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Abstract

Verifiable Secret Sharing (VSS) is a fundamental primitive used as a building
block in many distributed cryptographic tasks, such as Secure Multiparty Com-
putation (MPC) and Byzantine Agreement (BA). An important variant of VSS
is Asynchronous VSS (AVSS) which is designed to work over asynchronous net-
works. AVSS is a two phase (Sharing, Reconstruction) protocol carried out
among n parties in the presence of a computationally unbounded active adver-
sary, who can corrupt up to t parties. We assume that every two parties in the
network are directly connected by a pairwise secure channel.

In this paper, we present a new statistical AVSS protocol with optimal
resilience; i.e. with n = 3t + 1. Our protocol privately communicates 5

O((ℓn3 + n4 log 1
ǫ
) log 1

ǫ
) bits and A-casts6 O(n3 log(n)) bits to simultaneously

share ℓ ≥ 1 elements from a finite field F, where ǫ is the error parameter of our
protocol.

There are only two known statistical AVSS protocols with n = 3t+1 reported
in [22] and [61]. The AVSS protocol of [22] requires a private communication
of O(n9(log 1

ǫ
)4) bits and A-cast of O(n9(log 1

ǫ
)2 log(n)) bits to share a single

element from F. Thus our AVSS protocol shows a significant improvement in
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communication complexity over the AVSS of [22]. The AVSS protocol of [61]
requires a private communication and A-cast of O((ℓn3 +n4) log 1

ǫ
) bits to share

ℓ ≥ 1 elements. However, the shared element(s) may be NULL 6∈ F. Thus our
AVSS is better than the AVSS of [61] due to the following reasons:

1. The A-cast communication of our AVSS is independent of the number of
secrets i.e. ℓ;

2. Our AVSS makes sure that the shared value(s) always belong to F.

Using our AVSS, we design a new primitive called Asynchronous Complete
Secret Sharing (ACSS) which acts as an important building block of asyn-
chronous multiparty computation (AMPC). Using our ACSS scheme, we design a
statistical AMPC protocol with optimal resilience; i.e., with n = 3t+1, that pri-
vately communicates O(n5 log 1

ǫ
) bits per multiplication gate. This significantly

improves the communication complexity of only known optimally resilient statis-
tical AMPC of [15] that privately communicates Ω(n11(log 1

ǫ
)4) bits and A-cast

Ω(n11(log 1
ǫ
)2 log(n)) bits per multiplication gate. Both our ACSS and AVSS

employ several new techniques, which are of independent interest.

Key words: Asynchronous Networks, AVSS, Optimal Resilience, AMPC,
Information Theoretic Security.

1. Introduction

VSS is one of the fundamental building blocks for many secure distributed
computing tasks, such as multiparty computation (MPC) [2, 12, 3, 4, 5, 13, 9,
10, 11, 15, 7, 20, 23, 27, 28, 31, 42, 41, 45, 47, 49, 50, 65, 67, 69, 60], Byzantine
Agreement (BA) [37, 22, 55, 1, 61], etc. Any VSS scheme consists of a pair of
protocols (Sh, Rec). Protocol Sh 5 allows a special party called dealer (denoted
as D), to share a secret s ∈ F (an element from a finite field F) among a set of n
parties in a way that allow for a unique reconstruction of s by every party using
protocol Rec 6. Moreover, if D is honest, then the secrecy of s is preserved till
the end of Sh.

Over the last three decades, active research has been carried out in this area
by several researchers, and many interesting and significant results have been
obtained dealing with high efficiency, security against general adversaries, se-
curity against mixed types of corruptions, long-term security, provable security,
etc (see [24, 33, 53, 7, 42, 13, 23, 34, 35, 66, 27, 15, 22, 67, 38, 39, 41, 54, 59,
9, 11, 45, 60, 29, 26, 19, 43, 16, 64, 37, 36, 6, 21, 14, 32, 40, 58, 70, 18, 44] and
their references). However, almost all of these solutions are for the synchronous
model, where it is assumed that every message in the network is delayed at
most by a given constant. This assumption is very strong because a single de-
layed message would completely break down the overall security of the protocol.

5Sh is the protocol for sharing phase of AVSS scheme
6Rec is the protocol for reconstruction phase of AVSS scheme
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Therefore, VSS protocols for the synchronous model are not suited for real world
networks like the Internet.

Later, VSS protocols for the asynchronous network were developed [15, 22].
Here, messages are allowed to be delayed arbitrarily. However, in comparison to
the VSS in synchronous settings, research in VSS in the asynchronous settings
has attracted much less attention. Known asynchronous VSS protocols are of
theoretical interest only and involve high communication complexity. Surpris-
ingly, the techniques used for designing efficient VSS protocols in synchronous
networks cannot be adapted directly to the asynchronous setting. This mo-
tivated us to design asynchronous VSS protocols taking a fresh look at the
problem.

1.1. Model

In this paper, we follow the network model of [19]. Specifically, we as-
sume that an AVSS protocol is carried out among a set of n parties, say
P = {P1, . . . , Pn}, where every two parties are directly connected by a secure
channel and t out of the n parties can be under the influence of a computationally
unbounded Byzantine (active) adversary, denoted as At. The Byzantine adver-
sary At completely dictates the parties under its control and can force them to
deviate from a protocol, in any arbitrary manner. We assume At to be rushing
[59, 39, 27], who first listens all the messages sent to the corrupted parties by
the honest parties, before allowing the corrupted parties to send their messages.
The parties not under the influence of At are called honest or uncorrupted. We
assume that there is a specific party in P , called the dealer D, who wants to
share the secret in AVSS protocol.

The underlying network is asynchronous, where the communication channels
between the parties have arbitrary, yet finite delay (i.e the messages are guar-
anteed to reach eventually). To model this, At is given the power to schedule
the delivery of all messages in the network. However, At can only schedule the
messages communicated between honest parties, without having any access to
the contents of the message. In asynchronous network, the inherent difficulty in
designing a protocol comes from the fact that when a party does not receive an
expected message then he cannot decide whether the sender is corrupted (and
did not send the message at all) or the message is just delayed. So a party can
not wait to consider the values sent by all parties, as waiting for all of them
could turn out to be endless. Hence the values of up to t (potentially honest)
parties may have to be ignored. Due to this the protocols in asynchronous net-
work are generally involved in nature and require new set of primitives. For an
comprehensive introduction to asynchronous protocols, see [19].

1.2. Definitions

We now give the definition of primitives which are used in this article. For all
these primitives, we assume a finite field F = GF (2κ), where ǫ = 2−Ω(κ) and ǫ is
the error parameter. Also without loss of generality, we assume n = poly(κ) =
poly(log 1

ǫ
). Thus each field element can be represented by O(κ) = O(log 1

ǫ
)

bits.
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Definition 1 (Statistical Asynchronous Weak Secret Sharing (AWSS) [61]).
Let (Sh, Rec) be a pair of protocols in which a dealer D ∈ P shares a secret s
using Sh. We say that (Sh7, Rec8) is a t-resilient statistical AWSS scheme if all
the following hold:

• Termination: With probability at least 1 − ǫ, the following requirements
hold:

1. If D is honest then each honest party will eventually terminate pro-
tocol Sh.

2. If some honest party has terminated protocol Sh, then irrespective of
the behavior of D, each honest party will eventually terminate Sh.

3. If all honest parties have terminated Sh and invoked Rec, then each
honest party will eventually terminate Rec.

• Correctness: With probability at least 1 − ǫ, the following requirements
hold:

1. Correctness 1 (AWSS): If D is honest then each honest party upon
terminating Rec, outputs the shared secret s.

2. Correctness 2 (AWSS): If D is faulty and some honest party has
terminated Sh, then there exists a unique s′ ∈ F ∪ {NULL}, such
that each honest party upon terminating Rec will output either s′ or
NULL. This property is also called as weak-commitment.

• Secrecy: If D is honest and no honest party has begun executing protocol
Rec, then At has no information about s.

Definition 2 (Statistical AVSS [12, 19]). It is same as statistical AWSS
except that Correctness 2 (AWSS) property is strengthened as follows:

• Correctness 2 (AVSS): If D is corrupted and some honest party has
terminated Sh, then there exists a fixed s′ ∈ F, such that each honest party
upon completing Rec, will output only s′.

Definition 3 (t-sharing [9, 11]). A value s ∈ F is said to be t-shared among
the parties in P if there exists a random degree-t polynomial f(x) over F, with
f(0) = s such that each (honest) party Pi ∈ P holds his share si = f(i) of
secret s. The vector of shares of s corresponding to the honest parties is called
t-sharing of s and is denoted by [s]t.

Typically, VSS is used as a tool for generating t-sharing of secret. That is,
at the end of sharing phase, each honest party holds his share of the secret
such that shares of all honest parties constitute distinct points on a degree-t

7Sh is the protocol for sharing phase of AWSS scheme
8Rec is the protocol for reconstruction phase of AWSS scheme
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polynomial. Such VSS protocols are reported in [13, 54]. On the other hand,
there are VSS schemes that do not generate t-sharing of secret. They only
ensure that a unique secret is shared / committed (during sharing phase) which
will be uniquely reconstructed during reconstruction phase. Such schemes are
presented in [38, 59, 22]. So we call a VSS scheme as Complete Secret Sharing
(CSS) scheme if it generates t-sharing of secret. More formally, we have the
following definition:

Definition 4 (Statistical Asynchronous Complete Secret Sharing (ACSS)).
The termination, correctness and secrecy property of ACSS are same as in
AVSS. In addition, ACSS achieves the following completeness property at the
end of Sh with probability at least (1 − ǫ):

• Completeness: If some honest party terminates Sh, then there exists a
random degree-t polynomial f(x) over F, with f(0) = s′ such that each
(honest) party Pi ∈ P will eventually hold his share si = f(i) of secret s′.
Moreover, if D is honest, then s′ = s.

The above definitions of AWSS, AVSS and ACSS can be extended for secret
S containing multiple elements (say ℓ with ℓ > 1) from F.

Remark 1 (AWSS, AVSS and ACSS with Private Reconstruction). The
definitions of AWSS, AVSS and ACSS as given above consider ”public recon-
struction”, where all parties publicly reconstruct the secret in Rec. A common
variant of these definitions consider ”private reconstruction”, where only some
specific party, say Pα ∈ P, is allowed to reconstruct the secret in Rec. As per
our requirement in this paper, we present our AWSS and AVSS schemes with
only private reconstruction. However, the protocols for public reconstruction for
these schemes can be obtained by doing slight modification in the corresponding
protocols for ”private reconstruction”.

In our protocols, we use A-cast primitive, which is formally defined as follows:

Definition 5 (A-cast [22]). A-cast is an asynchronous broadcast primitive. It
was introduced and elegantly implemented by Bracha [17] with n = 3t+1 parties.
Let Π be an asynchronous protocol initiated by a special party (called the sender),
having input m (the message to be broadcast). We say that Π is a t-resilient A-

cast protocol if the following hold, for every possible behavior of At:

• Termination:

1. If the sender is honest and all the honest parties participate in the
protocol, then each honest party will eventually terminate the proto-
col.

2. Irrespective of the behavior of the sender, if any honest party termi-
nates the protocol then each honest party will eventually terminate
the protocol.
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• Correctness: If the honest parties terminate the protocol then they do
so with a common output m∗. Furthermore, if the sender is honest then
m∗ = m.

For the sake of completeness, we recall Bracha’s A-cast protocol from [19]
and present it in Fig. 1.

Figure 1: Bracha’s A-cast Protocol with n = 3t + 1

Bracha-A-cast(S,P, M)

Code for the sender S (with input M): only S executes this code

1. Send message (MSG, M) privately to all the parties.

Code for party Pi: every party in P executes this code

1. Upon receiving a message (MSG, M), send (ECHO, M) privately to all parties.

2. Upon receiving n − t messages (ECHO, M ′) that agree on the value of M ′, send
(READY, M ′) privately to all the parties.

3. Upon receiving t + 1 messages (READY, M ′) that agree on the value of M ′, send
(READY, M ′) privately to all the parties.

4. Upon receiving n − t messages (READY, M ′) that agree on the value of M ′, send
(OK, M ′) privately to all the parties, accept M ′ as the output message and terminate
the protocol.

Theorem 1 ([19]). Protocol A-cast privately communicates O(ℓn2) bits for an
ℓ bit message.

Notation 1 (Notation for Using A-cast). In the rest of the paper, we use
the following convention: we say that Pj receives m from the A-cast of Pi, if
Pj completes the execution of Pi’s A-cast (the A-cast protocol where Pi is the
sender), with m as the output.

Definition 6 (Online Error Correction (OEC)). Let s be a secret which
is t-shared among the parties in P by a degree-t polynomial f(x). So f(0) =
s. Let Pα ∈ P be a specific party, who wants to reconstruct s. Towards this
every party Pi sends his share si of s to Pα. The shares may reach Pα in any
arbitrary order. Moreover, up to t of the shares may be incorrect or missing.
In such a situation, by applying OEC on the received si’s, party Pα can get the
interpolation polynomial f(x) and reconstruct the secret s = f(0) in an online
fashion. The OEC method uses the properties of Reed-Solomon error correcting
codes [56] and enables Pα to recognize when the received shares define a unique
degree-t interpolation polynomial.

Since OEC is a very well known asynchronous primitive, we avoid giving
complete details here. The interested reader can refer [19] for complete details.
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1.3. Existing Results for Statistical AVSS with Optimal Resilience

From [22], statistical AVSS tolerating At is possible iff n ≥ 3t+1. Therefore,
any statistical AVSS with n = 3t + 1 parties is said to have optimal resilience.
The known statistical AVSS protocols with optimal resilience are due to [22]
and [61]. Both these AVSS schemes were designed to be used for construct-
ing Asynchronous Byzantine Agreement (ABA) protocols. In the following, we
summarize these two AVSS schemes.

1. The authors of [22] have presented a series of protocols for designing their
AVSS scheme. They first designed a tool called Information Checking
Protocol (ICP) which is used as a black box for another primitive Asyn-
chronous Recoverable Sharing (A-RS). Subsequently, using A-RS, the au-
thors have designed an AWSS scheme, which is further used to design
a variation of AWSS called Two & Sum AWSS. Finally using their Two
& Sum AWSS, an AVSS scheme was presented. Pictorially, the route
taken by AVSS scheme of [22] is as follows: ICP → A-RS → AWSS →
Two & Sum AWSS → AVSS. Since the AVSS scheme is designed on top
of so many sub-protocols, it becomes highly communication intensive as
well as very much involved. The scheme requires a private communication
of O(n9(log 1

ǫ
)4) bits and A-cast O(n9(log 1

ǫ
)2 log(n)) bits 9 to share a sin-

gle element from F. However, the AVSS scheme of [22] does not generate
t-sharing of the secret. That is, the AVSS scheme of [22] is not an ACSS
scheme and hence can not be used directly in AMPC.

2. The authors of [61] used the following simpler route to design their AVSS
scheme: ICP → AWSS → AVSS. Moreover, due to the new design
approach used in their ICP, AWSS and AVSS protocol, the AVSS of
[61] provides much better communication complexity than the AVSS of
[22]. So the AVSS protocol of [61] requires a private communication of
O((ℓn3 + n4) log 1

ǫ
) bits and A-cast of O((ℓn3 + n4) log 1

ǫ
) bits to share

ℓ ≥ 1 elements. While the AVSS scheme of [61] is suitable for ABA prob-
lem, it is not suitable for AMPC because:

(a) The AVSS scheme of [61] is not an ACSS scheme.
(b) In AVSS of [61], a corrupted D may choose secrets from F∪{NULL}

rather than from F only.

1.4. Our Contribution

We present a new statistical AVSS scheme with optimal resilience by fol-
lowing the simple route of [61]. In the following table, we compare the com-
munication complexity of our AVSS with the AVSS of [22, 61]. The table also
shows the private communication complexity (CC) of the AVSS protocols after
simulating A-cast using the protocol of [17].

9The communication complexity analysis of the AVSS scheme of [22] was not done earlier
and has been recently carried out in [61].
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Ref. CC in bits CC in bits using A-cast of [17] # Secrets

[22] Private– O(n9(log 1
ǫ
)4) O(n9(log 1

ǫ
)4 + n11(log 1

ǫ
)2 log n) 1

A-cast– O(n9(log 1
ǫ
)2 log(n))

[61] Private– O((ℓn3 + n4) log 1
ǫ
) O((ℓn5 + n6) log 1

ǫ
) ℓ

A-cast– O((ℓn3 + n4) log 1
ǫ
)

This Private– O((ℓn3 + n4 log 1
ǫ
) log 1

ǫ
) O((ℓn3 + n4 log 1

ǫ
) log 1

ǫ
+ n5 log n) ℓ

Article A-cast– O(n3 log(n))

As shown in the table, our AVSS attains significantly better communication
complexity than the AVSS of [22] and [61] for any value of ℓ. As mentioned in
the previous section, the AVSS of [61] has a weaker property than the AVSS
of this article and [22]: A corrupted D may choose secrets from F ∪ {NULL}.
Such an AVSS is sufficient for designing ABA protocols. However, to be ap-
plicable for AMPC, we require that AVSS should allow to share secret(s) only
from F [15]. Our AVSS achieves this crucial property at a lesser communication
cost. Using our AVSS, we design a new ACSS scheme, which is an essen-
tial component of asynchronous multiparty computation (AMPC) [15]. Though
there are CSS schemes in synchronous settings, our ACSS scheme is first of
its kind in asynchronous settings with n = 3t + 1. In fact, using our ACSS,
we construct an efficient statistical AMPC with optimal resilience; i.e., with
n = 3t + 1, which privately communicates O(n5 log 1

ǫ
) bits per multiplication

gate. This is a significant improvement over the only known statistical AMPC
of [15] with n = 3t + 1 that privately communicates Ω(n11(log 1

ǫ
)4) bits and

A-cast Ω(n11(log 1
ǫ
)2 log(n)) bits per multiplication gate.

In order to design AVSS, we first propose a new Information Checking Pro-
tocol (ICP) which significantly improves the communication complexity of the
ICP of [61]. Using our ICP, we design an AWSS which is inspired by the
AWSS of [61]. Finally our AWSS is used in constructing our new AVSS proto-
col. The design approach of our AVSS and ACSS are the main essence of this
article. In sum, our route for constructing the AMPC protocol is as follows:
ICP → AWSS → AV SS → ACSS → AMPC.

1.5. Organization of the Paper

For ease of presentation, we divide the paper into three parts. The first
part, consisting of Section 2 to Section 6 deals with the the construction of
AVSS protocol and corresponding building blocks, namely ICP and AWSS. For
the sake of simplicity, we first present our AWSS and AVSS protocols sharing
single secret and then extend them to share multiple secrets. Then second
part, consisting of Section 7 and Section 8 presents our ACSS protocol in detail
(Again for simplicity, Section 7 presents ACSS sharing single secret and Section
8 extends the ACSS for multiple secrets). Finally, the third part consisting of
Section 9 and subsequent sections deals with the design of our AMPC protocol
using ACSS scheme as a building block.
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2. Information Checking Protocol (ICP) and IC Signature

The Information Checking Protocol (ICP) is a tool for authenticating mes-
sages in the presence of computationally unbounded corrupted parties. The
notion of ICP was first introduced by Rabin et.al [67] who have designed an
ICP in synchronous settings. The ICP of Rabin et. al. was also used as a tool
by Canetti et. al. [22] for designing their AVSS scheme.

As described in [67, 22, 27], an ICP is executed among three parties: a dealer
D, an intermediary INT and a verifier R. The dealer D hands over a secret
value s to INT . At a later stage, INT is required to hand over s to R and
convince R that s is indeed the value which INT received from D. The basic
definition of ICP involves only a single verifier R [67, 27, 22]. We extend this
notion to multiple verifiers, where all the n parties in P act as verifiers. Thus
our ICP is executed among three entities: a dealer D ∈ P , an intermediary
INT ∈ P and the entire set P acting as verifiers. This will be later helpful in
using ICP as a tool in our AWSS protocol. Moreover, in contrast to the existing
ICP protocols that deal with single secret, our ICP can deal with multiple secrets
concurrently and thus achieves better communication complexity than multiple
execution of ICP dealing with single secret. Note that, as opposed to the case
of a single verifier, when multiple verifiers simultaneously participate in ICP, we
need to distinguish between synchronity and asynchronity of the network. Our
ICP is executed in asynchronous settings and thus we refer it as AICP. As in
[67, 22], our AICP is also structured into sequence of following three phases:

1. Generation Phase: This phase is initiated by D. Here D hands over the
secret S containing ℓ elements from F to intermediary INT . In addition,
D sends some authentication information to INT and some verification
information to individual verifiers in P .

2. Verification Phase: This phase is initiated by INT to acquire an IC
Signature on S that will be later accepted by every honest verifiers in P .
Depending on the nature of D, INT may or may not receive IC Signa-
ture from D. When INT receives IC Signature, he decides to continue
AICP and later participate in Revelation Phase. On the other hand,
when INT does not receive IC Signature, he aborts AICP and does not
participate in Revelation Phase later. The IC signature (when INT
receives it), denoted by ICSig(D, INT,P , S) is nothing but the S along
with the authentication information which is/are held by INT at the end
of Verification Phase.

3. Revelation Phase: This phase is carried out by INT (only when he
receives ICSig(D, INT,P , S) from D by the end of Verification Phase)
and the verifiers in P . Revelation Phase can be presented in two flavors:

(a) Public Revelation of ICSig(D, INT,P , S) to all the verifiers in P :
Here all the verifiers can publicly verify whether INT indeed received
IC signature on S from D. If they are convinced then every verifier
Pi sets Reveali = S. Otherwise every Pi sets Reveali = NULL.
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(b) Pα-private-revelation of ICSig(D, INT,P , S): Here INT privately
reveals ICSig(D, INT,P , S) to only Pα. After doing some checking,
if Pα believes that INT indeed received IC signature on S from D
then Pα sets Revealα = S. Otherwise Pα sets Revealα = NULL.

Any AICP should satisfy the following properties, assuming public revelation
of signature (these properties are almost same as the properties of ICP defined
in [22]). In the properties, ǫ denotes the error parameter of AICP. In order
to bound the error probability by ǫ, any AICP protocol operates over field
F = GF (2κ), where ǫ = 2−Ω(κ). So κ = ⌈log 1

ǫ
⌉.

1. AICP-Correctness1: If D and INT are honest, then ICSig(D, INT,P , S)
will be accepted in Revelation Phase by every honest verifier.

2. AICP-Correctness2: If an honest INT holds an ICSig(D, INT,P , S)
at the end of Verification Phase, then ICSig(D, INT,P , S) will be ac-
cepted in Revelation Phase by every honest verifier, except with prob-
ability ǫ.

3. AICP-Correctness3: If D is honest, then during Revelation Phase,
with probability at least (1− ǫ), every ICSig(D, INT,P , S′) with S′ 6= S
produced by a corrupted INT will not be accepted by an honest verifier.

4. AICP-Secrecy: If D and INT are honest and INT has not started
Revelation Phase, then At will have no information about S.

For AICP with Pα-private-revelation in Revelation Phase, the above prop-
erties can be modified by replacing ”every/any honest verifier” with ”honest
Pα”.

In the following, we first present an informal idea of our novel AICP called
MVMS-AICP and then describe protocol MVMS-AICP in Fig. 2.

The Intuition behind Protocol MVMS-AICP: D selects a random poly-
nomial f(x) of degree ℓ + tκ, whose first ℓ coefficients are the elements of S
and delivers f(x) to INT . In addition, to each individual verifier, D privately
gives the value of f(x) at κ random evaluation points. This distribution of in-
formation by D helps to achieve AICP-Correctness3 property. Specifically,
if D is honest, then a corrupted INT cannot produce an incorrect f ′(x) 6= f(x)
during Revelation Phase without being detected by an honest verifier. This is
because a corrupted INT will have no information about the evaluation points
of an honest verifier and hence with very high probability, f ′(x) will not match
with the evaluation points held by an honest verifier.

The above distribution of information by D also maintains AICP-Secrecy
property. This is because the degree of f(x) is ℓ+ tκ and At will know the value
of f(x) at most at tκ evaluation points.

However, a corrupted D might do the following: he may distribute f(x) to
INT and value of some other polynomial (different from f(x)) to each honest
verifier. To avoid this situation, INT and the verifiers interact in zero knowledge
fashion, using cut-and-choose technique to check the consistency of f(x) and the

10



values of f(x) held by individual verifier. The specific details of the cut-and-
choose, along with other formal steps of protocol MVMS-AICP are given in Fig.
2.

Since in our AWSS, we require only Pα-private-revelation of ICSig(D, INT,P , S),
we present protocol MVMS-AICP with Revelation Phase describing Pα-private-
revelation of ICSig(D, INT,P , S).

Figure 2: AICP with n = 3t + 1. Here κ = ⌈log 1
ǫ
⌉

Protocol MVMS-AICP(D,INT,P, S, ǫ)

Generation Phase: Gen(D, INT,P, S, ǫ)

1. D selects a random ℓ + tκ degree polynomial f(x) whose lower order ℓ coefficients
are the secrets in S = (s1, . . . , sℓ). D also picks nκ random, non-zero, distinct
evaluation points from F, denoted by αi

1, . . . , αi
κ, for i = 1, . . . , n.

2. D privately sends f(x) to INT and the verification tags zi
1 = (αi

1, ai
1), . . . , zi

κ =
(αi

κ, ai
κ) to party Pi. Here ai

j = f(αi
j), for j = 1, . . . , κ.

Verification Phase: Ver(D, INT,P, S, ǫ)

1. Every verifier Pi randomly partitions the index set {1, . . . , κ} into two sets Ii and

Ii of equal size and sends Ii and zi
j for all j ∈ Ii to INT .

2. Local Computation (only for INT ):

(a) For every verifier Pi from which INT has received Ii and corresponding ver-

ification tags, INT checks whether for every j ∈ Ii, f(αi
j)

?
= ai

j .

(b) If for at least 2t + 1 verifiers, the above condition is satisfied, then INT
sets ICSig(D, INT,P, S) = f(x) and concludes that he has received
ICSig(D, INT,P, S) from D.

(c) If for at least t + 1 verifiers, the above condition is not satisfied, then INT
sets ICSig(D, INT,P, S) = NULL and concludes that he has not received
ICSig(D, INT,P, S) from D.

Revelation Phase: Reveal-Private(D, INT,P, S, Pα, ǫ): Pα-private-revelation of
ICSig(D, INT,P, S)

1. To party Pα, INT sends ICSig(D, INT,P, S) = f(x).

2. To party Pα, every verifier Pi sends the index set Ii and all zi
j such that j ∈ Ii.

3. Local Computation (only for Pα):

(a) Upon receiving f(x) from INT and the values from verifier Pi, check whether

for some j ∈ Ii, f(αi
j )

?
= ai

j .

(b) If for at least t + 1 verifiers the condition is satisfied, then accept
ICSig(D, INT,P, S) and set Revealα = S, where S is lower order ℓ coef-
ficients of f(x).

(c) If for at least 2t + 1 verifiers the above condition is not satisfied, then reject
ICSig(D, INT,P, S) and set Revealα = NULL.

We now prove the properties of protocol MVMS-AICP.

Lemma 1 (AICP-Correctness1). If D, INT and Pα are honest, then S will
be accepted by Pα.
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Proof: If D is honest then he will honestly deliver f(x) to INT and its value
at κ points to individual verifier. So eventually, the condition stated in step 2(a)
of Verification Phase will be satisfied for at least 2t + 1 verifiers and hence
INT , who is honest in this case will set ICSig(D, INT,P , S) = f(x). Now it is
easy to see that the condition stated in step 3(a) of Revelation Phase will be
eventually satisfied, corresponding to the honest verifiers in P (there are at least
2t + 1 honest verifiers). Hence Pα, who is honest in this case, will eventually
accept ICSig(D, INT,P , S) at the end of Revelation phase. 2

Lemma 2 (AICP-Correctness2). If an honest INT holds an ICSig(D, INT,
P , S) at the end of Verification Phase, then ICSig(D, INT,P , S) will be ac-
cepted in Revelation Phase by honest Pα, except with probability ǫ.

Proof: We have to consider the case when D is corrupted as otherwise the proof
will follow from Lemma 1. Since INT is honest and it holds an ICSig(D, INT,P ,
S) at the end of Verification phase, INT has ensured that for at least 2t + 1
verifiers the condition specified in step 2(a) of Verification phase has been
satisfied. Let H be the set of honest verifiers among these 2t + 1 verifiers. Note
that |H| ≥ t + 1. To prove the lemma, we prove that corresponding to each
verifier in H, the condition stated in step 3(a) of Revelation Phase will be
satisfied with very high probability. Note that corresponding to a verifier Pi in
H, the condition stated in step 3(a) of Revelation Phase will fail if for all

j ∈ Ii, f(αi
j) 6= ai

j . This implies that (corrupted) D must have distributed f(x)

(to INT ) and zi
j (to Pi) inconsistently for all j ∈ Ii and it so happens that

Pi has partitioned {1, . . . , κ} into Ii and Ii during Verification Phase, such
that Ii contains only inconsistent tuples (zi

j ’s). Thus corresponding to a verifier
Pi ∈ H, the probability that the condition stated in step 3(a) of Revelation
Phase fails is same as the probability of Pi selecting all consistent (inconsis-

tent) tuples in Ii (Ii), which is 1

( κ
κ/2

)
≈ 2−Ω(κ). Now as there are at least t + 1

parties in H, except with probability (t + 1)2−Ω(κ) ≈ ǫ, Pα will eventually find
step 3(a) of Revelation Phase to be true for all parties in H and will accept
ICSig(D, INT,P , S). 2

Lemma 3 (AICP-Correctness3). If D is honest, then during Revelation
Phase, with probability at least (1−ǫ), every ICSig(D, INT,P , S′) with S′ 6= S
produced by a corrupted INT will be rejected by honest verifier Pα.

Proof: It is easy to see that S′ 6= S produced by a corrupted INT will be
accepted by an honest Pα, if the condition stated in step 3(a) of Revelation
Phase gets satisfied corresponding to at least one honest verifier (for t corrupted
verifiers, the condition may always satisfy). However, the condition will be
satisfied corresponding to honest verifier Pi if corrupted INT can correctly guess
a verification tag zj

i for at least one j ∈ Ii, which he can do with probability
1
|F| = 2−Ω(κ) = ǫ. 2

Lemma 4 (AICP-Secrecy). If D and INT are honest and INT has not
started Revelation Phase, then S is information theoretically secure from At.
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Proof: If D and INT are honest, then at the end of Verification Phase, At

will get tκ distinct values on f(x). However, f(x) is of degree ℓ + tκ and hence
the lower order ℓ coefficients of f(x) which are the elements of S will remain
information theoretically secure. 2

Lemma 5 (AICP-Communication-Complexity). Protocol Gen privately com-
municates O((ℓ + n log 1

ǫ
) log 1

ǫ
) bits. Protocol Ver privately communicates

O((n log 1
ǫ
) log 1

ǫ
) bits. Protocol Reveal-Private privately communicates O((ℓ +

n log 1
ǫ
) log 1

ǫ
) bits.

Proof: In protocol Gen, D privately gives ℓ + tκ field elements to INT
and κ field elements to each verifier. Since each field element can be repre-
sented by O(κ) bits and κ = ⌈log 1

ǫ
⌉, protocol Gen incurs a private commu-

nication of O((ℓ + n log 1
ǫ
) log 1

ǫ
) bits. In protocol Ver, every verifier privately

sends κ
2 field elements to INT , thus incurring a total private communication of

O((n log 1
ǫ
) log 1

ǫ
) bits. In protocol Reveal-Private, INT sends to Pα the poly-

nomial f(x), consisting of ℓ + tκ field elements, while each verifier sends Ii and
corresponding verification tags. So Reveal-Private involves private communica-
tion of O((ℓ + n log 1

ǫ
) log 1

ǫ
) bits. 2

Theorem 2. Protocol Multi-Verifier-AICP is an efficient AICP.

Proof: The theorem follows from Lemma 1, Lemma 2, Lemma 3 and Lemma
4.

Notation 2 (Notation for Using Multi-Verifier-AICP). Recall that D and
INT can be any party from P. In the sequel we use the following convention.
We say that:

1. ”Pi sends ICSig(Pi, Pj ,P , S) to Pj with error parameter ǫ” to mean that
Pi acting as dealer D and considering Pj as INT , executes Gen(Pi, Pj ,P , S, ǫ);

2. ”Pi receives ICSig(Pj, Pi,P , S) from Pj with error parameter ǫ” to mean
that Pi as INT has received ICSig(Pj , Pi,P , S) after executing Ver(Pj , Pi,P ,
S, ǫ);

3. ”Pi reveals ICSig(Pj , Pi,P , S) to Pα with error parameter ǫ” to mean Pi

as INT executes Reveal-Private(Pj , Pi,P , S, Pα, ǫ) along with the partici-
pation of the verifiers in P;

4. ”Pα completes revelation of ICSig(Pj , Pi,P , S) with Revealα = S” to
mean that Pα has successfully completed Reveal-Private(Pj , Pi,P , S, Pα, ǫ)
with Revealα = S.

3. Statistical AWSS Scheme for Sharing a Single Secret

We now present an AWSS scheme, called AWSS with n = 3t + 1, consisting
of a pair of protocols (AWSS-Share, AWSS-Rec-Private). While AWSS-Share
allows D to share a single secret s among P , AWSS-Rec-Private enables private
reconstruction of s or NULL by a specific party, say Pα ∈ P . We call the private
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reconstruction as Pα-weak-private-reconstruction. In AWSS-Share, a corrupted
D may commit to s = NULL instead of an element from F (the meaning of it
will be clear in the sequel).

Our AWSS-Share protocol is similar to AWSS-Share protocol given in [61].
However, instead of using the AICP of [61], we use MVMS-AICP presented in
this paper in AWSS-Share. This leads to better communication complexity.

High Level Idea of AWSS-Share: We follow the general strategy used in [13,
27, 39, 38, 54] for synchronous settings for sharing the secret s with a symmetric
bivariate polynomial F (x, y) of degree-t in x and y, where each party Pi gets
the univariate polynomial fi(x) = F (x, i). So in AWSS-Share, D chooses a sym-
metric bivariate polynomial F (x, y) of degree-t in x and y such that F (0, 0) = s.
D then hands over ICSig(D, INT,P , fi(j)) for every j = 1, . . . , n to Pi. This
step implicitly implies that Pi will receive fi(x) from D. After receiving these
IC signatures from D, the parties then exchange IC signature on their common
values (a pair (Pi, Pj) has one common value, namely F (i, j); Pi has fi(j) and
Pj has fj(i) where F (i, j) = fi(j) = fj(i)). Then D, in conjunction with all
other parties, perform a sequence of communication and computation. As a
result of this, at the end of AWSS-Share, every party agrees on a set of 2t + 1
parties, called WCORE, such that every party Pj ∈ WCORE is IC-committed
to fj(0) using fj(x) to a set of 2t+1 parties, called as OKPj . Pj is IC-committed
to fj(0) using fj(x) among the parties in OKPj only when every Pk ∈ OKPj

received (a) ICSig(D, Pk,P , fk(j)) and (b) ICSig(Pj , Pk,P , fj(k)) and ensures
fk(j) = fj(k) (this should ideally hold due to the selection and distribution of
symmetric bivariate polynomial). In some sense, we may view this as every
Pj ∈ WCORE is attempting to commit his received (from D) polynomial fj(x)
among the parties in OKPj (by giving his IC Signature on one point of fj(x)
to each party) and the parties in OKPj allowing him to do so after verify-
ing that they have got D’s IC signature on the same value of fj(x). We will
show that later in the reconstruction phase, every honest Pj ’s (in WCORE)
IC-commitment will be reconstructed correctly irrespective of whether D is
honest or corrupted. Moreover, a corrupted Pj ’s IC-commitment will be re-
constructed correctly when D is honest. But on the other hand, a corrupted
Pj ’s IC-commitment can be reconstructed to any value when D is corrupted.
These properties are at the heart of our AWSS protocol.

Achieving the agreement (among the parties) on WCORE and correspond-
ing OKPjs is a bit tricky in asynchronous network. Even though these sets
are constructed on the basis of information that are A-casted by parties, parties
may end up with different versions of WCORE and OKPj ’s while attempting
to generate them locally, due to the asynchronous nature of the network. We
solve this problem by asking D to construct WCORE and OKPjs based on A-
casted information and then ask D to A-cast the same. After receiving WCORE
and OKPjs from the A-cast of D, individual parties ensure the validity of these
sets by receiving the same A-cast using which D would have formed these sets.
A similar approach was used in the protocols of [1]. Protocol AWSS-Share is
formally presented in Fig. 3.
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Figure 3: Sharing Phase of Protocol AWSS for Sharing a Single Secret s with
n = 3t + 1

Protocol AWSS-Share(D,P, s, ǫ)

Distribution: Code for D – Only D executes this code.

1. Select a random, symmetric bivariate polynomial F (x, y) of degree-t in x and
y, such that F (0, 0) = s. For i = 1, . . . , n, let fi(x) = F (x, i).

2. For i = 1, . . . , n, send ICSig(D, Pi,P, fi(j)) to Pi with error parameter ǫ′ = ǫ
n2

for each j = 1, . . . , n.

Verification: Code for Pi – Every party including D executes this code.

1. Wait to receive ICSig(D, Pi,P, fi(j)) with error parameter ǫ′ for each j =
1, . . . , n from D.

2. Check if (fi(1), . . . , fi(n)) defines degree-t polynomial. If yes then send
ICSig(Pi, Pj ,P, fi(j)) to Pj with error parameter ǫ′ for all j = 1, . . . , n.

3. If ICSig(Pj , Pi,P, fj(i)) is received from Pj with error parameter ǫ′ and if
fi(j) = fj(i), then A-cast OK(Pi, Pj).

WCORE Construction : Code for D – Only D executes this code.

1. For each Pj , build a set OKPj = {Pk|D receives OK(Pk, Pj) from the A-cast of Pk}.
When |OKPj| = 2t + 1, then Pj ’s IC-commitment on fj(0) is over (or we
may say that Pj is IC-committed to fj(0)) and add Pj in WCORE (which is
initially empty).

2. Wait until |WCORE| = 2t + 1. Then A-cast WCORE and OKPj for all
Pj ∈ WCORE.

WCORE Verification & Agreement on WCORE : Code for Pi

1. Wait to obtain WCORE and OKPj for all Pj ∈ WCORE from D’s A-cast,
such that |WCORE| = 2t + 1 and |OKPj| = 2t + 1 for each Pj ∈ WCORE.

2. Wait to receive OK(Pk, Pj) for all Pk ∈ OKPj and Pj ∈ WCORE. After
receiving all these OKs, accept the WCORE and OKPj’s received from D and
terminate AWSS-Share.

Before moving into the discussion and description of AWSS-Rec-Private, we
now define what we call as D’s AWSS-commitment.

Remark 2 (D’s AWSS-commitment). We say that D is AWSS-committed
to a secret s ∈ F in AWSS-Share if there is a unique degree-t univariate polyno-
mial f(x) such that f(0) = s and every honest Pi in WCORE receives f(i) from
D and IC-commits to f(i) among the parties in OKPi. Otherwise, we say that
D has committed NULL. An honest D always commits s from F as in this case
f(x) is f0(x)(= F (x, 0)), where F (x, y) is the symmetric bivariate polynomial
of degree-t in x and y, chosen by honest D. Moreover, every honest party Pi

in WCORE will receive f0(i) which is same as fi(0) (this can be obtained from
fi(x)). But AWSS-Share can not ensure that corrupted D also commits s ∈ F.
This means that a corrupted D may distribute information to the parties such
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that, polynomial f0(x) defined by the f0(i)(= fi(0)) values possessed by honest
Pi’s in WCORE may not be a degree-t polynomial. In this case we say D has
AWSS-committed NULL.

Our discussion in the sequel will show that for a corrupted D, irrespective
of the behavior of the corrupted parties, either D’s AWSS-committed secret s
(which belongs to F ∪ {NULL}) or NULL will be reconstructed by honest Pα.

High Level Idea of AWSS-Rec-Private: In AWSS-Rec-Private, the parties in
WCORE and corresponding OKPj ’s are used in order to reconstruct D’s
AWSS-committed secret. Specifically, for every Pj ∈ WCORE, Pj ’s IC-commit-
ment (fj(0)) is reconstructed by asking every party Pk ∈ OKPj to reveal
ICSig(D, Pk,
P , fk(j)) and ICSig(Pj, Pk,P , fj(k)) such that fk(i) = fj(k). Since there are
at least t + 1 honest parties in OKPj , eventually at least t + 1 fj(k)’s will be
revealed with which fj(x) and thus fj(0) will be reconstructed. Then fj(0)’s
are used to construct the univariate polynomial f0(x) that is committed by D
during AWSS-Share.

Asking Pk ∈ OKPj to reveal D’s IC signature ensures that if D is honest,
then even for a corrupted Pj ∈ WCORE, the reconstructed polynomial fj(x)
will be same as the one handed over by D to Pj in sharing phase (that is,
a corrupted Pj ’s IC-commitment fj(0) will be reconstructed correctly). This
helps our AWSS protocol to satisfy Correctness 1 property of AWSS. Now
asking Pk in OKPj to reveal Pj ’s signature ensures that even if D is corrupted,
for an honest Pj ∈ WCORE, the reconstructed polynomial fj(x) will be same
as the one received by Pj from D in AWSS-Share (that is, an honest Pj ’s IC-
commitment fj(0) will be reconstructed correctly even though D is corrupted).
This helps to ensure Correctness 2 property. Summing up, when at least one
of D and Pj is honest, Pj ’s IC-commitment (i.e fj(0)) will be revealed properly.
But when both D and Pj are corrupted, Pj ’s IC-commitment can be revealed as

any fj(0) which may or may not be equal to fj(0). It is the later property that
makes our protocol to qualify as a AWSS protocol rather than a AVSS protocol.
Protocol AWSS-Rec-Private is formally given in Fig. 4.

The proof of the properties of our AWSS scheme follows using similar argu-
ments as given for the AWSS scheme of [61]. However, for the sake of complete-
ness we recall them here.

Lemma 6 (AWSS-Termination). Protocols (AWSS-Share, AWSS-Rec-Private)
satisfy termination property of Definition 1.

Proof: Termination 1: When D is honest then eventually all honest parties
will receive desired IC signatures from D and will also eventually exchange IC
signatures on their common values and will A-cast OK for each other. Hence
every honest Pj will eventually complete his IC-commitment on fj(0) with at
least 2t + 1 honest parties in OKPj . So D will eventually include 2t + 1 parties
in WCORE (of which at least t + 1 are honest) and A-cast the same. Now by
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Figure 4: Reconstruction Phase of Protocol AWSS Scheme for Sharing a Single
Secret s with n = 3t + 1

Protocol AWSS-Rec-Private(D,P, s, Pα, ǫ):
Pα-weak-private-reconstruction of s

Signature Revelation: Code for Pi — Every party executes this code

1. If Pi belongs to OKPj for some Pj ∈ WCORE, then reveal
ICSig(D, Pi,P, fi(j)) and ICSig(Pj , Pi,P, fj(i)) to Pα, each with error pa-
rameter ǫ′.

Local Computation: Code for Pα — Only Pα executes this code

1. For every Pj ∈ WCORE, reconstruct Pj ’s IC-commitment, say fj(0) as fol-
lows:

(a) Construct a set V alidPj = ∅.
(b) Add Pk ∈ OKPj to V alidPj if the following conditions hold:

i. Revelation of ICSig(D, Pk,P, fk(j)) and ICSig(Pj , Pk,P, fj(k))

are completed with Revealα = fk(j) and Revealα = fj(k); and

ii. fk(j) = fj(k).

(c) Wait until |V alidPj | = t + 1. Construct a polynomial fj(x) passing

through the points (k, fj(k)) where Pk ∈ V alidPj . Associate fj(0) with
Pj ∈ WCORE.

2. Wait for fj(0) to be reconstructed for every Pj in WCORE.

3. Check whether the points (j, fj(0)) for Pj ∈ WCORE lie on a unique degree-t

polynomial f0(x). If yes, then set s = f0(0) and terminate AWSS-Rec-Private.
Else set s = NULL and terminate AWSS-Rec-Private.

the property of A-cast, each honest party will eventually receive WCORE from
the A-cast of D. Finally, since honest D had included Pj in WCORE after
receiving the OK signals from the parties in OKPj ’s, each honest party will also
receive the same and will eventually terminate AWSS-Share.

Termination 2: If an honest Pi has terminated AWSS-Share, then he must
have received WCORE and OKPj ’s from the A-cast of D and verified their
validity by receiving the desired A-casts. By properties of A-cast, each honest
party will also receive the same and will eventually terminate AWSS-Share.

Termination 3: Since each of the IC signatures are given with an error pa-
rameter ǫ′ = ǫ

n2 , if Pi (acting as INT ) is honest and has received an IC signa-
ture, then IC signature produced by Pi during Reveal-Private will be accepted
by honest Pα without any error probability when D is honest (by AICP-
Correctness1 i.e Lemma 1) and except with probability ǫ′ when D is cor-
rupted (by AICP-Correctness2 i.e Lemma 2). Since for every Pj ∈ WCORE,
|OKPj | = 2t + 1, there are at least t + 1 honest parties in OKPj and each of
them may be present in V alidPj except with probability ǫ′. Thus except with
probability at most n2ǫ′ = ǫ, Pj ’s IC-commitment will be reconstructed for
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all Pj ∈ WCORE. So except with probability ǫ, honest Pα will terminate
AWSS-Rec-Private after executing remaining steps of [Local Computation]
(as specified in protocol AWSS-Rec-Private). 2

Lemma 7 (AWSS-Secrecy). Protocol AWSS-Share satisfies secrecy property
of Definition 1.

proof: We have to consider the case when D is honest. The proof follows from
the secrecy of protocol MVMS-AICP and properties of symmetric bivariate poly-
nomial of degree-t in x and y [25]. Specifically, without loss of generality, assume
that P1, . . . , Pt are the parties under the control of At. So during the execution
of AWSS-Share, At will know f1(x), . . . , ft(x) and t points on ft+1(x), . . . , fn(x).
However, At still lacks one more point to uniquely interpolate F (x, y). Hence,
s = F (0, 0) will be information theoretically secure. 2

Lemma 8 (AWSS-Correctness). Protocols (AWSS-Share, AWSS-Rec-Private)
satisfy correctness property of Definition 1.

Proof: Correctness 1: Here we have to consider the case when D is hon-
est. We show that D’s AWSS-commitment will be reconstructed correctly by
honest Pα, except with probability ǫ. We prove the lemma by showing that
when D is honest, Pj ’s IC-commitment fj(0) will be correctly reconstructed for
Pj ∈ WCORE, except with probability ǫ

n
, irrespective of whether Pj is hon-

est or corrupted. Consequently, as |WCORE| = 2t + 1, all honest parties will
reconstruct f0(x) = F (x, 0) and hence the secret s = f0(0) with probability at
least (1 − (2t + 1) ǫ

n
) ≈ (1 − ǫ). So we consider the following two cases:

1. Consider an honest Pj in WCORE. From AICP-Correctness3 (Lemma
3), a corrupted Pk ∈ OKPj will be able to successfully produce

ICSig(Pj , Pk,P , fj(k)) such that fj(k) 6= fj(k), with probability at most
ǫ′. As there can be at most t corrupted parties in V alidPj , except with

probability tǫ′ = ǫ
n
, the value fj(k) is same as fj(k) for all Pk ∈ V alidPj.

Hence honest Pj ’s IC-commitment fj(0) will be correctly reconstructed,
except with probability ǫ

n
.

2. Consider a corrupted Pj in WCORE. Now a corrupted Pk ∈ OKPj will

be able to produce ICSig(D, Pk,P , fk(j)) such that fk(j) 6= fk(j), with
probability at most ǫ′ according to AICP-Correctness3. Thus except
with probability tǫ′ = ǫ

n
, corresponding to a corrupted Pj ∈ WCORE,

the parties in V alidPj have produced correct points on fj(x).

Correctness 2: Here we consider the case, when D is corrupted. Now there
are two cases: (a) D’s AWSS-committed secret s belongs to F; (b) D’s AWSS-
committed secret s is NULL. Whatever may be case, we show that except with
probability ǫ, honest Pα will either reconstruct s or NULL.

1. We first consider the case when s ∈ F. This implies that the fj(0) values
received by the honest parties in WCORE lie on a degree-t polynomial
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f0(x). Moreover every honest Pj in WCORE is IC-committed to fj(0).
We now show that in AWSS-Rec-Private, IC-commitment of all honest
parties in WCORE will be reconstructed correctly by Pα with probabil-
ity at least (1 − ǫ). So let Pj be an honest party in WCORE. Now
from AICP-Correctness3, a corrupted Pk ∈ OKPj can not produce

ICSig(Pj , Pk,P , fj(k)) such that fj(k) 6= fj(k) except with probability
ǫ′. Hence for honest Pj in WCORE, fj(x) and thus fj(0) will be re-
constructed correctly, except with probability tǫ′. As there are at least
t + 1 honest parties in WCORE, the probability that the above event
happens for all honest parties in WCORE is at most t(t + 1)ǫ′ ≈ ǫ. So
IC-commitment of all honest parties in WCORE will be reconstructed
correctly by Pα with probability at least (1 − ǫ).
However, for a corrupted Pj in WCORE, Pj ’s IC-commitment can be
revealed to any value fj(0). This is because a corrupted Pk ∈ OKPj can

produce a valid signature of Pj on any fj(k) as well as a valid signature

of D (who is corrupted as well) on fk(j) = fj(k). Also the adversary
can delay the messages such that the values of corrupted Pk ∈ OKPj

are revealed to Pα before the values of honest parties in OKPj . Now

if reconstructed fj(0) = fj(0) for all corrupted Pj ∈ WCORE, then s
will be reconstructed by Pα. Otherwise, NULL will be reconstructed.
However, since for all the honest parties of WCORE, IC-commitment
will be reconstructed correctly with probability at least (1 − ǫ) (who in
turn define f0(x)), no other secret (other than s) can be reconstructed by
Pα.

2. We next consider the second case when D’s AWSS-committed secret is
NULL. This implies that the points (j, fj(0)) corresponding to honest
Pj ’s in WCORE do not define a unique degree-t polynomial. It is easy to
see that in this case, irrespective of the behavior of the corrupted parties
NULL will be reconstructed. This is because the points fj(0) correspond-
ing to all honest Pj ∈ WCORE will be reconstructed correctly except with
probability ǫ (following the argument given in previous case).

2

Lemma 9 (AWSS-Communication-Complexity). Protocol AWSS-Share in-
curs a private communication of O(n3(log 1

ǫ
)2) bits and A-cast of O(n2 log n)

bits. Protocol AWSS-Rec-Private privately communicates O(n3(log 1
ǫ
)2) bits.

Proof: In AWSS-Share, there are O(n2) instances of Gen and Ver (of MVMS-
AICP), each dealing with one value (substituting ℓ = 1) and executed with an
error parameter of ǫ′ = ǫ

n2 . From Theorem 5, this requires a private commu-

nication of O(n3(log n2

ǫ
)2) = O(n3(log 1

ǫ
)2) bits, as n = poly(log 1

ǫ
). Moreover,

there are A-cast of O(n2) OK signals. In addition, there is A-cast of WCORE
containing the identity of 2t + 1 parties and OK sets corresponding to each
party in WCORE, where each OK set contains the identity of 2t + 1 parties.
Now the identity of a party can be represented by O(log n) bits. So in total,
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AWSS-Share incurs a private communication of O(n3(log 1
ǫ
)2) bits and A-cast of

O(n2 log n) bits.
In AWSS-Rec-Private, there are O(n2) instances of Reveal-Private of our

MVMS-AICP, each dealing with ℓ = 1 value. This requires a private communi-
cation of O(n3(log 1

ǫ
)2) bits. 2

Theorem 3. Protocol AWSS consisting of (AWSS-Share, AWSS-Rec-Private) con-
stitutes a valid statistical AWSS scheme with n = 3t + 1 parties with private
reconstruction.

Proof: The proof follows from Lemma 6, Lemma 7 and Lemma 8. 2

Notation 3 (Notation for Using AWSS-Share, AWSS-Rec-Private). In our
AVSS scheme (that shares a single secret), we will invoke AWSS-Share as AWSS-

Share(D,P , f(x), ǫ) to mean that D commits to f(x) in AWSS-Share. Essentially
here D is asked to choose a symmetric bivariate polynomial F (x, y) of degree-
t in x and y, where F (x, 0) = f(x) holds. D then tries to give F (x, i) and
hence F (0, i) = f(i) to party Pi. Similarly, AWSS-Rec-Private will be invoked as
AWSS-Rec-Private(D,P , f(x), Pα, ǫ) for Pα-weak-private-reconstruction of f(x).

4. Statistical AWSS Scheme for Sharing Multiple Secrets

In this section, we extend protocol AWSS-Share and AWSS-Rec-Private to
AWSS-MS-Share and AWSS-MS-Rec-Private respectively 10. Now our new AWSS
scheme called AWSS-MS consists of (AWSS-MS-Share, AWSS-MS-Rec-Private).
Protocol AWSS-MS-Share allows D ∈ P to concurrently share a secret S =
(s1 . . . sℓ), containing ℓ elements. On the other hand, protocol AWSS-MS-Rec-
Private allows a specific party Pα ∈ P to reconstruct either S or NULL.

Notice that we could have executed protocol AWSS-Share ℓ times parallely,
each sharing individual elements of S. However, from Lemma 9 this would in-
cur a private communication of O(ℓn3(log 1

ǫ
)2) bits and A-cast of O(ℓn2 log n)

bits. On the other hand, AWSS-MS-Share shares all elements of S concurrently,
requiring a private communication of O((ℓn2 + n3 log 1

ǫ
) log 1

ǫ
) bits and A-cast

of A-cast of O(n2 log n) bits. Thus for sufficiently large ℓ, the communication
complexity of AWSS-MS-Share is less than what would have been required by
ℓ parallel executions of AWSS-Share. Similarly, protocol AWSS-MS-Rec-Private
reconstructs all the ℓ secrets simultaneously, incurring a private communication
of O((ℓn2 + n3 log 1

ǫ
) log 1

ǫ
) bits.

The Intuition: The high level idea of protocol AWSS-MS-Share is similar to
AWSS-Share. For each sl, l = 1, . . . , ℓ, the dealer D selects a random symmetric
bivariate polynomial F l(x, y) of degree-t in x and y, where F l(0, 0) = sl and
gives his IC signature on f l

i (1), . . . , f l
i (n) to party Pi, for i = 1, . . . , n. For

10Here MS stands for multiple secrets
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this, D can execute n instances of Gen, one for each f l
i (j), for j = 1, . . . , n

(this approach was used in AWSS-Share). However, this would require a total
of ℓn instances of Gen (each dealing with a single secret) to be executed by
D for every party Pi. Clearly, this would require a private communication of
O(ℓn2(log 1

ǫ
)2) bits. Instead of this, a better solution would be to ask D to

execute n instances of Gen, where in the jth instance, D gives his IC signa-
ture collectively on (f1

i (j), f2
i (j), . . . , f l

i (j)) to party Pi. This requires private
communication of O((ℓn + n2 log 1

ǫ
) log 1

ǫ
) bits.

Next each party Pi tries to IC-commit (f1
i (0), . . . , f ℓ

i (0)) simultaneously.
For this, every pair of parties Pi and Pj privately exchange (f1

i (j), . . . , f ℓ
i (j))

and (f1
j (i), . . . , f ℓ

j (i)), along with their respective IC signature on these val-
ues. Again notice that Pi and Pj pass on their IC signature collectively on
(f1

i (j), . . . , f ℓ
i (j)) and (f1

j (i), . . . , f ℓ
j (i)) respectively. Next the parties pair-wise

check whether f l
i (j) = f l

j(i) for all l = 1, . . . , ℓ and if so they A-cast OK sig-
nal. After this, the remaining steps (like WCORE construction, agreement on
WCORE, etc) are same as in AWSS-Share. So essentially, the differences be-
tween AWSS-Share and AWSS-MS-Share are: (1) the way the parties give their
IC signature and (2) the conditions required for A-casting OK signal. Protocol
AWSS-MS-Share is formally given in Fig. 5.

Remark 3 (D’s AWSS-commitment). We say that D is AWSS-committed
to S = (s1, . . . , sℓ) ∈ F

ℓ if for every l = 1, . . . , ℓ there is a unique degree-t
polynomial f l(x) such that f l(0) = sl and every honest Pi in WCORE receives
f l(i) from D and IC-commits f l(i) among the parties in OKPi. Otherwise, we
say that D is AWSS-committed to NULL. An honest D always AWSS-commits
S ∈ F

ℓ as in this case f l(x) = f l
0(x) = F l(x, 0), where F l(x, y) is the symmetric

bivariate polynomial of degree-t in x and y chosen by D. But AWSS-MS-Share

can not ensure that corrupted D also AWSS-commits S ∈ F
ℓ. This means that

a corrupted D may distribute information to the parties such that, polynomial
f l
0(x) defined by the f l

0(i)(= f l
i (0)) values possessed by honest Pi’s in WCORE

may not be a degree-t polynomial for some l. In this case we say D has AWSS-
committed NULL.

Protocol AWSS-MS-Rec-Private is a straightforward extension of protocol
AWSS-Rec-Private and is given in Fig. 6.

Since technique wise, protocols (AWSS-MS-Share, AWSS-MS-Rec-Private) are
very similar to protocols (AWSS-Share, AWSS-Rec-Private), we do not provide
the proofs of the properties of protocols (AWSS-MS-Share, AWSS-MS-Rec-Private)
for the sake of avoiding repetition. Rather, we give the following theorem on
the communication complexity.

Theorem 4 (AWSS-MS-Communication -Complexity). Protocol AWSS-

MS-Share incurs a private communication of O((ℓn2 + n3 log 1
ǫ
) log 1

ǫ
) bits and

A-cast of O(n2 log n) bits. Protocol AWSS-MS-Rec-Private involves private com-
munication of O((ℓn2 + n3 log 1

ǫ
) log 1

ǫ
) bits.
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Figure 5: Sharing Phase of Protocol AWSS-MS for Sharing S Containing ℓ ≥ 1
Secrets

AWSS-MS-Share(D,P, S = (s1 . . . sℓ), ǫ)
Distribution: Code for D – Only D executes this code.

1. For l = 1, . . . , ℓ, select a random, symmetric bivariate polynomial F l(x, y)
of degree-t in x and y such that F l(0, 0) = sl. Let f l

i (x) = F l(x, i), for
l = 1, . . . , ℓ.

2. For i = 1, . . . , n, send ICSig(D, Pi,P, (f1
i (j), . . . , fℓ

i (j)) with error parameter
ǫ′ = ǫ

n2
for each j = 1, . . . , n to Pi.

Verification: Code for Pi – Every party including D executes this code.

1. Wait to receive ICSig(D, Pi,P, (f1
i (j), . . . , fℓ

i (j))) with error parameter ǫ′ for
j = 1, . . . , n from D.

2. Check if (f l
i (1), . . . , f

l
i (n)) defines degree-t polynomial for every l = 1, . . . , ℓ.

If yes then send ICSig(Pi, Pj ,P, (f1
i (j), . . . , fℓ

i (j))) with error parameter ǫ′

to Pj for all j = 1, . . . , n.

3. If ICSig(Pj , Pi,P, (f1
j (i), . . . , fℓ

j (i))) is received from Pj with error parameter

ǫ′ and if f l
j(i) = f l

i (j) for all l = 1, . . . , ℓ, then A-cast OK(Pi, Pj).

WCORE Construction : Code for D – Only D executes this code.

1. For each Pj , build a set OKPj = {Pi|D receives OK(Pi, Pj) from the A-cast of Pi}.
When |OKPj| = 2t + 1, then Pj ’s IC-commitment on (f1

j (0), . . . , fℓ
j (0)) is

over (or we may say that Pj is IC-committed to (f1
j (0), . . . , fℓ

j (0))) and add

Pj in WCORE (which is initially empty).

2. Wait until |WCORE| = 2t + 1. Then A-cast WCORE and OKPj for all
Pj ∈ WCORE.

WCORE Verification & Agreement on WCORE : Code for Pi

1. Wait to obtain WCORE and OKPj for all Pj ∈ WCORE from D’s A-cast,
such that |WCORE| = 2t + 1 and |OKPj| = 2t + 1 for each Pj ∈ WCORE.

2. Wait to receive OK(Pk, Pj) for all Pk ∈ OKPj and Pj ∈ WCORE. After
receiving all these OKs, accept the WCORE and OKPj’s received from D
and terminate AWSS-MS-Share.

Proof: The proof follows from the fact that in AWSS-MS-Share and AWSS-
MS-Rec-Private, there are O(n2) instances of MVMS-AICP, each dealing with ℓ
values and having an error parameter of ǫ′ = ǫ

n2 . 2

Notation 4 (Notation for Using AWSS-MS-Share, AWSS-MS-Rec-Private).
We will invoke AWSS-MS-Share as AWSS-MS-Share(D,P , (f1(x), . . . , f ℓ(x)), ǫ)
where D is asked to choose symmetric bivariate polynomials F 1(x, y), . . . , F ℓ(x, y)
each of degree-t in x and y such that F l(x, 0) = f l(x) holds for l = 1, . . . , ℓ.
D then tries to give F l(x, i) and hence F l(0, i) = f l(i) to party Pi, for l =
1, . . . , ℓ. Similarly, AWSS-MS-Rec-Private will be invoked as AWSS-MS-Rec-

Private(D,P , (f1(x), . . . , f ℓ(x)), Pα, ǫ). to enable the Pα-weak-private-reconstruction
of (f1(x), . . . , f ℓ(x)).
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Figure 6: Reconstruction Phase of Protocol AWSS-MS for Sharing S Containing ℓ
Secrets

AWSS-MS-Rec-Private(D,P, S = (s1, . . . , sℓ), ǫ)
Pα-weak-private-reconstruction of S

Signature Revelation: Code for Pi — Every party executes this code

1. If Pi belongs to OKPj for some Pj ∈ WCORE, then reveal
ICSig(D, Pi,P, (f1

i (j), . . . , fℓ
i (j))) and ICSig(Pj , Pi,P, (f1

j (i), . . . , fℓ
j (i))), each

with error parameter ǫ′ .

Local Computation: Code for Pα — Only Pα executes this code

1. For every Pj ∈ WCORE, reconstruct Pj ’s IC-commitment, say (f1
j (0), . . . , fℓ

j (0))
as follows:

(a) Construct a set V alidPj = ∅.
(b) Add Pk ∈ OKPj to V alidPj if the following conditions hold:

i. Revelation of ICSig(D, Pk,P, (f1
k
(j), . . . , fℓ

k
(j))) and

ICSig(Pj , Pk,P, (f1
j (k), . . . , fℓ

j (k))) are completed with Re-

vealα = (f1
k
(j), . . . , fℓ

k
(j)) and Revealα = (f1

j (k), . . . , fℓ
j (k)) respectively;

and
ii. f l

k
(j) = f l

j(k), for l = 1, . . . , ℓ.

(c) Wait until |V alidPj | = t+1. For l = 1, . . . , ℓ, construct a degree-t polynomial

f l
j(x) passing through the points (k, f l

j(k)) where Pk ∈ V alidPj . For l =

1, . . . , ℓ, associate f l
j(0) with Pj ∈ WCORE.

2. Wait for f1
j (0), . . . , fℓ

j (0) to be reconstructed for every Pj in WCORE.

3. For l = 1, . . . , ℓ, do the following:

(a) Check whether the points (j, f l
j(0)) for Pj ∈ WCORE lie on a unique degree-t

polynomial f l
0(x). If yes, then set sl = f l

0(0), else set sl = NULL.

4. If sl = NULL for any l ∈ {1, . . . , ℓ}, then output S = NULL and terminate AWSS-

MS-Rec-Private. Else output S = (s1, . . . , sℓ) and terminate AWSS-MS-Rec-Private.

5. Statistical AVSS Protocol for Sharing a Single Secret

We now present an AVSS scheme called AVSS consisting of a pair of protocols
(AVSS-Share, AVSS-Rec-Private). AVSS-Share allows D to share a single secret
from F. Notice that unlike AWSS-Share (presented in Section 3), AVSS-Share

ensures that even a corrupted D commits to a secret from F. Protocol AVSS-Rec-
Private allows a specific party, say Pα, to privately reconstruct D’s committed
secret. We call the private reconstruction as Pα-private-reconstruction. While
Pα-private-reconstruction can always ensure that Pα reconstructs D’s commit-
ted secret with high probability, Pα-weak-private-reconstruction (introduced in
Section 3) could only ensure that Pα reconstructs either D’s committed secret
or NULL. Structurally, we divide AVSS-Share into a sequence of following three
phases. Each of the phases will be eventually completed by every honest party
when D is honest. Moreover, if some honest party completes all the three phases
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then eventually every other honest party will also complete all the three phases.

1. Commitment by D: Here D on having a secret s, commits the secret by
AWSS-committing n shares of s using n different instances of AWSS-Share
protocol.

2. Verification of D’s commitment: Here the parties verify whether in-
deed D has committed a secret from F.

3. Re-commitment by Individual Parties: If the parties are convinced in
previous phase, then every party Pi re-commits his share of D’s committed
secret using an instance of AWSS-Share protocol.

While first two phases of AVSS-Share are enough to ensure that D has committed
a secret from F, the sole purpose of third phase is to enable robust reconstruction
of D’s committed secret in AVSS-Rec-Private. That is if protocol AVSS-Share
stops after the second phase, then we may only ensure that either D’s committed
secret or NULL will be reconstructed in AVSS-Rec-Private. This would violate
the claim that AVSS is an AVSS scheme.

5.1. Commitment by D Phase

In this phase, D on having a secret s, selects a random bivariate polynomial
F (x, y) of degree-(t, t) (i.e degree-t in both x and y) such that F (0, 0) = s.
Now to party Pi, D passes fi(x) = F (x, i) and gi(y) = F (i, y). We refer fi(x)
polynomials as row polynomials and gi(y) polynomials as column polynomials.
Now D commits f1(x), . . . , fn(x) using n distinct invocations of AWSS-Share
protocol (see Notation 3 in Section 3 for the interpretation of committing poly-
nomial using AWSS-Share). During the course of executing these n instances of
AWSS-Share, a party Pi receives ith point on the polynomials f1(x), . . . , fn(x),
namely f1(i), . . . , fn(i) which should be n distinct points on gi(y). So Pi checks
whether gi(j) = fj(i) for all j = 1, . . . , n and informs this by A-casting a signal.
While executing the n instances of AWSS-Share, D employ a trick to guarantee
that all the n instances of AWSS-Share terminate with a common WCORE.
Once WCORE is agreed among all the honest parties in P , Commitment by
D Phase ends. The code for this phase is presented in Fig. 7.

We now prove the properties of Commitment by D Phase.

Lemma 10. In Code Commitment:

1. If D is honest then eventually he will generate a common WCORE of size
2t + 1 for all the n instances of AWSS-Share initiated by him. Moreover,
each honest party will eventually agree on the common WCORE.

2. If D is corrupted and some honest party has accepted the WCORE and
OKPjs received from the A-cast of D, then every other honest party will
also eventually accept the same.

Proof: In Code Commitment, D keeps on adding new parties in each WCOREi

and OKP i
j even after their cardinality reach 2t + 1. So if D is honest, then

eventually he will include all the 2t + 1 honest parties in each WCOREi and
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Figure 7: Code for Commitment by D Phase

Code Commitment(D,P, s, ǫ)

i. Distribution by D: – Only D executes this code

1. Select a random degree-(t, t) bivariate polynomial F (x, y) such that F (0, 0) = s.

2. For i = 1, . . . , n, send row polynomial fi(x) = F (x, i) and column polynomial gi(y) =
F (i, y) to Pi.

3. For i = 1, . . . , n, initiate AWSS-Share(D,P, fi(x), ǫ′) for sharing fi(x), where ǫ′ = ǫ
n

.

ii. Code for Pi – Every party in P, including D, executes this code

1. Wait to receive degree-t row polynomial fi(x) and degree-t column polynomial gi(y)
from D.

2. Participate in AWSS-Share(D,P, fj(x), ǫ′) by executing steps in [Verification:
Code for Pi] (of AWSS-Share) for all j = 1, . . . , n.

3. After the completion of step 1 of [Verification: Code for Pi] for all the n invo-
cations of AWSS-Share, check whether gi(j) = fj(i) holds for all j = 1, . . . , n. Here
fj(i) is obtained by Pi from D during the execution of first step of [Verification:
Code for Pi] of AWSS-Share(D,P, fj(x), ǫ′). If yes then A-cast Matched-Column

and execute the rest of the steps of AWSS-Share(D,P, fj(x), ǫ′), for all j = 1, . . . , n.

iii. WCORE Construction: Code for D – Only D executes this code.

1. Construct WCORE and corresponding OKPj’s for each
AWSS-Share(D,P, fi(x), ǫ′) following the steps in [WCORE Construction]
(of AWSS-Share). Denote them by WCOREi and OKP i

j ’s.

2. Keep updating WCOREi’s and corresponding OKP i
j ’s. That is, even after

WCOREi reaches the size of 2t + 1, D keeps on adding new parties in WCOREi

and corresponding OK sets after receiving new A-cast of the form OK(*, *) in
AWSS-Share(D,P, fi(x), ǫ′).

3. Wait to obtain WCORE = ∩n
i=1WCOREi of size at least 2t+1 and for every Pj ∈

WCORE, OKPj = ∩n
i=1OKP i

j of size at least 2t + 1, such that Matched-Column is
received from A-cast of every Pj ∈ WCORE .

4. A-cast WCORE and OKPj for every Pj ∈ WCORE.

iv. WCORE verification & Agreement: Code for Pi – Every party including D will
execute this code.

1. Wait to receive WCORE and OKPj for every Pj ∈ WCORE from A-cast of D,
such that |WCORE| ≥ 2t + 1 and each |OKPj| ≥ 2t + 1.

2. Wait to receive OK(Pk, Pj) from the A-cast of Pk for every Pk ∈ OKPj and every
Pj ∈ WCORE for all the n executions of AWSS-Share.

3. Wait to receive Matched-Column from A-cast of every Pj ∈ WCORE.

4. After receiving all desired OKs and Matched-Column signals, accept WCORE and
OKPj for every Pj ∈ WCORE received from A-cast of D and proceed to the next
phase (Verification of D’s Commitment Phase).

OKP i
j for every honest Pj . Moreover, each honest Pi will eventually A-cast

Matched-Column signal, as fj(i) = gi(j) will hold for all j = 1, . . . , n when
D is honest. Therefore, if D is honest then eventually he will find a common
set of at least 2t + 1 parties in the WCOREi of all the n instances of AWSS-
Share, who have A-cast Matched-Column signal. This common set of at least
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2t + 1 parties will form the common WCORE which D will A-cast. Similarly,
corresponding to each Pj ∈ WCORE, the honest D will eventually find a
common set of at least 2t + 1 parties in OKP 1

j , . . . , OKPn
j . This common set

of at least 2t + 1 parties will constitute OKPj which D will A-cast. Now from
the property of A-cast, each honest party will eventually receive WCORE of
size at least 2t + 1 and OKPj of size at least 2t + 1 for each Pj ∈ WCORE
from the A-cast of D. Now it is easy to see that each honest party will accept
this common WCORE and OKPj for each Pj ∈ WCORE, after executing the
steps in [wcore verification and agreement]. This proves the first part.

If D is corrupted and some honest party, say Pi has accepted the WCORE
and OKPj ’s received from the A-cast of D then it implies the following: Pi

has received OK(Pk, Pj) from the A-cast of Pk for every Pk ∈ OKPj and every
Pj ∈ WCORE for all the n executions of AWSS-Share. Moreover, Pi has also
received Matched-Column from A-cast of every Pj ∈ WCORE. Now from the
property of A-cast, every other honest party Pj will also eventually receive the
same OKs and Matched-Column and hence will accept the WCORE and OKPj

for each Pj ∈ WCORE.

5.2. Verification of D’s Commitment Phase

After agreeing on WCORE and corresponding OKPj ’s, in this phase, the
parties verify whether indeed D has committed a secret from F. For this, the
parties try to check whether there is a set R of size at least 2t+1 and another set
C of size at least 2t + 1 (possibly different from R), such that for every Pi ∈ R
and every Pj ∈ C, fi(j) = gj(i) holds. If they can ensure that such sets exist
then it implies that the row and column polynomials of the honest parties in R
and C define a unique bivariate polynomial of degree-(t, t) and the constant term
of the polynomial is D’s committed secret. Checking for the existence of such
sets is quiet easy in synchronous settings, where the parties can simply pair-
wise exchange common values on their row and column polynomial, as done in
several synchronous VSS protocols [13, 39, 38, 54, 59]. However, doing the same
is not so straightforward in asynchronous settings, especially when we have only
3t + 1 parties.

To check the existence of the sets described above, the parties proceed
as follows: recall that in the Commitment by D phase, D is committed
to f1(x), . . . , fn(x) using n distinct instances of AWSS-Share. Now the par-
ties execute AWSS-Rec-Private(D,P , fj(x), Pj , ǫ

′) for enabling Pj-weak-private-
reconstruction of fj(x). If Pj reconstructs fj(x) from the execution of AWSS-
Rec-private and fj(x) is same as fj(x) received from D in the previous phase,
then Pj informs this to everyone by A-casting Matched-Row signal. This is a pub-
lic notification by Pj that the polynomial committed by D in AWSS-Share(D,P ,
fj(x), Pj , ǫ

′) is same as the one which Pj has privately received from D. Now
if at least 2t + 1 parties, say R, A-cast Matched-Row, then it implies that D is
committed to a unique degree-(t, t) bivariate polynomial, say F (x, y) (hence a
unique secret s = F (0, 0)) such that for every honest Pi ∈ R, the row polynomial
fi(x) held by Pi satisfies F (x, i) = fi(x) and for every honest Pj ∈ WCORE,
the column polynomial gj(y) held by Pj satisfies F (j, y) = gj(y) (For proof see
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Lemma 11). The code for implementing this phase is very easy and is given in
Fig. 8.

Figure 8: Code for Verification of D’s Commitment Phase

Code Verification(D,P, s, ǫ)

Pj-Weak-Private-Reconstruction of fj(x) for j = 1, . . . , n:

i. Code for Pi – Every party in P executes this code.

1. After agreeing on WCORE and corresponding OKPj’s, participate in
AWSS-Rec-Private(D,P, fj(x), Pj , ǫ′), for j = 1, . . . , n, to enable Pj-weak-private-
reconstruction of fj(x). Notice that the same WCORE and OKPj for Pj ∈
WCORE are used in each AWSS-Rec-Private(D,P, fj(x), Pj , ǫ′), for j = 1, . . . , n

2. At the completion of AWSS-Rec-Private(D,P, fi(x), Pi, ǫ
′), obtain either degree-t

polynomial fi(x) or NULL.

3. If fi(x) = fi(x), then A-cast Matched-Row.

ii. Code for D — Only executes this code.

1. Wait to receive Matched-Row from A-cast of at least 2t + 1 parties, say R.

2. A-cast the set R.

iii. [Verification of D’s Commitment] : Code for Pi – Every party in P executes this
code

1. Wait to receive R of size at least 2t + 1 from A-cast of D.

2. Wait to receive Matched-Row from A-cast of every party in R and then proceed to
third phase.

Lemma 11. In Code Verification, if an honest party receives Matched-Row from
the A-cast of the parties in R, then in code Commitment, D is committed to
a unique degree-(t, t) bivariate polynomial F (x, y) (and hence to a secret s =
F (0, 0)) such that the row polynomial fi(x) held by every honest Pi ∈ R satisfies
F (x, i) = fi(x) and the column polynomial gj(y) held by every honest Pj ∈
WCORE satisfies F (j, y) = gj(y). Moreover if D is honest then F (x, y) =
F (x, y) and hence s = s.

Proof: Let l and m be the number of honest parties in R and WCORE
respectively. As |WCORE| ≥ 2t + 1 and |R| ≥ 2t + 1, both l ≥ t + 1 and
m ≥ t + 1. For convenience, we assume P1, . . . , Pl and respectively P1, . . . , Pm

are the set of honest parties in R and WCORE. Now for every (Pi, Pj) with Pi ∈
{P1, . . . , Pl} and Pj ∈ {P1, . . . , Pm}, fi(j) = gj(i) holds. This is due to the fact
that Pi has checked that D is indeed committed to fi(x) (by checking fi(x) =
fi(x), where fi(x) is obtained from Pi-weak-private-reconstruction and fi(x) is
obtained from D in Commitment). The above implies that honest Pj ∈ WCORE
has received fi(j) from D and checked gj(i) = fi(j) during the execution of
Commitment. We now claim that if fi(j) = gj(i) holds for every (Pi, Pj) with
Pi ∈ {P1, . . . , Pl} and Pj ∈ {P1, . . . , Pm} then there exists a unique bivariate
polynomial F (x, y) of degree-(t, t), such that for i = 1, . . . , l, we have F (x, i) =
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fi(x) and for j = 1, . . . , m, we have F (j, y) = gj(y). The proof now completely
follows from the proof of Lemma 4.26 of [19].

Specifically, let V (k) denote k × k Vandermonde matrix, where ith column
is [i0, . . . , ik−1]T , for i = 1, . . . , k. Now consider the degree-t row polynomials
f1(x), . . . , ft+1(x) and let E be the (t + 1) × (t + 1) matrix, where Eij is the
coefficient of xj in fi(x), for i = 1, . . . , t + 1 and j = 0, . . . , t. Thus for i =
1, . . . , t + 1 and j = 1, . . . , t + 1, the (i, j)th entry in E · V (t+1) is fi(j).

Let H = ((V (t+1))T )
−1

·E be a (t + 1)× (t + 1) matrix. Let for i = 0, . . . , t,
the (i + 1)th column of H be [ri0, ri1, . . . , rit]

T . Now we define a degree-(t, t)

bivariate polynomial F (x, y) =
∑i=t

i=0

∑j=t
j=0 rijx

iyj . Then from properties of
bivariate polynomial, for i = 1, . . . , t + 1 and j = 1, . . . , t + 1, we have

F (j, i) = (V (t+1))T · H · V (t+1) = E · V (t+1) = fi(j) = gj(i)

This implies that for i = 1, . . . , t+1, the polynomials F (x, i) and fi(x) have same
value at t + 1 values of x. But since degree of F (x, i) and fi(x) is t, this implies
that F (x, i) = fi(x). Similarly, for j = 1, . . . , t + 1, we have F (j, y) = gj(y).

Next, we will show that for any t+1 < i ≤ l, the polynomial fi(x) also lies on
F (x, y). In other words, F (x, i) = fi(x), for t + 1 < i ≤ l. This is easy to show
because according to theorem statement, fi(j) = gj(i), for j = 1, . . . , t + 1 and
g1(i), . . . , gt+1(i) lie on F (x, i) and uniquely defines F (x, i). Since both fi(x)
and F (x, i) are of degree t, this implies that F (x, i) = fi(x), for t + 1 < i ≤ l.
Similarly, we can show that F (j, y) = gj(y), for t+1 < j ≤ m. The second part
of the lemma is trivially true. 2

Lemma 12. In Code Verification, if D is honest then all honest parties will
eventually proceed to third phase, except with probability ǫ. Moreover, if D
is corrupted and some honest party proceeds to the third phase, then all other
honest party will also eventually proceed to the third phase.

Proof: If D is honest then every honest party Pi will eventually A-cast Matched-Row
signal, except with probability ǫ′. The reason is that every honest Pi will
privately reconstruct back fi(x) in AWSS-Rec-Private(D,P , fi(x), Pi, ǫ

′), except
with probability ǫ′. As there are at least 2t+1 honest parties, except with prob-
ability at most nǫ′ = ǫ, all honest parties will eventually A-cast Matched-Row

signal. Therefore, eventually there will be a set of 2t+1 parties, say R, who will
A-cast Matched-Row signal. D will A-cast R and eventually every honest party
will receive R from A-cast of D and will eventually receive 2t + 1 Matched-Row

signal from the parties of R and will proceed to the third phase, except with
probability ǫ.

If D is corrupted and some honest party Pi proceeds to the third phase, then
it implies that Pi has received R from A-cast of D and then Matched-Row signal
from every party in R. So eventually all other honest parties will also receive
R and corresponding Matched-Row signals and will proceed to the third phase.
2

From Lemma 11, if the honest parties agree on R, then they are sure that D
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is committed to a unique bivariate polynomial and thus a unique secret. Now
the question is: If the honest parties stop protocol AVSS-Share after agreeing
on R, then is there any possible way of robustly reconstructing D’s secret in
reconstruction phase? Here we stop a moment and try to find the possibilities
for the above question. Our effort in this direction would also motivate the
need of the third phase of AVSS-Share which is actually required to enable
robust reconstruction of D’s committed secret in the reconstruction phase i.e in
AVSS-Rec-Private.

One possible way to reconstruct D’s committed secret s is to execute AWSS-
Rec-Private(D,P , fj(x), ∗, ǫ′) corresponding to every Pj ∈ R, which may disclose
fj(x) polynomials and using those polynomial the bivariate polynomial and thus
the secret s may be reconstructed. But this does not work, because when D is
corrupted, all instances of AWSS-Rec-Private may output NULL. So it seems
that most likely there is no way to robustly reconstruct D’s committed value s
in protocol AVSS-Rec-Private, if AVSS-Share stops after second phase. Hence, we
require the third phase which is described in the sequel. Prior to the description
of the third phase in the next section, we present the following remark.

Remark 4. In the code Commitment, D executed n instances of AWSS-Share

for individually committing each fi(x). Later this allowed fi(x) to be privately
reconstructed only by Pi during the code for Verification. If D executes a sin-
gle instance of AWSS-MS-Share for concurrently committing to f1(x), . . . , fn(x),
instead of n instances of AWSS-Share, then later in the code Verification, we
could not enable P1 to privately reconstruct f1(x), P2 to privately reconstruct
f2(x) and so on. This is because AWSS-MS-Rec-Private is designed in such a
way that it will allow Pα to privately reconstruct back all the n polynomials.
This would clearly breach the secrecy property of AVSS as every party will now
come to know all the n row polynomials.

5.3. Re-commitment by Individual Parties

The outline for this phase is as follows: If Pi A-casts Matched-Row in code
Verification, then Pi acts as a dealer to re-commit his row polynomial fi(x) by
initiating an instance of AWSS-Share. It is also enforced that if Pi attempts to re-
commit f ′

i(x) 6= fi(x), then his re-commitment will not be terminated. Moreover,
when D is honest then an honest Pi will always be able to successfully re-commit
fi(x). Now AVSS-Share terminates only when all the honest parties in P agree
upon a set of at least 2t + 1 parties, say V CORE, who have successfully re-
committed their polynomials. Now clearly, if AVSS-Share terminates, then the
robust reconstruction of D′s committed secret s is guaranteed with very high
probability later in reconstruction phase. This is because, the AWSS-Rec-Private
instance of an honest Pi ∈ V CORE will always reconstruct back fi(x). On the
other hand, AWSS-Rec-Private instance of a corrupted Pi ∈ V CORE will output
either fi(x) or NULL with probability at least (1 − ǫ′). This guarantees the
reconstruction of at least t+1 fi(x) polynomials which are enough to reconstruct
D’s committed bivariate polynomial and hence s. The protocol for this phase
is given in Fig. 9.
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Figure 9: Code for ”Re-commitment by Individual Parties” Phase

Code Re-commitment(D,P, s, ǫ)

i. Code for Pi — Every party executes this code.

1. If you have A-casted Matched-Row in Verification then as a dealer, initiate
AWSS-Share(Pi,P, fi(x), ǫ′) to re-commit fi(x) with ǫ′ = ǫ

n
. We denote this instance

by AWSS-Sharei.

2. If Pj has A-casted Matched-Row in Verification, then participate in AWSS-Sharej by
executing steps in [Verification: Code for Pi] (of AWSS-Share) in the following
way:
After the completion of step 1 of [Verification: Code for Pi], check whether gi(j) =
fj(i) holds, where fj(i) is obtained from the execution of AWSS-Sharej and gi(y) was
obtained from D during commitment by D phase. If yes then participate in the
remaining steps of [Verification: Code for Pi] corresponding to AWSS-Sharej .

3. WCOREPi Construction for AWSS-Sharei: If Pi initiated AWSS-Sharei to re-
commit fi(x), then Pi as a dealer, constructs WCORE and corresponding OKPjs for
AWSS-Sharei in a slightly different way than what is described in AWSS-Share (these
steps also ensure that a corrupted Pi will not be able to re-commit fi(x) 6= fi(x)).

(a) Construct a set ProbCOREPi ( = ∅ initially). Include Pj in ProbCOREPi

and A-cast (Pj , P robCOREPi) if at least 2t+1 A-casts of the form OK(., Pj) are
heard in the instance AWSS-Sharei.

(b) Construct WCOREPi . Add Pj in WCOREPi if both the following holds:

(A) Pj ∈ ProbCOREPi and

(B) If (Pj , P robCOREPk ) is received from the A-cast of at least 2t + 1 Pk’s
who have A-casted Matched-Row.

(c) A-cast WCOREPi and OKPj for every Pj ∈ WCOREPi when |WCOREPi| =
2t + 1.

ii. VCORE Construction: Code for D — Only D executs this code

1. If WCOREPi and OKPj for every Pj ∈ WCOREPi are received from the A-cast of
Pi, then add Pi to V CORE after performing the following:

(a) Wait to receive (Pj , P robCOREPi) for every Pj ∈ WCOREPi from the A-cast
of Pi.

(b) Wait to receive (Pj , P robCOREPk) for every Pj ∈ WCOREPi from A-cast of
at least 2t + 1 Pk’s who have A-casted Matched-Row.

(c) Wait to receive OK(Pj, Pk) for every Pk ∈ OKPj in execution AWSS-Sharei.

2. A-cast V CORE when |V CORE| = 2t + 1.

iii. VCORE Verification & Agreement on VCORE: Code for Pi — Every party exe-
cutes this code

1. Wait to receive V CORE from the A-cast of D.

2. For every Pi ∈ V CORE, wait to receive WCOREPi and OKPj for every Pj ∈
WCOREPi from the A-cast of Pi.

3. Once received, check the validity of received WCOREPi ’s and OKPj’s for every
Pj ∈ WCOREPi by following the same steps as in ii-1(a), ii-1(b) and ii-1(c).

4. After checking the validity, accept (i) V CORE; (ii) WCOREPi and corresponding
OKPj’s for every Pi ∈ V CORE which are received in previous two steps and termi-
nate AVSS-Share.
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Lemma 13. If D is honest then D will eventually generate V CORE of size
2t + 1, except with probability ǫ. Moreover each honest party will agree on
this V CORE. If D is corrupted and some honest party has accepted V CORE
received from D, then every other honest party will also eventually do the same.

Proof: From the proof of Lemma 12, if D is honest, then all honest parties (at
least 2t+1) will eventually A-cast Matched-Row in code Verification, except with
probability ǫ. So except with probability ǫ, all these honest Pi’s will eventually
complete AWSS-Sharei as a dealer and thus will re-commit fi(x) successfully.
Therefore, D will eventually find a set of 2t + 1 Pi’s for which the conditions
stated in step 1 of [VCORE construction] will be eventually satisfied. Hence
D will add all these 2t +1 Pi’s in V CORE and A-cast the same. Now it is easy
to see that every honest party will agree on this V CORE after performing the
steps in [VCORE verification and agreement on VCORE].

If D is corrupted and some honest party Pi has accepted V CORE re-
ceived from D, then it implies that Pi has checked the validity of received
V CORE by performing the steps in [VCORE verification and agreement
on VCORE]. Now it is easy to see that all other honest parties will also do the
same and will accept V CORE eventually. 2

Lemma 14. If V CORE is generated, then there exists a unique degree-(t, t)
bivariate polynomial F (x, y) such that every Pi ∈ V CORE is re-committed to
fi(x) = F (x, i). Moreover, if D is honest then F (x, y) = F (x, y).

Proof: By Lemma 11, there is a unique degree-(t, t) bivariate polynomial
F (x, y) such that the row polynomial of every honest Pi who has A-casted
Matched-Row, satisfies fi(x) = F (x, i). Since an honest party Pi who has
re-committed his row polynomial fi(x) in Re-commitment, has also A-casted
Matched-Row in Verification, fi(x) = F (x, i) satisfies for every honest Pi in
V CORE. Now we show that even a corrupted Pi ∈ V CORE has re-committed
fi(x) satisfying fi(x) = F (x, i).

We prove this by showing that every honest Pj ∈ WCOREPi has received
fi(j) from Pi during AWSS-Sharei (and hence honest Pj is IC-committed to
fi(j)). An honest Pj belongs to WCOREPi implies that Pj belongs to ProbCORE
of at least 2t+1 parties (who have A-casted Matched-Row) out of which at least
t+1 are honest. Let H be the set of these (t+1) honest parties. So Pj ’s column
polynomial gj(y) satisfies gj(k) = fk(j) for every Pk ∈ H (due to step i-(2) in Re-
commitment). This implies that gj(y) = F (j, y). Now honest Pj ∈ WCOREPi

implies that Pj belongs to ProbCORE of Pi as well which means Pj has ensured
gj(i) = fi(j) (due to step i-(2)) in Re-commitment.

Now the second part of the lemma is trivially true. 2

5.4. Protocol AVSS

Now the protocols for our AVSS scheme is presented in Fig. 10.
In the following, we prove the properties of our AVSS scheme.

Lemma 15 (AVSS-Termination). Protocol AVSS satisfies termination prop-
erty of Definition 2.
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Figure 10: AVSS for Sharing Secret s with n = 3t + 1

Protocol AVSS(D,P, s, ǫ)

AVSS-Share(D,P, s, ǫ)

1. Replicate Code Commitment(D, P, s, ǫ), Code Verification(D,P, s, ǫ) and Code Re-
commitment(D, P, s, ǫ).

AVSS-Rec-Private(D,P, s, Pα, ǫ): Pα-private-reconstruction of s:

Pα-weak-private-reconstruction of fj(x) for every Pj ∈ V CORE: (Code for Pi)

1. Participate in AWSS-Rec-Private(Pj ,P, fj(x), Pα, ǫ′) for every Pj ∈ V CORE.
We denote AWSS-Rec-Private(Pj ,P, fj(x), Pα, ǫ′) by AWSS-Rec-Privatej

Local Computation: Code for Pα

1. For every Pj ∈ V CORE, obtain either fj(x) or NULL from Pα-weak-private-

reconstruction. Add Pj ∈ V CORE to REC if fj(x) is obtained.

2. Wait until |REC| = t + 1. Construct bivariate polynomial F (x, y) such that
F (x, j) = fj(x) for every Pj ∈ REC. Compute s = F (0, 0) and terminate
AVSS-Rec-Private.

Proof: Termination 1 and Termination 2 property follows from Lemma
10, Lemma 12 and Lemma 13. Termination 3 property is proved as follows:
By Termination 3 and Correctness 1 of our AWSS scheme (see Lemma
6 and Lemma 8), AWSS-Sharei initiated by an honest Pi in V CORE during
Re-commitment, will reconstruct fi(x) in its reconstruction phase, except with
probability at most ǫ′ (In AVSS, the AWSS schemes were executed with error
probability ǫ′ ≈ ǫ

n
). But AWSS-Sharei initiated by a corrupted Pi in V CORE,

may lead to the reconstruction of NULL in its reconstruction phase. Since
|V CORE| = 2t +1, for at least t + 1 honest parties in V CORE, reconstruction
of fi(x)’s will be successful, except with probability (t+1)ǫ′ ≈ ǫ. This is enough
to reconstruct the secret s. Hence if all honest parties terminate AVSS-Share and
every (honest) party starts AVSS-Rec-Private, then an honest Pα will eventually
terminate AVSS-Rec-Private with probability at least (1 − ǫ). 2

Lemma 16 (AVSS-Secrecy). Protocol AVSS satisfies secrecy property of Def-
inition 2.

Proof: We have to consider the case when D is honest. Without loss of gener-
ality, assume that P1, . . . , Pt are the parties under the control of At. So through-
out AVSS-Share, At will know f1(x), . . . , ft(x), g1(y), . . . , gt(y) and t points on
ft+1(x), . . . , fn(x). Moreover, honest parties only exchange common values on
their row and column polynomials and by the secrecy property of AWSS-Share,
these values will be unknown to At. Hence by the property of bivariate poly-
nomial of degree-(t, t) [25], At will lack one more point to uniquely interpolate
F (x, y). Hence s = F (0, 0) will be information theoretically secure. 2
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Lemma 17 (AVSS-Correctness). Protocol AVSS satisfies correctness prop-
erty of Definition 2.

Proof: By Lemma 14, there is a unique degree-(t, t) bivariate polynomial
F (x, y) such that every Pi ∈ V CORE has re-committed fi(x) = F (x, i). More-
over, if D is honest then F (x, y) = F (x, y). Now by Lemma 8, in AWSS-Rec-
Privatei, except with probability ǫ′ the following will happen:

1. For every honest Pi ∈ V CORE, fi(x) will be reconstructed;

2. For every corrupted Pi ∈ V CORE, fi(x) or NULL will be reconstructed.

As |V CORE| = 2t + 1, for at least t + 1 parties Pi’s in V CORE, fi(x) will
be reconstructed with probability at least (1 − (t + 1)ǫ′) ≈ ǫ. Using those
polynomials F (x, y) and s = F (0, 0) will be reconstructed with probability 1−ǫ.
Moreover, s = s = F (0, 0) if D is honest. 2

Lemma 18 (AVSS-Communication-Complexity). AVSS-Share incurs a pri-
vate communication of O((n4 log 1

ǫ
) log 1

ǫ
) bits and A-cast of O(n3 log n) bits.

Protocol AVSS-Rec-Private incurs private communication of O((n4 log 1
ǫ
) log 1

ǫ
)

bits.

Proof: The communication complexity of AVSS-Share follows from the fact
that in the protocol, O(n) instances of AWSS-Share have been executed, each
with an error parameter of ǫ

n
. Similarly, the communication complexity of

AVSS-Rec-Private follows from the fact that in the protocol, O(n) instances of
AWSS-Rec-Private have been executed, each with an error parameter of ǫ

n
. 2

Theorem 5. Protocol AVSS consisting of (AVSS-Share, AVSS-Rec-Private) con-
stitutes a valid statistical AVSS scheme with private reconstruction.

Proof: The proof follows from Lemma 15, Lemma 16 and Lemma 17. 2

Remark 5 (D’s commitment in AVSS-Share). We say that D has commit-
ted secret s ∈ F in AVSS-Share if there is a degree-t univariate polynomial, f(x),
such that f(0) = s and every honest Pi in V CORE receives f(i) from D and
commits to f(i) using AWSS-Share. In protocol AVSS-Share, f(x) = f0(x) =
F (x, 0), where F (x, y) is D’s committed bivariate polynomial. When D is hon-
est, F (x, y) = F (x, y).

Notation 5 (Notation for Using AVSS-Share and AVSS-Rec-Private). In
our ACSS scheme (that shares a single secret), we will invoke AVSS-Share as
AVSS-Share(D,P , f(x), ǫ) to mean that D commits f(x) in AVSS-Share. Es-
sentially here D is asked to choose bivariate polynomial F (x, y) of degree-(t, t)
such that F (x, 0) = f(x) holds. Similarly, AVSS-Rec-Private will be invoked as
AVSS-Rec-Private(D,P , f(x), Pα, ǫ) to enable Pα-private-reconstruction of f(x).
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Figure 11: Code for Commitment by D Phase for ℓ ≥ 1 secrets

Code Commitment-MS(D,P, S, ǫ)

i. Distribution by D: Code for D — Only D executes this code

1. Select ℓ random degree-(t, t) bivariate polynomials F 1(x, y), . . . , F ℓ(x, y) such that
F l(0, 0) = sl for l = 1, . . . , ℓ.

2. Send f l
i (x) = F l(x, i) and gl

i(y) = F l(i, y) for l = 1, . . . , ℓ to Pi, for i = 1, . . . , n.

3. For i = 1, . . . , n, initiate AWSS-MS-Share(D,P, (f1
i (x), . . . , fℓ

i (x)), ǫ′) for sharing

(f1
i (x), . . . , fℓ

i (x)), where ǫ′ = ǫ
n

.

ii. Code for Pi – Every party in P, including D, executes this code

1. Wait to receive degree-t polynomials f l
i (x) and gl

i(y) for l = 1, . . . , ℓ from D.

2. Participate in AWSS-MS-Share(D,P, (f1
j (x), . . . , fℓ

j (x)), ǫ′) by executing steps in

[Verification: Code for Pi] (of AWSS-MS-Share) for all j = 1, . . . , n.

3. After the completion of step 1 of [Verification: Code for Pi] for all the
n invocations of AWSS-MS-Share, check whether gl

i(j) = f l
j(i) holds for all

j = 1, . . . , n and l = 1, . . . , ℓ, where f l
j(i) is obtained from the execution of

AWSS-MS-Share(D,P, (f1
j (x), . . . , fℓ

j (x)), ǫ′). If yes then A-cast Matched-Column.

Rest of the steps are same as in Commitment.

6. Statistical AVSS for Sharing Multiple Secrets

We now present an AVSS scheme AVSS-MS, consisting of protocols (AVSS-
MS-Share, AVSS-MS-Rec-Private). Protocol AVSS-MS-Share allows D to share
a secret S = (s1, . . . , sℓ), consisting of ℓ > 1 elements from F. While using ℓ
invocations of AVSS-Share, one for each sl ∈ S, D can share S with a private
communication of O((ℓn4 log 1

ǫ
) log 1

ǫ
) bits and A-cast of O(ℓn3 log n) bits, pro-

tocol AVSS-MS-Share achieves the same task with a private communication of
O((ℓn3 + n4 log 1

ǫ
) log 1

ǫ
) bits and A-cast of O(n3 log n) (independent of ℓ) bits.

This shows that executing a single instance of AVSS-MS dealing with multiple
secrets concurrently is advantageous over executing multiple instances of AVSS
dealing with single secret.

The structure of AVSS-MS-Share is divided into same three phases as in
AVSS-SS-Share. The corresponding protocols are Commitment-MS, Verification-
MS and Re-commitment-MS. They are simple extension of the corresponding
protocols in AVSS-Share and are presented in Fig. 11, Fig. 12 and Fig. 13.

Now protocol AVSS-MS-Share(D,P , S, ǫ) consists of the code presented in
Commitment-MS(D,P , S, ǫ), Verification-MS(D,P , S, ǫ) and Re-commitment-MS
(D,P , S, ǫ) in this order. Protocol AVSS-MS-Rec-Private(D,P , S, Pα, ǫ) is very
straight forward extension of AVSS-Rec-Private. The protocol AVSS-MS is pre-
sented in Fig. 14. The proofs for the properties of the protocols dealing with
multiple secrets will be similar to the proofs of the protocols dealing with single
secret.
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Figure 12: Code for Verification of D’s Commitment Phase for ℓ ≥ 1 secrets

Code Verification-MS(D,P, S, ǫ)

Pj-Weak-Private-Reconstruction of (f1
j (x), . . . , fℓ

j (x)) for j = 1, . . . , n:

i. Code for Pi — Every party in P executes this code.

1. After agreeing on WCORE and corresponding OKPj’s, participate in
AWSS-MS-Rec-Private(D,P, (f1

j (x), . . . , fℓ
j (x)), Pj , ǫ′), for j = 1, . . . , n, to enable

Pj -weak-private-reconstruction of (f1
j (x), . . . , fℓ

j (x)). Notice that same WCORE is

used in each AWSS-SS-Rec-Private(D,P, fj(x), Pj , ǫ′), for j = 1, . . . , n

2. At the completion of AWSS-MS-Rec-Private(D,P, (f1
i (x), . . . , fℓ

i (x)), Pi, ǫ
′), obtain

either degree-t polynomials f1
i (x), . . . , fℓ

i (x) or NULL.

3. If f l
i (x) = f l

i (x) for all l = 1, . . . , ℓ, then A-cast Matched-Row.

Rest of the steps are same as in Verification.

Figure 13: Code for ”Re-commitment by Individual Parties” Phase for ℓ ≥ 1 secrets

Code Re-commitment-MS(D,P, S, ǫ)

i. Code for Pi — Every party executes this code

1. If you have A-casted Matched-Row in Verification-MS then initiate
AWSS-MS-Share(Pi,P, (f1

i (x), . . . , fℓ
i (x), ǫ′) to re-commit (f1

i (x), . . . , fℓ
i (x)),

where ǫ′ = ǫ
n

.

2. For each j, such that Pj has A-casted Matched-Row in Verification-MS, participate in
AWSS-MS-Share(Pj ,P, (f1

j (x), . . . , fℓ
j (x), ǫ′) by executing steps in [Verification:

Code for Pi] (of AWSS-MS-Share) in the following way:
After the completion of step 1 of [Verification: Code for Pi], check
whether gl

i(j) = f l
j(i) for l = 1, . . . , ℓ holds, where (f1

j (i), . . . , fℓ
j (i)) are

obtained from the execution of AWSS-SS-Share(Pj ,P, (f1
j (x), . . . , fℓ

j (x), ǫ′) and

(g1
i (y), . . . , gℓ

i (y)) was obtained from D in code Commitment-MS. If yes then par-
ticipate in the next steps in [Verification: Code for Pi] corresponding to
AWSS-MS-Share(Pj ,P, (f1

j (x), . . . , fℓ
j (x), ǫ′).

Rest of the steps are same as in Re-commitment except
that at every place AWSS-Share(Pi,P, fi(x), ǫ′) is replaced by
AWSS-MS-Share(Pi,P, (f l

i (x), . . . , fℓ
i (x)), ǫ′).
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Figure 14: AVSS for Sharing ℓ ≥ 1 Secrets with n = 3t + 1

Protocol AVSS-MS(D,P, S, ǫ)

AVSS-MS-Share(D,P, S, ǫ)

1. Replicate Code Commitment-MS(D,P, S, ǫ), Code Verification-MS(D,P, S, ǫ) and
Code Re-commitment-MS(D,P, S, ǫ).

AVSS-MS-Rec-Private(D,P, S, Pα, ǫ): Pα-private-reconstruction of S:

Pα-weak-private-reconstruction of (f1
j (x), . . . , fℓ

j (x)) for every Pj ∈ V CORE:

(Code for Pi)

1. Participate in AWSS-MS-Rec-Private(Pj ,P, (f1
j (x), . . . , fℓ

j (x)), Pα, ǫ′) for ev-

ery Pj ∈ V CORE, where ǫ′ = ǫ
n

.

Local Computation: Code for Pα

1. For every Pj ∈ V CORE, obtain either (f1
j (x), . . . , fℓ

j (x)) or NULL from Pα-
weak-private-reconstruction. Add party Pj ∈ V CORE to REC if non-NULL
output is obtained.

2. Wait until |REC| = t + 1. Construct bivariate polynomial

F 1(x, y), . . . , F ℓ(x, y) such that F l(x, j) = f l
j(x) for every Pj ∈ REC and

every l = 1, . . . , ℓ. Compute sl = F l(0, 0) for every l = 1, . . . , ℓ and terminate
AVSS-MS-Rec-Private.

Theorem 6. Protocol AVSS-MS-Share incurs a private communication of O((ℓn3+
n4 log 1

ǫ
) log 1

ǫ
) bits and A-cast O(n3 log n) bits. Protocol AVSS-Rec-Private in-

curs a private communication of O((ℓn3 + n4 log 1
ǫ
) log 1

ǫ
) bits.

Proof: The communication complexity of AVSS-MS-Share follows from the fact
that O(n) instances of AWSS-MS-Share each with ℓ secrets have been executed
in AVSS-MS-Share. Similarly, the communication complexity of AVSS-MS-Rec-
Private follows from the fact that in the protocol, O(n) instances of AWSS-Rec-
Private each with ℓ secrets have been executed. 2

Theorem 7. Protocol AVSS-MS consisting of (AVSS-MS-Share, AVSS-MS-Rec-

Private) constitutes a valid statistical AVSS scheme with private reconstruction
for ℓ ≥ 1 secrets.

Remark 6 (D’s commitment in AVSS-MS-Share). We say that D has com-
mitted secret S ∈ F

ℓ in AVSS-MS-Share if there are ℓ degree-t univariate polyno-
mials, f1(x), . . . , f ℓ(x), such that f l(0) = sl for l = 1, . . . , ℓ and every honest Pi

in V CORE receives (f1(i), . . . , f ℓ(i)) from D and commits to (f1(i), . . . , f ℓ(i))

using AWSS-MS-Share. In protocol AVSS-MS-Share, f l(x) = f l
0(x) = F l(x, 0)

for every l = 1, . . . , ℓ, where F 1(x, y), . . . , F ℓ(x, y) are D’s committed bivariate

polynomial. When D is honest, F l(x, y) = F l(x, y) for l = 1, . . . , ℓ.

Notation 6 (Notation for Using AVSS-MS-Share and AVSS-MS-Rec-Private).
In our ACSS scheme (that shares ℓ secrets), we will invoke AVSS-MS-Share as
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AVSS-MS-Share (D,P , (f1(x), . . . , f ℓ(x)), ǫ) to mean that D commits f1(x), . . . ,
f ℓ(x) in AVSS-MS-Share. Essentially here D is asked to choose bivariate polyno-
mials F 1(x, y), . . . , F ℓ(x, y), each of degree-(t, t) such that F l(x, 0) = f l(x) holds
for l = 1, . . . , ℓ. Similarly, AVSS-MS-Rec-Private will be invoked as AVSS-MS-

Rec-Private(D,P , (f1(x), . . . , f ℓ(x)), Pα, ǫ) to enable Pα-private-reconstruction
of (f1(x), . . . , f ℓ(x)).

7. Statistical ACSS for Sharing a Single Secret

Though protocol AVSS is an AVSS scheme, it is not an ACSS scheme as it
does not achieve completeness property. This is because in AVSS-Share, only
the honest parties in V CORE receive their respective shares of the committed
secret. But it may happen that potentially t honest parties are not present in
V CORE. So we now present an ACSS scheme called ACSS, which consists of
sub-protocols (ACSS-Share, ACSS-Rec-Private, ACSS-Rec). Protocol ACSS-Share
allows D to generate t-sharing of a secret s ∈ F. Given t-sharing of secret s,
protocol ACSS-Rec-Private allows a specific party in P , say Pα, to privately re-
construct s. On the other hand, ACSS-Rec allows every party in P to reconstruct
D’s committed secret s. Protocol ACSS-Share, ACSS-Rec-Private and ACSS-Rec
will be used in our statistical AMPC protocol.

The Intuition: The high level idea of ACSS-Share is similar to AVSS-Share.
But now in ACSS-Share, we use AVSS-Share as a black-box, in place of AWSS-
Share. It is this change which helps ACSS to achieve completeness property.
We now show that AVSS-Share which uses AWSS-Share as a black box may not
output t-sharing of D’s committed secret. Subsequently, we also point out how
ACSS-Share overcome this problem by using AVSS-Share as a black-box.

So let us consider protocol AVSS-Share when D is corrupted and also assume
that D is committed to a unique secret and thus a unique bi-variate polyno-
mial F (x, y) of degree-(t, t). But in spite of this, we could only ensure that
every honest Pi who A-cast Matched-Row signal, holds the corresponding row
polynomial fi(x) = F (x, i) and hence his share fi(0) of the secret s = F (0, 0).
However, it is possible that there are potential t honest Pi’s who have not A-
casted Matched-Row signal due to the reconstruction of NULL from Pi-weak-
private-reconstruction during Verification of D’s Commitment Phase. Also
a corrupted D may not even pass on F (x, i) or may pass some wrong polynomial
other than F (x, i) to these Pi’s. So in this case t potential honest parties may
not hold shares of secret s.

On the other hand, AVSS-Share is used as a black-box in ACSS-Share. This
overcomes the above problem because now D would commit each fi(x) using
AVSS-Share, instead of AWSS-Share. So once it is ensured that D is committed
to a unique bi-variate polynomial F (x, y) of degree-(t, t), by the property of
AVSS-Rec-Private, each honest Pi ∈ P would successfully reconstruct fi(x) =
F (x, i) and hence his share fi(0) of the secret s = F (0, 0). Protocol ACSS-Share
is provided in Fig. 15. Protocol ACSS-Rec-Private and ACSS-Rec uses OEC
(Online Error Correction method) and are presented in Fig. 16.
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Figure 15: Protocol ACSS-Share for Sharing Secret s with n = 3t + 1

Protocol ACSS-Share(D,P, s, ǫ)

i. Distribution by D: Code for D – Only D executes this code

1. Select a random degree-(t, t) bivariate polynomial F (x, y) such that F (0, 0) = s.

2. For i = 1, . . . , n, send gi(y) = F (i, y) to party Pi. We call gi(y) as ith column
polynomial.

3. For i = 1, . . . , n, initiate AVSS-Share(D,P, fi(x), ǫ′) for sharing fi(x), where
fi(x) = F (x, i) and ǫ′ = ǫ

n
. We call fi(x) as ith row polynomial. We refer

AVSS-Share(D,P, fi(x), ǫ′) by AVSS-Sharei

ii. Code for Pi – Every party in P, including D, executes this code

1. Wait to receive degree-t column polynomial gi(y) from D.

2. Participate in AVSS-Sharej for all j = 1, . . . , n.

3. If fj(i) is received from D during AVSS-Sharej then check whether gi(j) = fj(i).
When the test passes for all j = 1, . . . , n, then A-cast Matched-Column.

iii. CCORE Construction: Code for D – Only D executes this code.

1. For i = 1, . . . , n, construct V CORE for AVSS-Share(D,P, fi(x), ǫ′). Denote it by
V COREi.

2. For i = 1, . . . , n, keep updating V COREi even after |V COREi| = 2t + 1. Wait to
obtain CCORE = ∩n

i=1V COREi of size at least 2t + 1 such that Matched-Column

is received from A-cast of every Pj ∈ CCORE .

3. A-cast CCORE.

iv. CCORE verification & Agreement: Code for Pi — Every party including D will
execute this code.

1. Wait to receive CCORE from the A-cast of D.

2. Check whether CCORE is a valid V CORE for AVSS-Sharej for every j = 1, . . . , n
(by following the steps 2-4 as specified under [VCORE Verification & Agreement
on VCORE: Code for Pi] in code Re-commitment of AVSS-Share). If yes then
wait to receive Matched-Column from A-cast of every Pj ∈ CCORE and then accept
CCORE.

v. Pj-private-reconstruction of fj(x) for j = 1, . . . , n: Code for Pi – Every party
in P executes this code.

1. If CCORE is a valid V CORE for AVSS-Sharej for every j = 1, . . . , n, then
participate in AVSS-Rec-Private(D,P, fj(x), Pj , ǫ′), for j = 1, . . . , n, to enable
Pj -private-reconstruction of fj(x). We refer AVSS-Rec-Private(D,P, fj(x), Pj , ǫ′)
as AVSS-Rec-Privatej . Notice that CCORE is used as VCORE in each
AVSS-Rec-Privatej , for j = 1, . . . , n.

2. At the completion of AVSS-Rec-Privatei, obtain degree-t polynomial fi(x).

3. Assign si = fi(0). Output si as ith share of s and terminate ACSS-Share.
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Figure 16: Protocol ACSS-Rec-Private and ACSS-Rec for Reconstructing Secret s privately
and publicly (respectively) with n = 3t + 1

ACSS-Rec-Private(D,P, s, Pα, ǫ): Pα-private-reconstruction of s:

i. Code for Pi – Every party in P executes this code.

1. Privately send si, the ith share of s to Pα.

ii. Code for Pα – Only Pα ∈ P executes this code.

1. Apply OEC on received shares of s to reconstruct s and terminate ACSS-Rec-Private.

ACSS-Rec(D,P, s, ǫ): Public reconstruction of s:

i. Code for Pi – Every party in P executes this code.

1. Privately send si, the ith share of s to every party Pj ∈ P.

2. Apply OEC on received shares of s to reconstruct s and terminate ACSS-Rec.

We now prove the properties of ACSS.

Lemma 19. In protocol ACSS-Share:

1. If D is honest then eventually he will generate a CCORE of size 2t + 1
except with probability ǫ. Moreover, each honest party will eventually agree
on CCORE.

2. If D is corrupted and some honest party has accepted the CCORE received
from the A-cast of D, then every other honest party will eventually accept
CCORE.

Proof: In ACSS-Share if D is honest then from the proof of Lemma 13, an hon-
est party may be added in each V COREi except with probability ǫ′ = ǫ

n
(recall

that each instance of AVSS-Share has an associated error probability of ǫ′ = ǫ
n
).

So even though there are no common corrupted parties among V COREi’s,
eventually all the honest parties will be common among n V COREi’s with
probability at least 1− (2t+1)ǫ′ ≈ 1− ǫ. Moreover, each honest Pi will eventu-
ally A-cast Matched-Column signal, as fj(i) = gi(j) will hold for all j = 1, . . . , n
when D is honest. It may be possible that some corrupted parties are also
added in each V COREi. Moreover those corrupted parties may even A-cast
Matched-Column signal. So except with probability ǫ, at some point of time
CCORE = ∩n

i=1V COREi will contain at least 2t+1 parties who have A-casted
Matched-Column signal. So honest D will find CCORE and A-cast the same.
Now it is easy to see that each honest party will accept CCORE after receiving
it from A-cast of D and verifying its’ validity after following steps in iv(2) of
protocol ACSS-Share.

If D is corrupted and some honest party, say Pi has accepted CCORE
received from the A-cast of D, then Pi must have checked the condition specified
in iv(2) of protocol ACSS-Share. The same will hold for all other honest parties
who will eventually accept CCORE. 2
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Lemma 20. In ACSS-Share, if the honest parties agree on CCORE, then it
implies that D is committed to a unique degree-(t, t) bivariate polynomial F (x, y)
such that each row polynomial fi(x) committed by D in AVSS-Sharei satisfies
F (x, i) = fi(x) and the column polynomial gj(y) held by every honest Pj ∈
CCORE satisfies F (j, y) = gj(y). Moreover if D is honest then F (x, y) =
F (x, y).

Proof: The proof follows from the same argument as given in Lemma 11. 2

Lemma 21. In ACSS-Share, if the honest parties agree on CCORE, then even-
tually all honest parties will get their share of D’s committed secret s, except
with probability at most ǫ. That is, protocol ACSS-Share will generate t-sharing
of s except with probability ǫ. Moreover if D is honest then s = s.

Proof: From the previous lemma, if the honest parties agree on CCORE then
it implies that D is committed to a unique degree-(t, t) bivariate polynomial
F (x, y) such that each row polynomial fi(x) committed by D in AVSS-Share(D,P ,
fi(x), ǫ′) satisfies F (x, i) = fi(x). Now from the properties of AVSS-Rec-Private,
Pi-private-reconstruction of fi(x) will enable honest Pi to obtain fi(x) and hence
his share fi(0), except with probability ǫ′. As there are 2t + 1 honest parties
in P , all honest parties will obtain their share of the secret s = F (0, 0), except
with probability (2t + 1)ǫ′ ≈ ǫ. Hence the secret s = F (0, 0) will be t-shared by
the degree-t polynomial F (x, 0), except with probability at most ǫ. 2

Lemma 22 (ACSS-Termination). Protocol ACSS satisfies termination prop-
erty of Definition 4.

Proof: Termination 1 and Termination 2 follows from Lemma 19 and
Lemma 21. Termination 3 follows from Lemma 21 and properties of OEC. 2

Lemma 23 (ACSS-Secrecy). Protocol ACSS satisfies secrecy property of Def-
inition 4.

Proof: Here we have to consider the case when D is honest. Without loss of
generality, assume that P1, . . . , Pt are the parties under the control of At. So
during ACSS-Share, At will know f1(x), . . . , ft(x), g1(y), . . . , gt(y) and t points
on ft+1(x), . . . , fn(x). From the secrecy property of AVSS-Share (Lemma 16),
At will have no information about ft+1(0), . . . , fn(0) during the execution of
corresponding instances of AVSS-Share. So from the properties of bi-variate
polynomial of degree-(t, t) [25], the adversary At will lack one more point to
uniquely interpolate F (x, y) during ACSS-Share. Hence hence the secret s =
F (0, 0) will remain information theoretically secure from At. 2

Lemma 24 (ACSS-Correctness). Protocol ACSS satisfies correctness prop-
erty of Definition 4.

Proof: Follows from Lemma 19, Lemma 20, Lemma 21 and from the properties
of OEC. 2
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Lemma 25 (ACSS-Completeness). Protocol ACSS satisfies completeness prop-
erty of Definition 4.

Proof: Follows from Lemma 21. 2

Lemma 26. Protocol ACSS-Share privately communicates O(n5(log 1
ǫ
)2) bits

and A-casts O(n4 log n) bits. Protocol ACSS-Rec-Private and ACSS-Rec incurs a
private communication of O(n log 1

ǫ
) and O(n2 log 1

ǫ
) bits respectively.

Proof: The communication complexity of ACSS-Share follows from the fact
that in ACSS-Share, there are n executions of AVSS-Share, each with an error
parameter of ǫ

n
. In ACSS-Rec-Private, each party sends his share to Pα, incurring

a total communication cost of O(n log 1
ǫ
) bits. In ACSS-Rec, each party sends his

share to every other party, incurring a total communication cost of O(n2 log 1
ǫ
)

bits. 2

Theorem 8. Protocol ACSS consisting of (AVSS-Share, ACSS-Rec-Private, AVSS-

Rec) constitutes a valid statistical ACSS scheme for sharing a single secret.

Proof: Follows from Lemma 22, Lemma 24, Lemma23 and Lemma 25. 2

8. Statistical ACSS for Sharing Multiple Secrets

We now present an ACSS scheme ACSS-MS, consisting of sub-protocols
(ACSS-MS-Share, ACSS-MS-Rec-Private, ACSS-MS-Rec). Protocol ACSS-MS-
Share allows D to generate t-sharing of secret S = (s1, . . . , sℓ), consisting of
ℓ > 1 elements from F. While D can ACSS-share S using ℓ executions of ACSS-
Share, one for each sl ∈ S, with a private communication of O((ℓn5 log 1

ǫ
) log 1

ǫ
)

and A-cast of O(ℓn4 log(n)) bits, protocol ACSS-MS-Share achieves the same
task with a private communication of O((ℓn4 + n5 log 1

ǫ
) log 1

ǫ
) bits and A-cast

of O(n4 log(n)) (independent of ℓ) bits. This shows that executing a single in-
stance of ACSS-MS dealing with multiple secrets concurrently is advantageous
over executing multiple instances of ACSS dealing with single secret. Proto-
col ACSS-MS-Share is provided in Fig. 17. Protocol ACSS-MS-Rec-Private and
ACSS-MS-Rec are presented in Fig. 18. The proof of the properties of ACSS-MS
can be directly extended from the proof of the properties of ACSS.

Theorem 9. Protocol ACSS-MS-Share privately communicates O((ℓn4+n5 log 1
ǫ
)

log 1
ǫ
) bits and A-casts O(n4 log n) bits. Protocol ACSS-MS-Rec-Private and

ACSS-MS-Rec incurs a private communication of O(ℓn log 1
ǫ
) bits and O(ℓn2 log 1

ǫ
)

bits respectively.

Proof: The communication complexity of ACSS-MS-Share follows from the fact
that O(n) instances of AVSS-MS-Share each with ℓ secrets have been executed
in ACSS-MS-Share. In ACSS-MS-Rec-Private, each party sends his shares of ℓ
secrets to Pα, incurring a total communication cost of O(ℓn log 1

ǫ
) bits. In ACSS-

Rec, each party sends his shares of ℓ secrets to every other party, incurring a
total communication cost of O(ℓn2 log 1

ǫ
) bits. 2
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Theorem 10. Protocol ACSS-MS consisting of sub-protocols (ACSS-MS-Share,
ACSS-MS-Rec-Private, ACSS-MS-Rec) is a valid statistical ACSS scheme for
sharing ℓ ≥ 1 secrets.

Notation 7 (Notation for Using ACSS-MS). In the subsequent sections, we
will invoke ACSS-MS-Share as ACSS-MS-Share (D,P , (f1(x), . . . , f ℓ(x)), ǫ) to
mean that D commits to f1(x), . . . , f ℓ(x) in ACSS-MS-Share. Essentially here
D is asked to choose bivariate polynomials F 1(x, y), . . . , F ℓ(x, y), each of degree-
(t, t), such that F l(x, 0) = f l(x) holds for l = 1, . . . , ℓ. As a result of this exe-
cution, each honest party Pi will get the shares f1(i), . . . , f ℓ(i). Similarly, ACSS-

MS-Rec-Private will be invoked as ACSS-MS-Rec-Private(D,P , (f1(x), . . . , f ℓ(x)),
Pα, ǫ) to enable Pα ∈ P to privately reconstruct (f1(x), . . . , f ℓ(x)). Similarly,
ACSS-MS-Rec will be invoked as ACSS-MS-Rec(D,P , (f1(x), . . . , f ℓ(x)), ǫ) to
enable each party in P to reconstruct (f1(x), . . . , f ℓ(x)).

9. Statistical Asynchronous Multiparty Computation with Optimal
Resilience

In this section, we construct an efficient statistical asynchronous multiparty
computation (AMPC) protocol with optimal resilience; i.e., with n = 3t+1 using
our proposed ACSS scheme as an important building block. In the following,
we first present the definition of MPC and AMPC, literature survey on related
AMPC protocols, the primitives used for designing our AMPC protocol and
then brief description of the approaches used in designing existing AMPC and
our AMPC protocol.

9.1. Multiparty Computation

A Multiparty Computation (MPC) [71, 23, 13, 67] protocol allows the parties
in P to securely compute an agreed function f , even in the presence of At. More
specifically, assume that the agreed function f can be expressed as f : F

n → F
n

and party Pi has input xi ∈ F. At the end of the computation of f , each honest
Pi gets yi ∈ F, where (y1, . . . , yn) = f(x1, . . . , xn), irrespective of the behavior of
At (correctness). Moreover, At should not get any information about the input
and output of the honest parties, other than what can be inferred from the input
and output of the corrupted parties (secrecy). In any general MPC protocol,
the function f is specified by an arithmetic circuit over F, consisting of input,
linear (e.g. addition), multiplication, random and output gates. We denote the
number of gates of these types in the circuit by cI , cA, cM , cR and cO respectively.
Among all the different type of gates, evaluation of a multiplication gate requires
the maximum communication complexity. So the communication complexity
of any general MPC protocol is usually given in terms of the communication
complexity per multiplication gate [11, 10, 9, 31, 52].

The MPC problem has been studied extensively over synchronous networks
[2, 3, 4, 5, 13, 9, 11, 7, 20, 23, 27, 28, 31, 42, 41, 45, 46, 48, 8, 47, 49, 50, 57,
67, 60, 72]. However, MPC in asynchronous network has got comparatively less
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Figure 17: Protocol ACSS-MS-Share for Sharing Secret S Containing ℓ Eelements with n =
3t + 1

Protocol ACSS-MS-Share(D,P, S, ǫ)

i. Distribution by D: Code for D – Only D executes this code

1. Select ℓ random degree-(t, t) bivariate polynomials F 1(x, y), . . . , F ℓ(x, y) such that
F l(0, 0) = sl for l = 1, . . . , ℓ.

2. For i = 1, . . . , n, send gl
i(y) = F l(i, y) for l = 1, . . . , ℓ to Pi. We call polynomials

g1
i (y), . . . , gℓ

i (y) as ith column polynomials.

3. For i = 1, . . . , n, initiate AVSS-MS-Share(D,P, (f1
i (x), . . . , fℓ

i (x)), ǫ′) for shar-

ing (f1
i (x), . . . , fℓ

i (x)), where f l
i (x) = F l(x, i) and ǫ′ = ǫ

n
. We

call polynomials f1
i (x), . . . , fℓ

i (x) as ith row polynomials. We refer

AVSS-MS-Share(D,P, (f1
i (x), . . . , fℓ

i (x)), ǫ′) as AVSS-MS-Sharei

ii. Code for Pi – Every party in P, including D, executes this code

1. Wait to receive degree-t polynomials gl
i(y) for l = 1, . . . , ℓ from D.

2. Participate in AVSS-MS-Sharej for all j = 1, . . . , n.

3. If (f1
j (i), . . . , fℓ

j (i)) is received from D during AVSS-MS-Sharej then check whether

gl
i(j) = f l

j(i) holds for all l = 1, . . . , ℓ. When the test passes for all j = 1, . . . , n,
then A-cast Matched-Column.

iii. CCORE Construction: Code for D – Only D executes this code.

1. For i = 1, . . . , n, construct V CORE for AVSS-MS-Sharei. Denote it by V COREi.

2. For i = 1, . . . , n, keep updating V COREi, even after |V COREi| = 2t + 1. Wait to
obtain CCORE = ∩n

i=1V COREi of size at least 2t + 1 such that Matched-Column

is received from A-cast of every Pj ∈ CCORE.

3. A-cast CCORE.

iv. CCORE verification & Agreement: Code for Pi – Every party including D will
execute this code.

1. Wait to receive CCORE from the A-cast of D.

2. Check whether CCORE is a valid V CORE for AVSS-MS-Sharej for every j =
1, . . . , n (by following the steps 2-4 as specified under [VCORE Verification &
Agreement on VCORE: Code for Pi] in protocol Re-commitment-MS).

v. Pj-private-reconstruction of (f1
j (x), . . . , fℓ(x)) for j = 1, . . . , n: Code for Pi

1. If CCORE is a valid V CORE for AVSS-MS-Sharej for every j = 1, . . . , n,
then participate in AVSS-MS-Rec-Private(D,P, (f1

j (x), . . . , fℓ
j (x)), Pj , ǫ′), for j =

1, . . . , n, to enable Pj-private-reconstruction of (f1
j (x), . . . , fℓ

j (x)). We re-

fer AVSS-MS-Rec-Private(D,P, (f1
j (x), . . . , fℓ

j (x)), Pj , ǫ′) by AVSS-MS-Rec-Privatej .
Notice that CCORE is used as VCORE in each AVSS-MS-Rec-Privatej , for j =
1, . . . , n.

2. At the completion of AVSS-MS-Rec-Privatei, obtain degree-t polynomials
(f1

i (x), . . . , fℓ
i (x)).

3. Assign sl
i = f l

i (0). Output (s1
i , . . . , sℓ

i) as ith share of (s1, . . . , sℓ) and terminate
ACSS-MS-Share.
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Figure 18: Protocol ACSS-MS-Rec-Private and ACSS-MS-Rec for Reconstructing Secret S
privately and publicly (respectively) with n = 3t + 1

ACSS-MS-Rec-Private(D,P, S, Pα, ǫ): Pα-private-reconstruction of S:

i. Code for Pi – Every party in P executes this code.

1. Privately send s1
i , . . . , sℓ

i , the ith shares of s1, . . . , sℓ (respectively) to party Pα ∈ P.

ii. Code for Pα – Only Pα ∈ P executes this code.

1. For l = 1, . . . , ℓ, apply OEC on received shares of sl to reconstruct sl and terminate
ACSS-MS-Rec-Private.

ACSS-MS-Rec(D,P, S, ǫ): Public reconstruction of S:

i. Code for Pi – Every party in P executes this code.

1. Privately send s1
i , . . . , sℓ

i , the ith shares of s1, . . . , sℓ (respectively) to every party
Pj ∈ P.

2. For l = 1, . . . , ℓ, apply OEC on received shares of sl to reconstruct sl and terminate
ACSS-MS-Rec.

attention, due to its inherent hardness. As asynchronous networks model real
life networks like Internet more appropriately than synchronous networks, fun-
damental problems like MPC is worthy of deep investigation over asynchronous
networks.

9.2. Asynchronous Multiparty Computation (AMPC)

Any asynchronous MPC (AMPC) protocol should satisfy termination con-
dition, in addition to correctness and secrecy condition (specified earlier).
According to the termination condition, every honest party should eventually
terminate the protocol. There are mainly two types of AMPC protocols:

1. A perfectly secure AMPC protocol satisfies all the properties of AMPC
without any error;

2. A statistically secure (statistical in short) AMPC protocol involves a negli-
gible error probability of ǫ in correctness and/or termination. However,
note that there is no compromise in secrecy property.

From [12], perfectly secure AMPC is possible iff n ≥ 4t + 1. On the other
hand, statistically secure AMPC is possible iff n ≥ 3t + 1 [15]. In this paper,
we concentrate on statistically secure AMPC with optimal resilience; i.e., with
n = 3t + 1. The communication complexity per multiplication gate of existing
statistically secure AMPC protocols are as follows:

Reference Resilience Communication Complexity in bits

[15] t < n/3 (optimal) private– Ω(cM n11(log 1
ǫ
)4);

A-cast– Ω(cMn11(log 1
ǫ
)2 log(n))

[65] t < n/4 (non-optimal) private– O(cMn4(log 1
ǫ
))

[63] t < n/4 (non-optimal) private–O(cM n2(log 1
ǫ
))
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From the table, we find that the only known statistically secure AMPC with
optimal resilience (i.e., with n = 3t + 1), involves very high communication
complexity (the communication complexity analysis of the AMPC of [15] was
not done earlier and for the sake of completeness, we carry out the same in
subsection 9.5). Recently [30] presented an efficient MPC protocol over networks
that have a synchronization point (the network is asynchronous before and after
the synchronization point) and hence we do not compare it with our AMPC
protocol, which is designed over completely asynchronous settings. Also we
do not compare our protocol with the known cryptographically secure AMPC
(where the adversary has bounded computing power) protocols presented in [51]
and [52].

9.3. Our New Statistical AMPC Protocol with n = 3t + 1

We design a statistically secure AMPC protocol with n = 3t + 1 which
privately communicates O(n5(log 1

ǫ
)) bits per multiplication gate. Thus our

AMPC protocol significantly improves the communication complexity of only
known optimally resilient statistically secure AMPC protocol of [15]. For de-
signing our AMPC protocol, we use our proposed ACSS scheme presented in
section 8.

9.4. Primitives Used in Our AMPC Protocol

In addition to the ACSS scheme proposed by us, our AMPC protocol also
uses a well known primitive called Agreement on Common Subset (ACS) [10, 15].

Agreement on Common Subset (ACS) [10, 15]: It is an asynchronous
primitive presented in [12, 15]. It outputs a common set, containing at least
n − t parties, who correctly shared their values. Moreover, each honest party
will eventually get a share, corresponding to each value, shared by the parties
in the common set. ACS requires private communication of O(poly(n, log 1

ǫ
))

bits.

In our AMPC protocol, we use another simple protocol RNG very frequently,
that allows the parties in P to jointly generate a random, non-zero element
r ∈ F. The protocol uses our ACSS scheme and the ACS protocol as black-
boxes.

Random Number Generation (RNG): The protocol for random number
generation works as follows: each Pi ∈ P shares a random non-zero ri ∈ F using
ACSS-Share. The parties then run ACS to agree on a common set, say C of at
least 2t + 1 parties who did proper sharing of their random values. Once C is
agreed upon, ACSS-Rec is executed for every Pi ∈ C in order to reconstruct back
Pi’s committed secret. Now every party in P locally add the committed secret
of every Pi ∈ C. It is easy to see that the sum value is random. We call this
protocol as RNG. The protocol communicates O(poly(n, log 1

ǫ
)) bits.
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9.5. The Approach Used in the AMPC of [15] and Current Article
AMPC of [15]: The AMPC protocol of [15] consists of input phase and com-
putation phase. In input phase every party Pi shares (or commits to) his input
xi. All the parties then decide on a common set of n−t parties (using ACS) who
have done proper sharing of their input. Once this is done, in the computation
phase the arithmetic circuit representing f is computed gate by gate, such that
the intermediate gate outputs are always kept as secret and are properly shared
among the parties, following the approach of [13]. Now for sharing/committing
inputs, a natural choice is to use AVSS protocol which can be treated as a
form of commitment, where the commitment is held in a distributed fashion
among the parties. Before [15], the only known statistical AVSS scheme with
n = 3t + 1 was due to [22]. But it is shown in [15] that the use of the AVSS
protocol of [22] for committing inputs (secrets), does not allow to compute the
circuit robustly in a straight-forward way. This is because for robust computa-
tion of the circuit, it is to be ensured that at the end of AVSS sharing phase,
every honest party should have access to share of the secret. Unfortunately the
AVSS of [22] does not guarantee the above property, which we may refer as
ultimate property. This very reason motivated Ben-Or et. al [15] to introduce
a new asynchronous primitive called Ultimate Secret Sharing (USS) which not
only ensures that every honest party has access to his share of the secret, but
also offers all the properties of AVSS. Thus [15] presents an USS scheme with
n = 3t + 1 using the AVSS protocol of [22] as a building block. Essentially, in
the USS protocol of [15], every share of the secret is committed using AVSS of
[22] which ensures that each honest party Pi can have an access to the ith share
of secret by means of private reconstruction of AVSS. A secret s that is shared
using USS is called ultimately shared. Now in the input phase of AMPC in [15],
parties ultimately share their inputs. Then in the computation phase, for every
gate (except output gate), ultimate sharing of the output is computed from the
ultimate sharing of the inputs, following the approach of [13, 67].

Now we carry out the communication complexity analysis for the AMPC
of [15]. Recently, in [61], the authors have analyzed that the sharing phase
of the statistical AVSS scheme of [22] involves a private communication of
Ω(n9(log 1

ǫ
)4) bits and A-cast of Ω(n9(log 1

ǫ
)2 log(n)) bits, for sharing a sin-

gle secret. As the sharing phase of the USS scheme of [15] requires n invoca-
tions to the sharing phase of AVSS of [22], it incurs a private communication
of Ω(n10(log 1

ǫ
)4) bits and A-cast of Ω(n10(log 1

ǫ
)2 log(n)) bits. Finally in the

AMPC protocol, each multiplication requires n invocations to the sharing phase
of USS. So evaluation of each multiplication gate incurs a private communica-
tion of Ω(n11(log 1

ǫ
)4) and A-cast of Ω(n11(log 1

ǫ
)2 log(n)) bits.

AMPC of Current Article: Our statistical AMPC protocol follows the pre-
processing model of [3] and proceeds in a sequence of three phases: preparation
phase, input phase and computation phase. Every honest party will eventually
complete each phase with very high probability. We call a triple (a, b, c) as a
random multiplication triple if a, b are random and c = ab. In the preparation
phase, t-sharing of cM + cR random multiplication triples are generated. Each
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multiplication and random gate of the circuit is associated with a multiplication
triple. In the input phase the parties t-share (commit to) their inputs and then
agree on a common subset of n − t parties (using ACS) who correctly shared
their inputs. In the computation phase, the actual circuit will be computed gate
by gate, based on the inputs of the parties in common set. Due to the linearity
of the used secret-sharing, the linear gates can be computed locally. Each multi-
plication gate will be evaluated using the circuit randomization technique of [3]
with the help of the associated multiplication triple (generated in preparation
phase).

For committing/sharing secrets, we use our ACSS scheme. There is a slight
definitional difference between the USS of [15] and our ACSS, though both of
them offer all the properties of AVSS. While USS of [15] ensures that every hon-
est party has access to share of secret (but may not hold the share directly), our
ACSS ensures that every honest party holds his share of secret. This property of
ACSS is called completeness property as mentioned in the definition of ACSS.
The advantages of ACSS over USS are as follows:

1. It makes the computation of the gates very simple;

2. Reconstruction phase of ACSS is very simple, efficient and can be achieved
using OEC of [19].

Apart from these advantages, our ACSS is strikingly better than USS of [15]
in terms of communication complexity. While sharing phase of our ACSS pri-
vately communicates O((ℓn4 + n5 log 1

ǫ
) log 1

ǫ
) bits and A-casts O(n4 log n) bits

to share ℓ secrets concurrently, the sharing phase of USS in [15] privately com-
municates Ω(n10(log 1

ǫ
)4) bits and A-casts Ω(n10(log 1

ǫ
)2 log(n)) bits to share

only one secret.
We now proceed to the specific details of each of the three phases of our

AMPC protocol. Prior to that, we design another protocol for generating t-2d-
sharing (which is defined in the following section) that uses our ACSS scheme
as a building block.

10. Generating t-2d-Sharing

For generating multiplication triples, we need to generate t-2d-sharing of
secret(s) where t-2d-sharing is defined as follows:

Definition 7 (t-2d-sharing [9]). A value s is t-2d-shared among the parties
in P if there exist degree-t polynomials f(x), f1(x), . . . , fn(x) with f(0) = s and
for i = 1, . . . , n, f i(0) = f(i) and every (honest) party Pi ∈ P holds a share
si = f(i) of s, the polynomial f i(x) for sharing si and a share-share sji = f j(i)
of the share sj of every party Pj ∈ P. We denote t-2d-sharing of s by [[s]]t.

The t-2d-sharing of s implies that s as well as its shares are individually t-shared.
Now we present a protocol t-2d-Share which allows a special party D ∈ P to si-
multaneously generate t-2d-sharing of ℓ ≥ 1 elements from F, namely s1, . . . , sℓ.
In protocol t-2d-Share, the following happen with probability at least (1−ǫ): (a)
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If D is honest, then every honest party will eventually terminate t-2d-Share; (b)
Moreover, if D is corrupted and some honest party has terminated t-2d-Share,
then eventually every other honest party will also terminate t-2d-Share; (c) Fur-
thermore, if some honest party has terminated t-2d-Share, then it implies that
D has done correct t-2d-sharing of s1, . . . , sℓ.

The intuition: The high level idea of the protocol is as follows: D selects a
random value s0 ∈ F and hides each si (where i = 0, . . . , ℓ) in the constant
term of a random degree-t polynomial qi(x). D then t-shares the secret S0 =
(s0, . . . , sℓ), as well as their ith shares Si = (q0(i), . . . , qℓ(i)). The parties then
jointly employ a verification technique to ensure that D indeed t-shared Si for
i = 1, . . . , n which are the shares of S0. A similar verification technique was
used in [9] in synchronous settings. The secret s0 is used to ensure the secrecy
of s1, . . . , sℓ during the verification process. After verification, the polynomials
used for t-sharing Si are privately reconstructed by Pi, thus completing the t-
2d-sharing of s1, . . . , sℓ. The above idea is implemented in protocol t-2d-Share
which is given in Fig. 19.

We now prove the properties of protocol t-2d-Share.

Lemma 27. Protocol t-2d-Share satisfies the following properties:

1. Termination: If D is honest, then except with probability ǫ, all hon-
est parties will eventually terminate t-2d-Share. Moreover if some honest
party has terminated t-2d-Share, then every honest party will eventually
terminate t-2d-Share, except with probability ǫ.

2. Correctness: If some honest party has terminated the protocol then ex-
cept with probability ǫ, it is ensured that D has done correct t-2d-sharing
of s1, . . . , sℓ.

3. Secrecy: If D is honest then s1, . . . , sℓ will remain secure.

Proof: Termination: When D is honest, every ACSS-MS-Sharei initiated by
honest D will terminate with its desired output (t-sharings) except with prob-
ability ǫ′. Therefore all the n + 1 instances of ACSS-MS-Sharei will terminate
with their desired output (i.e., t-sharing of S0, . . . , Sn), except with probabil-
ity ǫ′(n + 1) ≈ ǫ. Since t-sharing of S0, . . . , Sn are generated properly, the
verification steps specified in t-2d-Share will pass. Subsequently, n instances
of ACSS-MS-Rec-Private are executed in order to complete t-2d-sharing of S.
Due to the property of ACSS-MS-Rec-Private, each honest Pi will correctly re-
construct the required information corresponding to t-2d-sharing of S, namely
q0
i (x), . . . , qℓ

i (x) and will terminate t-2d-Share except with probability ǫ′. As
there are at least 2t+1 honest parties, except with probability (2t+1)ǫ′ ≈ ǫ, all
honest parties will eventually terminate t-2d-Share with correct t-2d-sharing of
s1, . . . , sℓ. This completes the proof of the first part of Termination property.
We now proceed to prove second part of the Termination property.

Let Pi be an honest party who has terminated protocol t-2d-Share. This
implies that Pi has reconstructed q0

i (x), . . . , qℓ
i (x) from ACSS-MS-Rec-Privatei.

This further means there is at least one honest party who checked that the
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Figure 19: Protocol t-2d-Share for Generating t-2d-Sharing of S = (s1, . . . , sℓ), n = 3t + 1

Protocol t-2d-Share(D,P, S, ǫ)

Sharing by D: Code for D — Only D executes this code

1. Select a random s0 and ℓ+1 degree-t random polynomials q0(x), . . . , qℓ(x) such that
for l = 0, . . . , ℓ, ql(0) = sl. Let sl

i = ql(i) and Si = (q0(i), . . . , qℓ(i)) for i = 0, . . . , n.

So S0 = (s0, . . . , sℓ) and Si = (s0
i , . . . , sℓ

i).

2. For l = 0, . . . , ℓ and i = 1, . . . , n, select random degree-t polynomials ql
i(x), such

that ql
i(0) = ql(i) = sl

i. Let Sij = (q0
i (j), q1

i (j), . . . , qℓ
i (j)) = (s0

ij , s1
ij , . . . , sℓ

ij), for
j = 1, . . . , n.

3. Invoke ACSS-MS-Share(D,P, (q0(x), q1(x), . . . , qℓ(x)), ǫ′), where ǫ′ = ǫ
n+1

, for gen-

erating t-sharing of S0. Denote this instance of ACSS-MS-Share by ACSS-MS-Share0.
During ACSS-MS-Share0, party Pj receives the shares Sj for j = 1, . . . , n.

4. For i = 1, . . . , n, invoke ACSS-MS-Share(D,P, (q0
i (x), q1

i (x), . . . , qℓ
i (x)), ǫ′), where

ǫ′ = ǫ
n+1

, for generating t-sharing of Si. Denote this instance of ACSS-MS-Share

by ACSS-MS-Sharei. During ACSS-MS-Sharei, party Pj receives the share-shares
Sij , for j = 1, . . . , n.

Verification: Code for Pi — Every party in P executes this code

1. Upon completion of ACSS-MS-Sharej for all j ∈ {0, . . . , n}, participate in protocol
RNG to generate random r.

2. Wait to terminate RNG with r as output. Compute s∗i =
Pℓ

l=0 rlsl
i which is the

ith share of s∗ =
Pℓ

l=0 rlsl. In addition, for j = 1, . . . , n, locally compute s∗ji =
Pℓ

l=0 rlsl
ji which is the ith share-share of s∗j .

3. Participate in ACSS-MS-Rec(D,P, (s∗, s∗1, . . . , s∗n), ǫ) to publicly reconstruct
s∗, s∗1, . . . , s∗n. This results in every party reconstructing q∗(x) and q∗1(x), . . . , q∗n(x)
with q∗(0) = s∗ and q∗i (0) = s∗i .

4. Check whether for i = 1, . . . , n, q∗(i)
?
= q∗i (0). If yes proceed to the next step

assuming that D has done proper t-sharing of Sj for j = 0, . . . , n.

Pj-Private Reconstruction of polynomials used for sharing Sj : (Code for Pi):
— Every party in P executes this code

1. For j = 1, . . . , n, participate in ACSS-MS-Rec-Private(D,P, Sj , Pj , ǫ′) for enabling

Pj to privately reconstruct the polynomials q(0,j)(x), . . . , q(ℓ,j)(x) which were used
by D to share Sj . We refer ACSS-MS-Rec-Private(D,P, Sj , Pj , ǫ′) by ACSS-MS-
Rec-Privatej .

2. Wait to privately reconstruct degree-t polynomials q0
i (x), . . . , qℓ

i (x) from ACSS-MS-
Rec-Privatei and terminate t-2d-Share.
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public verification has passed and participated in every ACSS-MS-Rec-Privatej

for j = 1, . . . , n. As the verification process is public, every other honest party
will eventually see that the verification passes and then they will participate
in ACSS-MS-Rec-Privatej for j = 1, . . . , n. Now by the termination property
of ACSS-MS-Rec-Private, all honest Pjs will terminate ACSS-MS-Rec-Privatej,
output q0

j (x), . . . , qℓ
j(x) and finally terminate protocol t-2d-Share, except with

probability nǫ′ ≈ ǫ.

Correctness: Here we consider two cases: (a) when D is honest; (b) when D
is corrupted.

1. When D is honest, then correctness follows from the proof of the first part
of termination property.

2. Now we consider D to be corrupted. For i = 0, . . . , n, ACSS-MS-Sharei

ensures that D has correctly t-shared some Si, except with probability
ǫ′ (by Completeness property of ACSS-MS). But it may happen that Si

which is t-shared by D in ACSS-MS-Sharei, is not the correct ith shares of
S0. Assume that D has t-shared Sj 6= Sj in ACSS-MS-Sharej , for some j ∈
{1, . . . , n}. This implies that in ACSS-MS-Sharej , D has used polynomials

q0
j (x), . . . , qℓ

j(x) to share Sj , such that for at least one l ∈ {0, . . . , ℓ},

ql
j(0) 6= ql(j) = sl

j . That is, ql
j(0) = sl

j 6= sl
j . Now consider q∗j (0) = s0

j +

rs1
j +. . .+rlsl

j+. . .+rℓsℓ
j . We claim that with very high probability q∗(j) 6=

q∗j (0). The probability that q∗(j) = q∗j (0) is same as the probability that

two different degree-ℓ polynomials with coefficients (s0
j , . . . , s

l
j, . . . , s

ℓ
j) and

(s0
j , . . . , s

l
j , . . . , s

ℓ
j) respectively, intersect at a random value r. Since any

two degree-ℓ polynomial can intersect each other at most at ℓ values,
r has to be one of these ℓ values. But r is chosen randomly after the
completion of all ACSS-MS-Sharej for j = 0, . . . , n (so during executions
of ACSS-MS-Sharei’s, D is unaware of r). So the above event can happen
with probability at most ℓ

|F| ≈ ǫ. Thus with probability at least 1 − ǫ,

q∗(j) 6= q∗j (0) and hence no honest party will terminate the protocol if D

has t-shared Sj 6= Sj for some j. So if some honest party has terminated
t-2d-Share, then corrupted D must have attempted to t-share correct Si

in each ACSS-MS-Sharei, for i = 1, . . . , n. Now rest of the proof will follow
from the proof of part 1 of Correctness.

Secrecy: When D is honest, ACSS-MS-Share0 does not leak any information
on s1, . . . , sℓ (from the secrecy property of ACSS-MS-Share). Later s∗ = q∗(0)
does not leak any information about s1, . . . , sℓ during verification process, as s0

is randomly chosen by D and therefore s∗ will look completely random for the
adversary At. 2

Lemma 28. Protocol t-2d-Share privately communicates O((ℓn5+n6 log 1
ǫ
) log 1

ǫ
)

bits and A-cast O(n5 log(n)) bits.
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Proof: Follows from the fact that in protocol t-2d-Share, there are n + 1 in-
stances of ACSS-MS-Share, one instance of RNG, one instance of ACSS-MS-Rec
and n instances of ACSS-MS-Rec-Private. 2

11. Preparation Phase

Here we generate t-sharing of cM + cR secret random multiplication triples
(ak, bk, ck), such that for k = 1, . . . , cM +cR, ck = akbk. For this we first generate
t-2d-sharing of secret random doubles ([[ak]]t, [[b

k]]t) for k = 1, . . . , cM + cR.
Given these random doubles, we generate t-sharing of ck, for k = 1, . . . , cM +cR,
by adapting a technique from [27] which was given for synchronous settings.

11.1. Generating Secret Random t-2d-Sharing

In section 10, we have presented a protocol called t-2d-Share which allows a
D ∈ P to generate t-2d-sharing of ℓ secrets. We now present a protocol called
Random-t-2d-Share which allows all the parties in P to jointly generate random
t-2d-sharing of ℓ secrets, unknown to At. The protocol terminates and generates
its desired output except with probability ǫ. Random-t-2d-Share asks individual
party to act as dealer and t-2d-Share ℓ

n−2t
random secrets. Then we run ACS

protocol to agree on a common set of n−t parties who have correctly t-2d-shared
ℓ

n−2t
random secrets. Now out of these n− t parties, at least n− 2t are honest.

Hence the secrets that are t-2d-shared by these n − 2t honest parties are truly
random and unknown to At. So if we consider the ℓ

n−2t
t-2d-sharing done by

each of the honest parties in common set, then we will get ℓ
n−2t

∗ (n − 2t) = ℓ
random t-2d-sharing in total. For this, we use Vandermonde Matrix [31] and its
ability to extract randomness which was also exploited in [68, 31, 10].

Vandermonde Matrix and Randomness Extraction [31]: Let β1, . . . , βc

be distinct elements from F. We denote an (r×c) Vandermonde matrix by V (r,c),
where for 1 ≤ i ≤ c, the ith column of V (r,c) is (β0

i , . . . , βr−1
i )T . The idea behind

extracting randomness using Vandermonde matrix is as follows: without loss of
generality, assume that r > c. Moreover, let (x1, . . . , xr) be generated by picking
up c elements from F uniformly at random and then picking the remaining
r − c elements from F with an arbitrary distribution, independent of the first c
elements. Now if we compute (y1, . . . , yc) = (x1, . . . , xr)V , then (y1, . . . , yc) is
an uniformly random vector of length c, extracted from (x1, . . . , xr). For proof
of this, see [31, 10].

Protocol Random-t-2d-Share is now presented in Fig. 20.

Lemma 29. Protocol Random-t-2d-Share satisfies the following properties:

1. Termination: All honest parties eventually terminate the protocol with
probability at least (1 − ǫ).

2. Correctness: The protocol outputs correct t-2d-sharing of ℓ values with
probability at least (1 − ǫ).
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Figure 20: Protocol for Collectively Generating t-2d-Sharing of ℓ secrets, n = 3t + 1

Protocol Random-t-2d-Share(P, ℓ, ǫ)

Code for Pi: — Every party executes this code

1. Select L = ℓ
n−2t

random secret elements (s(i,1), . . . , s(i,L)). As a dealer, invoke t-2d-

Share(Pi,P, Si, ǫ′), with ǫ′ = ǫ
n

, to generate t-2d-sharing of Si = (s(i,1), . . . , s(i,L)).

2. For j = 1, . . . , n, participate in t-2d-Share(Pj ,P, Sj , ǫ′).

Agreement on a Common Set: Code for Pi — Every party executes this code

1. Create an accumulative set Ci = ∅. Upon terminating t-2d-Share(Pj ,P, Sj , ǫ′),
include Pj in Ci.

2. Take part in ACS with the accumulative set Ci as input.

Generation of Random t-2d-sharing: Code for Pi: — Every party executes this code

1. Wait until ACS completes with output C containing n−t parties. For every Pj ∈ C,

obtain the ith shares s
(j,1)
i , . . . , s

(j,L)
i of Sj and ith share-shares s

(j,1)
ki

, . . . , s
(j,L)
ki

of

shares s
(j,1)
k

, . . . , s
(j,L)
k

, corresponding to each Pk, for k = 1, . . . , n. Without loss of
generality, let C = {P1, . . . , Pn−t}.

2. Let V denote an (n − t) × (n − 2t) publicly known Vandermonde Matrix.

(a) For every k ∈ {1, . . . , L}, let (r(1,k), . . . , r(n−2t,k)) = (s(1,k), . . . , s(n−t,k))V .

(b) Locally compute ith share of r(1,k), . . . , r(n−2t,k) as (r
(1,k)
i , . . . , r

(n−2t,k)
i ) =

(s
(1,k)
i , . . . , s

(n−t,k)
i )V .

(c) For each 1 ≤ j ≤ n, locally compute the ith share-share of share

(r
(1,k)
j , . . . , r

(n−2t,k)
j ) as (r

(1,k)
ji , . . . , r

(n−2t,k)
ji ) = (s

(1,k)
ji , . . . , s

(n−t,k)
ji )V and

terminate Random-t-2d-Share.

The values r(1,1), . . . , r(n−2t,1), . . . , r(1,L), . . . , r(n−2t,L) denote the ℓ random secrets
which are t-2d-shared.

3. Secrecy: The ℓ values whose t-2d-sharing is generated by the protocol will
be completely random and unknown to At.

Proof: Termination: By the Termination property of t-2d-Share (see
Lemma 27), every instance of t-2d-Share initiated by an honest Pi as a dealer
will be eventually terminated by all honest parties, except with probability ǫ′.
Moreover, if an honest party terminates an instance of t-2d-Share (initiated by
some party), then eventually every other honest party will terminate that in-
stance of t-2d-Share , except with probability ǫ′. Now since there are at least
2t + 1 honest parties, except with probability (2t + 1)ǫ′ ≈ ǫ, all instances of
t-2d-Share initiated by honest parties will be terminated by every honest party.
So eventually protocol ACS will output a common set C of size n − t, except
with probability ǫ, such that all instances of t-2d-Share initiated by the parties
in C will be eventually terminated by all honest parties in P . This proves the
Termination property.
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Correctness: From the Correctness property of t-2d-Share (see Lemma 27),
each instance of t-2d-Share initiated by a party in C will correctly generate
t-2d-sharing of corresponding secrets, except with probability ǫ′. So with prob-
ability at most (n − t)ǫ′ ≈ ǫ, all instances of t-2d-Share initiated by the parties
in C will correctly generate t-2d-sharing of corresponding secrets. Hence except
with probability ǫ, protocol Random-t-2d-Share will correctly generate the t-2d-
sharing of ℓ values. This proves the Correctness property.

Secrecy: From the Secrecy property of t-2d-Share (see Lemma 27), the values
which are t-2d-shared by an honest party using t-2d-Share are completely ran-
dom and are unknown to At. Now there are at least (n−t)−t = n−2t honest par-
ties in C and hence the L values which are t-2d-shared by each them will be com-
pletely random and unknown to At. Now from the randomness extraction prop-
erty of Vandermonde Matrix, the values r(1,1), . . . , r(n−2t,1), . . . , r(1,L), . . . , r(n−2t,L)

will be completely random and unknown to At. This proves the Secrecy prop-
erty. 2

Lemma 30. Protocol Random-t-2d-Share privately communicates O((ℓn5 + n7

log 1
ǫ
) log 1

ǫ
) bits, A-cast O(n6 log n) bits and requires one invocation of ACS.

Proof: The communication complexity follows from the fact that in protocol
Random-t-2d-Share, n instances of t-2d-Share, each dealing with ℓ

n−2t
= ℓ

Θ(n)

values and having an error probability of ǫ
n

are executed. 2

11.2. Proving c = ab

Consider the following problem: let D ∈ P has t-shared ℓ pair of values
(a1, b1), . . . , (aℓ, bℓ). Now D wants to t-share c1, . . . , cℓ where cl = albl, for l =
1, . . . , ℓ. Moreover, during this process, D does not want to leak any additional
information about al, bl and cl. We propose a protocol ProveCeqAB to achieve
this task in asynchronous settings, following a technique proposed in [27] for
synchronous settings. The idea of the protocol for a single pair (a, b) is as follows.
D selects a random non-zero β ∈ F and generates t-sharing of c, β and βb. Then
all the parties in P jointly generate a random value r. Each party locally
computes the sharing of p = ra + β and then p is publicly reconstructed. Then
each party locally computes the sharing of q = pb−bβ−rc = (ra+β)b−bβ−rc
and then q is publicly reconstructed. If q = 0, then each party believes that with
very high probability, D has indeed t-shared c = ab. Moreover, if D is honest
then a, b and c will remain information theoretically secure. If D is honest, then
every honest party will eventually complete ProveCeqAB, and if some honest
party has completed ProveCeqAB, then all the honest parties will eventually
complete ProveCeqAB.

The error probability of the protocol is negligible because of the random r
which is jointly generated by all the parties after c, β and bβ is t-shared by D.
Specifically, a corrupted D might have shared βb 6= βb and c 6= c but still q can
be zero and this will happen iff βb + rc = βb + rc. However this equation is
satisfied by only one value of r. Since r is randomly generated, independent of
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D, the probability that the equality will hold is 1
|F| which is negligibly small.

The secrecy follows from the fact that p and q are independent of a, b and c.
Now we can extend the above idea parallely for each of the ℓ pairs (al, bl).

Figure 21: Protocol for Generating t-sharing of [c1]t = [a1]t.[b1]t, . . . , [cℓ]t = [aℓ]t.[bℓ]t, n =
3t + 1

Protocol ProveCeqAB(D,P, [a1]t, . . . , [a
ℓ]t, [b

1]t, . . . , [b
ℓ]t, ǫ)

Sharing by D:

1. Code for D:

(a) Select ℓ non-zero random elements β1, . . . , βℓ. For l = 1, . . . , ℓ, let cl = albl

and dl = blβl. Let B = (β1, . . . , βℓ), C = (c1, . . . , cℓ) and Λ = (d1, . . . , dℓ).
(b) Invoke ACSS-MS-Share(D,P,B, ǫ

3
), ACSS-MS-Share(D,P, C, ǫ

3
) and ACSS-

MS-Share(D,P,Λ, ǫ
3
).

2. Code for Pi: Participate in the ACSS-MS-Share protocols initiated by D to obtain
the ith share (β1

i , . . . , βℓ
i ), (c1i , . . . , cℓ

i) and (d1
i , . . . , dℓ

i) of B, C and Λ respectively.

Verifying whether cl = al.bl: Code for Pi — Every party executes this code

1. Once the three instances of ACSS-MS-Share initiated by D are terminated, partici-
pate in protocol RNG to jointly generate a random non-zero value r.

2. For l = 1, . . . , ℓ, locally compute pl
i = ral

i + βl
i, the ith share pl = ral + βl.

Participate in ACSS-MS-Rec(D,P, (p1, . . . , pℓ), ǫ) to publicly reconstruct pl for l =
1, . . . , ℓ.

3. Upon reconstruction of pl’s, locally compute ql
i = plbl

i−dl
i−rcl

i for l = 1, . . . , ℓ, to get

the ith share of ql = plbl−dl−rcl. Participate in ACSS-MS-Rec(D,P, (q1, . . . , qℓ), ǫ)
to publicly reconstruct ql for l = 1, . . . , ℓ.

4. Upon reconstruction of ql’s, locally check whether for l = 1, . . . , ℓ, ql ?
= 0. If yes

then terminate ProveCeqAB.

Lemma 31. Protocol ProveCeqAB satisfies the following properties:

1. Termination: If D is honest then all honest parties will terminate
the protocol, except with probability ǫ. If some honest party terminates
the protocol, then eventually every other honest party will terminate the
protocol, except with probability ǫ.

2. Correctness: If some honest party terminates the protocol, then except
with probability ǫ, D has t-shared cl = albl, for l = 1, . . . , ℓ.

3. Secrecy: If D is honest then al, bl, cl will be information theoretically
secure for all l = 1, . . . , ℓ.

Proof: Termination: When D is honest, all three instances of ACSS-MS-
Share will terminate and correctly generate t-sharing of B, C and Λ with prob-
ability at least (1 − 3 ǫ

3 ) = (1 − ǫ). Consequently in verification steps, both the
instances of ACSS-MS-Rec will terminate and reconstruct proper values with
probability at least 1 − ǫ. Now it follows that the condition specified in step
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4 of the protocol will pass with probability at least 1 − ǫ. Hence when D is
honest then the protocol will terminate with probability at least 1 − ǫ. If some
honest party has terminated the protocol, then ql = 0 has been satisfied for all
l. Every other honest party will also check the same and terminate the protocol.

Correctness: If some honest party terminates the protocol, then it implies
that ql = 0 for all l = 1, . . . , ℓ. Now notice that ql = plbl − dl − rcl =
(ral + βl)bl − blβl − rcl = ralbl − rcl = r(albl − cl). Now if corrupted D shares
cl 6= albl, then with probability (1− 1

|F|) = (1− ǫ), the value ql = r(albl−cl) will

not be equal to zero. This is because random r has been generated only after
D has committed all al, bl and cls. Thus if some honest party terminates the
protocol, then with probability (1 − ǫ), D has t-shared al, bl and cl satisfying
cl = albl for all l = 1, . . . , ℓ.

Secrecy: We now prove the secrecy of al, bl, cl for all l = 1, . . . , ℓ when D
is honest. From the secrecy property of ACSS-MS-Share, al, bl, cl will remain
secure after their t-sharing. Now we will show that both pl and ql will not leak
any information about al, bl, cl. Clearly pl = (ral + βl) will look completely
random to adversary At as βl is randomly chosen. Furthermore ql = 0 and
hence ql does not leak any information on al, bl, cl. Hence the lemma. 2

Lemma 32. Protocol ProveCeqAB privately communicates O((ℓn4+n5 log 1
ǫ
) log 1

ǫ
)

bits and A-casts O(n4 log n) bits.

Proof: The proof follows from the fact that Θ(1) instances of ACSS-MS-Share
and ACSS-MS-Rec are executed in protocol ProveCeqAB. 2

11.3. Generating Multiplication Triples: The Main Protocol For Preparation
Phase

We now outline protocol PreparationPhase which generates t-sharing of cM +
cR random multiplication triples. We explain the idea for a single triplet (a, b, c).
First, Random-t-2d-Share is invoked to generate t-2d-sharing of (a, b) which re-
sults in Pi holding ith share of a and b, namely ai and bi respectively. Now
if each Pi locally computes ei = aibi, then this results in 2t-sharing of c. But
we want each (honest) Pi to hold ci, where (c1, . . . , cn) is the t-sharing of c.
For this we adapt a technique given in [41] for synchronous settings: Each Pi

invokes ProveCeqAB to t-share ei. Now an instance of ACS will be executed
to agree on a common set of n − t = 2t + 1 parties whose instances of Prove-
CeqAB has been terminated. For simplicity let this set contains P1, . . . , P2t+1.
Since e1, . . . , e2t+1 are 2t+1 distinct points on a degree-2t polynomial, say C(x)
where C(0) = c (and C(i) = ei for i = 1, . . . , 2t + 1), by Lagrange interpolation

formula [25], c can be computed as c =
∑2t+1

i=1 riei where ri =
∏2t+1

j=1,j 6=i
x−j
i−j

.

The vector (r1, . . . , r2t+1) is called recombination vector [25] and is known pub-

licly. Now to get t-sharing of c, Pj locally computes cj =
∑2t+1

i=1 rieij where
eij is jth share of ei. By the properties of ProveCeqAB, each Pi in common set
has indeed t-shared ei = aibi with very high probability. So by performing the
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above computation, correct t-sharing of c = ab will be generated with very high
probability. Moreover, a, b and c will remain secure. Protocol PreparationPhase
is now given in Fig. 22.

Figure 22: Protocol for Generating t-sharing of cM + cR secret random multiple triples

Protocol PreparationPhase(P, ǫ)

Code for Pi — Every party executes this code

1. Participate in two instances of Random-t-2d-Share(P, cM + cR, ǫ
2
) to

generate t-2d-sharing of a1, . . . , acM +cR and b1, . . . , bcM +cR . Ob-
tain the ith shares a1

i , . . . , a
cM +cR
i

, b1i , . . . , b
cM +cR
i

and share-shares

a1
ji, . . . , a

cM +cR
ji , b1ji, . . . , b

cM +cR
ji , for j = 1, . . . , n.

2. Let ck = akbk , for k = 1, . . . , cM + cR. Upon termi-
nation of both the instances of Random-t-2d-Share, invoke
ProveCeqAB(Pi,P, [a1

i ]t, . . . , [a
cM +cR
i ]t, [b1i ]t, . . . , [b

cM +cR
i ]t,

ǫ
n

) as a dealer,

to generate t-sharing of c1i , . . . , c
cM +cR
i , where ck

i is the ith share of ck. We refer
the instance of ProveCeqAB initiated by Pi as ProveCeqABi.

3. For j = 1, . . . , n, participate in ProveCeqABj .

Agreement on a Common-Set: Code for Pi — Every party executes this code

1. Create an accumulative set Ci = ∅. Upon completing ProveCeqABj initiated by Pj

as a dealer, add Pj in Ci.

2. Take part in ACS with the accumulative set Ci as input.

Generation of t-sharing of c1, . . . , ccM+cR : Code for Pi — Every party executes this
code

1. Wait until ACS completes with output C containing 2t + 1 parties. For simplicity,
assume that C = {P1, . . . , P2t+1}.

2. For k = 1, . . . , cM + cR, locally compute ck
i =

P2t+1
j=1 rjck

ji the ith share of ck =

r1ck
1 + . . . + r2t+1ck

2t+1, where (r1, . . . , r2t+1) is the publicly known recombination
vector.

We now prove the properties of protocol PreparationPhase.

Lemma 33. Protocol PreparationPhase satisfies the following properties:

1. Termination: All honest parties will eventually terminate PreparationPhase,
except with probability ǫ.

2. Correctness: The protocol correctly outputs t-sharing of cM + cR multi-
plication triples, except with probability ǫ.

3. Secrecy: The adversary At will have no information about (ak, bk, ck),
for k = 1, . . . , cM + cR.

Proof: Termination: Following the termination property of Random-t-2d-
Share, both the instances of Random-t-2d-Share will terminate except with prob-
ability 2 ǫ

2 = ǫ. Now ProveCeqABj invoked by an honest Pj will be eventually
terminated by all honest parties, except with probability ǫ

n
. Moreover, if some
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honest party terminates protocol ProveCeqABj for any Pj , then eventually every
other honest party will terminate the protocol, except with probability ǫ

n
. Now

since there are at least 2t+1 honest parties, except with probability (2t+1) ǫ
n
≈ ǫ,

at least 2t + 1 instances of ProveCeqAB will be eventually terminated by all
honest parties. So eventually, all honest parties will agree on a common set C
containing n − t parties, except with probability ǫ, such that the instances of
ProveCeqAB initiated by every party in C is terminated by all honest parties
in P . Once this is done, every party will terminate protocol PreparationPhase
after doing location computation. So all honest parties will terminate protocol
PreparationPhase with probability at least (1 − ǫ).

Correctness: Follows from the correctness property of protocol Random-t-2d-
Share and ProveCeqAB.

Secrecy: Follows from the secrecy property of protocol Random-t-2d-Share and
ProveCeqAB. 2

Lemma 34. Protocol PreparationPhase privately communicates O(((cM+cR)n5+
n7 log 1

ǫ
) log 1

ǫ
) bits, A-cast O(n6 log n) bits and requires three invocations of

ACS.

12. Input Phase

In protocol InputPhase, each Pi acts as a dealer to t-share his input Xi

containing ci values. So cI =
∑n

i=1 ci, where cI is the number of input gates
in the circuit. The parties then agree on a set of at least n − t parties (whose
inputs will be taken into consideration for computation), by executing an ACS.
Protocol InputPhase is now presented in Fig. 23.

Figure 23: Protocol for Input Phase (Sharing Inputs), n = 3t + 1

Protocol InputPhase(P, ǫ)

Secret Sharing: Code for Pi — Every party executes this code

1. On input Xi, invoke ACSS-MS-Share(Pi,P, Xi,
ǫ
n

) as a dealer to generate t-sharing
of Xi.

2. For every j = 1, . . . , n, participate in ACSS-MS-Share(Pj ,P, Xj , ǫ
n

).

Agreement on a Common-Set: Code for Pi — Every party executes this code

1. Create an accumulative set Ci = ∅. Upon completing ACSS-MS-Share(Pj ,P, Xj , ǫ
n

)

invoked by Pj as a dealer, add Pj in Ci.

2. Participate in ACS with the accumulative set Ci as input.

3. Output common set C containing n − t parties and local shares of all inputs corre-
sponding to parties in C.
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Lemma 35. Protocol InputPhase satisfies the following properties:

1. Termination: All honest parties will eventually terminate the protocol,
except with probability ǫ.

2. Correctness: The protocol correctly outputs t-sharing of inputs of the
parties in agreed common set C, except with probability ǫ.

3. Secrecy: The adversary At will have no information about the inputs of
the honest parties in set C.

Proof: The proof follows from the properties of ACSS-MS-Share. 2

Lemma 36. Protocol InputPhase privately communicates O((cIn
4+n6 log 1

ǫ
) log 1

ǫ
)

bits, A-casts O(n5 log n) bits and requires one invocation of ACS.

13. Computation Phase

Once the input phase is over, in the computation phase, the circuit is evalu-
ated gate by gate, where all inputs and intermediate values are t-shared among
the parties. As soon as a party holds his shares of the input values of a gate,
he joins the computation of the gate.

Due to the linearity of t-sharing, linear gates can be computed locally by
applying the linear function to the shares, i.e. for any linear function c = f(a, b),
the sharing [c]t is computed by letting every party Pi to compute ci = f(ai, bi),
where ai, bi and ci are the ith shares of a, b and c respectively. With every ran-
dom gate, one random triple (from the preparation phase) is associated, whose
first component is directly used as outcome of the random gate. With every
multiplication gate, one random triple (from the preparation phase) is associ-
ated, which is then used to compute t-sharing of the product, following the
circuit randomization technique of Beaver [3]. Given a pre-generated random
multiplication triple (which is already correctly t-shared) Circuit Randomization
[3] allows to evaluate a multiplication gate at the cost of two public reconstruc-
tions. Let z = xy, where x, y are the inputs of the multiplication gate. Now z
can be expressed as z = ((x−a)+a)((y− b)+ b) = (α+a)(β + b), where (a, b, c)
is a random multiplication triple. So given ([a]t, [b]t, [c]t), [z]t can be computed
as [z]t = αβ + α[b]t + β[a]t + [c]t after reconstructing α and β publicly. The
security follows from the fact that α and β are random, for a random (a, b, c).
Protocol ComputationPhase is now presented in Fig. 24.

Lemma 37. Given that protocol PreparationPhase and InputPhase satisfy their
properties specified in Lemma 33 and Lemma 35 respectively, Protocol Compu-

tationPhase satisfies the following with probability at least (1 − ǫ):

1. Termination: All honest parties will eventually terminate the protocol.

2. Correctness: Given t-sharing of cM + cR secret random triples, the pro-
tocol computes the outputs of the circuit correctly and privately.
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Figure 24: Protocol for Computation Phase (Evaluating the Circuit), n = 3t + 1

Protocol ComputationPhase(P, ǫ)

For every gate in the circuit: Code for Pi — Every party executes this code
Wait until the ith share of each of the inputs of the gate is available. Now depending on
the type of the gate, proceed as follows:

1. Input Gate: [s]t = IGate([s]t): There is nothing to be done here.

2. Linear Gate: [z]t = LGate([x]t, [y]t, . . .): Compute zi = LGate(xi, yi, . . .), the ith

share of z = LGate(x, y, . . .), where xi, yi, . . . denotes ith share of x, y, . . ..

3. Multiplication Gate: [z]t = MGate([x]t, [y]t, ([ak]t, [bk]t, [ck]t)):

(a) Let ([ak]t, [bk]t, [ck]t) be the random triple associated with the multiplication
gate.

(b) Compute αi = xi − ai and βi = yi − bi, the ith share of α = (x − a) and
β = (y − b) respectively.

(c) Participate in ACSS-Rec to reconstruct α and β.
(d) Upon reconstructing α and β, compute zi = αβ +αbi +βai +ci, the ith share

of z = αβ + αb + βa + c = xy.

4. Random Gate: [r]t = RGate([ak ]t, [bk]t, [ck]t): Let ([ak ]t, [bk]t, [ck]t) be the ran-
dom triple associated with the random gate. Compute ri = ak

i as the ith share of
r.

5. Output Gate: x = OGate([x]t): Participate in ACSS-Rec to reconstruct x.

Proof: Given that protocol PreparationPhase and InputPhase satisfy their Ter-
mination property specified in Lemma 33 and Lemma 35 respectively, termi-
nation of protocol ComputationPhase follows from the finiteness of the circuit
representing function f and the termination property of ACSS-Rec. Protocol
PreparationPhase terminates with proper t-sharing of cM + cR secret random
triples, except with probability ǫ. Also protocol InputPhase terminates with
proper t-sharing of the inputs of the parties in common set C, except with
probability ǫ. Hence protocol ComputationPhase will correctly compute the cir-
cuit and eventually terminate with probability at least (1 − (ǫ + ǫ)) ≈ (1 − ǫ).
2

Lemma 38. Protocol ComputationPhase privately communicates O(n2(cM +
cO) log 1

ǫ
) bits.

Proof: Follows from the fact that in protocol ComputationPhase, 2cM + cO

instances of ACSS-Rec are executed, corresponding to cM multiplication gates
and cO output gates. 2

14. The New Statistical AMPC Protocol with Optimal Resilience

Now our new AMPC protocol called AMPC for evaluating function f which
is represented by a circuit containing cI , cL, cM , cR and cO input, linear, mul-
tiplication, random and output gates respectively, is as follows: (1). Invoke

59



PreparationPhase(P , ǫ); (2). Invoke InputPhase(P , ǫ); (3). Invoke Computation-
Phase(P , ǫ).

Theorem 11. Let n = 3t + 1. Then protocol AMPC satisfies the following
properties:

1. Termination: Except with probability ǫ, all honest parties will eventually
terminate the protocol.

2. Correctness: Except with probability ǫ, the protocol correctly computes
the outputs of the circuit.

3. Secrecy: The adversary At will get no extra information other than what
can be inferred by the input and output of the corrupted parties.

4. Communication Complexity: The protocol privately communicates
O((cIn

4 + cMn5 + cRn5 + cOn2 + n7 log 1
ǫ
)1

ǫ
) bits, A-cast O(n6 log n) bits

and requires 4 invocations of ACS.

Proof: The proof follows from the properties of protocol Preparation Phase,
Input Phase and Computation Phase. 2

15. Conclusion and Open Problems

In this paper, we have presented a new statistical AVSS scheme with opti-
mal resilience (i.e. with n = 3t + 1 parties), which significantly improves the
communication complexity of only known optimally resilient statistical AVSS of
[22] and [61]. Moreover, our AVSS achieves stronger properties than the AVSS
of [61] with lesser communication complexity. Furthermore, using our AVSS
scheme, we designed a new ACSS scheme which is an essential building block of
statistical AMPC protocol with optimal resilience (i.e., with n = 3t+1). In fact,
our ACSS scheme is the first ACSS scheme in the literature (in asynchronous
settings). Our ACSS when employed for designing AMPC results in significant
improvement over the only known statistical AMPC protocol of [15] (which does
not employ any ACSS). The design approach of our AVSS and ACSS are novel
and first of their kind. It is an interesting problem to further reduce the commu-
nication complexity of our AVSS and ACSS scheme which may lead to further
reduction in the communication complexity of AMPC.
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