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Abstract

In 1998 [8], Patarin proposed an efficient cryptosystem called Little Dragon which was
a variant of Matsumoto Imai cryptosystem C∗. However Patarin later found that Little
Dragon cryptosystem is not secure [8], [3]. In this paper we propose a public key cryp-
tosystem Little Dragon Two which is as efficient as Little Dragon cryptosystem but secure
against all the known attacks. Like little Dragon cryptosystem the public key of Little
Dragon Two is of mixed type that is quadratic in plaintext and ciphertext variables. So
the public key size of Little Dragon Two is equal to Little Dragon Cryptosystem. Our
Public key algorithm is bijective and can be used for both encryption and signatures.

Keywords Public Key Cryptography, Multivariate Cryptography, Little Dragon Cryptosystem,
Big-Dragon Cryptosystem.

1 Introduction

Public key cryptography has several practical applications, for example in e-commeres sys-
tems for authentication(electronic signatures) and for secure communication. The most widely
used cryptosystems RSA and ECC (elliptic curve cryptosystems) are based on the problems of
integer factorization and discrete logarithm respectively. Integer factorization and discrete log-
arithm problems are only believed to be hard but no proof is known for their NP-completeness
or NP-hardness. Improvements in factorization algorithms and computation power demands
larger bit size in RSA key which makes RSA less efficient for practical applications. Although
RSA and ECC have some drawbacks, they are still not broken. But in 1999 [1]Peter Shor
discovered the polynomial time algorithm for integer factorization and computation of discrete
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logarithm on quantum computers. Thus once we have quantum computers in the range of
1,000 bits, the cryptosystems based on these problems can no longer be considered secure. So
there is a strong motivation to develop public key cryptosystems based on problems which are
secure on both conventional and quantum computers. Multivariate cryptography is based on
the problem of solving non-linear system of equations over finite fields which is proven to be
NP-complete. Quantum computers do not seem to have any advantage on solving NP-complete
problems, so multivariate cryptography can be a viable option applicable to both conventional
and quantum computers. MIC*, the first practical public key cryptosystem based on this
problem was proposed in 1988 [5] by T. Matsumoto and H. Imai. The MIC* cryptosystem was
based on the idea of hiding a monomial x2l+1 by two invertible affine transformations. This
cryptosystem was more efficient than RSA and ECC. Unfortunately this cryptosystem was
broken by Patarin in 1995[6]. In 1996 [7] Patarin gave a generalization of MIC* cryptosystem
called HFE. However in HFE the secret key computation was not as efficient as in the original
MIC* cryptosystem. The basic instance of HFE was broken in 1999[9]. The attack uses a
simple fact that every homogeneous quadratic multivariate polynomial has a matrix represen-
tation. Using this representation a highly over defined system of equations can be obtained
which can be solved by a new technique called relinearization [9]. Patarin [8] investigated
whether it is possible to repair MIC* with the same kind of easy secret key computations.
He designed some cryptosystems known as Little Dragon and Big Dragon with multivariate
polynomials of total degree 2 and 3 respectively in plaintext and ciphertext variables in public
key with efficiency comparable to MIC*. Due to its efficiency and quadratic public key size, the
Little Dragon Scheme was more interesting. However Patarin found [8], [3] that Little Dragon
scheme is insecure. Some more multivariate public key cryptosystems can be found in reference
[11] and [12]. For a brief introduction of multivariate cryptography we refer to the interested
readers to reference [13]. An interesting introduction of hidden monomial cryptosystems can
be found in reference[3].
Designing secure and efficient multivariate public key cryptosystems continues to be a chal-
lenging area of research in recent years. In this paper we present Little Dragon Two, a modified
and secure version of Little Dragon Cryptosystem. Like Dragon cryptosystems the public key
in our cryptosystem is of mixed type but of degree two in plaintext and ciphertext variables.
The efficiency of our public key cryptosystem is equivalent to that of Little Dragon cryptosys-
tem. The complexity of encryption or signature verification is equivalent to other multivariate
public key cryptosystems that is O(n3) where n is the bit size. In decryption or in signature
generation we need only one exponentiation in finite field F2n and this results in much faster
decryption and signature generation. The outline of our paper is as follows. In section 2 we
present our cryptosystem and in section 3 we give the security analysis of our cryptosystem.
In section 4 we discuss its efficiency.

2 The Cryptosystem Little Dragon Two

Let p be a prime, n be a positive integer, and Fq be the Galois field of q = pn elements. A
polynomial f(x) in Fq[x] is said to be a permutation polynomial, if it is a polynomial function



of Fq onto Fq. A polynomial f ∈ Fq[x] is a permutation polynomial of Fq if and only if one of
the following conditions hold:

1. the function f is onto;

2. the function f is one-to-one;

3. f(x) = a has a solution in Fq for each a ∈ Fq;

4. f(x) = a has a unique solution in Fq for each a ∈ Fq.

Lemma 2.1 [2]

1. Every linear polynomial that is a polynomial of the form ax + b with a 6= 0 over Fq is a
permutation polynomial of Fq.

2. The monomial xn is a permutation polynomial of Fq if and only if gcd(n, q − 1) = 1.

Lemma 2.2 The polynomial f(x) = x22rk+2r
+x22rk

+x2r
, where r and k are positive integers,

is a permutation polynomial of F2n if and only if 22rk + 2r and 2n − 1 are co-prime.

Proof. First note that there exist integers r and k such that 22rk +2r and 2n−1 are co-prime.
It is known that composition of two polynomials is a permutation polynomial if and only if
both the polynomials are permutation polynomials, see chapter 7 of [2]. It is easy to check
that f(x + 1) = x22rk+2r

+ 1. By lemma 2.1, f(x + 1) is a permutation polynomial if and only
if 22rk +2r and 2n− 1 are co-prime. Since x+1 is always a permutation of F2n , therefore f(x)
is a permutation polynomial of F2n if and only if 22rk + 2r and 2n − 1 are co-prime.

We use Tr(x) to denote the trace function from finite field F2m to F2, i.e.,

Tr(x) = x + x2 + x22
+ . . . + x22m−1

As a consequence of above lemmas we can deduce the following lemma, which we will use to
design our public key cryptosystem.

Lemma 2.3 The polynomials g(x) = (x22rk
+ x2r

+ α)l + x is permutation polynomial of F2n,
where Tr(α) = 1 and l.(22rk + 2r) = 1 mod 2n − 1

Proof. First note that Tr(x22r.k
+x2r

+α) = Tr(α) = 1, so x22r.k
+x2r

+α 6= 0 for all x ∈ F2n .
Let β be an element of a finite field F2n and consider the equation g(x) = β:

(x22r.k
+ x2r

+ α)l + x = β

It is clearly equivalent to

(x22r.k
+ x2r

+ α)l = x + β



Raising both sides the power 22r.k + 2r, we get,

(x22r.k
+ x2r

+ α) = (x + β)2
2r.k+2r

Or
(x22r.k

+ x2r
+ α) + (x + β)2

2r.k+2r
= 0

Suppose h(x) = (x22r.k
+ x2r

+ α) + (x + β)2
2r.k+2r

. We have to show that for any δ ∈ GF (2n)
the equation h(x) = 0 has a unique solution. Note that h(x) = 0 and h(x + β) = 0 have the
same number of solutions.
Now h(x + β) = 0 is equivalent to

x22rk+2r
+ x22rk

+ x2r
+ β22rk

+ β2r
+ α = 0

Note that by lemma 2.2, x22rk+2r
+ x22rk

+ x2r
is a permutation polynomial of F2n . Hence the

equation h(x + β) = 0 has a unique solution for any β ∈ F2n .

2.1 Public key generation.

For the public key cryptosystem we can not take all the permutation polynomials of the form
(x22rk

+ x2r
+ α)l + x. But the permutation polynomials in which l is of the form 2t + 1

or 2t − 1 can be used to design the multivariate public key cryptosystem. For l is of the
form 2t + 1 it is not clear whether g(x) is permutation polynomial or not. But for r = 0,
n = 2m − 1, k = m and l = 2m − 1, g(x) is a permutation polynomial because in this case
22rk + 2r = 2m + 1 and (2m− 1).(2m + 1) = 1 mod 2n− 1. So for public key generation we will
take g(x) = (x2m

+ x + α)2
m−1 + x, where α is secret. We can take other suitable values r, k

and n such that l is of the form 2i − 2j . There are few choices for r, k and l so we can assume
that these are known. Suppose s and t are two invertible affine transformation. The relation
between plaintext and ciphertext is g(s(x)) = t(y), where x variable denotes the plaintext and y

is for ciphertext. Suppose s(x) = u and t(y) = v. Thus we have the following relation between
plaintext and ciphertext: (u2m

+u+α)2
m−1+u = v or (u2m

+u+α)2
m

+(u2m
+u+α)(u+v) = 0

or the above relation can be written as:

u2m+1 + u2m
v + uv + uα + u2m

+ vα + α2m
= 0 (1)

Suppose B = {β1, β2, . . . , βn} is a basis of F2n over F2. Any x ∈ F2n can be expressed as
x =

∑n−1
i=1 xiβi, where xi ∈ F2. Thus F2n can be identified by Fn

2 , the set of all n tuples over
F2. Substituting u = s(x) and v = t(y), where x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn), we
get the n quadratic polynomials of the form

∑
aijxixj +

∑
bijxiyj +

∑
ckyk +

∑
dkxk + el (2)



Here the coefficients aij , bij , ck, dk, el ∈ F2. Note that u2m+1 gives the terms of the form∑
xixj +

∑
xk + c1, where c1 is constant and and u2m

v + uv gives the terms of the form∑
xiyj +

∑
xk +

∑
yl +c2, uα+u2m

gives the the terms of the form
∑

xi +c3 and vα gives the
terms of the form

∑
yi + c4. So n polynomial equations of the form (2) represent the required

public key.

2.2 Secret Key

The invertible affine transformations (s, t) and finite field element α are secret keys.

2.3 Encryption

If Bob wants to send a plaintext message x = (x1, x2, . . . , xn) to Alice, he does the following

1. Bob substitutes the plaintext (x1, x2, . . . , xn) in public key and gets n linear equations
in ciphertext variables y1, y2, . . . , yn.

2. Second step of encryption is to solve these linear equations by Gaussian elimination
method to get the ciphertext y = (y1, y2, . . . , yn).

2.4 Decryption

Here we describe the decryption algorithm.
Input: Ciphertext y = (y1, y2, . . . , yn) and secret parameters (s, t, α).
Output: Message (x1, x2, . . . , xn)

1: v ← t(y1, y2, . . . , yn)
2: z1 ← α + 1 + v + v2m

3: z2 ← z2m−1
1 , z3 ← v + 1 + z2

4: X1 ← s−1(v + 1) and X2 ← s−1(z3)
5: Return (X1, X2)

Either X1 or X2 is the required secret message. There are only two choices for message so it
is easy to identify the correct message.
Proof. We prove that the procedure described above outputs a valid plaintext. The relation
between plaintext and ciphertext is (u2m

+ u + α)2
m−1 + u = v or equivalently u2m

+ u + α =
(u+v)2

m+1, which can be converted into the form (u+v+1)2
m+1 +v+v2m

+α+1 = 0. There
are only two possibilities either u = v + 1 or u 6= v + 1. If u = v + 1, then x = s−1(v + 1). If
u 6= v+1, then raising both sides power 2m−1 in the relation (u+v+1)2

m+1 = v+v2m
+α+1,

we get (u + v + 1) = (v + v2m
+ α + 1)2

m−1 or u = v + 1 + (v + v2m
+ α + 1)2

m−1 which implies
x = s−1

(
v + 1 +

(
v + v2m

+ α + 1
)2m−1

)

Example 2.1 Here is the toy example for our cryptosystem. We are taking the finite field F23

that is m = 2 and n = 3. The polynomial x3+x+1 is irreducible over F2. Suppose γ is the root
of this polynomial in the extension field of F2, i.e., γ3 + γ + 1 = 0. Using the basis {1, γ, γ2}
the finite field F23 can be expressed as F23 = {0, 1, γ, γ2, 1 + γ, 1 + γ2, γ + γ2, 1 + γ + γ2}. We
are taking α = 1 + γ + γ2, as tr(1 + γ + γ2) 6= 0, s(x) = A1x + c1 and t(x) = A2x + c2 are two



invertible transformations, where A1 =




1 1 0
0 1 1
0 0 1


 and A2 =




1 1 1
0 1 1
0 0 1


 c1 = (1, 0, 1)T

and c2 = (0, 1, 0)T . Suppose x ∈ F23, then x can be expressed as x = x1 + x2γ + x3γ
2 or

equivalently x = (x1, x2, x3) where xi ∈ F2. Taking x = (x1, x2, x3), we have A1x + c1 =
(x1 + x2 + 1, x2 + x3, x3 + 1) and A2x + c2 = (x1 + x2 + x3, x2 + x3 + 1, x3). For the plaintext
variable x = (x1, x2, x3) the corresponding ciphertext variable is y = (y1, y2, y3). We have
u = (x1 +x2 + 1) + (x2 +x3)γ + (x3 +1)γ2 and v = (y1 + y2 + y3) + (y2 + y3 + 1)γ + y3γ

2. The
relation between plaintext and ciphertext is u2m+1 + u2m

v + uv + uα + u2m
+ vα + α2m

= 0.
Substituting u and v and α = 1 + γ + γ2, we have the following relation between plaintext and
ciphertext (x2x3 + x2y2 + x2y3 + x3y3 + x1 + x2 + y1 + y2 + y3) + (x3x1 + x2x3 + x3y1 + x3y2 +
x2y2 + x2 + x3 + y2 + y3 + 1)γ + (x2x1 + x2y1 + x2y2 + x3y2 + x3y3 + x2 + y3 + 1)γ2 = 0 or
equivalently we have
x2x3 + x2y2 + x2y3 + x3y3 + x1 + x2 + y1 + y2 + y3 = 0
x3x1 + x2x3 + x3y1 + x3y2 + x2y2 + x2 + x3 + y2 + y3 + 1 = 0
x2x1 + x2y1 + x2y2 + x3y2 + x3y3 + x2 + y3 + 1 = 0
Above equations represent the required public key. Note that the above equations are non-linear
in plaintext variables (x1, x2, x3) and linear in ciphertext variables (y1, y2, y3).

3 The Security of the proposed Cryptosystem

In this section we discuss the security of the proposed cryptosystem. In general it is very
difficult to prove the security of a public key cryptosystem. For example if the public modulus
of RSA is decomposed into its prime factors then the RSA is broken. However it is not
proved that breaking RSA is equivalent to factoring its modulus. In this section we will give
some security arguments and evidence that our cryptosystem is secure. We are using the
polynomial (x2m

+ x + α)2
m−1 + x, where α is secret. Thus if we write this polynomial in the

form
∑d

i=0 δix
i then some coefficients will be 0 and 1 and some coefficients will be function

of α. Since α is secret so most of the coefficients of this polynomial are also secret. One
important point is that the degree d of this polynomial is not constant but it is function of n

as m = (n + 1)/2. It is easy to see that Lenearization Equation attack of [6] is not applicable
to our cryptosystem. The Coppersmith-Patarin attack on Little Dragon cryptosystem [3]
is due to the using monomial xn to design the little dragon cryptosystem so this attack is
also not applicable to our cryptosystem. Here we discuss some known attacks developed for
multivariate cryptosystems and we will show that those attacks are not applicable to our
cryptosystem. The attacks discussed in this section are Grobner basis, univariate polynomial
representation, Differential cryptanalysis, Relinearization, XL and FXL algorithms.

3.1 Attacks with Differential Cryptanalysis

Differential cryptanalysis has been successfully used earlier to attack the symmetric cryptosys-
tem. In recent years differential cryptanalysis has emerged as a powerful tool to attack the
multivariate public key cryptosystems too. In 2005 [14] Fouque, Granboulan and Stern used



differential cryptanalysis to attack the multivariate cryptosystems. The key point of this at-
tack is that in case of quadratic polynomials the differential of public key is a linear map and
its kernel or its rank can be analyzed to get some information on the secret key. For any
multivariate quadratic function G : Fn

q → Fm
q the differential operator between any two points

x, k ∈ Fn
q can be expressed as LG,k = G(x + k)−G(x)−G(k)+ G(0) and in fact that operator

is a bilinear function. By knowing the public key of a given multivariate quadratic scheme
and by knowing the information about the nonlinear part (xqi+1) they showed that for certain
parameters it is possible to recover the kernel of LG,k. This attack was successfully applied
on MIC* cryptosystem and afterwards using the same technique Dubois, Fouque, Shamir and
Sterm in 2007 [16] have completely broken all versions of the SFLASH signature scheme pro-
posed by Patarin, Courtois, and Goubin [15]. In our cryptosystem instead of using monomial
of the form xqi+1, we are using the polynomial (x2m

+ x + α)2
m−1 + x. Clearly the degree

of this polynomial is not quadratic. Moreover the public key in our cryptosystem is of mixed
type. Substituting the ciphertext gives quadratic plaintext variables but in that case it will be
different for different ciphertexts. So to attack our cryptosystem by the methods of [14] and
[16] is not feasible.

3.2 Univariate polynomial representation of Multivariate Public Polynomi-

als

In our cryptosystem the encryption function is y = t−1 (f (s(x))), where f(x) = (x2m
+ x +

α)2
m−1 +x. Suppose d is the degree of polynomial f(x). Then f(x) will give multivariate poly-

nomials of degree w(d), where w(d) denotes the hamming weight of d. As the composition with
affine transformations will not affect the degree of multivariate polynomials, so t−1 (f (s(x)))
will also give multivariate polynomials of degree w(d). Note that the degree d is not constant
but it is function of n. It is easy to see that the degree of univariate polynomial representation
of encryption function is not constant but it is function of n. By lemma 3.3 of [9] the degree
and the number of nonzero terms of the univariate polynomial representation of encryption
function are both O(nn) . The complexity of root finding algorithms e.g. Berlekamp algorithm,
is polynomial in the degree of the polynomial. This results in an exponential time algorithm
to find the roots of univariate polynomial. Therefore this line of attack is less efficient than
the exhaustive search.

3.3 Grobner Basis Attacks

After substituting the ciphertext in public key one can get n quadratic equations in n variables
and then Grobner basis techniques can be applied to solve the system. The classical algorithm
for solving a system of multivariate equations is Buchberger’s algorithm [4]. Although it can
solve all the multivariate quadratic equations in theory its complexity is exponential in the
number of variables. We remark that there is no closed-form formula for its complexity. In
the worst case the Buchberger’s algorithm is known to run in double exponential time and on
average its running time seems to be single exponential (see [17]). There are some efficient
variants F4 and F5 of Buchberger’s algorithm given by Jean-Charles Faugere (see [19] and



[20]). The complexity of computing a Grobner basis by Buchberger’s algorithm for the public
polynomials of the basic HFE scheme is too high to be feasible. However it is completely
feasible using the algorithm F5. The complexities of solving the public polynomials of several
instances of the HFE using the algorithm F5 are provided in [10]. Moreover it has been
expressed in [10] “a crucial point in the cryptanalysis of HFE is the ability to distinguish a
randomly algebraic system from an algebraic system coming from HFE”. Moreover our public
key is of mixed type, this mean for different ciphertexts we will get different system of quadratic
polynomial equations, so in our public key the quadratic polynomials looks random. We are
using a polynomial which has degree proportional to n. It is explained in [10] that in this case
there does not seem to exist polynomial time algorithm to compute the Grobner basis. Hence
to attack our cryptosystem by Grobner basis method is not feasible.

3.4 Relinearization, XL and FXL Algorithms.

Relinearization, XL or FXL algorithms [9], [17] are the techniques to solve the over defined
system of equations i.e., εn2 equations in n variables, where ε ≥ 0. To attack the HFE
cryptosystem, first the equivalent quadratic polynomial representation of HFE public key was
obtained and then using the matrix representation of quadratic polynomials, they obtained
O(n2) polynomial equations in O(n) variables[9]. The Relinearization and XL or FXL tech-
niques are used to solve this system of equations. Note that our polynomial is not quadratic,
moreover the degree of our polynomial is not constant but it is function of n, so the attack of
[9] is not feasible to our cryptosystem. Adversary can not use directly Relinearization, XL or
FXL algorithms to attack our cryptosystem because when number of equations are equal to
number of variables, the complexities of these algorithms is 2n.

4 Efficiency of the proposed cryptosystem

In this section we give complexity of the encryption and decryption of our cryptosystem.

4.1 Encryption

The public key in our cryptosystem consists of n equations of the form (2). There are O(n2)
terms of the form xixj in each n equations of the public key so the complexity of evaluating
public key at message block x1, . . . , xn is O(n3). The next step of encryption is to solve the n

linear equation in n ciphertext variables y0, y1, . . . , yn. This can be done efficiently by Gaussian
elimination in O(n3) complexity. Hence the total complexity of encryption is O(n3).

4.2 Decryption
In the decryption of the proposed cryptosystem we need only one exponentiation namely
z2 ← z2m−1

1 . So the complexity of decryption is equivalent to Little-Dragon cryptosystem [3],
[8]. Note that for exponentiation in finite fields F2m there are several efficient algorithms, so
the exponentiation can be performed very efficiently. The exact complexity of exponentiation
will depend on the algorithm used.



5 Conclusion

We have designed an efficient multivariate public key cryptosystem. Like Little Dragon Cryp-
tosystem the public key is mixed type but quadratic.

Comments and suggestions from anybody are welcome.
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