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Abstract. Impossible boomerang attack [5] (IBA) is a new variant of differential cryptanalysis
against block ciphers. Evident from its name, it combines the ideas of both impossible differential
cryptanalysis and boomerang attack. Though such an attack might not be the best attack available,
its complexity is still less than that of the exhaustive search. In impossible boomerang attack,
impossible boomerang distinguishers are used to retrieve some of the subkeys. Thus the security
of a block cipher against IBA can be evaluated by impossible boomerang distinguishers. In this
paper, we study the impossible boomerang distinguishers for block cipher structures whose round
functions are bijective. Inspired by the U-method in [3], we provide an algorithm to compute the
maximum length of impossible boomerang distinguishers for general block cipher structures, and
apply the algorithm to known block cipher structures such as Nyberg’s generalized Feistel network,
a generalized CAST256-like structure, a generalized MARS-like structure, a generalized RC6-like
structure, etc.
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1 Introduction

Differential and linear cryptanalysis are the most common cryptanalytic tools against block ciphers.
Provable security against differential and linear cryptanalysis has been an important consideration in
the design of block ciphers. However, this is not sufficient to guarantee the security of the block ciphers
as they may be vulnerable to other types of cryptanalysis. Analysis of new cryptanalytic techniques is
thus always desirable since it enhances the evaluation of the security of a block cipher and the design of
more secure ciphers.

Impossible differential cryptanalysis and boomerang-type attacks (including the boomerang, am-
plified boomerang and rectangle attacks as well as their related-key variants) have been used in the
cryptanalysis of many block ciphers. For instance, a 6-round impossible differential attack was mounted
on MISTY1 in [2] recently while a full-round related-key rectangle attack was applied to the KASUMI
cipher [1]. Hence the importance of these cryptanalytic techniques cannot be undermined.

In [5], a new extension of differential cryptanalysis, which J. Lu calls the impossible boomerang attack,
was proposed. This attack combines the ideas of impossible differential cryptanalysis and boomerang
attack, and makes use of an impossible boomerang distinguisher. Similar to a boomerang attack, a block
cipher E is treated as two sub-ciphers E0 ◦ E1. Two (or more) differentials with probability 1 for E0

and two (or more) differentials with probability 1 for E1 are used, where the XOR of the intermediate
differences of these differentials is not equal to zero. In [5], the impossible boomerang attack was used
to break 6-round AES-128, 7-round AES-192 and 7-round AES-256 in a single key attack scenario, and
8-round AES-192 and 9-round AES-256 in a related-key attack scenario involving two keys.

As mentioned in [5], the advantages of the IBA over the boomerang attacks are analogous to
those of impossible differential cryptanalysis over differential cryptanalysis. A block cipher resistant
to boomerang-type attack will not necessarily be resistant against an IBA. In boomerang-type distin-
guishers, one generally assumes that the output of one intermediate round of the cipher is uniformly



distributed and is independent from that of the previous rounds. On the other hand, an impossible
boomerang distinguisher does not require this assumption, which is often not the case. Therefore, an
impossible boomerang distinguisher seems more reasonable than boomerang-type distinguishers [5].

Though we can always obtain an impossible differential from an impossible boomerang distinguisher
for the same number of rounds, this is not true for their variants in a related-key attack scenario. As
explained in [5], the flexibilities in choosing the key differences may enable more rounds of a block cipher
to be broken using a related-key impossible boomerang attack. Since related-key IBA is a variant of the
basic IBA, we will be concentrating on the study of impossible boomerang distinguishers which form the
core of IBA.

Inspired by the U-method in [3], we introduce the UB-method and provide an algorithm to compute
the maximum length of impossible boomerang distinguishers and implement it on some selected block
ciphers. As we shall see later on, the maximum length for impossible boomerang distinguishers are equal
to that for impossible differential distinguishers for certain ciphers, increasing the likelihood that IBA
will be a feasible attack on them. Although the impossible boomerang attack may not be the best known
attack for some of the block ciphers, we believe that the results are important and useful, since the attack
can be applied to other block ciphers not mentioned here, and the technique introduced in this paper
can be modified and used in other works as well.

The rest of the paper is organized as follows. In Section 2, we briefly describe the impossible
boomerang attack proposed by J. Lu in [5]. Section 3 introduces some notions, including the UB-method,
for the impossible boomerang attack. In Section 4, we present some additional definitions related to the
UB-method and use them to determine an expression for the maximum length of impossible boomerang
characteristics. An algorithm is proposed in Section 5 to compute the maximum length of impossible
boomerang distinguishers for any general block cipher structure with bijective round functions. The
algorithm is then applied to various block ciphers and the results are summarized in Section 6.

2 The Impossible Boomerang Attack

The attack, described in [5], combines the boomerang attack with impossible differential cryptanalysis,
and is called the impossible boomerang attack (IBA).

2.1 Impossible Boomerang Distinguisher

Similar to a boomerang distinguisher, an impossible boomerang distinguisher, as depicted in Figure 1,
treats a block cipher E: {0, 1}k × {0, 1}B → {0, 1}B as two sub-ciphers E0 ◦ E1 and consists of

– a differential w → x with probability 1 for E0,
– a differential w′ → x′ with probability 1 for E0,
– a differential y → z with probability 1 for (E1)−1,
– a differential y′ → z′ with probability 1 for (E1)−1,

where w,w′, x, x′, y, y′, z and z′ are all B-bit blocks, and the condition x⊕ x′ ⊕ z ⊕ z′ 6= 0 holds.
We state the following theorem from [5], which provides the theoretical basis for our proposed algo-

rithm to compute the maximum length of impossible boomerang distinguishers.

Theorem 1 [5] Suppose that P and P ′ are B-bit blocks and K is a key for a B-bit block cipher E,
where E = E0 ◦ E1 for some E0 and E1. Let w → x and w′ → x′ be differentials with probability 1 for
E0
K , and, y → z and y′ → z′ be differentials with probability 1 for (E1

K)−1, where x ⊕ x′ ⊕ z ⊕ z′ 6= 0.
Then the following pairs of equations cannot hold at the same time:

EK(P )⊕EK(P ′) = y,

EK(P ⊕ w)⊕EK(P ′ ⊕ w′) = y′.
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Fig. 1. An impossible boomerang distinguisher

The impossible boomerang distinguisher can be written as (w,w′) 9 (y, y′). Note that the two
differentials for E0 or E1 may be identical as long as the condition x⊕ x′ ⊕ z ⊕ z′ 6= 0 holds.

2.2 A Key Recovery Attack

IBA is a chosen plaintext attack. Let the block cipher E: {0, 1}k × {0, 1}B → {0, 1}B be a cascade of
four sub-ciphers E = Eλ ◦E0 ◦E1 ◦Eµ. Suppose Kλ and Kµ are the guesses for the subkey used in Eλ

and Eµ respectively. The basic idea of IBA is as follows:

(1) Find an impossible boomerang distinguisher, (w,w′) 9 (y, y′) for E0 ◦E1.
(2) For a guess of Kλ and Kµ, compute and check whether a candidate quartet of plaintext/ciphertext

pairs ((P,C), (P ∗, C∗)), ((P ′, C ′), (P ′∗, C ′∗)) satisfies the following four conditions:

Eλ
Kλ

(P )⊕Eλ
Kλ

(P ∗) = w,

Eλ
Kλ

(P ′)⊕Eλ
Kλ

(P ′∗) = w′,

(Eµ
Kµ

)−1(C)⊕ (Eµ
Kµ

)−1(C ′) = y,

(Eµ
Kµ

)−1(C∗)⊕ (Eµ
Kµ

)−1(C ′∗) = y′.

(3) If the quartet does satisfy the above conditions, then discard the subkey guess (Kλ,Kµ). Go to the
previous step until the number of remaining subkeys is almost one.

As a concluding remark for this section, the basic impossible boomerang attack can be extended to
a related-key impossible boomerang attack. Readers may refer to [5] for more details.



3 Basic Notions for IBA

In this section, we introduce and establish notions for IBA by modifying and extending those used in
[3].

For a block cipher structure S, let the input and output of one round be (X1, X2, . . . , Xn) and
(Y1, Y2, . . . , Yn) respectively. Throughout this paper, we consider S whose round function F is bijective.

3.1 Basic Definitions and Operations

Definition 1 [3] The n × n Encryption Characteristic Matrix E = (Eij)n×n and n × n Decryption
Characteristic Matrix D = (Dij)n×n are defined as follows.

Ei,j =


0, if Yj is not affected by Xi,
1, if Yj is affected by Xi,
1F , if Yj is affected by F (Xi).

Di,j =


0, if Xj is not affected by Yi,
1, if Xj is affected by Yi,
1F , if Xj is affected by F (Yi) or F−1(Yi).

Definition 2 [3] A matrix is a 1-property matrix if the number of entries 1 ( 6= 1F ) in each column of
the matrix is zero or one.

Example. Consider the CLEFIA-like block cipher structure whereby one F -function is used for two
consecutive subblocks. The transformation can be described by

(Y1, Y2, Y3, Y4) = (F (X1) +X2, X3, F (X3) +X4, X1).

Then the encryption and decryption characteristics matrices for CLEFIA-like block cipher structure are
given by

E =


1F 0 0 1
1 0 0 0
0 1 1F 0
0 0 1 0

 ,D =


0 1 0 0
0 0 1 1F
0 0 0 1
1 1F 0 0

 .

Note that the matrices are 1-property matrices.

Definition 3 [3] Given an input difference α = (α1, α2, . . . , αn), the input difference vector a =
(a1, a2, . . . , an) corresponding to α is defined as follows.

ai =

{
0, if αi = 0,
1∗, otherwise.

The output difference after r rounds for α is denoted by αr and the value of the ith subblock of αr

is written as αri . The corresponding difference vector after r rounds is denoted by ar, and its ith entry
is denoted by ari . For the decryption process, we use the notations β, βr, βri ,b,b

r and bri instead.
Given an input difference, the possible output differences of each subblock after r rounds can be

classified by five types of differences: zero difference, a nonzero nonfixed difference, a nonzero fixed
difference, exclusive-or of a nonzero fixed difference and a nonzero nonfixed difference, and a nonfixed
difference. This is summarized in Table 1.



Table 1. Entries of difference vectors and corresponding type of differences

ar
i or bri Corresponding type of difference

0 zero difference, denoted by 0

1 nonzero nonfixed difference, denoted by δ

1∗ nonzero fixed difference, denoted by γ

2∗ nonzero fixed difference ⊕ nonzero nonfixed difference, denoted by γ ⊕ δ
t(≥ 2) nonfixed difference, denoted by ?

The set {0, 1, 1∗, 2∗} is denoted by U .

Computation of ar (similar for br) is as follows:

a1 = a · E ,
a2 = a1 · E ,

...
ar = ar−1 · E .

A multiplication of a and E (similar for b and D) is defined by

a · E = (ai)1×n · (Ei,j)n×n
= (

∑
i

ai · Ei,j)1×n

Table 2 lists all the possible cases of multiplication between an entry of the difference vector a and
an entry of the matrix E ; and addition of ai · Ei,j and ai′ · Ei′,j .

Table 2. Multiplication (left) and addition (right)(k ∈ {0, 1, 1∗, 2∗, t}, t, t′ ≥ 2)

Multiplication (ai · Ei,j) Addition (ai · Ei,j + ai′ · Ei′,j)

k · 0 = 0 0 + k = k

k · 1 = k 1 + 1 = 2

0 · 1F = 0 1 + 1∗ = 2∗

1∗ · 1F = 1 1 + 2∗ = 3

1 · 1F = 1 1 + t = 1 + t

2∗ · 1F = 2 1∗ + t = 1 + t

t · 1F = t 2∗ + t = 2 + t

t+ t′ = t+ t′

In this paper, although we concentrate mainly on block ciphers with 1-property encryption and
decryption characteristics matrices, the algorithm proposed in Section 5 can be modified for block ciphers
with non 1-property matrices. We leave the modification of the algorithm to interested readers. Here,
we will just list down the additional operations required for block ciphers with non 1-property matrices.
(1) Since γ ⊕ γ = 0, we have two possible cases:

1∗ + 1∗ =

{
0, if γ = γ′,

1∗, if γ 6= γ′.



(2) Since γ′ ⊕ (γ ⊕ δ) = (γ′ ⊕ γ)⊕ δ, we have

1∗ + 2∗ =

{
1, if γ = γ′,

2∗, if γ 6= γ′.

(3) 2∗ + 2∗ = 4.

With these new definitions, the addition operation is still always associative except for certain special
cases. For example, for the sum 1+1∗+2∗, (1+1∗)+2∗ gives 4 whereas 1+(1∗+2∗) gives 2 or 3. However,
in these special cases, the sum evaluated both ways always results in a value ≥ 2 and x(∗) + t = x + t
(where t ≥ 2) which always corresponds to a ?. Furthermore, one may check that the operation is also
commutative save for a case where the resulting values derived both ways are always ≥ 2. Therefore, to
sum three or more entries, always perform the addition from left to right. For example, 1 + 1∗ + 1∗ = 1
or 2∗ since (1 + 1∗) + 1∗ = 2∗ + 1∗.

3.2 Finding Impossible Boomerang Distinguishers

To find impossible boomerang distinguishers, from Theorem 1, we need four differentials with probability
1 and the XOR of the output difference of each differential must be non-zero. Also note that the two
differentials for E0 or E1 may be identical.

As denoted in [3], U = {0, 1, 1∗, 2∗}. Adopting a similar approach to [3], we may use the elements of U
to find impossible boomerang characteristics. We call this method related to the impossible boomerang
attack the UB-method. In Table 3, we summarize all possible cases that satisfy the necessary conditions
stated above. Here we use (γδ) to denote 2∗, that is, γ ⊕ δ.

Therefore, any of the 26 cases above gives us an impossible boomerang characteristic for r+r′ rounds,
(∆α,∆α′) 9r+r′ (∆β,∆β′).

Example. Consider the CLEFIA-like block cipher structure. Let α = (0, 0, 0, γ), α′ = (0, 0, 0, γ′),
β = (γ′′, 0, 0, 0) and β′ = (γ′′′, 0, 0, 0), where γ ⊕ γ′ 6= γ′′ ⊕ γ′′′. It can be checked that α3

1 = γ, α′31 = γ′,
β4

1 = γ′ and β′41 = γ′′. Hence, corresponding to Case γγγγ in Table 3,

((0, 0, 0, γ), (0, 0, 0, γ′)) 97 ((γ′′, 0, 0, 0), (γ′′′, 0, 0, 0)),

is an impossible boomerang distinguisher with length 7 for CLEFIA.

4 Finding the Maximum Length of Impossible Boomerang Distinguishers

In this section, we introduce more definitions and concepts that will help us compute the maximum
length of impossible boomerang characteristics that can be found by the UB-method.

Definition 4 [3] Let m ∈ U . Given an input difference vector a and output difference vector b, the
maximum number of encryption and decryption rounds with respect to m, and, the ith entry of a and b
respectively are defined by

ME i(a,m) = max
r
{r|ari = m},

and
MDi(b,m) = max

r
{r|bri = m}.

The maximum number of encryption and decryption rounds with respect to m are defined as

ME i(m) = max
a6=0
{ME i(a,m)},



Table 3. Possible output differences (αr
i , α
′r
i ) for encryption and (βr′

i , β
′r′
i ) for decryption

Case Value of (αr
i , α
′r
i ) Value of (βr′

i , β
′r′
i ) Condition

δ000 (δ, 0) (0, 0) -

00δ0 (0, 0) (δ, 0) -

γ000 (γ, 0) (0, 0) -

00γ0 (0, 0) (γ, 0) -

γγ00 (γ, γ′) (0, 0) γ 6= γ′

00γγ (0, 0) (γ, γ′) γ 6= γ′

γ0γ0 (γ, 0) (γ′, 0) γ 6= γ′

γγγ0 (γ, γ′) (γ′′, 0) γ ⊕ γ′ ⊕ γ′′ 6= 0

0γγγ (0, γ) (γ′, γ′′) γ ⊕ γ′ ⊕ γ′′ 6= 0

γγγγ (γ, γ′) (γ′′, γ′′′) γ ⊕ γ′ 6= γ′′ ⊕ γ′′′
γγδ0 (γ, γ′) (δ, 0) γ ⊕ γ′ = 0

δ0γγ (δ, 0) (γ, γ′) γ ⊕ γ′ = 0

γδγ0 (γ, δ) (γ′, 0) γ ⊕ γ′ = 0

γ0γδ (γ, 0) (γ′, δ) γ ⊕ γ′ = 0

γγγδ (γ, γ′) (γ′′, δ) γ ⊕ γ′ ⊕ γ′′ = 0

γδγγ (γ, δ) (γ′, γ′′) γ ⊕ γ′ ⊕ γ′′ = 0

00γ(γδ) (0, 0) (γ, γ′ ⊕ δ) γ ⊕ γ′ = 0

γ(γδ)00 (γ, γ′ ⊕ δ) (0, 0) γ ⊕ γ′ = 0

γ0(γδ)0 (γ, 0) (γ′ ⊕ δ, 0) γ ⊕ γ′ = 0

(γδ)0γ0 (γ ⊕ δ, 0) (γ′, 0) γ ⊕ γ′ = 0

γγ(γδ)0 (γ, γ′) (γ′′ ⊕ δ, 0) γ ⊕ γ′ ⊕ γ′′ = 0

(γδ)0γγ (γ ⊕ δ, 0) (γ′, γ′′) γ ⊕ γ′ ⊕ γ′′ = 0

γ0(γδ)γ (γ, 0) (γ′ ⊕ δ, γ′′) γ ⊕ γ′ ⊕ γ′′ = 0

(γδ)γγ0 (γ ⊕ δ, γ′) (γ′′, 0) γ ⊕ γ′ ⊕ γ′′ = 0

γγγ(γδ) (γ, γ′) (γ′′, γ′′′ ⊕ δ) γ ⊕ γ′ = γ′′ ⊕ γ′′′
γ(γδ)γγ (γ, γ′ ⊕ δ) (γ′′, γ′′′) γ ⊕ γ′ = γ′′ ⊕ γ′′′

and
MDi(m) = max

b6=0
{MDi(b,m)}.

For the purpose of finding the maximum length of impossible boomerang distinguishers, we introduce
the following definition.

Definition 5 Let m,m′ ∈ U . The maximum number of encryption rounds with respect to m and m′,
denoted by ME i(m,m′), is defined as the maximum number of rounds, r, such that there exist input
difference vectors a and a′ with ari = m and a′ri = m′. Similarly, the maximum number of decryption
rounds with respect to m and m′, denoted byMDi(m,m′), is defined as the maximum number of rounds,
r′, such that there exist input difference vectors b and b′ with br

′

i = m and b′r
′

i = m′.

Based on these definitions and the previous section, we may establish the following theorem.

Theorem 2 Consider the round function of a block cipher structure as a bijective black box. If we use
the notation

M1 = max
1≤i≤n

{ME i(1, 0) +MDi(0)},

M2 = max
1≤i≤n

{ME i(0) +MDi(1, 0)},



M3 = max
1≤i≤n

{ME i(1∗) +MDi(0)},

M4 = max
1≤i≤n

{ME i(0) +MDi(1∗)},

M5 = max
1≤i≤n

{ME i(1∗) +MDi(1∗)},

then the maximum length of impossible boomerang distinguishers, M, is given by

M = max
1≤i≤5

{Mi},

Proof. Referring to Table 3, we know that M is the maximum length considering all 26 cases.
Case δ000: Mδ000 =M1.
Case 00δ0: M00δ0 =M2.
Case γ000: Mγ000 = max1≤i≤n{ME i(1∗, 0) +MDi(0)}. Since ME i(1∗, 0) ≤ min{ME i(1∗),ME i(0)},

Mγ000 ≤ max
1≤i≤n

{ME i(1∗) +MDi(0)} =M3.

Case 00γ0: M00γ0 = max1≤i≤n{ME i(0) +MDi(1∗, 0)}. Since MDi(1∗, 0) ≤ min{MDi(1∗),MDi(0)},

M00γ0 ≤ max
1≤i≤n

{ME i(0) +MDi(1∗)} =M4.

Case γγ00: Mγγ00 =M3.
Case 00γγ: M00γγ =M4.
Case γ0γ0:Mγ0γ0 = max1≤i≤n{ME i(1∗, 0)+MDi(1∗, 0)}. SinceME i(1∗, 0) ≤ min{ME i(1∗),ME i(0)}
and MDi(1∗, 0) ≤ min{MDi(1∗),MDi(0)},

Mγ0γ0 ≤ max
1≤i≤n

{ME i(1∗) +MDi(1∗)} =M5.

Case γγγ0:Mγγγ0 = max1≤i≤n{ME i(1∗)+MDi(1∗, 0)}. SinceMDi(1∗, 0) ≤ min{MDi(1∗),MDi(0)},

Mγγγ0 ≤ max
1≤i≤n

{ME i(1∗) +MDi(1∗)} =M5.

Case 0γγγ: M0γγγ = max1≤i≤n{ME i(1∗, 0) +MDi(1∗)}. Since ME i(1∗, 0) ≤ min{ME i(1∗),ME i(0)},

M0γγγ ≤ max
1≤i≤n

{ME i(1∗) +MDi(1∗)} =M5.

Case γγγγ: Mγγγγ =M5.

Case γγδ0: Mγγδ0 = max1≤i≤n{ME i(1∗) +MDi(1, 0)}. Since MDi(1, 0) ≤ min{MDi(1),MDi(0)},

Mγγδ0 ≤ max
1≤i≤n

{ME i(1∗) +MDi(0)} =M3.

Case δ0γγ: Mδ0γγ = max1≤i≤n{ME i(1, 0) +MDi(1∗)}. Since ME i(1, 0) ≤ min{ME i(1),ME i(0)},

Mδ0γγ ≤ max
1≤i≤n

{ME i(0) +MDi(1∗)} =M4.



Case γδγ0:Mγδγ0 = max1≤i≤n{ME i(1∗, 1)+MDi(1∗, 0)}. SinceME i(1∗, 1) ≤ min{ME i(1∗),ME i(1)}
and MDi(1∗, 0) ≤ min{MDi(1∗),MDi(0)},

Mγδγ0 ≤ max
1≤i≤n

{ME i(1∗) +MDi(1∗)} =M5.

Case γ0γδ:Mγ0γδ = max1≤i≤n{ME i(1∗, 0)+MDi(1∗, 1)}. SinceME i(1∗, 0) ≤ min{ME i(1∗),ME i(0)}
and MDi(1∗, 1) ≤ min{MDi(1∗),MDi(1)},

Mγ0γδ ≤ max
1≤i≤n

{ME i(1∗) +MDi(1∗)} =M5.

Case γγγδ:Mγγγδ = max1≤i≤n{ME i(1∗)+MDi(1∗, 1)}. SinceMDi(1∗, 1) ≤ min{MDi(1∗),MDi(1)},

Mγγγδ ≤ max
1≤i≤n

{ME i(1∗) +MDi(1∗)} =M5.

Case γδγγ: Mγδγγ = max1≤i≤n{ME i(1∗, 1) +MDi(1∗)}. Since ME i(1∗, 1) ≤ min{ME i(1∗),ME i(1)},

Mγγγδ ≤ max
1≤i≤n

{ME i(1∗) +MDi(1∗)} =M5.

Case 00γ(γδ):M00γ(γδ) = max1≤i≤n{ME i(0)+MDi(1∗, 2∗)}. SinceMDi(1∗, 2∗) ≤ min{MDi(1∗),MDi(2∗)},

M00γ(γδ) ≤ max
1≤i≤n

{ME i(0) +MDi(1∗)} =M4.

Case γ(γδ)00:Mγ(γδ)00 = max1≤i≤n{ME i(1∗, 2∗)+MDi(0)}. SinceME i(1∗, 2∗) ≤ min{ME i(1∗),ME i(2∗)},

Mγ(γδ)00 ≤ max
1≤i≤n

{ME i(1∗) +MDi(0)} =M3.

Case γ0(γδ)0:Mγ0(γδ)0 = max1≤i≤n{ME i(1∗, 0)+MDi(2∗, 0)}. SinceME i(1∗, 0) ≤ min{ME i(1∗),ME i(0)}
and MDi(2∗, 0) ≤ min{MDi(2∗),MDi(0)},

Mγ0(γδ)0 ≤ max
1≤i≤n

{ME i(1∗) +MDi(0)} =M3.

Case (γδ)0γ0:M(γδ)0γ0 = max1≤i≤n{ME i(2∗, 0)+MDi(1∗, 0)}. SinceME i(2∗, 0) ≤ min{ME i(2∗),ME i(0)}
and MDi(1∗, 0) ≤ min{MDi(1∗),MDi(0)},

M(γδ)0γ0 ≤ max
1≤i≤n

{ME i(0) +MDi(1∗)} =M4.

Case γγ(γδ)0:Mγγ(γδ)0 = max1≤i≤n{ME i(1∗)+MDi(2∗, 0)}. SinceMDi(2∗, 0) ≤ min{MDi(2∗),MDi(0)},

Mγγ(γδ)0 ≤ max
1≤i≤n

{ME i(1∗) +MDi(0)} =M3.

Case (γδ)0γγ:M(γδ)0γγ = max1≤i≤n{ME i(2∗, 0)+MDi(1∗)}. SinceME i(2∗, 0) ≤ min{ME i(2∗),ME i(0)},

M(γδ)0γγ ≤ max
1≤i≤n

{ME i(0) +MDi(1∗)} =M4.



Case γ0(γδ)γ:Mγ0(γδ)γ = max1≤i≤n{ME i(1∗, 0)+MDi(2∗, 1∗)}. SinceME i(1∗, 0) ≤ min{ME i(1∗),ME i(0)}
and MDi(2∗, 1∗) ≤ min{MDi(2∗),MDi(1∗)},

Mγ0(γδ)γ ≤ max
1≤i≤n

{ME i(1∗) +MDi(1∗)} =M5.

Case (γδ)γγ0:M(γδ)γγ0 = max1≤i≤n{ME i(2∗, 1∗)+MDi(1∗, 0)}. SinceME i(2∗, 1∗) ≤ min{ME i(2∗),ME i(1∗)}
and MDi(1∗, 0) ≤ min{MDi(1∗),MDi(0)},

M(γδ)γγ0 ≤ max
1≤i≤n

{ME i(1∗) +MDi(1∗)} =M5.

Case γγγ(γδ):Mγγγ(γδ) = max1≤i≤n{ME i(1∗)+MDi(1∗, 2∗)}. SinceMDi(1∗, 2∗) ≤ min{MDi(1∗),MDi(2∗)},

Mγγγ(γδ) ≤ max
1≤i≤n

{ME i(1∗) +MDi(1∗)} =M5.

Case γ(γδ)γγ:Mγ(γδ)γγ = max1≤i≤n{ME i(1∗, 2∗)+MDi(1∗)}. SinceME i(1∗, 2∗) ≤ min{ME i(1∗),ME i(2∗)},

Mγ(γδ)γγ ≤ max
1≤i≤n

{ME i(1∗) +MDi(1∗)} =M5.

The result now follows immediately. ut

Example. For CLEFIA, we computed ME1((0, 0, 0, 1∗), 1∗) = 3 and MD1((1∗, 0, 0, 0), 1∗) = 4. By
running through all possible difference vectors a and b, it can be verified that ME1(1∗) = 3 and
MD1(1∗) = 4. Checking through all values of i where 1 ≤ i ≤ 4, we have

M5 = max
1≤i≤4

{ME i(1∗) +MDi(1∗)}

=ME1(1∗) +MD1(1∗)
= 7.

By computing the values ofM1 toM4, we obtainM1 =M2 = 5 andM3 =M4 = 6. These imply that
M = M5 = 7. Hence, for CLEFIA, the maximum length of impossible boomerang distinguishers that
can be found in the UB method is 7, and a corresponding 7-round impossible boomerang characteristic
is ((0, 0, 0, γ), (0, 0, 0, γ)) 97 ((γ′, 0, 0, 0), (γ′′, 0, 0, 0)), where γ′ 6= γ′′.

5 An Algorithm to Compute the Length of Impossible Boomerang
Distinguishers

In this section, we present an algorithm to compute the maximum number of rounds,M, for the impos-
sible boomerang characteristics which can be found by the UB-method. By modifying this algorithm,
we may also identify the specific forms of impossible boomerang distinguishers.

At the outset, we shall assume that the block cipher structure that the algorithm is applied to has
round functions which are bijective. Furthermore, the encryption and decryption characteristic matrices,
E and D are assumed to be 1-property matrices. We employ the same variables as in Tables 6 and 7 of
[3]. They are summarized in Tables 4 and 5 below.



Table 4. The meaning of variables used in Algorithm 1. (y ≥ 0)

Variables Meanings

ei,j = 0 Ei,j = 0

ei,j = 1 Ei,j = 1 or 1F

ẽi,j = 0 Ei,j = 1 (x∗ · Ei,j = x∗ preserves ∗.)
ẽi,j = 1 Ei,j = 0 (x∗ · Ei,j = 0) or Ei,j = 1F (x∗ · Ei,j = x)

ar
i = y (resp. x) The ith entry of difference vector ar is y (resp. x∗)

âr
i = 0 The ith entry of difference vector ar has no ∗

âr
i = −1 The ith entry of difference vector ar has ∗

Table 5. Multiplication between an entry of difference vector and an entry of matrix in Algorithm 1

An entry c, (âr
i ) of An entry d, (ẽi,j) c · d âr

i + ẽi,j = si

difference vectors of E if (si = 1) si ← 0

x∗, (−1) 0, (1) 0 0

x∗, (−1) 1F , (1) x 0

x∗, (−1) 1, (0) x∗ −1

x, (0) 0, (1) 0 0

x, (0) 1F , (1) x 0

x, (0) 1, (1) x 0

Step 1 : Input the encryption characteristic matrix E = (Eij)n×n

for i = 0 to n− 1
for j = 0 to n− 1

if Ei,j = 0, then ei,j ← 0 and ẽi,j ← 1
if Ei,j = 1, then ei,j ← 1 and ẽi,j ← 0
if Ei,j = 1F , then ei,j ← 1 and ẽi,j ← 1

Step 2 : Compute the values of MEi(m) where 0 ≤ i ≤ n− 1 and m ∈ {0, 1∗}.

MEi(0)← 0, MEi(2)← 0, for 0 ≤ i ≤ n− 1

/∗ The m’s values 0, 1, and 2 indicate the entries 0, 1, and 1∗ respectively. ∗/

For each input difference vector x /∗ x represents x0. ∗/
for i = 0 to n− 1

if (x0
i = 0) x̂i ← 0

else if (x0
i = 1) x̂i ← −1

MEi(x, 0)← 0, MEi(x, 2)← 0
r ← 0
while (there exists some index l such that xrl ≤ 2)

for j = 0 to n− 1
tj ← 0, t̂j ← 0

/∗ tj and t̂j are the temporary parameters to compute xr+1 and x̂r+1. ∗/
for i = 0 to n− 1

tj ← tj + xri · ei,j
si ← x̂ri + ẽi,j
if (si = 1) si ← 0
t̂j ← t̂j + si

r ← r + 1
xri ← ti, x̃

r
i ← t̂i, for 0 ≤ i ≤ n− 1

for i = 0 to n− 1
if (xri = 0) MEi(x, 0)← r
if (xri = 1 and x̂ri = −1) MEi(x, 2)← r

for i = 0 to n− 1
if (MEi(0) ≤MEi(x, 0)) MEi(0)←MEi(x, 0)
if (MEi(2) ≤MEi(x, 2)) MEi(2)←MEi(x, 2)



Step 3 : Compute the values of MDi(m) where 0 ≤ i ≤ n− 1 and m ∈ {0, 1∗}.

Insert the matrix D into steps 1 and 2.

Step 4 : Compute the values of MEi(1, 0) where 0 ≤ i ≤ n− 1

MEi(1, 0)← 0, for 0 ≤ i ≤ n− 1

For each input difference vector x and each input difference vector y
for i = 0 to n− 1

if (x0
i = 0) x̂i ← 0

else if (x0
i = 1) x̂i ← −1

if (y0
i = 0) ŷi ← 0

else if (y0
i = 1) ŷi ← −1

MEi(x,y, 1, 0)← 0

r ← 0
while (there exists some index l such that xrl ≤ 2 or yrl ≤ 2 )

for j = 0 to n− 1
txj ← 0, t̂xj ← 0

tyj ← 0, t̂yj ← 0
for i = 0 to n− 1

txj ← txj + xri · ei,j
sxi ← x̂ri + ẽi,j
if (sxi = 1) sxi ← 0
t̂xj ← t̂xj + sxi

tyj ← tyj + yri · ei,j
syi ← ŷri + ẽi,j
if (syi = 1) syi ← 0
t̂yj ← t̂yj + syi

r ← r + 1
xri ← txi, x̃

r
i ← t̂xi, for 0 ≤ i ≤ n− 1

yri ← tyi, ỹ
r
i ← t̂yi, for 0 ≤ i ≤ n− 1

for i = 0 to n− 1
for j = 0 to r

if (xji = 1 and x̃ji = 0 and yji = 0 and ỹji = 0) MEi(x,y, 1, 0)← j

if (MEi(x,y, 1, 0) ≤MEi(1, 0)) MEi(1, 0)←MEi(x,y, 1, 0)

Step 5 : Compute the values of MDi(1, 0) where 0 ≤ i ≤ n− 1.

Insert the matrix D into step 4.

Step 6 : Compute the length M1.

Output max0≤i≤n−1{MEi(1, 0) +MDi(0)}.

Step 7 : Compute the length M2.

Output max0≤i≤n−1{MEi(0) +MDi(1, 0)}.

Step 8 : Compute the length M3.

Output max0≤i≤n−1{MEi(2) +MDi(0)}.

Step 9 : Compute the length M4.

Output max0≤i≤n−1{MEi(0) +MDi(2)}.

Step 10 : Compute the length M5.

Output max0≤i≤n−1{MEi(2) +MDi(2)}.

Step 11 : Output the length M.

Output max1≤i≤5(Mi).

Algorithm 1 to compute the length M



6 Results for Some Block Cipher Structures

We applied Algorithm 1 to several block cipher structures such as a generalized Feistel network, a
generalized CAST256-like structure, a generalized MARS-like structure, a generalized RC6-like structure,
CLEFIA, a generalized Feistel scheme with an substitution-permutation round function, SMS4, as well as
a Skipjack-like structure. All of them have 1-property matrices E and D. The reader may refer to [7, 9, 10,
4, 8] for the details of these cipher structures. We also found the specific forms of impossible boomerang
characteristics which give the maximum lengths for each structure. Even though the computer simulation
was only tested on a finite number of subblocks, we are able to generalize the results due to the regular
structural feature.

Table 6 gives the specific forms of various impossible boomerang characteristics for each structure.
Table 7 summarizes our cryptanalytic results. In both tables, n denotes the number of subblocks and
in the case of n always even, we let n = 2m. In Table 7, we also compare the maximum lengths for the
impossible differential cryptanalysis (IDC) with that for the impossible boomerang attack (IBA). As can
be observed, these two maximum lengths are equal for the generalized MARS structure.

Table 6. Impossible boomerang characteristics for some generalized Feistel networks (All α’s, β’s non-zero, i
odd, α 6= α′, β 6= β′)

Structure Case Impossible Boomerang Characteristics

GFNm γγγγ ((0, . . . , 0, αn), (0, . . . , 0, αn)) 93m ((β1, 0, . . . , 0), (β′1, 0, . . . , 0))
δ000 Many

E.g. For GFN3, ((0, 0, 0, α4, 0, 0), (0, . . . , 0, α6)) 99 ((0, 0, β3, 0, 0, 0), (0, 0, β′3, 0, 0, 0))
000δ Many

E.g. For GFN3, ((0, . . . , 0, α6), (0, . . . , 0, α′6)) 99 ((0, β2, 0, . . . , 0), (β1, 0, . . . , 0))

Generalized CAST256 γγγγ ((0, . . . , 0, αn), (0, . . . , 0, αn)) 9n2−1 ((β1, 0, . . . , 0), (β′1, 0, . . . , 0))

Generalized MARS γγγγ ((0, . . . , 0, αn), (0, . . . , 0, αn)) 92n−1 ((β1, 0, . . . , 0), (β′1, 0, . . . , 0))

Generalized RC6 γγγγ ((0, . . . , 0, αi, 0, . . . , 0), (0, . . . , 0, αi, 0, . . . , 0)) 94m−1

((0, . . . , 0, βi+1, 0, . . . , 0), (0, . . . , 0, β′i+1, 0, . . . , 0))

CLEFIA γγγγ ((0, 0, 0, α4), (0, 0, 0, α4)) 97 ((β1, 0, 0, 0), (β′1, 0, 0, 0))

GFSP4 γγγγ ((α1, 0, 0, 0), (α1, 0, 0, 0)) 915 ((0, 0, 0, β4), (0, 0, 0, β′4))

SMS4 γγγγ ((α1, 0, 0, 0), (α1, 0, 0, 0)) 95 ((0, 0, 0, β4), (0, 0, 0, β′4))

Skipjack-like 00γγ Many
E.g. ((0, 0, 0, α4), (0, 0, 0, α4)) 912 ((0, β2, 0, 0), (0, β′2, 0, 0))

6.1 Additional Comments

Generalized CAST256 : In [3] and [8], the authors conjectured that the maximum length of the
impossible differential distinguisher for generalized CAST256 is n2 − 1. This value was derived based
on Figure 3 in [8]. In contrast, we looked at the structure shown in Figure 1 of [7]. Based on this di-
agram, we found the maximum length of the impossible differential distinguisher to be n2 +n−1 instead.

GFSP4 : In [10], the authors only gave the upper bounds of the maximum differential/linear probabili-
ties of 16-round GFSP4. However, in the light of our results, both for IDC and IBA, we recommend the
use of at least 25 rounds for this scheme.



Table 7. Summary of our results. (A: The maximum number (r) of rounds for impossible differential character-
istics. B: The maximum number (r) of rounds for impossible boomerang characteristics.)

Block Cipher Structure IDC IBA
A Comment B Comment

GFNm r = 3m+ 2 (m ≥ 3) [3] r = 3m (m ≥ 2) This paper

Generalized CAST256 r = n2 + n− 1 (n ≥ 3) This paper r = n2 − 1 (n ≥ 3) This paper

Generalized MARS r = 2n− 1 (n ≥ 3) [3] r = 2n− 1 (n ≥ 3) This paper

Generalized RC6 r = 4m+ 1 (m ≥ 2) [3] r = 4m− 1 (m ≥ 2) This paper

CLEFIA 9 [9] 7 This paper

GFSP4 19 This paper 15 This paper

SMS4 6 This paper 5 This paper

Skipjack-like 15 [8] 12 This paper

SMS4 : While the maximum lengths of the distinguishers found for IDC and IBA are quite small, note
that this analysis only considers the general structure of the ciphers without taking into account the
specific properties of the round functions. For example, for SMS4, a 12-round impossible differential
characteristic was published in [6], formed by combining two 6-round differentials. Our results, however,
give a definite lower bound for the number of rounds that can be attacked with an impossible differential
or impossible boomerang distinguisher.

Skipjack-like structure : Our approach also works for the truncated case. With reference to Figure 1
of [8], a 15-round impossible truncated differential was found in [8], which agrees with the result which
we found by the U-method. By applying our Algorithm 1, we unveiled a 12-round impossible truncated
boomerang distinguisher.

7 Conclusion

In this paper, we introduced a widely applicable method, called the UB-method, to find various impos-
sible boomerang characteristics for general block cipher structures. We presented Algorithm 1 which is
used to determine the maximum length of impossible boomerang distinguishers that can be found by
the UB-method. Algorithm 1 was then applied to find the maximum length of impossible boomerang
distinguishers for several known block cipher structures. By modifying Algorithm 1, we found the specific
forms of impossible boomerang characteristics for each structure.

While our research presented in this paper only considers the general structure of the ciphers, it
provides a definite lower bound for the maximum length of an impossible boomerang distinguisher. It is
likely that longer ones may be found when the specific properties of the round functions are taken into
account. Furthermore, we saw that the lower bound for the maximum length of an impossible boomerang
distinguisher is comparable to that of an impossible differential characteristic for some block ciphers.
Since impossible boomerang attack may be a feasible attack on certain ciphers, our results will be useful
in the study of the latter, which will in turn shed more light on variants of the attack such as the
related-key version.
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