grant
T206B2204. Krystian Matusiewicz was supported by grant 274-07-0246 from the
Danish Research Council for Technology and Production Sciences.

References

1. Kazumaro Aoki and Yu Sasaki. Preimage attack on one-block MD4, 63-step MD5
and more. In Selected Areas in Cryptography - SAC 2008, volume 5381 of LNCS,
pages 103–119. Springer, 2009.



2. Jean-Philippe Aumasson, Willi Meier, and Florian Mendel. Preimage attacks
on 3-pass HAVAL and step-reduced MD5. In Selected Areas in Cryptography -

SAC 2008, volume 5381 of LNCS, pages 120–135. Springer, 2009.
3. Christophe De Cannière and Christian Rechberger. Preimages for reduced SHA-0

and SHA-1. In David Wagner, editor, Advances in Cryptology – CRYPTO 2008,
volume 5157 of LNCS, pages 179–202. Springer, 2008.

4. Christophe De Canniére and Christian Rechberger. Finding SHA-1 characteristics:
General results and applications. In Advances in Cryptology – ASIACRYPT 2006,
volume 4284 of LNCS, pages 1–20. Springer, Dec 2006.

5. Henri Gilbert and Helena Handschuh. Security analysis of SHA-256 and sisters.
In Selected Areas in Cryptography 2003, volume 3006 of LNCS, pages 175–193.
-Verlag, 2003.

6. Shai Halevi and Hugo Krawczyk. Strengthening digital signatures via randomized
hashing. In Advances in Cryptology – CRYPTO 2006, volume 4117 of LNCS, pages
41–59. Springer, 2006.

7. Sebastiaan Indesteege, Florian Mendel, Bart Preneel, and Christian Rechberger.
Collisions and other non-random properties for step-reduced SHA-256. In Work-

shop Records of SAC 2008, pages 257–274, 2008.
8. Takanori Isobe and Kyoji Shibutani. Preimage attacks on reduced Tiger and SHA-

2. In Fast Software Encryption – FSE 2009, LNCS. Springer, 2009. to appear.
9. Antoine Joux. Multicollisions in iterated hash functions. application to cascaded

constructions. In Advances in Cryptology – CRYPTO 2004, volume 3152 of LNCS,
pages 306–316. Springer, 2004.

10. John Kelsey and Bruce Schneier. Second preimages on n-bit hash functions for
much less than 2n work. In Advances in Cryptology – EUROCRYPT 2005, volume
3494 of LNCS, pages 474–490. Springer, 2005.

11. Jesang Lee, Donghoon Chang, Hyun Kim, Eunjin Lee, and Deukjo Hong. A new
256-bit hash function dha-256 - enhancing the security of sha-256. NIST - First
Cryptographic Hash Workshop, October 31-November 1, 2005.

12. Gaëtan Leurent. MD4 is not one-way. In Fast Software Encryption – FSE 2008,
volume 5086 of LNCS, pages 412–428. Springer, 2008.

13. Krystian Matusiewicz, Josef Pieprzyk, Norbert Pramstaller, Christian Rechberger,
and Vincent Rijmen. Analysis of simplified variants of SHA-256. In Western

European Workshop on Research in Cryptology – WEWoRC 2005, volume P-74 of
Lecture Notes in Informatics. Gesellschaft für Informatik, 2005.

14. Florian Mendel, Norbert Pramstaller, Christian Rechberger, and Vincent Rijmen.
Analysis of step-reduced SHA-256. In Fast Software Encryption – FSE 2006, vol-
ume 4047 of LNCS, pages 126–143. Springer, 2006.

15. Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of

Applied Cryptography. CRC Press, 2001. available online from http://www.cacr.

math.uwaterloo.ca/hac/.
16. National Institute of Standards and Technology. Secure hash standard (SHS).

FIPS 180-2, August 2002.
17. Somitra Kumar Sanadhya and Palash Sarkar. New collision attacks against up to

24-step sha-2. In Dipanwita Roy Chowdhury, Vincent Rijmen, and Abhijit Das,
editors, INDOCRYPT, volume 5365 of Lecture Notes in Computer Science, pages
91–103. Springer, 2008.

18. Somitra Kumar Sanadhya and Palash Sarkar. Non-linear reduced round attacks
against SHA-2 hash family. In Information Security and Privacy – ACISP 2008,
volume 5107 of LNCS, pages 254–266. Springer, 2008.



19. Yu Sasaki and Kazumaro Aoki. Preimage attacks on 3, 4, and 5-pass HAVAL.
In Advances in Cryptology – ASIACRYPT 2008, volume 5350 of LNCS, pages
253–271. Springer, 2008.

20. Yu Sasaki and Kazumaro Aoki. Preimage attacks on MD, HAVAL, SHA, and
others. CRYPTO 2008 Rump session presentation, August 2008. Slides available
at http://rump2008.cr.yp.to/.

21. Yu Sasaki and Kazumaro Aoki. Preimage attacks on step-reduced MD5. In Infor-

mation Security and Privacy – ACISP 2008, volume 5107 of LNCS, pages 282–296.
Springer, 2008.

22. Yu Sasaki and Kazumaro Aoki. Finding preimages in full MD5 faster than ex-
haustive search. In Advances in Cryptology – EUROCRYPT 2009, volume 5479 of
LNCS, pages 134–152. Springer, 2009.

23. Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen, and Xiuyuan Yu. Crypt-
analysis of the hash functions MD4 and RIPEMD. In Advances in Cryptology –

EUROCRYPT 2005, volume 3494 of LNCS, pages 1–18. Springer, 2005.
24. Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions in the full

SHA-1. In Advances in Cryptology – CRYPTO 2005, volume 3621 of LNCS, pages
17–36. Springer, 2005.

25. Xiaoyun Wang and Hongbo Yu. How to break MD5 and other hash functions.
In Advances in Cryptology – EUROCRYPT 2005, volume 3494 of LNCS, pages
19–35. Springer, 2005.

26. Xiaoyun Wang, Hongbo Yu, and Yiqun Lisa Yin. Efficient collision search attacks
on SHA-0. In Advances in Cryptology – CRYPTO 2005, volume 3621 of LNCS,
pages 1–16. Springer, 2005.

27. Hirotaka Yoshida and Alex Biryukow. Analysis of a SHA-256 variant. In Selected

Areas in Cryptography – SAC 2005, volume 3897 of LNCS, pages 245–260. Springer,
2006.

28. Hongbo Yu, Gaoli Wang, Guoyan Zhang, and Xiaoyun Wang. The second-preimage
attack on MD4. In Cryptology and Network Security – CANS 2005, volume 3810
of LNCS, pages 1–12. Springer, 2005.


