
A preliminary version is presented in Asiacrypt 2009.

A Framework for Universally Composable Non-Committing Blind

Signatures

Masayuki Abe Miyako Ohkubo

Information Sharing Platform Laboratories, NTT Corporation
3-9-11 Midori-cho, Musashino-shi, Tokyo, 180-8585 Japan
{abe.masayuki,ookubo.miyako}@lab.ntt.co.jp

Abstract

A universally composable (UC) blind signature functionality requres users to commit to
the message to be blindly signed. It is thereby impossible to realize in the plain model.
This paper shows that even non-committing variants of UC blind signature functionality
can not be realized in the plain model. We characterize UC non-committing blind signa-
tures in the common reference string model by presenting equivalent stand-alone security
notions under static corruption. Usefulness of the characterization is demonstrated by show-
ing that Fischlin’s basic stand-alone blind signature scheme can be transformed into a UC
non-committing blind signature protocol without using extra cryptographic components. We
extend the results to the adaptive corruption model and present analogous notions, theorems,
and constructions both in the erasure model and the non-erasure model.

Keywords: Blind Signatures, Non-committing Blind Signatures, Universal Composability

i

Contents

1 Introduction 1

2 Preliminaries 2
2.1 Notations . 2
2.2 Universal Composability Framework . 2

3 Blind Signature Scheme 3
3.1 Syntax and Standard Security Notions . 3
3.2 Blindness based on Simulatability . 4
3.3 Relations among Notions . 6

4 Universally Composable Non-Committing Blind Signatures 8
4.1 Functionality Fncb . 8
4.2 Impossibility in Plain Model . 10
4.3 Protocol Wrapper Wrap() . 12

5 Static Security 12
5.1 Main Theorem . 12
5.2 Universal Composability of Fischlin’s Generic Scheme 19
5.3 Other Generic Constructions . 20

6 Adaptive Security 21
6.1 State Reconstructability in Stand-Alone Notions 21
6.2 Main Theorems in Adaptive Case . 23
6.3 Construction in Erasure Model . 24
6.4 Construction without Secure Erasures . 25

7 Conclusion 26

A Proofs 29
A.1 Proof of Lemma 1 (SimBL ⇒ BL) . 29
A.2 Proof of Lemma 2 (BL ∧ UF ; SimBL) . 30
A.3 Proof of Lemma 5 (SesEq ∧ SigEq ⇒ EqSimBLND) 31

B Building Blocks 32
B.1 Commitment Scheme . 32
B.2 Trapdoor Commitment Scheme . 32
B.3 Non-interactive Zero-Knowledge Proof of Knowledge 33
B.4 State Reconstructable Witness Indistinguishable Proof of Knowledge 33
B.5 Digital Signature Scheme . 34
B.6 Simulatable Signature Scheme . 34
B.7 A Note on Instantiation . 35

ii

1 Introduction

Background. Since the introduction of blind signatures [15], vast numbers of papers have
been devoted to efficient constructions, security analysis, and functional extensions, e.g., [30,
24, 33, 3, 4, 26, 7, 17, 29, 5, 8, 1, 2, 34, 25]. Major applications of blind signatures include
untraceable payment systems [15] and anonymous electronic voting [16, 19]. The standard
notions of security for blind signature schemes in a stand-alone setting are blindness and (one-
more) unforgeability [15, 30, 24]. Canetti’s universal composability (UC) framework [9] offers
security in a more general setting where other arbitrary protocols are running concurrently. It
ensures that the properties guaranteed by an idealized functionality are retained even under
general composition. A blind signature functionality was first suggested by Canetti in [10] and
formally defined by Fischlin in [17]. A round-optimal realization in the common reference string
(CRS) model is presented in [17]. Adaptive security is addressed by Kiayias and Zhou in [26].

In known blind signature functionalities, e.g., [17, 26], a user commits to a message to
request a signature. Then a signature is issued remotely by the functionality from the view
of the signer. In [17], Fischlin pointed out that a UC blind signature protocol that realizes
such a functionality implies a UC commitment protocol in the static corruption model and thus
is impossible to realize in the plain model [13]. A more formal argument is given by Lindell
in [27, 28]. A common idea for these arguments is that the existence of a simulator implies
extraction of the input message and hence contradicts the blindness.

Is there a hope to circumvent the impossibility if the functionality is relaxed by sacrificing
the commitment property? In some applications such as a simple e-cash or coupon system, every
message can be a random string that the users do not need to know or fix in advance. Blindness
and unforgeability are the only concerns. In [6], Buan, Gjøsteen, and Kr̊akmo present a non-
committing blind signature functionality where corrupt users no longer deposit messages. Thus
there is no need to extract the messages for simulation. It is shown that such a non-committing
blind signature functionality is realizable in the plain model and that the presented security is
equivalent to the unforgeability and weak blindness defined by Juels, Luby and Ostrovsky in
[24].

Our contribution. Somewhat in contradiction, we begin by showing a negative result: Uni-
versally composable non-committing blind signatures are still impossible in the plain model. Our
proof shows that, if the functionality provides blindness, the presence of a simulator contradicts
the unforgeability in the plain model. Importantly, the positive results in [6] holds only for a
restricted corruption model where the signer can be corrupted only after the key generation
process. As stated in the paper, such a restriction is so strong that it is equivalent to incorpo-
rating a trusted party in the protocol. While their results show interesting trade-off between
the feasibility in the plain model and the restriction on the corruption model, the model poses
a serious limitation. Our negative result holds for the most general corruption model.

Despite the negative result, non-committing blind signatures remain an interesting subject to
study. The less demanding functionality allows simple protocol designs at least in the conceptual
sense. This paper presents a thorough characterization of a non-committing blind signature
functionality in the static corruption model. We provide a pair of stand-alone security notions
in the CRS model that capture the same security properties as the functionality does. One of
the notions is standard unforgeability. The other is a new strong notion of blindness that we call
simulation blindness (see Section 3). Simulation blindness is, however, an intricate notion that
may not necessarily help reduce the burden of proving security or inspire new constructions.
We therefore break it up into more easily applicable notions in a special but reasonable setting.

1

The resulting notions are called session simulatability and signature simulatability. They literally
assert blindness through separate simulations for protocol execution and the resulting signatures.

To demonstrate the usefulness of our characterization, we show that Fischlin’s basic blind
signature scheme [17] can be transformed into a UC non-committing blind signature protocol
without the addition of extra cryptographic components. It is a surprise that such a conceptually
simple scheme can be universally composable.

The above results are then extended to the adaptive corruption model. We present notions
and theorems that are analogous to those in the static case. We show that, in the erasure model,
Fischlin’s basic scheme can be adaptively UC secure only by incorporation of a trapdoor into
the commitment scheme. Without secure erasures, we construct a scheme based on another
variant of Fischlin’s scheme that retains its conceptual simplicity. The simplicity of these results
can be highlighted when compared to the results of adaptive security for blind signatures of the
committing type [26].

2 Preliminaries

2.1 Notations

All algorithms appearing in this paper are probabilistic and run in polynomial-time in the
security parameter λ. By y ← A(x; r) we mean that algorithm A is invoked with input x
and randomness r chosen uniformly from an appropriate domain, and the output is something
labeled as y. If the randomness is not of concern, we write y ← A(x) for short. By (a, b) ←
〈A(x), B(y)〉 we denote an execution of interactive Turing machines A and B on inputs x and y
and with outputs a and b, respectively. When only one side of the output is of concern, we write
a← 〈A(x), B(y)〉L for the left side and b← 〈A(x), B(y)〉R for the right side. When algorithm A
has extra output ω that may be used or ignored depending on the context, we write a[ω]← A.
The meaning of the symbol in the brackets will be noted whenever this notation is used. An
empty string is denoted by ∅.

2.2 Universal Composability Framework

This section gives a very brief overview of Canetti’s UC framework [9]. For details and formal
descriptions, please refer to [12].

In the UC framework, a protocol π is compared with an ideal functionality F considered as
a trusted party for the specific tasks. Every player can send a command to F in a secure and
authentic manner, and F will faithfully carry out the command according to its specification.
Such a computation model is called the ideal model. The security of a protocol π for realizing F
is defined according to the simulation paradigm. That is, a protocol π is regarded as secure if,
for any adversary A attacking protocol π, there exists a simulator S attacking ideal functionality
F , whose output distribution is indistinguishable from that of A for any distinguisher Z called
an environment. Slightly more formally, let random variable execπ,A,Z(λ, a) denote the output
of Z with input a ∈ {0, 1}∗ after observing an execution of π with security parameter λ ∈ N and
uniformly chosen randomness for every player and A. Let idealF ,S,Z(λ, a) denote the output
of Z regarding the ideal-model computation. The protocol π securely realizes F if for every
adversary A there exists a simulator S such that, for any environment Z and for all a ∈ {0, 1}∗,
execπ,A,Z(λ, a) and idealF ,S,Z(λ, a) are indistinguishable in λ. If players running protocol π
are allowed to access a functionality F ′, it is called the F ′-hybrid model. Then the output of Z
in the F ′-hybrid model is denoted by execF

′
π,A,Z(λ, a). Adversary A can corrupt players, and

2

the corrupted players are completely controlled by A. In the static corruption model, A can
corrupt the players only at the first activation. In the adaptive model, A is allowed to corrupt
the players at arbitrary times.

A remarkable property of the framework is that it provides a general composition theorem.
Roughly, for any protocol ρ that securely realizes functionality G by using F as a subroutine,
composed protocol ρπ that replaces F with a secure protocol π also securely realizes G. In-
tuitively, the composition theorem guarantees that the security properties described in F are
retained even if the corresponding protocol π is used with arbitrary protocols.

3 Blind Signature Scheme

3.1 Syntax and Standard Security Notions

Definition 1 (Blind Signature Scheme). A blind signature scheme BS in the common ref-
erence string model consists of five algorithms BS = BS.{Crs,Key,User,Signer,Vrf} as follows.

Σ ← BS.Crs(1λ): A common reference string generator that takes as input a security parameter
λ and outputs a common reference string Σ.

(sk, vk)← BS.Key(Σ): A key generation algorithm that generates a signing key sk and a
verification key vk. The message space M is associated with vk.

(σ, st)← 〈BS.User(Σ, vk,m),BS.Signer(Σ, sk)〉. A signature generation protocol that is a pair
of probabilistic interactive algorithms such that BS.User outputs signature σ and
BS.Signer outputs status st ∈ {abort, completed}.

0/1← BS.Vrf(Σ, vk, σ,m). A verification algorithm that outputs 1 or 0 for “accept” or “re-
ject,” respectively.

A blind signature scheme must provide completeness and consistency as well as ordinary
digital signature schemes. Roughly, completeness is that, for any (m,σ) made faithfully through
BS.Crs, BS.Key, BS.User, and BS.Signer, verification algorithm BS.Vrf outputs 1. Consistency is
that BS.Vrf outputs the same value for the same input (even for keys generated by an adversary).
In most general cases, these notions accept a negligible amount of errors. We refer to [20] for
details and discussions of these properties.

Definition 2 (Unforgeability: UF). Let SuccufF ∗(λ) = Pr[ForgeBSF ∗(λ) = 1] where ForgeBSF ∗
is the experiment shown below. A blind signature scheme BS is unforgeable if SuccufF ∗(λ) is
negligible in λ for any algorithm F ∗.

Experiment ForgeBSF ∗(λ) :

Σ ← BS.Crs(1λ)

(vk, sk)← BS.Key(Σ)

((m1, σ1), . . . , (mk+1, σk+1))← F ∗〈·,BS.Signer(Σ,sk)〉(Σ, vk)

Return 1 iff

completed← 〈·,BS.Signer(Σ, sk)〉R happens at most k times,

mi 6= mj for all 1 ≤ i < j ≤ k + 1, and

BS.Vrf(Σ, vk,mi, σi) = 1 for all 1 ≤ i ≤ k + 1.

F ∗ is allowed to concurrently access the oracle an arbitrary number of times.

3

By requiring (mi, σi) 6= (mj , σj) instead of mi 6= mj , we have the notion of strong unforge-
ability (sUF). This paper focuses on the above relatively weaker notion because it suffices for
major applications.

Definition 3 (Blindness: BL). Let Advbl
B∗(λ) = |Pr[BlindBS

B∗(λ, 0) = 1]−Pr[BlindBS
B∗(λ, 1) =

1]| where BlindBS
B∗ is the experiment shown below. A blind signature scheme BS is blind if

Advbl
B∗(λ) is negligible in λ for any algorithm B∗.

BlindBS
B∗(λ, b) :

Σ ← BS.Crs(1λ)
(vk,m0,m1)← B∗(Σ)
σb ← 〈BS.User(Σ, vk,mb), B

∗〉L
σ1−b ← 〈BS.User(Σ, vk,m1−b), B

∗〉L
If σ0 = ⊥ or σ1 = ⊥ then set σ0 = σ1 = ⊥.

Return b̃← B∗(σ1, σ0)

For ease of notation, we represent B∗ as stateful so that it implicitly takes over its internal
state from the previous invocation every time it is invoked by the experiment. Only new inputs
are explicitly presented in the description. This convention is applied to all algorithms denoted
with an asterisk (∗) throughout this paper.

As observed in [23], the above definition captures the case where the adversary attempts to
obtain useful information by aborting the sessions. [18] extends the notion in such a way that,
when adversary B∗ is given (⊥,⊥) at the end, it is given extra information that determines
which session (the first or second or both) actually yields ⊥ at the user side. The results in this
paper also apply to this stronger notion of blindness, called blindness with selective failure.

3.2 Blindness based on Simulatability

Blindness can be understood in such a way that any information obtained while executing the
signature generation protocol is not included in the resulting signature in a useful form. The
following new notion called simulation blindness ensures that the signature generation protocol
can be executed without involving the message. At the same time, the resulting signature can
be generated without involving any information from the protocol run.

Definition 4 (Simulation Blindness: SimBL). A blind signature scheme BS is simulation
blind if there exists a tuple of probabilistic algorithms SIM.Crs, SIM.User, and SIM.Sig such
that Advsib

D∗(λ) = |Pr[SimBLBS
D∗(λ, 0) = 1]− Pr[SimBLBS

D∗(λ, 1) = 1]| is negligible in λ for any
algorithm D∗, where experiment SimBLBS

D∗(λ, b) is as shown below.

4

SimBLBS
D∗(λ, 1) :

Σ ← BS.Crs(1λ)
vk ← D∗(Σ)

b̃← D∗O1(Σ,vk,·)

Return b̃

O1(Σ, vk,m)
σ ← 〈BS.User(Σ, vk,m), D∗〉L
Output σ

SimBLBS
D∗(λ, 0) :

(Σ, t)← SIM.Crs(1λ)
vk ← D∗(Σ)

b̃← D∗O0(Σ,vk,·,t)

Return b̃

O0(Σ, vk,m, t)
δ ← 〈SIM.User(Σ, vk, t), D∗〉L
σ ← SIM.Sig(Σ, vk,m, t)
If δ = 0 then set σ ← ⊥.
Output σ

D∗ is allowed to concurrently access the oracle an arbitrary number of times with arbitrary
input messages. Algorithm SIM.User can be stateful but SIM.Sig must be stateless.

The reason we have to handle SIM.User and SIM.Sig in one notion is that, if their properties
are stated separately and then the functions are used with the same trapdoor, they may have a
negative influence on each other. We thus consider a special case where independent trapdoors
are available for each algorithm. For instance, trapdoor t1 will be used for simulating the signa-
tures and t2 is for simulating the sessions. We show that, in such a case, the simulation blindness
can be deconstructed into more easily applicable notions, which we call session simulatability
and signature simulatability.

Definition 5 (Separable Trapdoor Generator). A probabilistic polynomial-time algorithm
SIM.Crs is a separable trapdoor generator if, given security parameter λ, it outputs (Σ, (t1, t2))
such that Σ is indistinguishable from those generated by BS.Crs (with negligible advantage
Advcrs

C∗ for any algorithm C∗).

Notice that the separation into two parts is cosmetic in the above definition and the only
security requirement is indistinguishability of Σ. More security properties will be demanded
in the succeeding security notions. We first introduce signature simulatability where oracle O
plays the role of a user and returns a proper or simulated signature. Adversary A∗ then guesses
which is the case.

Definition 6 (Signature Simulatability: SigSim). A blind signature scheme BS is signa-
ture simulatable with respect to SIM.Crs if there exists a probabilistic algorithm SIM.Sig such
that Advsis

A∗(λ) = |Pr[SigSIMBS
A∗(λ, 0) = 1]−Pr[SigSIMBS

A∗(λ, 1) = 1]| is negligible in λ for any
algorithm A∗, where experiment SigSIMBS

A∗(λ, b) is as follows.

SigSIMBS
A∗(λ, b) :

(Σ, (t1, t2))← SIM.Crs(1λ)
vk ← A∗(Σ)

b̃← A∗Ob(Σ,vk,·,t1)

Return b̃

5

O1(Σ, vk,m, t1):
σ ← 〈BS.User(Σ, vk,m), A∗〉L
Output σ

O0(Σ, vk,m, t1)
σ ← 〈BS.User(Σ, vk,m), A∗〉L
σ′ ← SIM.Sig(Σ, vk,m, t1)
If σ = ⊥, set σ′ ← ⊥.
Output σ′

In the next notion of session simulatability, adversary E∗ tries to determine whether or not
the user is following the proper signature generation protocol with the selected message.

Definition 7 (Session Simulatability: SesSim). A blind signature scheme BS is session sim-
ulatable with respect to SIM.Crs if there exists a probabilistic algorithm SIM.User such that
Advses

E∗(λ) = |Pr[SesSIMBS
E∗(λ, 0) = 1] − Pr[SesSIMBS

E∗(λ, 1) = 1]| is negligible in λ for any
algorithm E∗, where experiment SesSIMBS

E∗ is as follows.

SesSIMBS
E∗(λ, b) :

(Σ, (t1, t2))← SIM.Crs(1λ)
vk ← E∗(Σ, t1)

b̃← E∗Ob(Σ,vk,·,t2)

Return b̃

Oracle O1(Σ, vk,m, t2):
〈BS.User(Σ, vk,m), E∗〉

Oracle O0(Σ, vk,m, t2):
〈SIM.User(Σ, vk, t2), E∗〉

Note that the oracles show nothing but the transcript to E∗. In particular, the resulting
signatures are never returned. Also note that trapdoor t1 is given to E∗.

3.3 Relations among Notions

We first show that simulation blindness implies classical blindness. It also implies selective
failure blindness. A proof is given in Appendix A.1.

Lemma 1 (SimBL⇒ BL). If BS is simulation blind, then it is blind.

Regarding the reverse direction, we do not know if blindness solely implies simulation blind-
ness or not. However, we can show that there exists a scheme that is blind and unforgeable but
not simulation blind. Namely, for the schemes that provide both blindness and unforgeability,
simulation blindness is a strictly stronger notion than blindness. This implication is limited
but sufficiently meaningful since we are interested in schemes that provide both blindness and
unforgeability.

Lemma 2 (BL ∧ UF ; SimBL). There exists BS that is blind and unforgeable but not simula-
tion blind.

A proof of Lemma 2 is in Appendix A.2, which helps to understand the impossibility result in
Section 4.2.

The next lemma states that it suffices to separately consider simulatability of sessions and
signatures when separate trapdoors are available for each purpose.

6

Lemma 3 (SesSim ∧ SigSim ⇒ SimBL). If BS has a separable trapdoor generator and is sig-
nature simulatable and session simulatable with respect to the generator, then BS is simulation
blind.

Proof. The proof follows the game transformation paradigm. Starting from SimBLBS
D∗(λ, 1), we

move to SimBLBS
D∗(λ, 0) via three transformations and show that each step changes the view

of adversary D∗ only in a negligible manner if the underlying scheme BS is session simulatable
and signature simulatable. Let Xi denote the event that D∗ outputs 1 in Game i.

Game 0. This game is the same as SimBLBS
D∗(λ, 1). We thus have

Pr[X0] = Pr[SimBLBS
D∗(λ, 1)] (1)

by definition.

Game 1. Replace Σ ← BS.Crs(1λ) with (Σ, (t1, t2))← SIM.Crs(1λ).

Since SIM.Crs is a separable trapdoor generator, we have

Pr[X0]− Pr[X1] ≤ Advcrs
C∗(λ). (2)

Game 2. Modify oracle O1 in such a way that it takes trapdoor t1 as extra input and computes
σ′ ← SIM.Sig(Σ, vk,m, t1) and returns σ′ if σ 6= ⊥.

The view of D∗ in Game 2 is now the same as that of A∗ in SigSIMBS
A∗(λ, 0). Since Game 1

is the same as SigSIMBS
A∗(λ, 1) with A∗ = D∗, we have

Pr[X1]− Pr[X2] = Pr[SigSIMBS
A∗(λ, 1)]− Pr[SigSIMBS

A∗(λ, 0)] ≤ Advsis
A∗(λ). (3)

Game 3. Replace BS.User(Σ, vk,m) in Game 2 with SIM.User(Σ, vk, t2).

We claim that the modification does not change the output distribution of D∗ if BS is session
simulatable. Formally, there exists E∗ such that

Pr[X2]− Pr[X3] ≤ Advses
E∗(λ). (4)

The claim is proven by constructing E∗ by using D∗ in a straightforward way. (Note that E∗

is given trapdoor t1 and can perform σ ← SIM.Sig(Σ, vk,m, t1), which is needed to run D∗

properly.)

Now observe that Game 3 is identical to SimBLBS
D∗(λ, 0). Hence

Pr[X3] = Pr[SimBLBS
D∗(λ, 0)]. (5)

By accumulating (1) to (5), we have

Advsib
D∗(λ) ≤ Advcrs

C∗(λ) + Advsis
A∗(λ) + Advses

E∗(λ). (6)

7

4 Universally Composable Non-Committing Blind Signatures

4.1 Functionality Fncb

Our non-committing blind signature functionality Fncb is shown in Figure 1. In the figure, v is a
deterministic signature verification algorithm. Π is a description of a stateless signing algorithm.
See [12] for remarks on running arbitrary algorithms in a functionality. As well as the ordinary
signature functionality in [11], we formulate Fncb not to provide any security properties if an
unregistered verification key is given as input to the signature generation and verification phases.
See the discussion about key management below.

The idea of using counters to enforce unforgeability is the same as that in [6]. Due to the
difference of the timing at which the counters are increased, our formulation can be used with the
general communication model thoroughly controlled by the adversary while the one in [6] needs
authenticated communication for its realization. Note that the bare signature functionality in
[11] can be realized without an authenticated channel because there is no link between the
public-key and the identity of the signer and it does not matter who issues a signature as long
as the signature is valid.

Key Generation : Given (KeyGen, sid) from a party Ps, verify that sid = (Ps, sid
′) for some sid′. If not,

then ignore. Else, forward (KeyGen, sid) to simulator S. Then, on receiving (Generated, sid, v ,Π)
from S, send (Generated, sid, v) to Ps and record (Ps, v ,Π). Let Ccmpl = Cvalid = 0, and Γ be empty.
This phase must be completed only once and before other phases.

Signature Generation : On receiving (Request, sid, ssid, v ′,m) for some m from Pu, send
(Request, sid, ssid, v ′) to S and do the following.

i. On receiving (Signed, sid, ssid) from S, forward it to Ps. Set Ccmpl ← Ccmpl + 1.

ii. On receiving (Received, sid, ssid) from S, do as follows:

• If Pu is honest and v ′ = v , then do as follows. If (m, ∗, 1) 6∈ Γ, set Cvalid ← Cvalid + 1.
Compute σ ← Π(m) and record (m,σ, 1) to Γ. If (m,σ, 0) ∈ Γ, send an error message to
signer Ps and halt. Send (Received, sid, ssid, σ) to Pu.

• Else if Pu is corrupt or v ′ 6= v , ask S and forward Pu whatever received from S.

Signature Verification : On receiving (Verify, sid, ssid, v ′,m, σ) from some party Pv, set ϕ = v ′(m,σ)
and do as follows.

1. If v ′ 6= v , set f ← ϕ.

2. Else if (m,σ, f ′) ∈ Γ for any f ′, then set f ← f ′.

3. Else if Ps is corrupt or (m, ∗, 1) ∈ Γ, then set f ← ϕ and record (m,σ, f) to Γ.

4. Otherwise:

(a) If Ccmpl > Cvalid, then set f ← ϕ and Cvalid ← Cvalid + f .

(b) Otherwise, set f ← 0.

Then record (m,σ, f) to Γ.

Output (Verified, sid, ssid, f) to Pv.

Player Corruption : On receiving corruption to Pu, send all inputs and outputs exchanged with Pu to
simulator S. Also send all randomness used in the evaluations of Π with respect to Pu.

Figure 1: Non-committing blind signature functionality Fncb.

Non-committing Property. Observe that input message m from a corrupt user is sent
nowhere nor stored in the functionality. Thus S working on behalf of a corrupt user can complete
the signature generation process, whatever m is. This formulation results in avoiding the need

8

to extract the message from the corrupt users.

Unforgeability. This property holds only while signer Ps is honest. The mechanism to ensure
unforgeability is simple. Counter Ccmpl counts the number of completed signature generations on
the signer’s side while counter Cvalid counts the number of valid signatures on distinct messages
received by honest users with legitimate verification. The verification process accepts signatures
on new messages only if Ccmpl > Cvalid. From this specification, it is clear that Ccmpl ≥ Cvalid

always holds as long as the signer is honest. Thus, unforgeability is guaranteed in the absolute
sense. To capture weak unforgeability, Cvalid is incremented only for unique messages in the
signature generation process (see step (ii)). Strong unforgeability can be captured by removing
conditions “if (m, ∗, 1) 6∈ Γ” and “or (m, ∗, 1) ∈ Γ” from the signature generation and verification
phases, respectively.

Completeness and Consistency. If the signer and a user are not corrupt and the registered
key is given as input to the signature generation phase, (m,σ, 1) is recorded. The verification
phase for such faithfully generated (m,σ) and registered v finds that record and always outputs
f = 1. Thus completeness is captured. Consistency holds for free as we assumed v is determin-
istic. Limiting v to be deterministic decreases generality but makes the exposition considerably
simpler. For issues with respect to probabilistic verification algorithms, see [11, 12, 20].

Blindness. Blindness is incorporated by asking S to register a signature generation function,
Π, and using it remotely from the view of S. Some important observations are that Π is fixed
before any sub-session for signature generation starts, Π takes nothing but message m as input,
and message m and Π(m) are never sent to S or Ps during the signature generation phase.
This formulation thereby ensures that σ computed remotely by σ ← Π(m) is independent of
the signer’s view in the sub-session for signature generation. Such a paradigm, which we call
remote signing, is suggested in [10] and used by all known blind signature functionalities. The
argument is valid for honest users with registered key v ′ = v .

On Key Management. In [10, 12], Canetti formulates the “bare” signature functionality in
such a way that the functionality registers a single public-key in every session and the security
properties are guaranteed only for the registered public-key. The functionality has concise pre-
sentation and high modularity. We use his approach to define Fncb. Namely, if unregistered
v ′ that is not equal to v is given as input to the signature generation or verification phase,
Fncb behaves exactly as S intended. Therefore, even though a user is honest, no security is
guaranteed in such a case. (Recall that the environment can pass arbitrary v ′ to honest users.)
Accordingly, upper-level protocols that use Fncb must be responsible for providing registered
v to honest users. (However, the “registered” public-key can be “faithlessly generated” by the
corrupted signer in the key generation phase. This is the case when we argue blindness.)

An alternative approach would be to let Fncb explicitly reject unregistered v ′. This, however,
results in incorporating a mechanism for distributing the correct public-key to honest parties
within the blind signature protocol. For instance, the protocol realizing Fncb may be constructed
in the Fca-hybrid model where Fca is the certificate-authority functionality [11] that serves only
for the blind signature protocol. Though this kind of issue can be handled by the theorem of
universal composition with joint state [14], we instead chose to retain basic Fncb by outsourcing
such a mechanism.

In the literature, [17, 6] implicitly follow the same approach as ours on the key management
issue. They, however, define their functionality only for the case of receiving the registered
public-key as an input to the signature generation phase. This results in simpler presentation,
but eventually the details need to be provided. [26] shows more extended functionality that

9

handles several public-keys under the same session-id and guarantees blindness for every set of
signatures issued with the same public-key. However, this approach suffers high complexity in
its presentation. Furthermore, handling multiple keys via the (joint) UC composition theorem
would be more reasonable in the UC framework.

Variations. To focus on essential points, Fncb in Figure 1 is defined to notify only the end of
the signature generation process to the environment. It can be modified so that the environment
can give the signer explicit approval or denial for starting the process by adding another round
of interactions among S, Fncb, and Ps. It is also possible to notify the environment about the
abnormal termination of the protocol in the same way. These modifications do not affect the
results in this paper since they can be incorporated only by modifying the protocol wrapper in
Section 4.3 accordingly.

4.2 Impossibility in Plain Model

This section shows that Fncb cannot be realized without accessing extra ideal functionalities or
obtaining help from incorruptible parties. We consider non-trivial protocols such that honest
parties running the protocol with right inputs terminate and output something with noticeable
probability. Note also that we consider the most general case where the environment can corrupt
any party at any time.

Theorem 1. There exists no non-trivial protocol that securely realizes Fncb in the plain model.

Proof. The outline follows. We use S to extract remote signing function Π (which is virtu-
ally equivalent to sk) and use it to break the unforgeability in the real protocol, which could
never happen in the ideal model where absolute unforgeability is provided. Using such S as a
subroutine, Z distinguishes the ideal process and a real protocol execution.

Suppose that there exists a non-trivial protocol π that realizes Fncb in the plain model. Since
Fncb provides completeness and consistency, so does π. Recall that Fncb is invoked by receiving
(KeyGen, sid) from a signer. It then outputs (Generated, sid, v) to the signer. Protocol π works
in the same way since it realizes Fncb. Let πKG denote such a part of π that receives (KeyGen, sid)
as input and ends with (Generated, sid, v) as output.

Consider a particular pair of adversary A∗ and environment Z∗ that behaves in execπ,A∗,Z∗
as follows. Z∗ first asks A∗ to corrupt the signer. Z∗ then runs πKG with input (KeyGen, sid)
and obtains (Generated, sid, v). (Here, without loss of generality, we assume that πKG can be
run solely by the signer up to the moment (Generated, sid, v) is output. See the discussion
after the proof for generalization.) Z∗ then sends (KeyGen, sid) and v to A∗, and A∗ outputs
(Generated, sid, v) on behalf of the corrupt signer. Z∗ then asks for a signature on a message
m by sending (Request, sid, ssid, v ,m) to an honest user. If A∗ is to join π on behalf of the
signer to generate a signature, Z∗ takes over the signer’s role and completes the protocol by
faithfully following π. The user eventually outputs (Received, sid, ssid, σ). Finally Z∗ sends
(Verify, sid, ssid, v ,m, σ) to a user and receives (Verified, sid, ssid, f) as a result of verification.
Observe that, even though the signer is corrupted, Z∗ simulates an honest signer by faithfully
following protocol π. Furthermore, due to the completeness and terminating property of π, Z∗
can complete signature generation with noticeable probability. If Z∗ completes, f = 1 appears
at the end. Since π realizes Fncb, there exists a simulator S∗ for such A∗ and Z∗. To successfully
simulate A∗, S∗ has to send Π to Fncb before Z∗ sends (Request, sid, ssid, v ,m) to an honest
user. Furthermore, with noticeable probability, Π(m) must yield a valid signature accepted by
protocol π.

10

Now we construct Z that distinguishes execπ,A,Z and idealFncb,S,Z by using the above S∗
as a subroutine. Z first sends (KeyGen, sid) to the honest signer and receives (Generated, sid, v).
Then Z starts simulating Z∗ and asks S∗ to corrupt the simulated signer. Next it sends
(KeyGen, sid) and v to S∗ and receives (Generated, sid, v ,Π) from S∗ on behalf of Fncb. Now
Z computes σ ← Π(m) for some m. It then sends (Verify, sid, ssid, v ,m, σ) to a verifier and
receives (Verified, sid, ssid, f). The final output of Z is f .

Let us evaluate Z. Suppose that Z is in execπ,A,Z . Z simulates Z∗ perfectly for S∗. In
particular, v in this case is generated honestly by π exactly as Z∗ does. Therefore, S∗ outputs
(Generated, sid, v ,Π) as expected. Then with noticeable probability, such Π yields σ that passes
the verification protocol of π. Thus f = 1 happens with noticeable probability in this case. Next
suppose that Z is in idealFncb,S,Z . In this case, v is generated by S. If v is distinguishable
from the one observed in execπ,A,Z , Z distinguishes execπ,A,Z and idealFncb,S,Z on that
basis. If it is indistinguishable, S∗ outputs (Generated, sid, v ,Π). Since no signature generation
process is completed in idealFncb,S,Z and Fncb provides absolute unforgeability, Fncb rejects
σ generated by Π. Thus f = 0 for this case. Accordingly, Z distinguishes execπ,A,Z and
idealFncb,S,Z with noticeable probability.

Discussion. An essential observation is that, even though simulator S does not need to ex-
tract the messages from the corrupt users, the functionality still demands that S extract Π. In
addition, it is sufficient to violate one of the claimed properties of the functionality, i.e., unforge-
ability. The situation is very similar to the case of UC commitments [13], where a simulator
must be able to extract the committed message from a corrupt committer and the presence of
such a simulator contradicts the hiding property of the commitment protocol.

The proof does not hold if protocol π involves incorruptible trusted parties or any extra ideal
functionalities. The point is that Z∗ should be able to run πKG by itself so that the distribution of
v is solely under its control. This allows Z to simulate Z∗ simply by sending v generated outside
of Z but by following πKG. If πKG involves parties other than the signer, Z∗ corrupts them before
they send any message and simulates them honestly by following πKG. When Z simulates Z∗,
these corrupted parties are simulated by following the behavior of the real uncorrupted players
with which Z is working. In slightly more detail, Z consults with the adversary, A or S, about
the behavior of such players. This works since, in execπ,A,Z , uncorrupted players are running
π, and in idealFncb,S,Z , simulator S simulates their behavior in an indistinguishable manner.

The proof holds for any blind signature functionalities, regardless of whether they are com-
mitting or non-committing, as long as they follow the remote signing paradigm. The only
essential property used in the proof is that Fncb receives Π before the signature generation
phase for the sake of blindness. We also stress that nothing special is assumed for protocol π
that realizes Fncb. Though remote signing would not be the only way to ensure blindness in the
design of functionalities, it is a very natural and, indeed, the only way that has appeared in the
literature.

We finally note that the idea of remote signing is also used by the (ordinary) digital signature
functionality in [12]. It is interesting to see that the functionality is realizable in the plain model
without restriction on the corruption. It is possible because, unlike blind signatures, no security
property is left to retain once the signer is corrupted. (Note that it should retain consistency,
which can be obtained for free if the verification function is deterministic.) Thus the functionality
simply follows the adversary if the signer is corrupted.

11

4.3 Protocol Wrapper Wrap()

By Wrap(), we denote a simple wrapper algorithm that transforms a stand-alone blind signature
scheme BS into a UC blind signature protocol Wrap(BS) in a black-box way without using extra
cryptographic components.

The protocol Wrap(BS) is shown in Figure 2. For simplicity, we assume that the security
parameter λ is agreed and fixed. The protocol is constructed in the Fcrs-hybrid model where
Fcrs is the CRS generation and distribution functionality whose output distribution is defined
by BS also as shown in Figure 2.

Blind Signature Protocol Wrap(BS) in Fcrs-model

Key Generation: Upon receiving (KeyGen, sid) from the environment Z, a party Ps verifies that
sid = (Ps, sid

′) for some sid′. If not, do nothing. Else, Ps derives CRS Σ from Fcrs, computes
(vk, sk)← BS.Key(Σ) and outputs (Generated, sid, v) where v(m,σ) = BS.Vrf(Σ, vk, σ,m).

Blind Signature Generation: Party Pu and Ps do the following.

Pu-side: On receiving (Request, sid, ssid, v ′,m) from Z, derive Σ from Fcrs, send
(Request, sid, ssid, v ′) to Ps, invoke BS.User(Σ, vk′,m), and interact with Ps. Take vk′

out from v ′. If BS.User outputs σ such that BS.Vrf(Σ, vk′, σ,m) = 1, then output
(Received, sid, ssid, σ).

Ps-side: On receiving (Request, sid, ssid, v ′) from a user Pu, get Σ from Fcrs, invoke BS.Signer(Σ, sk)
and interacts with Pu. If BS.Signer outputs completed, then output (Signed, sid, ssid).

Signature Verification: On receiving (Verify, sid, ssid, v ′,m, σ) from Z, a party Pv derives Σ from Fcrs,
takes vk′ from v ′, computes f ← BS.Vrf(Σ, vk′, σ,m), and outputs (Verified, sid, ssid, f).

Common Reference Functionality Fcrs

CRS Generation: On receiving (CrsGen, sid), Fcrs computes Σ← BS.Crs(1λ) for the first time and returns
Σ. Simply return the same Σ for further requests.

Figure 2: UC blind signature protocol transformed from stand-alone scheme BS.

Note that the resulting protocol does not implement any mechanism to verify the given
verification algorithm v ′. It works as intended if v ′ = v but no security is guaranteed for the
user if v ′ 6= v . Note also that the signer ignores v ′ given from the user and uses the genuine
secret key sk.

5 Static Security

5.1 Main Theorem

Theorem 2 (UF ∧ SimBL ⇔ Fncb[static]). Protocol Wrap(BS) securely realizes Fncb with re-
spect to static adversaries if and only if BS is unforgeable and simulation blind.

Proof. (⇒ direction.) Let π = Wrap(BS). By using A as a black-box, we construct an S that
simulates the entities and their communication in the Fcrs-hybrid model as shown in Figure 3.
For such S, we show that idealFncb,S,Z(λ, a) and execFcrs

π,A,Z(λ, a) are indistinguishable if the
underlying scheme BS is unforgeable and simulation blind.

The proof uses the standard game transformation technique. Starting from idealFncb,S,Z(λ, a),
we gradually modify Fncb and S to obtain a view of execFcrs

π,A,Z(λ, a) and show that the output
distribution of Z is essentially unchanged by the modifications. In the following, we define a
sequence of games, Game 0, . . . , Game 5. Let Xi denote the event that Z outputs 1 in Game i.

12

Simulator S

Given access to Z and A, simulator S simulates entities, F̂crs, P̂u, P̂s, P̂v and their communication in
execFcrs

π,A,Z while interacting with Fncb and Z in idealFncb,S,Z as follows.

[In idealFncb,S,Z]

• (Overall Behavior.) S first runsA and let it choose players to corrupt. Then corrupt the corresponding
players in ideal. On receiving anything on behalf of a corrupt player, forward it to A. On receiving
anything from Z, forward it to A. If A outputs anything to Z, forward it to Z.

• (Key Generation.) On receiving (KeyGen, sid) from Fncb, forward it to P̂s. If P̂s out-
puts (Generated, sid, v), take vk out of v and set Π(m) := SIM.Sig(Σ, vk,m, t). Then send
(Generated, sid, v) and Π to Fncb.

• (Signature Generation with Honest Pu.) On receiving (Request, sid, ssid, v) from Fncb, forward it to
P̂u. If P̂s outputs (Signed, sid, ssid), forward it to Fncb. If P̂u outputs (Received, sid, ssid), forward
it to Fncb.

• (Signature Generation with Corrupt Pu.) If A sends off (Request, sid, ssid, v) to P̂s on behalf of cor-
rupt P̂u, send (Request, sid, ssid, v ,⊥) to Fncb on behalf of corrupt Pu in the ideal model. On receiving
(Request, sid, ssid, v) from Fncb, invoke P̂s by sending (Request, sid, ssid, v) and let it communicate
with A. If P̂s outputs (Signed, sid, ssid), forward it to Fncb.

• (Signature Verification.) On receiving (Verify, sid, ssid, v ,m, σ) from Fncb, forward it to P̂v. If P̂v
outputs (Verified, sid, ssid, f), forward it to Fncb.

[In Simulated execFcrs
π,A,Z]

• (Simulating CRS functionality F̂crs.) On receiving the first request, compute (Σ, t) ← SIM.Crs(1λ)
and returns Σ. Return Σ for further requests.

• (Simulating Honest P̂s and P̂v) Simply follow the proper protocol as described in Figure 2. If cor-
rupted, follow the instruction of A.

• (Simulating Signature Generation with Honest P̂u.) On receiving (Request, sid, ssid, v), get Σ from
F̂crs, and send (Request, sid, ssid, v) to P̂s. Then invoke SIM.User(Σ, vk, t) and interact with P̂s. If
SIM.User outputs 1, output (Received, sid, ssid).

• (Simulating Communication.) If a simulated entity sends something to another simulated entity, send
it it to A (and let A decide what to do next). If however the sender or the receiver is F̂crs or A, give
it directly to the intended receiver.

Figure 3: Simulator S for the static case.

Game 0. This is the same as idealFncb,S,Z(λ, a). Hence

Pr[X0] = Pr[idealFncb,S,Z(λ, a) = 1]. (7)

Game 1. We modify S and Fncb to remove the simulation functions SIM.Crs, SIM.User, and
SIM.Sig as follows.

• In the key generation phase, S does not send Π to Fncb. (This removes SIM.Sig.)

• In the signature generation phase, Fncb sends m to S. Then S simulates honest P̂u by
running proper protocol BS.User(Σ, vk,m). If the protocol outputs σ, simulator S sends
it to Fncb. Then Fncb uses this σ in step (ii) of Figure 1 instead of invoking Π. (This
removes SIM.User.)

• S runs proper BS.Crs in simulating F̂crs. (This removes SIM.Crs.)

13

Observe that the view of Z changes from one that includes simulated signatures and tran-
scripts to one that includes the real signatures and transcripts. The difference, however, should
be negligible due to the simulation blindness property. Formally, we claim the following.

Claim 1. There exists D∗ such that, for any A and Z, Pr[X0]− Pr[X1] ≤ Advsib
D∗(λ).

Proof. By using Z and A as black-boxes, we construct D∗ that plays in SimBLBS
D∗(λ, b) as

follows.

• (Initial Corruption.) Given Σ from SimBLBS
D∗ , D

∗ first runs Z (and A) and receives the
choice of corrupt players. Then D∗ simulates S and Fncb as follows.

• (Key Generation.) If Z sends (KeyGen, sid) to honest P̂s, compute (vk, sk)← BS.Key(1λ)
and define v properly. Then return (Generated, sid, v) to Z. If P̂s is corrupted, wait for
v to appear in the succeeding commands given from Z. Once it is received, retrieve vk.
Either way, output vk to experiment SimBLBS

D∗ .

• (Signature Generation with Honest User.) If Z sends (Request, sid, ssid, v ,m) to honest
P̂u, contact Ob with m as input. Then if P̂s is honest, interact with Ob by running P̂s with
sk. If P̂s outputs (Signed, sid, ssid), execute step (i) of Fncb and forward (Signed, sid, ssid)
to Z. If Ob outputs σ 6= ⊥, execute step (ii) of Fncb by using the received σ and send
(Received, sid, ssid, σ) to Z. On the other hand, if P̂s is corrupt, let A interact with Ob
on behalf of P̂s. If Ob outputs σ 6= ⊥, execute step (ii) of Fncb by using this σ and send
(Received, sid, ssid, σ) to Z.

• (Signature Generation with Corrupt User.) If A, working on behalf of a corrupt user, sends
(Request, sid, ssid, v) to honest P̂s, faithfully simulate honest P̂s with sk. If P̂s outputs
(Signed, sid, ssid), execute step (i) of Fncb and forward (Signed, sid, ssid) to Z.

• (Signature Verification.) If Z sends (Verify, sid, ssid, v ,m, σ) to Pv, execute the verifica-
tion process of Fncb.

Additionally, D∗ allows Z and A to communicate directly. If A contacts Fcrs, D
∗ gives Σ to

A. When Z outputs bit b̃ and stops, D∗ outputs b̃. This completes the specification of D∗.

In the above reduction, it is important to note that D∗ can see message m sent from Z to
honest P̂u. Thus D∗ can invoke Ob with correct m.

Observe that steps (i) and (ii) and the verification processes are done just as specified. So
the above simulation maintains list Γ in the same way as Fncb does in Game 0 (and Game 1).
Therefore, the view Z obtains from the verification process is in the proper distribution.

Now suppose that D∗ is playing in SimBLBS
D∗(λ, 0). The CRS is then the output of SIM.Crs.

Since D∗ is interacting with O0, the user-side of the signature generation process involves
SIM.User and the returned signature is created by SIM.Sig. Hence the joint view of Z and
A is identical to one obtained by interacting with S and Fncb as in Game 0. Next suppose
that D∗ is playing in SimBLBS

D∗(λ, 1). The CRS is the real one created by BS.Crs. Since D∗

is interacting with O1, the signature generation process is run faithfully just like it was run in
Game 1. Accordingly, the joint view of Z and A is a proper one obtained in Game 1. Since the
final decision of D∗ follows that of Z, we have

Pr[X0]− Pr[X1] = Pr[SimBLBS
D∗(λ, 0) = 1]− Pr[SimBLBS

D∗(λ, 1) = 1] ≤ Advsib
D∗(λ)

14

as claimed.

Game 2. Modify Fncb so that it sets f = ϕ in step 4(b) of the signature verification process.
Observe that this modification makes the counter meaningless since the verification process
always follows the result of the verification function in step 4. The difference appears only if
ϕ = 1 happens when entering step 4(b), and we show that such an event implies breaking of the
unforgeability. Note that if Ps is corrupt, step 4(b) is never executed. Hence it is sufficient to
consider the case where Ps is not corrupt.

Let EventF denote the event such that ϕ = 1 happens when entering step 4(b). The view
of Z changes between Game 1 and Game 2 if and only if EventF happens. It thus holds that
Pr[X1]− Pr[X2] ≤ Pr[EventF]. We claim the following.

Claim 2. There exists F ∗ such that, for every A and Z, Pr[X1] − Pr[X2] ≤ Pr[EventF] ≤
SuccufF ∗(λ).

Proof. We show that, if there exists Z and A that cause EventF, then we can construct an
adversary F ∗ that breaks the weak unforgeability of BS. Thus Pr[EventF] ≤ SuccufF ∗(λ).

Suppose that EventF happens while processing (Verify, sid, ssid, v ,m?, σ?). Let Γ be the
list held by Fncb at that moment. Let Γhonest ⊆ Γ be the collection of (m,σ, 1) recorded in
the signature generation process. Let Γuniq denote a subset of Γhonest that contains all distinct
messages. Also let Γ4.a ⊆ Γ be a collection of (m,σ, 1) that causes f = 1 in step 4(a). Let
khonest = |Γhonest|, kuniq = |Γuniq|, and k4.a = |Γ4.a|. Then the following hold.

1. Ccmpl = Cvalid (since step 4(a) of the verification process was not executed for this input.)

2. Cvalid = kuniq + k4.a (since Cvalid is increment only if a unique message is signed or a
signature is accepted in step 4(a).)

3. Ps is not corrupt and (m?, ∗, 1) 6∈ Γ. (Otherwise, step 3 of the verification process of Fncb

must have been executed.) Hence (m?, ∗, 1) 6∈ Γuniq nor (m?, ∗, 1) 6∈ Γ4.a.

4. For every (m,σ, 1) ∈ Γuniq, (m, ∗, 1) 6∈ Γ4.a. (Otherwise, step 3 of the verification process
must have been executed.) Thus Γuniq ∩ Γ4.a = ∅.

Let Γforge be Γforge = Γuniq ∪ Γ4.a ∪ {(m?, σ?, 1)}. From the above facts, it holds that Γforge

contains kuniq + k4.a + 1 = Ccmpl + 1 valid signatures on distinct messages. Since the signer
completes the signature generation process k = Ccmpl times, Γforge contains a successful k + 1
forgery.

Given the above reasoning, we can construct successful F ∗ from A and Z that causes EventF.
That is, F ∗ runs A and Z by simulating S with the help of the signing oracle 〈·,BS.Signer(Σ, sk)〉
in ForgeBSF ∗(λ). (Remember that the signer is honest here.) If EventF happens, F ∗ outputs Γforge,
which contains k + 1 valid signatures on distinct messages.

The following sequence of games, Game 3,. . . ,Game 5, only has superficial modifications to
Fncb and S that do not affect the view of Z.

Game 3. Modify the signature verification process of Fncb in such a way that, on receiv-
ing (Verify, sid, ssid, v ,m, σ), it computes ϕ = v(m,σ), records (m,σ, ϕ) to Γ, and sends
(Verified, sid, ssid, ϕ) to Pv.

15

We argue that this modification does not change the view of Z, i.e., Pr[X2] = Pr[X3]. Since
Game 3 simply replaces f with ϕ in its output to Pv, the difference appears only if there exists a
case that f 6= ϕ in Game 2. In Game 2, the value of f in steps 2 and 3 of the verification process
follows that of ϕ. In step 1, f follows f ′. There, entry (m,σ, [f ′]) could have been recorded in
the signature generation process that generates σ or in the past verification process that verified
(m,σ). If (m,σ, 1) has been recorded in the signature generation process, it has been verified
once by the honest user so that BS.Vrf(Σ, vk, σ,m) = 1 holds. Hence due to the completeness
(or consistency if the signer is corrupt), f ′ = 1 = ϕ. On the other hand, if the record is made
in the past signature verification process, f ′ is set to ϕ in step 2 or 3 of the past verification
process. Accordingly, in either case, f ′ = ϕ holds.

Game 4. Modify the signature generation process of Fncb by removing the halting condition.
(Thus Fncb no longer checks (m,σ, 0) ∈ Γ in the signing process.)

The halting condition could hold only if BS.Vrf(Σ, vk, σ,m) = 0 was observed in the verifi-
cation process, but later BS.Vrf(Σ, vk, σ,m) = 1 happens as a result of a completed signature
generation process. Due to the completeness (or the consistency in the case of a corrupt signer)
of the verification protocol, such an event could never happen in Game 3. Thus removing the
condition in Game 4 does not change the view of Z and Pr[X3] = Pr[X4] stands.

Game 5. Modify the signature generation process of Fncb in such a way that it no longer handles
Γ and the counters. On receiving (Signed, sid, ssid, σ) from S in the signature generation process,
Fncb simply forwards it to Pu.

Observe that in Game 4, Γ, Cvalid, and Ccmpl are referred nowhere. Hence, the modification
for this game simply removes relevant useless actions in Fncb. Thus, it does not change the view
of Z at all and Pr[X4] = Pr[X5] stands.

In Game 5, Fncb does nothing but connect the dummy players and S. Also S does nothing but
honestly simulate Fcrs, Pu, and Ps that execute Wrap(BS) in the presence of A by forwarding the
inputs from Fncb to the right entities as input from Z, and by returning their outputs (headed
to Z) to Fncb. Therefore, the view of Z in Game 5 is that obtained by executing protocol
Wrap(BS) in the Fcrs-hybrid model. Thus we have

Pr[X5] = Pr[execFcrs
π,A,Z(λ, a)]. (8)

From the bounds in (7) and (8) and Claim 1 and 2, we have

Pr[idealFncb,S,Z(λ, a)]− Pr[execFcrs
π,A,Z(λ, a)] ≤ Advsib

D∗(λ) + SuccufF ∗(λ), (9)

which is negligible due to the unforgeability and simulation blindness of BS.

(⇐ direction.) We start by showing that, if BS is not simulation blind, then for any S there exists
Z that successfully distinguishes ideal and exec. It is done in two steps. First we construct
simulation algorithms SIM.Crs, SIM.Sig, and SIM.User by using S as a subroutine. Since BS is not
simulation blind, there exists D∗ that successfully breaks the simulation blindness with respect
to those simulation algorithms. We then construct Z that uses D∗ as a subroutine. Z interacts
with the adversary, which is either S or A, so that their interaction simulates SimBLBS

D∗(λ, 0) or
SimBLBS

D∗(λ, 1), respectively. Accordingly, if D∗ distinguishes the simulation algorithms from
the real ones, Z distinguishes S and A as well. Note that we take advantage of Z being specific
to S.

A technical difficulty is that algorithms SIM.Crs, SIM.Sig, and SIM.User are independent
functions and have access to an independent copy of S. Since S is probabilistic, these functions

16

need to give the same randomness to S so that S behaves in exactly the same way for each
algorithm. Our idea is to use trapdoor t as a container for the randomness given to S. Details
follow.

Consider adversary A that behaves as follows. It first corrupts the signer Ps and outputs Σ
to Z. It then receives (KeyGen, sid) and v from Z. On further receiving (Request, sid, ssid, v),
it asks Z to take over the role of the signer. It will never block any communication. Let S be a
simulator for such A. We define SIM.Crs, SIM.Sig, and SIM.User as follows.

• SIM.Crs: On input security parameter λ and randomness r, run S with randomness r. S
corrupts signer Ps and outputs Σ. Set t = r and output (Σ, t).

• SIM.Sig: On input (Σ, vk,m, t; ξ), run S with randomness t(= r) and do the same as
SIM.Crs does up to the point S outputs Σ. (This procedure is needed to make S select
the same Σ.) Then properly form v with respect to vk and send (KeyGen, sid) and v to S.
When S outputs (Register, sid, v ,Π), compute σ ← Π(m; ξ) and output σ.

• SIM.User: This algorithm is stateful. On input (Σ, vk, t), run S with randomness t(= r)
and do the same as SIM.Sig up to the moment that S outputs (Register, sid, v ,Π). (This
procedure is done only for the first invocation of SIM.User.) Then send (Request, sid, ssid, v)
to S to let S start simulating the user-side in the signature generation protocol. Output
1 if S outputs (Signed, sid, ssid). Next time SIM.User is called, send (Request, sid, ssid, v)
with fresh ssid to S and repeat the process.

Note that, in SIM.Sig, simulator S will output (Register, sid, v ,Π) to complete the key genera-
tion process before any signature generation process starts since A does so in the real protocol.
Also note that, in SIM.User, S must output (Signed, sid, ssid) in polynomial time whenever
the signer completes the protocol since A does not interfere with the communication and the
corresponding honest user outputs a signature in polynomial time.

Since we assumed that BS is not simulation blind, there exists an algorithm D∗ whose
advantage Advsib

D∗(λ) with respect to the above (SIM.Crs, SIM.Sig,SIM.User) is not negligible.
We now construct Z that uses D∗ by simulating SimBLBS

D∗(λ, b) as follows.

• Z runs the adversary, A or S. The adversary corrupts the signer and sends Σ to Z.

• Z executes vk ← D∗(Σ) and properly forms v with respect to vk.

• Z sends (KeyGen, sid) and v to the adversary working on behalf of the corrupt signer.

• If D∗ accesses Ob with message m, Z sends (Request, sid, ssid, v ,m) to an honest user
to invoke the signature generation process. If the adversary asks Z to interact with
the user on behalf of the corrupt signer, let D∗ take over the interaction. (Remember
that D∗ plays the role of the signer while it interacts with Ob.) When the user outputs
(Received, sid, ssid, σ), send σ to D∗.

Let us verify the view of D∗. Consider the case that Z is working with adversary A in
execFcrs

π,A,Z(λ, a). Σ is sampled from BS.Crs, and the signatures given to D∗ are generated by
the protocol execution between an honest user running BS.User and D∗. Hence, it corresponds
to the outputs from O1 and the view of D∗ is that of SimBLBS

D∗(λ, 1). Next consider the case
that Z is working with S in idealFncb,S,Z(λ, a). CRS Σ is that given from S as specified by
SIM.Crs. Observe that the interaction during the signature generation process is simulated by
S as specified by SIM.User. Observe also that the resulting signatures returned from Fncb are

17

created by Π registered by S exactly as specified by SIM.Sig. The distribution thus corresponds
to those from O0. Consequently, the view of D∗ is that of SimBLBS

D∗(λ, 0). Accordingly,

|Pr[execFcrs
π,A,Z(λ, a) = 1]− Pr[idealFncb,S,Z(λ, a) = 1]|

= |Pr[SimBLBS
D∗(λ, 1) = 1]− Pr[SimBLBS

D∗(λ, 0) = 1]|

= Advsib
D∗(λ),

(10)

which is not negligible if BS is not simulation blind.

We have shown that if Wrap(BS) securely realizes Fncb then BS is simulation blind. We now
show the “and” part of the theorem by constructing successful Z from adversary F ∗ that breaks
the unforgeability of BS assuming that BS is simulation blind. Z is as follows.

• Z runs F ∗. In responding to the request from F ∗, Z obtains k correct signatures through
an honest user. Eventually F ∗ outputs k + 1 signatures on distinct messages.

• If F ∗ fails to create k + 1 valid signatures that pass the verification function of BS, then
flip a coin and output 1 with probability 1/2 and stop.

• Otherwise, Z asks an honest user to verify these k + 1 signatures. If all of them are
accepted, output 1. Otherwise, output 0.

If Z is working in execFcrs
π,A,Z , the signatures given to F ∗ are the genuine ones as required

in ForgeBSF ∗ . Thus, with probability SuccufF ∗(λ), adversary F ∗ outputs k + 1 signatures that
pass the verification function of BS. In such a case, all k + 1 signatures will be accepted with
probability 1. Therefore,

Pr[execFcrs
π,A,Z(λ, a) = 1] = SuccufF ∗(λ) · 1 + (1− SuccufF ∗(λ)) · 1

2
. (11)

If Z is working in idealFncb,S,Z , the signatures given to F ∗ are the simulated ones. Since
BS is simulation blind, F ∗ is still successful in creating k + 1 valid signatures with probability
of at least SuccufF ∗(λ)−Advsib

D∗(λ). However, Z observes only k acceptance due to the absolute
unforgeability posed by the counter. Therefore,

Pr[idealFncb,S,Z(λ, a) = 0] = (SuccufF ∗(λ)−Advsib
D∗(λ)) · 1 + (1− (SuccufF ∗(λ)−Advsib

D∗(λ))) · 1

2

=
1

2
(1 + SuccufF ∗(λ)−Advsib

D∗(λ)),

(12)

where D∗ is an adversary constructed from Z and attacks simulation blindness. From (11) and
(12) we have

Pr[execFcrs
π,A,Z(λ, a) = 1]− Pr[idealFncb,S,Z(λ, a) = 1] = SuccufF ∗(λ)− 1

2
Advsib

D∗(λ), (13)

which is not negligible if BS is not unforgeable while it is simulation blind.

18

5.2 Universal Composability of Fischlin’s Generic Scheme

We revisit Fischlin’s construction of a stand-alone blind signature scheme that provides blindness
and unforgeability in the CRS model. While the original scheme in [17] uses a public-key en-
cryption and a non-interactive zero-knowledge proof, our description treats them in a combined
way as a non-interactive zero-knowledge proof of knowledge [32]. It allows a simpler description
and more abstract arguments. The building blocks are the following. See Appendix B for details
of these components.

• SIG = SIG.{Key, Sign,Vrf}: A signature scheme that is existentially unforgeable against
chosen message attacks.

• BC = BC.{Key,Com,Vrf}: A commitment scheme that fulfills binding and hiding proper-
ties in any flavor.

• NIZK = NIZK.{Crs,Prf,Vrf, SimPrf,Ext}: A multi-theorem non-interactive zero-knowledge
proof of knowledge for witness (s, c, z) that satisfies relation

BC.Vrf(Σbc, c,m, z) = 1 ∧ SIG.Vrf(vk, c, s) = 1. (14)

The CRS generation function BS.Crs computes (Σzk, tzk)← NIZK.Crs(1λ) and Σbc ← BC.Key(1λ)
and outputs Σ ← (Σzk,Σbc). BS.Key is the same as SIG.Key, which outputs vk and sk.
The signature generation protocol is shown in Figure 4. Verification function BS.Vrf takes
((Σzk,Σbc), vk, σ,m) as input and outputs ϕ ∈ {0, 1} such that ϕ← NIZK.Vrf(Σzk, (vk,Σbc,m), σ).

Signer Ps Σ = (Σzk,Σbc) User Pu

BS.Signer(Σ, sk) BS.User(Σ, vk,m)

� c
(c, z)← BC.Com(Σbc,m)

s← SIG.Sign(sk, c)
-s

Output completed. If SIG.Vrf(vk, s, c) 6= 1 output ⊥.
σ ← NIZK.Prf(Σzk, x, w) where

x← (vk,Σbc,m) and
w ← (s, c, z).

Output σ.

Figure 4: Fischlin’s Basic Blind Signature Scheme BSG. Signature Generation Protocol.

Proposition 1. Protocol Wrap(BSG) securely realizes Fncb in the Fcrs-hybrid model with respect
to static adversaries.

Proof. According to Theorem 2 and Lemma 3, it suffices to show that BSG is unforgeable,
signature simulatable, and session simulatable for a separable trapdoor generator.

Claim 3. BSG is unforgeable if NIZK is knowledge sound, SIG is existentially unforgeable against
chosen message attacks, and BC is binding.

If the adversary outputs k+1 valid (m,σ), then NIZK.Ext extracts k+1 tuples of (m, s, c, z).
Due to the knowledge soundness of NIZK, they must satisfy BC.Vrf(Σbc, c,m, z) = 1 and
SIG.Vrf(vk, c, s) = 1. (Note that simulation soundness is not needed here since we can pro-
vide correct witnesses for the reduction.) Now, if there is c that is not included in the signer’s

19

view, the existential unforgeability of SIG is broken. On the other hand, if no such c exists, by
the pigeon-hole principle, there must be a pair (m, s, c, z) and (m′, s′, c, z′) where m 6= m′. This
breaks the binding property of BC.

Claim 4. BSG has a separable trapdoor generator.

We construct SIM.Crs as follows. Given λ, it computes (Σzk, tzk)← NIZK.Crs(1λ) and Σbc ←
BC.Key(1λ), and outputs ((Σzk,Σbc), (tzk, ∅)), where tzk is the first part and the second part is
empty. Then from the zero-knowledge property of NIZK, (Σzk,Σbc) is indistinguishable from
the real ones. The trapdoors are also trivially independent of each other. SIM.Crs is thus a
separable trapdoor generator for BSG.

Claim 5. BSG is signature simulatable with respect to the above SIM.Crs if NIZK is multi-
theorem zero-knowledge.

Define SIM.Sig as an algorithm such that, given ((Σzk,Σbc), vk,m, tzk), it computes σ ←
NIZK.SimPrf(tzk, (vk,Σbc,m)) and outputs σ. Then it is straightforward to show that breaking
the signature simulatability for such SIM.Sig implies breaking the multi-theorem zero-knowledge
property of NIZK.

Claim 6. BSG is session blind with respect to the above SIM.Crs if BC is hiding.

Define SIM.User as follows. Given input ((Σzk,Σbc), vk, ∅), SIM.User selects a random mes-
sage m′ ∈ M, computes (c, z)← BC.Com(Σbc,m

′), and outputs c. On receiving s, it computes
δ ← SIG.Vrf(vk, s, c) and outputs δ. Now it is obvious that breaking the session blindness with
respect to such SIM.User implies breaking the hiding property of BC. Note that tzk has to be
given to the adversary in the experiment of session blindness. It is, however, independent of BC,
and the reduction algorithm can generate it by itself.

5.3 Other Generic Constructions

In the proof of Proposition 1, the signature simulatability of BSG is shown by simulating the
user-side algorithm. The observation immediately raises an alternative approach that simu-
lates the signer-side algorithm. For this purpose, we introduce a simulatable signature scheme.
(See Appendix B.6.) It is a signature scheme in the CRS model with an extra function,
SSIG.Sim, that takes trapdoor tssig associated with CRS Σssig and generates acceptable sig-
natures as well as the original signing algorithm SIG.Sign. Given such a simulatable signa-
ture scheme, we construct SIM.Sig in such a way that it computes (c, z) ← BC.Com(Σbc,m),
s ← SSIG.Sim(Σssig, pkssig,m, tssig), and σ ← NIZK.Prf(Σzk, x, w) for x = (vk, (Σssig,Σbc),m),
and w = (s, c, z) and outputs σ. With this structure, the scheme provides signature simulata-
bility based on the witness indistinguishability of NIZK. (Zero-knowledge is no longer needed
and witness indistinguishability is sufficient since a correct witness is available.) This particular
structure is suggested in [23], where it is used as a starting point for removing the CRS in the
stand-alone model. We will take advantage of the structure for achieving adaptive security in
Section 6.

The above methodology applies to a class of blind signature schemes that includes classical
“blind–sign–unblind” type constructions. Namely, if the “sign” part can be simulatable in the
CRS model, the scheme can be turned into a universally composable one by following our
framework. This observation suggests revisiting existing efficient schemes in several settings and

20

seeing if their “sign” part can be efficiently simulatable. In general, as shown in [6, 23], such
simulatability at the signer’s side is obtained by publishing a NIZK proof of knowledge of the
secret key as a part of the public-key.

6 Adaptive Security

6.1 State Reconstructability in Stand-Alone Notions

We first stress that adaptive corruption on the signer can be handled without any difficulty.
Observe that, in the proof of Theorem 2, the signer is simulated simply by following the protocol
when the signer is not corrupted. However, if the signer is corrupted, simulator S simply follows
A to simulate the corrupted signer. Accordingly, S in the adaptive case simulates signer P̂s
faithfully by the moment it is corrupted, then reveals the whole view of P̂s on corruption and
follows A thereafter. This results in a perfect simulation of the signer.

In contrast, handling adaptive corruption on a user demands equivocability through state
reconstruction so that a consistent view can be provided to A. To capture this strong property,
we enhance simulation blindness as follows.

Definition 8 (Equivocal Simulation Blindness: EqSimBLND). A blind signature scheme
BS is equivocal simulation blind if there exists a tuple of probabilistic algorithms SIM.Crs,
SIM.User, SIM.Sig, and SIM.State that fulfill the following. SIM.User and SIM.State may be
stateful and SIM.Sig is stateless. Advantage Adveqsib

D∗ (λ) = |Pr[EqSimBLBS
D∗(λ, 0) = 1] −

Pr[EqSimBLBS
D∗(λ, 1) = 1]| is negligible in λ for any algorithm D∗, where EqSimBLBS

D∗(λ, b) is
the same experiment as SimBLBS

D∗(λ, b) (see Definition 4) with the following oracles.

O1(Σ, vk,m, t)
σ ← 〈BS.User(Σ, vk,m; r), D∗〉L
Output (σ, r)

O0(Σ, vk,m, t)
δ[ωu]← 〈SIM.User(Σ, vk, t), D∗〉L
σ[ωs]← SIM.Sig(Σ, vk,m, t)
r ← SIM.State(ωu, ωs)
If δ = 0, then set σ = ⊥.
Output (σ, r)

Denoted by ωu and ωs are the state information of SIM.User and SIM.Sig, respectively.

Note that SIM.State is supposed to simulate randomness even for the case where the interac-
tion between SIM.User and D∗ is terminated abnormally. SIM.State can see how the interaction
is terminated as the view of SIM.User is given.

Definition 4, 8 and Lemma 1 indicate the following lemma.

Lemma 4. EqSimBLND ⇒ BL

As well as the static case, we provide more easily applicable notions by deconstructing
equivocal simulation blindness. In addition to the separable trapdoor generation property, we
consider the case where separate randomness is used for blinding the session and the signature.

Definition 9 (Signature Equivocality: SigEq). A blind signature scheme BS is signature
equivocal with respect to SIM.Crs if there exists probabilistic algorithms SIM.Sig and SIM.SigState
such that Advsigeq

A∗ (λ) = |Pr[SigEQBS
A∗(λ, 0) = 1]−Pr[SigEQBS

A∗(λ, 1) = 1]| is negligible in λ for

21

any algorithm A∗, where experiment SigEQBS
A∗(λ, b) is the same as SigSIMBS

A∗(λ, b) in Defini-
tion 6 except for using modified oracle Ob as follows.

O1(Σ, vk,m, t1)
σ ← 〈BS.User(Σ, vk,m; r1||r2), A∗〉L
Output (σ, r1||r2)

O0(Σ, vk,m, t1)
σ[θ]← 〈BS.User(Σ, vk,m; r1||r2), A∗〉L
σ′[ωs]← SIM.Sig(Σ, vk,m, t1)
r′1 ← SIM.SigState(θ, ωs)
If σ = ⊥, then σ′ ← ⊥, r′1 ← r1.
Output (σ′, r′1||r2)

Symbol θ is the transcript observed by BS.User, and ωs is the state information of SIM.Sig.

Note that the above oracles work exactly the same when σ = ⊥, i.e., BS.User terminates
abnormally.

Definition 10 (Session Equivocality: SesEq). A blind signature scheme BS is session equiv-
ocal with respect to SIM.Crs if there exists probabilistic algorithms SIM.User and SIM.SesState
such that Advseseq

E∗ (λ) = |Pr[SesEQBS
E∗(λ, 0) = 1]−Pr[SesEQBS

E∗(λ, 1) = 1]| is negligible in λ for
any algorithm E∗, where experiment SesEQBS

E∗ is the same as SesSIMBS
E∗ in Definition 7 except

for using the following modified oracles.

O1(Σ, vk,m, t2):
〈BS.User(Σ, vk,m; r1||r2), E∗〉
Return r2

O0(Σ, vk,m, t2):
δ[ωu]← 〈SIM.User(Σ, vk, t2), E∗〉L
r2 ← SIM.SesState(ωu,m)
Return r2

Lemma 5 (SesEq ∧ SigEq ⇒ EqSimBLND). If BS has a separable trapdoor generator and is
signature equivocal and session equivocal with respect to the generator, then BS is equivocal
simulation blind.

The proof is in Appendix A.3, which is quite similar to the proof of Lemma 3 but additionally
considers state reconstruction through SIM.SigState and SIM.SesState.

We next consider restricted simulation blindness for capturing the erasure model. Let EqSim-
BLND/R be equivocal simulation blindness with a restriction such that the oracles return r only
if σ = ⊥ in Definition 8. Namely, randomness is revealed only when the (simulated) signature
generation protocol is abnormally terminated. Observe that oracles O1 and O0 in Definition 9
are identical when σ = ⊥ and hence SIM.SigState is useless if we only consider such a case.
Therefore, if the randomness is returned only in such a case, SIM.SigState can be removed.
Since SigEq and SigSim differ only in the presence of SIM.SigState, removing SIM.SigState turns
SigEq in Lemma 5 into SigSim. Thus we have the following lemma such that we no longer need
equivocability in the signature simulatability to achieve the limited simulation blindness. It will
be used in Section 6.3, where the adaptive security of Fischlin’s scheme is considered in the
erasure model. A proof can be derived from that of Lemma 5.

Lemma 6 (SesEq ∧ SigSim ⇒ EqSimBLND/R). If BS has a separable trapdoor generator and
is (regular) signature simulatable and session equivocal with respect to the generator, then BS is
equivocal simulation blind with a restriction such that r is returned only if σ = ⊥.

22

6.2 Main Theorems in Adaptive Case

Similar to the static case, we present theorems such that unforgeability and equivocal simulation
blindness are necessary and sufficient for adaptive UC blind signatures.

Theorem 3 (UF ∧ EqSimBLND ⇔ Fncb[adaptive,non-erasure]). If BS is unforgeable and equiv-
ocal simulation blind, then protocol Wrap(BS) securely realizes Fncb with respect to adaptive
adversaries.

Proof. (⇒ direction.) The proof is almost the same as that for Theorem 2. We use the simulator
shown in Figure 3 with the following modifications to handle adaptive corruptions.

• (Corruption of P̂s). Simulator S sends A all the randomness used for simulating P̂s so
far. It includes randomness used for key generation if corruption happens after the key
generation process. (This is possible since P̂s is simulated simply by following the genuine
protocol.)

• (Corruption of P̂u). Suppose that P̂u was once engaged in δ[ωu]← 〈SIM.User(Σ, vk, t2), P̂s〉L.
By corrupting Pu in the ideal model, S obtains (m,σ) observed by Z with respect to the
protocol execution and ξ used as σ ← Π(m; ξ) by Fncb. (In the case of δ = 0, i.e., the
protocol is terminated abnormally, only m is given to S. Simulator S sets ξ randomly in
such a case.) S then constructs ωs from ξ and Π. (Recall that Π(·) is SIM.Sig(Σ, vk, ·, t).)
It then runs r ← SIM.State(ωu, ωs). S repeats the above procedure for every invocation of
SIM.User in the simulation of P̂u. (If there is a running copy of SIM.User, it is terminated
and δ is set to 0.) S then sends A all r obtained as above and all (Request, sid, ssid, v ,m)
and (Received, sid, ssid, σ) received from Fncb.

Once a party is corrupted, S follows the behavior of A working on behalf of the corrupted party.
The rest of the proof is the same as that of Theorem 2 except for Game 1. In Game 1 for this

case, S no longer uses SIM.State in responding corruptions but simply returns the randomness
used in the simulation of the corrupted party. (Note that with the modification in Game 1, all
parties are simulated faithfully until the moment they are corrupted.) Claim 1 is then restated

with upper bound Adveqsib
D∗ (λ).

The reduction algorithm D∗ in the proof of Claim 1 is modified as follows.

• Given Σ from SimBLBS
D∗ , D

∗ invokes Z. On receiving (KeyGen, sid) from Z, if Ps has not
been corrupted yet, D∗ generates (vk, sk) ← BS.Key(1λ) and outputs vk to SimBLBS

D∗ .
Otherwise, D∗ receives (Generated, sid, v) from A and outputs vk to SimBLBS

D∗ .

• On receiving corruption on P̂s after key generation, send the view of P̂s to A.

• If Z sends (Request, sid, ssid, v ,m) to Pu, contact Ob with m as input. Then, if Ps is
honest, engage in the signature generation protocol by faithfully running Ps with sk.
Otherwise, if Ps is corrupt (or corrupted while running the protocol), let A execute the
protocol on behalf of Ps. If Ps outputs (Signed, sid, ssid), send it to Z. If Ob outputs
(σ, r), send (Received, sid, ssid, σ) to Z and store r.

• On receiving corruption on user P̂u, do the following. For every invocation of Ob with
respect to P̂u, if (σ, r) has already been returned from the oracle, send r to A. If there
is a session that Ob is still running (i.e., interacting with the signer), suspend the signer
and let Ob terminate abnormally so that it outputs (⊥, r) now. Then return r to A and
resume the signer (so that it can continue the protocol with the corrupt user).

23

Observe that r received from Ob are real if b = 1, while they are computed by SIM.State if b = 0.
The rest of the proof then follows that of Claim 1.

(⇐ direction.) The outline of the proof is the same as that of Theorem 2. Construction of
SIM.Sig and SIM.User is unchanged except that they additionally output the state information
ωs and ωu, which are the views of the algorithms. To meet the definition of equivocal simula-
tion blindness, we have to construct SIM.State. Consider adversary A that corrupts a user (on
request from Z) and outputs randomness r used by the user. Then simulator S does the same.
Now, on input state information ωu and ωs, SIM.State runs S up to the point it reaches the
same state as S in SIM.User. Then let S corrupt the user that made the signature generation
request (since the user is a simulated one in SIM.User, its identity is available from ωu), and give
(σ,m, ξ) that corresponds to the target sub-session. Note that randomness ξ is computed from
ωs. Eventually S outputs r, and SIM.State outputs r. Z is then adjusted in the following way.
On receiving (Received, sid, ssid, σ) from the user, Z corrupts the user and receives r from the
adversary. It then sends (σ, r) to D∗. The rest of the proof is the same as that for Theorem 2.

In the secure erasure model, we have a similar theorem, as shown in Theorem 4. It can
be proven in the same way as that for Theorem 3 with modification so that randomness r is
considered only in the case of σ = ⊥.

Theorem 4 (UF ∧ EqSimBLND/R ⇔ Fncb[adaptive,erasure]). If BS is unforgeable and equiv-
ocal simulation blind with restriction, then protocol Wrap(BS) securely realizes Fncb with respect
to adaptive adversaries in the erasure model.

6.3 Construction in Erasure Model

In this section, we show that Fischlin’s scheme BSG can be UC secure even in the presence of
adaptive adversaries simply by replacing the commitment scheme with a trapdoor commitment
scheme. This result is limited to the erasure model where honest users can erase ephemeral
randomness when it is no longer needed in computation. It is often said that adaptive security is
technically easy with erasures. It is, however, not necessarily obtained for free without impact to
the efficiency. Thus it would be worthwhile to formally state that, only with a small modification,
Fischlin’s generic construction provides universal composability against adaptive adversaries in
the erasure model.

Let BST be a stand-alone blind signature scheme BSG in Figure 4 with modification such
that commitment scheme BC is replaced with a trapdoor commitment scheme TC. The following
theorem holds for BST.

Proposition 2. Protocol Wrap(BST) securely realizes Fncb in the Fcrs-hybrid model with respect
to adaptive adversaries in the erasure model.

Proof. Signature simulatability and unforgeability of BST can be shown in the same way as in
the proofs of Lemma 5 and 3, respectively. According to Theorem 4 and Lemma 6, it is thus
sufficient to show session equivocability.

Let SIM.Crs be an algorithm such that, given λ, it computes (Σzk, tzk)← NIZK.Crs(1λ), and
(Σtc, ttc) ← TC.Key(1λ) and outputs ((Σzk,Σtc), (tzk, ttc)). Clearly this SIM.Crs is a separable
trapdoor generator where 1 = tzk and 2 = ttc. Then, as well as Lemma 5, BST is signature
simulatable with respect to the generator. Adaptive session simulatability remains to be shown.
We construct SIM.User and SIM.SesState as follows.

24

SIM.User: Given ((Σzk,Σtc), vk, ttc; γ), let m′||r′ ← γ, compute (c, z′) ← TC.Com(Σtc,m
′; r′),

and send c to the signer. On receiving s, compute δ ← SIG.Vrf(vk, c, s), and output δ.

SIM.SesState: Given ((Σzk,Σtc), vk, ttc, γ,m, (c||s)), letm′||r′ ← γ, compute r ← TC.EqOpen(Σtc,
m,m′, r′, ttc) and output r.

Due to the uniform opening property of TC.EqOpen, the return value r of O0 distributes iden-
tically to that of O1 and is consistent with c observed through the interaction to the oracles.
Thus the above SIM.User and SIM.SesState conforms to session equivocability.

6.4 Construction without Secure Erasures

Protocol Wrap(BST) can be UC secure without erasure if we can construct SIM.SigState for BST.
However, signature equivocability is not generally possible in BST. Recall that a signature is
created by the zero-knowledge simulator in BST. It therefore can be the case that there exists
no randomness that is consistent with a real witness.

To overcome this problem, we consider eliminating the use of a zero-knowledge simulator by
providing a correct witness to the proof system through simulation of the signer-side algorithm.
Namely, we make the signer’s signing algorithm simulatable by using a signature scheme in the
CRS model so that valid signatures can be created with the trapdoor of the CRS. In this way, we
can always provide a witness to the proof system used in the user-side algorithm. Now, witness
indistinguishability of the proof system ensures that the same proof could have been created
from any other witnesses. Accordingly, a consistent randomness always exists.

To follow the above approach, we use two new building blocks for this construction; a simu-
latable signature scheme, SSIG (see Appendix B.6), and a state reconstructable non-interactive
witness indistinguishable proof system, NIWI (see Appendix B.4). We require two special prop-
erties for NIWI. First, it works as a proof of knowledge when the CRS is made in the regular
way, which is called the extraction mode. (This property is for proving unforgeability.) Second,
when the CRS is made in a special way, called the simulation mode, it allows computation of
a randomness that is consistent with a given proof and a witness with extra information ob-
served in creating the proof. (This property is for proving adaptive signature simulatability.) A
feasibility result that meets these requirements is shown in [22] under general assumptions.

The scheme BSS. The CRS generation function BS.Crs computes (Σwi, twi) ← NIWI.Crs(1λ),
(Σtc, ttc)← TC.Key(1λ), and (Σssig, tssig)← SSIG.Crs(1λ) and outputs Σ← (Σwi,Σbc,Σssig). Key
generation function BS.Key is the same as SIG.Key, which outputs vk and sk. The signature
generation protocol is shown in Figure 5. In Figure 5, the proof system NIWI proves the following
relation between witness w ← (s, c, z) and instance x← (vk,Σtc,Σssig,m):

TC.Vrf(Σtc, c,m, z) = 1 ∧ SSIG.Vrf(Σssig, vk, c, s) = 1. (15)

Verification function BS.Vrf takes ((Σwi,Σtc,Σssig), vk, σ,m) as input and outputs ϕ ∈ {0, 1}
such that ϕ← NIWI.Vrf(Σwi, (vk,Σtc,Σssig,m), σ).

Proposition 3. Protocol Wrap(BSS) securely realizes Fncb in the Fcrs-hybrid model with respect
to adaptive adversaries without erasures.

Proof. We first claim that BSS is signature equivocal. Let SIM.Crs be an algorithm such that,
given λ, it computes (Σwi, twieq)← NIWI.EqCrs(1λ), (Σtc, ttc)← TC.Key(1λ), and (Σssig, tssig)←

25

Signer Ps Σ = (Σwi,Σtc,Σssig) User Pu

BS.Signer(Σ, sk) BS.User(Σ, vk,m)

� c
(c, z)← TC.Com(Σtc,m)

s← SSIG.Sign(Σssig, sk, c)
-s

Output completed. If SSIG.Vrf(Σssig, vk, s, c) 6= 1 output ⊥.
σ ← NIWI.Prf(Σwi, x, w) where

x← (vk,Σtc,Σssig,m) and
w ← (s, c, z).

Output σ.

Figure 5: Generic blind signature scheme BSS. The signature generation protocol.

SSIG.Crs(1λ) and outputs Σ ← (Σwi,Σbc,Σssig) and a pair of trapdoors t1 = (twieq, tssig) and
t2 = (ttc). SIM.Crs forms a separable trapdoor generator due to the property of NIWI. We then
construct SIM.Sig and SIM.SigState as follows.

SIM.Sig: Given (Σ, vk,m, t1; γ), let r||r′||r′′ ← γ and compute (c′, z′) ← TC.Com(Σtc,m; r),
s′ ← SSIG.Sim(Σssig, pkssig, c

′, tssig; r′), and σ ← NIWI.Prf(Σwi, x, w
′; r′′) where the instance

is x = (vk,Σtc,Σssig,m) and the witness is w′ = (s′, c′, z′). Then output σ.

SIM.SigState: Given (Σ, vk,m, t1, ξ, r1, r2, θ), let c||s← θ and verify that (c, z)← TC.Com(Σtc,
m; r2) for some z and SSIG.Vrf(Σssig, vk, c, s) = 1. If the verification fails, return ∅. Oth-
erwise, let r||r′||r′′ ← ξ and compute (s′, c′, z′) in the same way as above, and com-
pute r1 ← NIWI.EqState(Σwi, twieq, x, w

′, r′′, w) for x = (vk,Σtc,Σssig,m), w′ = (s′, c′, z′),
w = (s, c, z). Then output r1.

According to O0 in Definition 9, we only need to consider the case where BS.User returns σ 6=
⊥. Recall that σ 6= ⊥ happens only if BS.User receives s that satisfies 1 = SSIG.Vrf(Σssig, vk, s, c).
Due to the signature simulatability of SSIG, s′ computed by SSIG.Sim used in SIM.Sig also
satisfies 1 = SSIG.Vrf(Σssig, vk, s

′, c′). This means that w′ = (s′, c′, z′) forms a proper witness.
Furthermore, simulated r1 distributes uniformly due to the uniform reconstructability of NIWI.
Accordingly, the joint distribution of the outputs from SIM.Sig and SIM.SigState inO0 is identical
to that of O1.

Session equivocability of BSS holds due to the use of TC as well as the case for BST. Then,
from Lemma 5, BSS is equivocal simulation blind. Furthermore, its unforgeability holds just
as well as that of BSG. By applying Theorem 3, we conclude that Wrap(BSS) securely realizes
Fncb.

7 Conclusion

Security notions and related theorems that help in designing and analyzing universally compos-
able non-committing blind signatures were presented. One direction for further research is to
find efficient instantiations with stronger security analysis and weaker assumptions. It would also
be interesting to see if similar simplification is possible for protocols other than blind signatures
without losing their major applications.

26

References

[1] M. Abe and E. Fujisaki. How to date blind signatures. In K. Kim and T. Matsumoto,
editors, Advances in Cryptology – ASIACRYPT ’96, volume 1163 of LNCS, pages 244–251.
Springer-Verlag, 1996.

[2] M. Abe and T. Okamoto. Provably secure partially blind signatures. In M. Bellare, editor,
Advances in Cryptology — CRYPTO 2000, volume 1880 of LNCS, pages 271–286. Springer-
Verlag, 2000.

[3] M. Bellare, C. Namprempre, D. Pointcheval, and M. Semanko. The one-more-rsa-inversion
problems and the security of chaum’s blind signature scheme. Journal of Cryptology,
16(3):185–215, 2003.

[4] A. Boldyreva. Threshold signatures, multisignatures and blind signatures based on the
gap-diffie-hellman-group signature scheme. In PKC’03, LNCS. Springer-Verlag, 2003. (to
appear).

[5] S. Brands. Restrictive blinding of secret-key certificates. Technical report, CWI (Centrum
voor Wiskunde en Informatica), 1995.

[6] A. B. Buan and K. G. L. Kr̊akmo. Universally composable blind signatures in the plain
model. IACR ePrint Archive 2006/405, 2006.

[7] J. Camenisch, J.-M. Piveteau, and M. Stadler. Blind signatures based on the discrete
logarithm problem. In A. D. Santis, editor, Advances in Cryptology – EUROCRYPT ’94,
volume 950 of LNCS, pages 428–432. Springer-Verlag, 1995.

[8] J. Camenisch, J.-M. Piveteau, and M. Stadler. Fair blind signatures. In L. C. Guillou
and J.-J. Quisquater, editors, Advances in Cryptology — EUROCRYPT ’95, volume 921 of
LNCS, pages 209–219. Springer-Verlag, 1995.

[9] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols.
In Proceedings of the 42nd IEEE Annual Symposium on Foundations of Computer Science,
pages 136–145, 2001.

[10] R. Canetti. On universally composable notions of security for signature, certi-
fication and authentication. Cryptology ePrint Archive, Report 2003/239, 2003.
http://eprint.iacr.org.

[11] R. Canetti. Universally composable signatures, certification and authentication. In 17th
Computer Security Foundations Workshop (CSFW), 2004. Revised version available in
IACR ePrint archive 2003/239.

[12] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols.
Technical Report 2000/067, IACR e-print Archive, 2005. 2nd version updated on 13 Dec
2005.

[13] R. Canetti and M. Fischlin. Universally composable commitments. In J. Kilian, editor,
Advances in Cryptology - CRYPTO 2001, volume 2139 of LNCS, pages 19–40. Springer-
Verlag, 2001.

27

[14] R. Canetti and T. Rabin. Universal composition with joint state. In Advances in Cryptology
- CRYPTO 2003, volume 2729 of LNCS, pages 265–281. Springer, 2003.

[15] D. Chaum. Blind signatures for untraceable payments. In D. Chaum, R. Rivest, and
A. Sherman, editors, Advances in Cryptology — Proceedings of Crypto ’82, pages 199–204.
Prenum Publishing Corporation, 1982.

[16] D. L. Chaum. Elections with unconditionally-secret ballots and disruptions equivalent to
breaking RSA. In C. G. Günther, editor, Advances in Cryptology — EUROCRYPT ’88,
volume 330 of LNCS, pages 177–182. Springer-Verlag, 1988.

[17] M. Fischlin. Round-optimal composable blind signatures in the common reference model.
In C. Dwork, editor, Advances in Cryptology — CRYPTO ’06, volume 4117 of LNCS, pages
60–77. Springer-Verlag, 2006.

[18] M. Fischlin and D. Schröder. Security of blind signatures under aborts. In Public Key
Cryptography, PKC 2009, volume 5443 of LNCS, pages 297–316. Springer-Verlag, 2009.

[19] A. Fujioka, T. Okamoto, and K. Ohta. A practical secret voting scheme for large scale
elections. In J. Seberry and Y. Zheng, editors, Advances in Cryptology — AUSCRYPT ’92,
volume 718 of LNCS, pages 244–251. Springer-Verlag, 1993.

[20] J. Garay, A. Kiayias, and H.-S. Zhou. Sound and fine-grain specification of cryptographic
tasks. IACR ePrint Archive 2008/132, 2008.

[21] J. Groth. Simulation-sound nizk proofs for a practical language and constant size group
signatures. In X. Lai and K. Chen, editors, Advances in Cryptology - ASIACRYPT 2006,
volume 4284 of LNCS, pages 444–459. Springer-Verlag, 2006.

[22] J. Groth, R. Ostrovsky, and A. Sahai. Perfect non-interactive zero knowledge for NP. In
S. Vaudenay, editor, Advances in Cryptology - EUROCRYPT 2006, volume 4004 of LNCS,
pages 339–358. Springer-Verlag, 2006.

[23] C. Hazay, J. Katz, C. Koo, and Y. Lindell. Concurrently-secure blind signatures without
random oracles or setup assumptions. In Theory of Cryptography Conference, TCC 2007,
volume 4392 of LNCS, pages 323–341. Springer-Verlag, 2007.

[24] A. Juels, M. Luby, and R. Ostrovsky. Security of blind digital signatures. In B. S. Kaliski Jr.,
editor, Advances in Cryptology — CRYPTO ’97, volume 1294 of LNCS, pages 150–164.
Springer-Verlag, 1997.

[25] A. Kiayias and H. Zhou. Concurrent blind signatures without random oracles. In SCN
2006, volume 4116 of LNCS, pages 49–62. Springer-Verlag, 2006.

[26] A. Kiayias and H. Zhou. Equivocal blind signatures and adaptive uc-security. In R. Canetti,
editor, Theory of Cryptography Conference, TCC 2008, volume 4948 of LNCS, pages 340–
355. Springer-Verlag, 2008.

[27] Y. Lindell. Bounded-concurrent secure two-party computation without setup assumptions.
In STOC, pages 683–692. ACM, 2003.

[28] Y. Lindell. Lower bounds and impossibility results for concurrent self composition. Journal
of Cryptology, 21(2):200–249, 2008.

28

[29] T. Okamoto. Efficient blind and partially blind signatures without random oracles. In
S. Halevi and T. Rabin, editors, Theory of Cryptography Conference, TCC 2006, volume
3876 of LNCS, pages 80–99. Springer-Verlag, 2006. Full version avaialble on ePrint archive.

[30] D. Pointcheval and J. Stern. Security arguments for digital signatures and blind signatures.
Journal of Cryptology, 13(3):339–360, 2000.

[31] A. D. Santis, G. D. Crescenzo, R. Ostrovsky, G. Persiano, and A. Sahai. Robust non-
interactive zero knowledge. In J. Kilian, editor, Advances in Cryptology - CRYPTO 2001,
volume 2139 of LNCS, pages 566–598. Springer-Verlag, 2001.

[32] A. D. Santis and G. Persiano. Zero-knowledge proofs of knowledge without interaction
(extended abstract). In Proceedings of the 33rd IEEE Annual Symposium on Foundations
of Computer Science, pages 427–436. IEEE, 1992.

[33] C. P. Schnorr. Security of blind discrete log signatures against interactive attacks. In
S. Qing, T. Okamoto, and J. Zhou, editors, Information and Communications Security,
volume 2229 of LNCS, pages 1–12. Springer-Verlag, 2001.

[34] F. Zhang and K. Kim. ID-based blind signature and ring signature from pairings. In
Y. Zheng, editor, Advances in Cryptology – Asiacrypt 2002, volume 2501 of LNCS, pages
533–547. Springer-Verlag, 2002.

Appendices

A Proofs

A.1 Proof of Lemma 1 (SimBL ⇒ BL)

Suppose that BS is not blind, i.e., there exists adversaryB∗ such that Advbl
B∗(λ) = Pr[BlindBS

B∗(λ, 1) =
1]− Pr[BlindBS

B∗(λ, 0) = 1] > 0 is not negligible. By using such B∗ as a black-box we construct
D∗ attacking the simulation blindness as follows.

• Given Σ from SimBLBS
D∗(λ, b), flip a coin b′ ← {0, 1} and do the following.

– Execute (vk,m0,m1)← B∗(Σ) and output vk to SimBLBS
D∗(λ, b).

– Execute σb′ ← 〈Ob(mb′), B
∗〉L. Namely, ask Ob with message mb′ and let the suc-

ceeding interaction done by B∗.

– Similarly, execute σ1−b′ ← 〈Ob(m1−b′), B
∗〉L.

– If σ0 = ⊥ or σ1 = ⊥, then set σ0 = σ1 = ⊥.

– Execute b̃′ ← B∗(σ1, σ0).

• Set b̃ = 1 if b̃′ = b′, or b̃ = 0, otherwise. Output b̃.

Consider the case b = 1. Oracle O1 works faithfully as a user requesting a signature on
the given message and return the resulting signature. Thus the view of B∗ is in the proper

29

distribution obtained in BlindBS
B∗(λ, b

′). Accordingly, under the condition of b = 1, we have

Pr[b̃ = 1] = Pr[b̃′ = b′]

= Pr[b′ = 1] · Pr[b̃′ = 1 | b′ = 1] + Pr[b′ = 0] · Pr[b̃′ = 0 | b′ = 0]

=
1

2
· Pr[b̃′ = 1 | b′ = 1] +

1

2
(1− Pr[b̃′ = 1 | b′ = 0])

=
1

2
(Pr[b̃′ = 1 | b′ = 1]− Pr[b̃′ = 1 | b′ = 0]) +

1

2

=
1

2
Advbl

B∗(λ) +
1

2
.

(16)

Next consider the case b = 0. In each invocation, oracle O0 executes SIM.User(Σ, vk, t) that
is independent of the input message mb′ and m1−b′ . Furthermore, the simulated signatures are
generated by function SIM.Sig whose input (Σ, vk, ·, t) is common in both signature generation
processes. Thus the resulting signatures are also independent from the view of B∗ in the sig-
nature generation processes. Accordingly, the entire view of B∗ is absolutely independent of b′.
Therefore, under the condition of b = 0, we have

Pr[b̃ = 1] = Pr[b̃′ = b′] =
1

2
. (17)

From (16), (17) and the definition of Advsib
D∗(λ), we have

Advsib
D∗(λ) =

∣∣∣Pr[b̃ = 1 | b = 1]− Pr[b̃ = 1 | b = 0]
∣∣∣

=
1

2
Advbl

B∗(λ) +
1

2
− 1

2

=
1

2
Advbl

B∗(λ).

(18)

Accordingly, if BS is simulation blind, i.e. Advsib
D∗(λ) is negligible for any D∗, no such B∗ exists.

Thus BS is blind.

Note that, reduction algorithm D∗ can provide B∗ the information that shows in which
session oracle Ob returns ⊥. In the case of b = 1, it gives B∗ a view of selective failure blindness.
In the case of b = 0, the probability of guessing b′ remains 1/2. Thus we conclude that simulation
blindness implies selective failure blindness.

A.2 Proof of Lemma 2 (BL ∧ UF ; SimBL)

Let BS be a blind and unforgeable blind signature scheme in the plain model, e.g., [23]. BS
can also be seen as a blind and unforgeable scheme in the CRS model whose CRS is a con-
stant string, say ∅. Suppose that BS is simulation blind. Then, there exists SIM.Crs and
SIM.Sig that yield valid signatures for given messages. By using these algorithms, we con-
struct adversary F ∗ that breaks unforgeability of BS. F ∗ simply executes (∅, t) ← SIM.Crs(1λ)
and σ ← SIM.Sig(Σ, vk,m, t) for arbitrary message m and outputs (m,σ). Since SIM.Crs and
SIM.Sig must be able to simulate the signature generation process between an honest user and
honest signer, resulting (m,σ) must be a valid signature with probability close to 1. Thus
SuccufF ∗(λ) ≈ 1, which is a contradiction. Hence the scheme, BS, is not simulation blind.

30

A.3 Proof of Lemma 5 (SesEq ∧ SigEq ⇒ EqSimBLND)

Starting from EqSimBLBS
D∗(λ, 1), we move to EqSimBLBS

D∗(λ, 0) via three transformations and
show that each step changes the view of adversary D∗ only in negligible manner. Let Xi denote
the event that D∗ outputs 1 in Game i.

Game 0. This game is the same as EqSimBLBS
D∗(λ, 1). We thus have

Pr[X0] = Pr[EqSimBLBS
D∗(λ, 1)] (19)

by definition.

Game 1. Replace BS.Crs(1λ) with SIM.Crs(1λ).

Since SIM.Crs is a separable trapdoor generator, we have

Pr[X0]− Pr[X1] ≤ Advcrs
C∗(λ). (20)

Game 2. Modify oracle O1 in such a way that it takes t = (t1, t2) as extra input and does as
follows. Let r1||r2 ← r. After BS.User outputs σ, compute σ′[ωs] ← SIM.Sig(Σ, vk,m, t1), and
r′1 ← SIM.SigState(θ, ωs) where θ is the transcript observed by BS.User. Then return (σ′, r′1||r2).

Observe that the view of D∗ in Game 1 was the same as that of A∗ in SigEQBS
A∗(λ, 1). Also

observe that modified oracle O1 in Game 2 works the same as O0 does in SigEQBS
A∗(λ, 0). Hence

the view of D∗ in Game 2 is the same as that of A∗ in SigEQBS
A∗(λ, 0). We thus have

Pr[X1]− Pr[X2] = Pr[SigEQBS
A∗(λ, 1)]− Pr[SigEQBS

A∗(λ, 0)] ≤ Advsigeq
A∗ (λ). (21)

Game 3. Replace BS.User(Σ, vk,m) in Game 2 with SIM.User(Σ, vk, t2) that outputs δ[ωu],
and set σ = ⊥ if δ = 0. (Note that the transcript θ given to SIM.SigState can be constructed
from ωu.) Then compute r′2 ← SIM.SesState(ωu,m), and return (σ′, r′1||r′2).

We claim that there exists E∗ such that

Pr[X2]− Pr[X3] ≤ Advseseq
E∗ (λ). (22)

The claim can be proven by constructing E∗ by using D∗ in a straightforward manner. Note
that E∗ is given trapdoor t1 and it can compute SIM.Sig and SIM.SigState needed to simulate
the oracle for D∗.

By wrapping SIM.SigState and SIM.SesState into one function SIM.State, Game 3 is now
identical to EqSimBLBS

D∗(λ, 0). Hence

Pr[X3] = Pr[EqSimBLBS
D∗(λ, 0)]. (23)

By accumulating (19) to (23), we have

Adveqsib
D∗ (λ) ≤ Advcrs

C∗(λ) + Advsigeq
A∗ (λ) + Advseseq

E∗ (λ). (24)

31

B Building Blocks

B.1 Commitment Scheme

A commitment scheme BC consists of the following algorithms.

Σ ← BC.Key(1λ): The commitment key generation algorithm such that outputs a commitment
key Σtc based on the security parameter λ.

(c, z)← BC.Com(Σ,m): The commitment function such that, on input message m and the com-
mitment key Σ, outputs a commitment c and an opening information z.

1/0← BC.Vrf(Σ, c,m, z). The verification algorithm such that, on input commitment c and its
opening (m, z), outputs 1 for acceptance or 0 for rejection.

Regular stand-alone notion of binding and hiding properties must be fulfilled. The message
space is determined by Σ.

B.2 Trapdoor Commitment Scheme

A trapdoor commitment scheme TC consists of the following algorithms.

(Σ, t)← TC.Key(1λ): The commitment key generation algorithm such that, on input security
parameter λ, generates a commitment key Σ and a trapdoor t.

(c, z)← TC.Com(Σ,m; r): The commitment function such that, on input the commitment key
Σ and message m, computes a commitment c and the opening information z based on
uniform randomness r.

1/0← TC.Vrf(Σ, c,m, z). The verification algorithm such that, on input commitment c and its
opening (m, z), outputs 1 for acceptance or 0 for rejection.

c′ ← TC.Sim(Σ; r′): The simulation algorithm that outputs a simulated commitment c.

r ← TC.EqOpen(Σ,m,m′, r′, t). The opening algorithm that computes a randomness r that is
consistent to a commitment made from (m′, r′) and the target value m. Namely, for
(c, z′) ← TC.Com(Σ,m′; r′) and r ← TC.EqOpen(Σ,m,m′, r′, t), it holds that (c, z) =
TC.Com(Σ,m; r) for some z.

While we let TC.Key to generate the trapdoor for simplicity, it is possible to use a more
general formulation that allows two functions for CRS generation; one for genuine CRS and the
other for indistinguishable CRS with a trapdoor.

We say that TC.EqOpen has uniform opening property if r distributes uniformly (over proper
domain) for any properly generated (Σ, t) and any (m,m′) if r distributes uniformly. This prop-
erty assures that faithfully executed commit and opening phases are perfectly indistinguishable
from random commit phase and equivocal opening.

32

B.3 Non-interactive Zero-Knowledge Proof of Knowledge

A non-interactive zero-knowledge proof of knowledge (for relation R) consists of the following
algorithms.

(Σ, t)← NIZK.Crs(1λ): A CRS generation algorithm such that, on input the security parameter
λ, generates a CRS Σ and a trapdoor t.

π ← NIZK.Prf(Σ, x, w): A prover algorithm such that, on input an instance x and a witness w
that satisfies (x,w) ∈ R, outputs a proof π.

1/0← NIZK.Vrf(Σ, x, π): A verification algorithm such that, on input an instance x and a proof
π, outputs 1 for acceptance or 0 for rejection.

π ← NIZK.SimPrf(Σ, t, x): A zero-knowledge simulator that creates a simulated proof π for input
instance x by using trapdoor t.

w ← NIZK.Ext(Σ, t, x, π): A extractor that extracts witness x from the inputs. Relation (x,w) ∈
R must hold if 1← NIZK.Vrf(Σ, x, π).

Note that the above formulation is for the same-string zero-knowledge [31], which we used for
simplicity. As well as the case of trapdoor commitment, we can use a more general formulation
that allows a distinct simulator for NIZK.Crs.

The regular security properties, i.e. completeness, knowledge soundness, and multi-theorem
zero-knowledge as defined in [32], must be provided. We also require that the verification
algorithm is deterministic for the sake of perfect completeness and consistency of the scheme in
Section 5.2.

B.4 State Reconstructable Witness Indistinguishable Proof of Knowledge

A non-interactive witness indistinguishable proof system of knowledge (for relation R) consists
of the following algorithms.

(Σ, t)← NIWI.Crs(1λ): The CRS generation algorithm for the extraction mode such that, on
input the security parameter λ, generates a CRS Σ and a trapdoor t.

π ← NIWI.Prf(Σ, x, w; r): The prover algorithm such that, on input an instance x and an witness
that satisfies (x,w) ∈ R, outputs a proof π.

1/0← NIWI.Vrf(Σ, x, π): The verification algorithm such that, on input an instance x and a
proof π, outputs 1 for acceptance or 0 for rejection.

w ← NIWI.Ext(Σ, t, x, π): The extractor that extracts witness x from the inputs. (x,w) ∈ R
must hold if 1← NIWI.Vrf(Σ, x, π).

(Σ′, t′)← NIWI.EqCrs(1λ): The CRS generation algorithm for the simulation mode such that,
on input the security parameter λ, generates a CRS Σ′ and a trapdoor t′.

r ← NIWI.EqState(Σ′, t′, x, w′, r′, w): The state reconstruction algorithm in the simulation mode
that computes randomness r such that NIWI.Prf(Σ, x, w; r) = NIWI.Prf(Σ, x, w′; r′).

We require NIWI to provide the following properties.

33

• (CRS Indistinguishability.) Let (Σ, t) ← NIWI.Crs(1λ) and (Σ′, t′) ← NIWI.EqCrs(1λ).
Then Σ and Σ′ are indistinguishable.

• (Uniform Reconstractability.) If r′ distributes uniformly over R, so does r computed by
r ← NIWI.EqState(Σ′, t′, x, w′, r′, w).

Here, R is the randomness space for function NIWI.Prf defined by Σ′.

B.5 Digital Signature Scheme

A signature scheme SIG consists of three algorithms.

(pk, sk)← SIG.Key(1λ): The key generation algorithm that generates a verification key pk and
a signing key sk based on the security parameter λ.

s← SIG.Sign(sk,m): The signature generation algorithm that computes a signature s for input
message m by using signing key sk.

1/0← SIG.Vrf(pk,m, s). The verification algorithm that outputs 1 for accept or 0 for rejection
according to the input.

Standard completeness condition and existential unforgeability must hold.

B.6 Simulatable Signature Scheme

A simulatable signature scheme SSIG in the CRS model consists of following algorithms.

(Σ, t)← SSIG.Crs(1λ): The CRS generation algorithm such that, on input security parameter
λ, outputs a common reference string Σ and a trapdoor t.

(pk, sk)← SSIG.Key(Σ): The key generation algorithm that generates a verification key pk and
a signing key sk.

s← SSIG.Sign(Σ, sk,m): The signature generation algorithm that computes a signature s for
input message m by using signing key sk.

s← SSIG.Sim(Σ, pk,m, t): Another signature generation algorithm that computes a signature s
for message m by using trapdoor t.

1/0← SSIG.Vrf(Σ, pk,m, s). The verification algorithm that outputs 1 for accept or 0 for rejec-
tion according to the input.

Completeness and existential unforgeability against chosen message attacks are defined in
the same way as for regular signature schemes with trivial modifications to adapt to the CRS
model. Roughly speaking, signature simulatability is that if a signer that generates a (potentially
bogus) public-key can create valid signatures then SSIG.Sim should be able to output valid
signatures on the same messages. More formally, for any (Σ, t) ← SSIG.Crs(1λ), and for any
(pk,m1, s1, . . . ,mk, sk)← G∗(Σ), if 1← SSIG.Vrf(Σ, pk,mi, si) then s′i ← SSIG.Sim(Σ, pk,mi, t)
fulfills 1 ← SSIG.Vrf(Σ, pk,mi, s

′
i) for all 1 ≥ i ≥ k. It is stressed that the simulated signatures

must pass the verification by the verification function SSIG.Vrf but it is not demanded that they
are indistinguishable from the real ones. Similarly, unforgeability is the standard unforgeability
against chosen message attacks. In particular, the adversary is not given simulated signatures.

34

Any standard signature scheme can be turned into a simulatable one in an unconditional way
as follows. Generate two key pairs by running the key generation algorithm twice independently.
The first key pair is used as the CRS and the trapdoor while the second pair is used as the
verification and signing key. Normal signing is done by using the second key. Simulation is
done by the first key. A signature is accepted if it passes the original verification predicate with
respect to either of the keys.

B.7 A Note on Instantiation

All the building blocks in Appendix B can be instantiated in a bilinear setting. Let Λ :=
(q,G1,G2,GT , e, g, g̃) be a description of groups G1, G2 and G3 of prime order q equipped with
efficient bilinear map e : G1 × G2 → GT . It also includes a random generator g of G1 and g̃ of
G2. We use Λ as a common group for our building blocks and relative CRS and key generation
functions are modified to take Λ as input instead of the security parameter and generate keys
and other elements based on Λ.

For proof systems defined in Appendix B.3 and B.4, the Groth-Sahai proof system [22]
(the GS proof system for short) meets the requirements under SXDH or DLIN assumption.
The proof system unfortunately does not work for any NP statement but works efficiently for
relations represented by bilinear products. We thus need to choose other building blocks so that
they fit to the GS proof system for instantiation.

For a trapdoor commitment scheme in Appendix B.2 (and a standard commitment scheme
in Appendix B.1), one may use the following construction. TC.Key takes group description Λ as
input. It selects τ ∈ Zq, sets h← gτ , and outputs commitment key Σtc ← (Λ, h) and trapdoor τ .
TC.Com takes commitment key Σtc and a message m ∈ Zq as input. It computes c = gmhr ∈ G1

and z = g̃r ∈ G2 for random r
$← Zq and outputs (c, z). TC.Vrf takes (c,m, z) as input and

output 1 (for accept) if e(c/gm, g̃) = e(h, z). It outputs 0 (for rejection), otherwise. Finally,
TC.EqOpen takes (m,m′, r′, τ) and outputs r ← r′ + (m′ −m)/τ . To see the correctness observe
that e(c/gm, g̃) = e(hr, g̃) = e(h, g̃r) = e(h, z). holds for correct commitment c = gmhr and its
opening information z = g̃r. Also for commitment c = gm

′
hr
′

and simulated open information
z ← g̃r = g̃r

′+(m′−m)/τ , it holds that e(h, z) = e(h, g̃r
′+(m′−m)/τ) = e(gm

′−mhr
′
, g̃) = e(c/gm, g̃).

Hence z is a correct opening information for c and m. The scheme is perfectly hiding and
computationally binding under (S)XDH assumption. The distribution of Σtc, c, z output from
TC.Key, TC.Sim, TC.EqOpen are statistically close to uniform.

Finally, the simulatable signature scheme in Appendix B.6 (and the signature scheme in
Appendix B.5) must be able to sign group elements and the verification predicate must be
represented as a product of pairings to fit to other building blocks described above. For such a
signature scheme a feasibility result based on DLIN can be seen in [21].

35

	Introduction
	Preliminaries
	Notations
	Universal Composability Framework

	Blind Signature Scheme
	Syntax and Standard Security Notions
	Blindness based on Simulatability
	Relations among Notions

	Universally Composable Non-Committing Blind Signatures
	Functionality Fncb
	Impossibility in Plain Model
	Protocol Wrapper Wrap()

	Static Security
	Main Theorem
	Universal Composability of Fischlin's Generic Scheme
	Other Generic Constructions

	Adaptive Security
	State Reconstructability in Stand-Alone Notions
	Main Theorems in Adaptive Case
	Construction in Erasure Model
	Construction without Secure Erasures

	Conclusion
	Proofs
	Proof of Lemma 1 (SimBL BL)
	Proof of Lemma 2 (BL UF SimBL)
	Proof of Lemma 5 (SesEq SigEq EqSimBLND)

	Building Blocks
	Commitment Scheme
	Trapdoor Commitment Scheme
	Non-interactive Zero-Knowledge Proof of Knowledge
	State Reconstructable Witness Indistinguishable Proof of Knowledge
	Digital Signature Scheme
	Simulatable Signature Scheme
	A Note on Instantiation

