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Abstract. In this paper, we define an underlying computational prob-
lem and its decisional problem. As an application of their problems, we
propose an efficient designated verifier signature (DVS) scheme without
random oracles (related to symmetric pairings). We formally redefine the
(Strong) Privacy of Signature’s Identity, and prove our DVS scheme sat-
isfying security based on the difficulty of the problems. Also we prove
that the difficulty of the computational problem is tightly equivalent to
the Strong Unforgeability of our proposed conventional signature scheme
(without random oracles) related to asymmetric pairings. We believe that
our underlying problems are profitable to propose many efficient crypto-
graphic schemes.
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1 Introduction

Security of cryptographic protocols and schemes in public-key infrastructure is
usually reduced problems which everyone believes difficult to solve. For exam-
ple, the Unforgeabilty (or Existential Unforgeability under an Adaptive Chosen
Message Attack) of the Waters conventional signature scheme [16] is based on
the difficulty of the Computational Diffie-Hellman (CDH) problem.

In this paper, we define an underlying computational problem and its deci-
sional problem, which are stronger than the CDH problem. As an application of
our problems, we propose a designated verifier signature (DVS) scheme without
random oracles related to symmetric pairings. DVSes, introduced by [6], are sig-
natures that will be only convinced by a (specific) designated verifier whether
valid or invalid. The verifier cannot transfer the signature to a third party.



Our scheme satisfies the following security: Correctness, Strong Unforgeabil-
ity (or Strong Unforgeability under an Adaptive Chosen Message Attack), Non-
Transferability, and (Strong) Privacy of Signature’s Identity. The security is
based on the difficulty of our proposed problems. Our scheme is delegatable, so
the signer can delegate the third party a right of signer’s signing. From the del-
egatability, for example our DVS scheme is suitable for the following two cases.
The first case is that a signer does not want to delegate such as an authenti-
cation associated with a payment. The second case is that a designated verifier
allows for the signer to delegate such as an e-ticket for some service. However,
our scheme is not suitable for an e-election since the signer is able to sell his own
suffrage to a third party.

Huang—Yang—Wong—Susilo [5] provided a highly efficient DVS scheme with-
out random oracles, which is to be secure if pseudo-random functions have the
pseudo-randomness. The (t,¢)-pseudo-randomness means that outputs of the
functions can only be distinguished from those of the random oracles in polyno-
mial times ¢ within probabilities (1/2 —¢e,1/2 +¢). However the value € must be
negligible if the scheme is secure. Our scheme is more efficient than DVS schemes
[17,10] whose security can be proven without the assumption of random oracles,
and without that of the pseudo-randomness.

On the other hand, it is known that the difficulty of solving the RSA problem
is tightly equivalent to be the difficulty that ciphertexts of the RSA cryptosystem
are perfectively broken against chosen ciphertext attacks. Also the difficulty of
solving the CDH problem is tightly equivalent to be the difficulty that agreement
keys of the primitive Diffie-Hellman key agreement [3] are perfectively broken
against passive adversary attacks.

In this paper, we prove that the difficulty of our computational problem is
tightly equivalent to Strong Unforgeability of our proposed conventional signa-
ture scheme. Unfortunately, this scheme is not enough to be efficient since the
scheme is constructed based on asymmetric pairings. However, we believe that
the result is important to justify our proposed problem. More detailed descrip-
tion is in Section 3.1.

The paper is organized in the following way. In Section 2, we prepare for the
construction of our proposals. In Section 3, we will provide three proposals: a
computational problem, a decisional problem and a DVS scheme. We describe
security and efficiency of our DVS scheme in Section 4. In Section 5, we propose a
conventional signature scheme and describe its security. We provide conclusions
in Section 6.

2 Preliminaries

In this section, we state the definition of a symmetric pairing (or bilinear map).
This definition is due to [2].
We assume that

— G and Gr are multiplicative cyclic groups of prime order p;



—e: G xG — Gr is the cryptographic symmetric pairing satisfying the
following properties:
Bilinearity: e(u®,v®) = e(u,v) for any u,v € G and any a,b € Z.
Non-degenerate: ¢(g1, 92) # lg, for (g1) = (g2) = G.
Computable: There is an efficient algorithm to compute e(u,v) for any
u,v € G.

3 Owur Proposals

In this section, we define an underlying computational problem and its decisional
problem, and propose a DVS scheme without random oracles.

3.1 Proposed Computational Problem

We provide Assumption 1 related to the Computational Diffie-Hellman (CDH)
Assumption. Here we say that the (¢,e)-CDH Assumption in G holds if for any
adversary A running in time ¢ and an advantage £, we have that

Pr[A(g, 9% ¢") = g™] < e

where the probability is over the choice of a random generator g €g G, random
numbers a,b €r Z,, and the random bits of A.

The problem is defined as follows. Given

i +1/7;
(91792a9fa9£ agg /r

i:1,...,q) (1)

as input for random generators g1, g2 €r G and random numbers z,r1,...,7y €R

Zj, compute (gg*,ggﬂ/”) for some 7. € Z% and 7. ¢ {r1,...,74}. Note that
the index x + 1/r; means = + (1/r;). We say that algorithm A has an advantage

¢ in solving the problem if

- _ (e T/ T*EZ;’
1717,_.,(])—(92792 ) r*é{rh,,,,rq} > €,

where the probability is over the choice g1,92 €r G, z,71,...,7¢ €Er Z;, and the
random bits of A.

. 1/r;
Pr |:./4 (91,92,9f7951a9§+ T

Assumption 1 A (g,t,e)-Computational Assumption I holds in G if no ¢-time
adversary has an advantage of at least € in solving the problem in G.

Our problem is similar to those of [13,14]. However, security of all schemes
in [13,14] is based on the problems with asymmetric pairings é : G; X Gy —
Gr. In particular, concerning how to compare signature lengths of the ID-based
signature scheme [14], it assume that the representation of elements in Gi, Go
and Z,, takes the same length, which is actually not true for asymmetric pairings.



In general, |Z,| < |G1| and |G2| > 2|G4|. Then, in the best case, |Z,| = |G1| and
|G2| = 2|G1], so we can use as unit |Z,|. Then, a signature in the scheme consists
of 4 elements in G, and 1 element in G1, amounting then to 9 such units. Now, if
we use the generic construction from [4], applied to the DLP-based strong one-
time signature in Appendix A of [1] and the ID-based signature (IBS) scheme in
[11], we obtain a strongly unforgeable IBS consisting of 6 elements in G; and 2
elements in Z,, and a computational cost dominated by 3 pairings, while relying
on better computational assumptions than the IBS scheme [14].

On the other hand, our proposed problem is based on symmetric pairings
e : GxG — Gp. Then we will construct an efficient designated verifier signature
scheme. It is not easy to compare the problems either on asymmetric pairings
or on symmetric ones. Our definition is profitable to propose many efficient
cryptographic schemes.

Difficulty of solving our problem based on symmetric pairings is equivalent
to be strongly unforgeable for a proposed DVS scheme. This is part of security in
the DVS scheme. If the problem is based on asymmetric pairings, the problem
is equivalent to be strong unforgeable for a proposed scheme. This is a main
security of the conventional signature scheme.

3.2 Proposed Decisional Problem

The following problem is a decisional one of the above computational problem.

Given
5 +1/7; * .
(91,gg,gf,g£,g§ /T,gS,R‘FL---,q) (2)
as input for random generators g1, g2 €r G and random numbers z,r1,...,7y €R
Ly, re € L5, 74 ¢ {r1,...,7q} and R € G, output 1 if R = g§+1/r* and output 0

otherwise. We say that algorithm .4 has an advantage € in solving the problem

if
izl,...,q)zl}

_Pr {A (gl,gz,gi”,ggi,ggﬂ/”,gg*,gg“/” i= 1,...,q) = 1} ‘ 2€,

; 1/r; *
‘ Pr {A (gl,gz,gi“,g?,gfr T gh R

where the probability is over the choice g1,92, R €r G, z,7r1,...,7q €Er Z
7w € Ly, 7s & {r1,...,74} and the random bits of A.

Assumption 2 A (q,t,e)-Decisional Assumption II holds in G if no t-time
adversary has an advantage of at least € in solving the problem in G.

3.3 A Designated Verifier Signature Scheme DVS

We give a designated verifier signature (DVS) scheme with four phases: DVS.Setup,
DVS.SKeyGen, DVS.VKeyGen, DVS.Sign, and DVS. Verify. Definition of the
DVS scheme is based on [9]. For the moment we shall assume that the signature



message M is an element in Z,, but the domain can be extended to all of {0, 1}*
using a collision-resistant hash function H : {0,1}* — Z,.

DVS.Setup: Choose multiplicative cyclic groups G and G of sufficiently large
prime order p. Assume that e : G X G — Gr is a symmetric pairing. The
public key is generated as follows. Choose a random generator, g; € G. Public
parameters are

params := (G,Gr,p, e, g1) .
DVS.SKeyGen: A signer S generates (z,y) €r (Zy)?, and calculate (X,Y) :=
(g%,g7) € G?. The public and private keys of S are:
PKs:=(X,Y) and SKg:= (z,y),
respectively.
DVS.VKeyGen: A designated verifier D generates go := g¢ € G from d €r Ly,
sets z := e(g1,92), and sends (g2, z) to the signer. The public and private keys
of D are:
PKp:=(g2,2) and SKp:=d,
respectively.

DVS.Sign: A designated signature of a message M € Z, is generated as follows.
First, a random r € Zj is chosen. The designated signature is then constructed
as:

r x+My+1/r
o= (95,05 M) e G2 (3)
DVS.Verify: Suppose we wish to check if o = (01, 09) is a designated signature
for a message M. The designated verifier verifies
e (X_1 Yy M. a;/d,m) =z.

If the equality holds the result is valid; otherwise the result is invalid.

4 Security and Efficiency of Our DVS Scheme

In this section, we prove that our proposed DVS scheme in Section 3.3 satisfies
security: the Correctness, Strong Unforgeability, Non-Transferability, (Strong)
Privacy of Signer’s Identity, and Delegability. Also, we describe efficiency of our
DVS scheme.



4.1 Correctness

If a signer S with the public key PKg constructs a signature o on a message
M as described in the DVS.Sign phase above, it is easy to see that o will be
accepted by a designated verifier D:

— — xT T 1/d '
e(X‘l -Y‘M-Ui/d,m) =e((gf) Lo(gY) M-(ngy“/ ) ,92)

— M +My+1
:e(gl””~gl Vegi Y /T,QQ)

1/r r
=e(91/ ,gz)
= e(g1,92) -

Thus the scheme is correct.

4.2 Strong Unforgeability

Definition of Strong Unforgeability for DVS is based on the Unforgeability in
[10], by changing the third requirement in the Output phase to the signature is
not output as a response to a Query phase.

Theorem 1. Suppose that the (qo,to,c0)-Computational Assumption I holds
in G. Then the proposed designated verifier signature scheme DVS is (q,t,¢€)-
strongly unforgeable, provided that g < qo, t < tg— O(¢T) and € > 2ey, where T
1s the maxzimum time for an exponentiation in G.

An outline of the proof is as follows. Suppose that there exists an adversary,
A, who breaks the Strong Unforgeability for DVS, and a challenger, B, takes
the Assumption I challenge. After A and B execute the strongly unforgeable
game, A outputs a valid tuple for a message and a signature. Then B replies the
Assumption I response with non-negligible probability. This is a contradiction
to hold the Assumption I.

Although we can prove that DVS is strongly unforgeable if and only if the
Assumption I holds in G. However the Strong Unforgeability is part of security
in the DVS scheme, so we will omit to prove it in this paper.

Proof. Suppose that there exists an adversary, A, who breaks the (g, ¢, )-Strong
Unforgeability (SUF) of our DVS scheme DVS:

Pr[A breaks (q,t,¢)-SUF of DVS] > ¢ . (4)
We construct a simulator, B, to play the Computational Assumption I game. The

simulator B will take the Assumption I challenge (1) for z,7; €r Z;, (i = 1,...,q)
and run A executing the following steps.



Simulator Description
Setup: The simulator B sends

params = (G, Gr,p, e, 91)

to the adversary A. B generates g € G from y €r Z,,. He generates b €g {0,1},
and sends to A either

(4.2.1-1) PKg = (¢%,4¢") ifb=0, or
(4.2.1-2) PKg= (¢, g7) ifb=1.

The adversary A cannot know whether the received parameter is in the cases
(4.2.1-1) or (4.2.1-2). Also B sends

PKp = (92,2)
to the adversary A, where z = e(g1, g2).

Signature Queries: The adversary A issues signature queries My,..., M,.
These queries may be asked adaptively so that each query M; may depend on
the replies to My, ..., M;_1.

In the case (4.2.1-1), the simulator B generates the signature

(Ui,laai,2) = (ggi, (Q;H/m) '(gg)Mi) (Z (ggiaQ;JrMin/m)) )

and sends it to A. In the case (4.2.1-2) and M; # 0, B generates

M;
i 1 Mi +1 i * _ i Mi +]\/Ii +]\/Ii i
iy (0 (57) ) (= (5 ) ),

and sends it to A. In the case (4.2.1-2) and M; = 0, B generates (0;,1,0;2) :=
y+1/7

(g;l, 95 ) for r; €ER Z;, and sends it to A

Output: The adversary A outputs (M, 0.) such that o, = (0.,1,0.2) € G?isa
valid signature of M., and (M, 04.1,042) ¢ {(M1,011,01,2),...,(Mq,0¢1,042)} -

Analysis
The signature o, is valid. In the case (4.2.1-1), assume that (0. 1,042) =

(gg*,gngM*yH/T*) for r. € Z; and

(M*,T*) 7é (Mi,Ti) (5)
fori=1,...,q (le. (My,7s) & {(M1,71),...,(Mg,7¢)}). Also, in the case (4.2.1-
2), assume that (041,042) = (gg*,gngM*IH/r*) for r. € Z; and

(Mi,ri/M;) (mod p) for M; # 0,
(M., 1) # { (0,74) (mod p) for M; =0



fori=1,...,q.

(4.2.2-1.1) Ifr. ¢ {r1,...,ry} in the case (4.2.1-1), the simulator B calculates
(gg*,g;H/T*) = (0*71, 042 (gg)iM*) which is a valid output for the Assump-
tion I game.

(4.2.2-1.2) Otherwise in the case (4.2.1-1), assume that r, =r; (1 < j < g).
Then we have M, # M; from (9). Though the simulator B can calculate g§ =
(0*72/0j72)1/(M*_M1) from the only (M., o0, 2) and (M;,0;2), he does not seem
to propose a valid output for the Assumption I game. However, notice that A
does not know whether B simulates (4.2.2-1.2) or the following (4.2.2-2.1).

(4.2.2-2.1) In the case (4.2.1-2), if there exists an index j (1 < j < ¢) such
that

o {Tj/Mj for M* #M] and Mj7é0,

T = 7l for M, # 0 and M; =0,

the simulator B can calculate g3 such as (4.2.2-1.2). He can generate (g;:" , g§+1/ri‘)

for v/, & {r1,...,7rq}, which is a valid output for the Assumption I game.

(4.2.2-2.2) Otherwise in the case (4.2.1-2), assume that r, # r;/M; for M; # 0,
and assume that r, # r; for M; = 0. Since B cannot obtain new information of
solving the Assumption I game from A at the simulator description in Section
4.2.1, it seems that B cannot propose a valid output for the game.

Let Pr[B breaks (qo, to,€0)-Assumption I] be the probability that B gener-
ates a valid output for the Assumption I game.

Lemma 1.
1
3 Pr[A breaks (q,t,€)-SUF of DVS] < Pr[B breaks (qo, to,c0)-Assumption I| .

Proof of this lemma is proposed in Appendix A. From the assumption in Theorem
1

Pr [B breaks (qo, to, €o)-Assumption 1] < gq . (6)
From (4), (10) and Lemma 1, we have

Pr [A breaks (g, t,¢)-SUF of DVS]

1
< Z
-2
< Pr[B breaks (qo, to, €o)-Assumption 1] < g¢ ,

| ™

which is a contradiction to the assumption £/2 > £ in Theorem 1.
Therefore, we have Pr[A breaks (g, t,¢)-SUF of DVS] < e. O



4.3 Non-Transferability

Definition of Non-Transferability is based on [15]. We show that, if designated
signatures can be simulated by the verifier himself then a designated signature
adds no computational ability to the verifier.

From verifier’s secret d, the verifier generates

((gf)d, (g7 - (o)™ -gi/r)d) :

which is equal to (3). Therefore the proposed DVS scheme satisfies the Non-
Transferability.

4.4 Privacy of Signature’s Identity

The (Strong) Privacy of Signature’s Identity (PSID) is given in [8] as follows.
Given a message M and a designated verifier signature o of this message, it
is computationally infeasible, without the knowledge of the private key of the
designated verifier or the one of the signer, to determine which pair of signing
keys was used to generate o.

We formally define (g, ¢, £)-PSID as follows. This security is defined using the
following game between a challenger B and an adversary .A:

Setup: The challenger B takes a security parameter k and runs the DVS.Setup
phase of the DVS scheme. It gives the adversary A the resulting system pa-
rameters params. B runs the DVS.SKeyGen phase, and sends A the resulting
public keys of signers Sy and S7. Also B runs the DVS. VKeyGen phase, and
sends A the resulting a public key of a designated verifier D. It keeps the
private keys of Sy, S1, D to itself.

Queries 1: Signature queries (b1, M), . .., (bg, , My, ) are issued by A. Here each
b; € {0,1} (¢ =1,...,q1) means the index of either Sy or S;. To each query
M; the challenger B responds by running DVS.Sign to generate a signature
o; of M; respecting to the private key SK; of S;, and sending o; to A. These
queries may be asked adaptively such that each query M; may depend on
the replies to My, ..., M;_1.

Challenge: The adversary A submits a plaintext M, € M for M, & {M,..., M, }.
The challenger selects random bit b €g {0, 1}, sets o, = DVS.Sign(params, SKy, My),
and sends o, to the adversary as its challenge designated signature.

Queries 2: This is a identical to Queries 1 for i = g1 +1,...,q, except that A
may not request the signature of M,

Guess: The adversary submits a guess b’ € {0, 1}. The adversary wins if b = b'.

We define AQvPSID 4 to be the probability that A wins the above game, taken
over the coin tosses made by B and A:

AdvPSID4 =| Pr[(b=1b")] — 1/2 |
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Table 1. Security of DVS schemes

| | zJ[17] | LJ[10] [Our Proposal|
Correctness Yes Yes Yes

UF / SUF — UF SUF
Non-Transferability Yes Yes Yes
PSID No No Yes

Definition 1. An adversary A (q,t,e)-breaks a designated verifier signature
(DVS) scheme if A runs in a time of at most ¢, A makes at most ¢ Queries,
and AdvPSID4 is at least e. A DVS scheme is the (g,t,¢)-(Strong) Privacy of
Signature’s Identity (PSID), if no adversary (g, t,¢)-breaks it.

Theorem 2. Suppose that the (qo, to, £0)-Decisional Assumption II holds in G.
Then the proposed designated verifier signature scheme DVS satisfies the (q,t,€)-
(Strong) Privacy of Signature’s Identity, provided that ¢ < qo, t < to — O(qT)
and € > &g, where T is the mazimum time for an exponentiation in G.

Proof of this theorem is proposed in Appendix B. An outline of the proof
is as follows. Suppose that there exists an adversary, A, who breaks PSID for
DVS, and a challenger, B, takes the Assumption II challenge. After A and B
execute PSID game, A outputs a bit to indicate which the private key of the
signers is used. Then B replies the Assumption II response with non-negligible
probability. This is a contradiction to hold the Assumption IT.

If o/ € G? is a valid designated verifier signature of S, then it is an invalid
one of Sy. Therefore it is computationally infeasible, without the knowledge of
the private key of the designated verifier or the one of the signers, to determine
whether valid or invalid at signatures of signers.

4.5 Delegatability

The Delegatability is that the signer can delegate her signing ability — with
respect to a fixed designated verifier — to a third party, without revealing her
private key or making it possible for the third party to sign with respect to other
designated verifiers. Our scheme is delegatable if the signer sends the third party
A apair (¢3,95) for z,y € Zy. Then A can generate a valid designated signature:

o= (01,09) := (9579;+My+1/r)

for r €r Z;,.

4.6 Security Comparison of DVS schemes

Table 1 shows the security of DVS schemes without random oracles (and without
pseudo-randomness), by comparing the Correctness, Unforgeability (UF)/Strong
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Table 2. Efficiency of DVS schemes
| | ZJ[17] | LI [10] [Our Proposal

Signature lengths 3 3 2
Pairings 2 2 1

Unforgeability (SUF), Non-Transferability, and (Strong) Privacy of Signature’s
Identity (PSID). Only our scheme satisfies the PSID in this table. Notice that
security of the DVS scheme [10] relies on the strange looking Knowledge-of-
Ezponent assumption [7,10], which is non-black box in that security reductions
from this assumption entail some kind of access to the internal state of the
adversary. Our scheme does not rely on this assumption.

4.7 Efficiency Comparison of DVS schemes

Table 2 shows the efficiency of DVS schemes without random oracles (and with-
out pseudo-randomness), by comparing signature lengths as unit |Z,| = |G|, and
by the number of pairings during one iteration of verification. Our scheme is the
most efficient within the scope in these schemes.

5 Owur Computational problem and a Signature Scheme

The aim of this section is to justify our proposed computational problem. We
propose a conventional signature scheme S, which gives the result that the dif-
ficulty of the computational problem (the Assumption I) is equivalent to be
strongly unforgeable for S. Unfortunately, the scheme is based on the asymmet-
ric pairings € : G; X Go — G, so a signature in the scheme consists of 2 elements
in G, amounting then to 4 units as unit |Z,| = |G| = |G2|/2.

5.1 A Conventional Signature Scheme §

We give a conventional signature scheme with three phases: S.KeyGen, S.Sign,
and S. Verify. For the moment we shall assume that the signature message M
is an element in Z,, but the domain can be extended to all of {0,1}* using a
collision-resistant hash function H : {0,1}* — Z,,.

S.KeyGen: Choose multiplicative cyclic groups G, Gy and G of sufficiently
large prime order p, random generators g» of G, the one-way isomorphism?
f+ Gy — Gy with a generator g1 := f(g2) € Gy, the asymmetric pairing
é : Gy x Gg — Gp. The public key is generated as follows. Generate a private

* Saito-Hoshino-Uchiyama-Kobayashi [12] proposed one-way isomorphisms {f} on
multiplicative cyclic groups constructed on non-supersingular elliptic curves.
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key SK = (¢9%,99) € G3 from secrets z,y €r Z

, and calculate (X,Y) :=
(£(98), F(1)) (= (97 91) € GR). '

7)) — G2 J, @2

(z,y) — SK := (g5, 93) — (X,Y) == (f(95), f(92)) (= (g7,97))
Assume that z := é(g1, g2) € Gr. The public and private keys are:

PK := (Gy1,Ga,Gr,p,é, f,91,92,X,Y,2) and SK :=(g5,95),
respectively.

S.Sign: A signature of a message M € Z, is generated as follows. First, a
random r € Zj, is chosen. The signature is then constructed as:

o= (g§,g§+My+1/T) :

S.Verify: Suppose we wish to check if o = (01, 02) is a signature for a message
M. Verify

é (X71 Yy M. f(ag),al) =z.
If the equality holds the result is valid; otherwise the result is invalid.

It is easy to see that o will be accepted by a verifier. Thus the scheme is
correct.

5.2 The Computational Problem and Strong Unforgeability

Theorem 3. Assume that g1 = f(g2) € Gy for the one-way isomorphism f : Gy —
G1 and the random generator go €g Go. That the conventional signature scheme

S is strongly unforgeable is almost equivalent to that the Computational Assump-
tion I holds in (G1,Gsz). More correctly,

(T3-1) Suppose that the (qo, to, €0)-Computational Assumption I holds in (G1,G2)
with g1 = f(g2). Then the signature scheme S is (q,t,¢&)-strongly unforge-
able, provided that ¢ < qo, t < to — O(qT) and € > 2e¢, where T is the
mazimum time for an exponentiation in Ga.

(T3-2) Assume that the signature scheme S is (q1,t1,€1)-strongly unforgeable.
Then the (q,t,€)-Computational Assumption I holds in (G1,Ge) with g1 =
f(g2), provided that ¢ < g1, t <t1 and e > e;.

Proof of (T3-1) in Theorem 3 is proposed in Appendix C, such as that of
Theorem 1.
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Proof (of (T3-2) in Theorem 8). The challenger generates a public pair (PK, SK),
and sends the private key SK to the adversary. The adversary generates mes-

sages M; (i =1,...,q) which are M; = --- = My, and sends My, ..., M, to the
challenger. For each message M; (i = 1,...,q), The challenger generates
ry x+M; 1/7r;
Ui:(92792+ y+/ ) )

and sends it to the adversary. Then the challenger performs the Assumption I
game for input
=1,... q) ,

(gl,ga,gf-(gi’)thg,gS yHl/r

and receives a valid output
_ re THMoy+1/r,
Ox = (92 192 )

for o & {r1,...,7¢} and M, = M; = --- = M,. This output is valid with a
probability greater than e. The adversary outputs (M, 0, ), which is valid in the
strongly unforgeable game with a probability greater than €. This is a contradict
to the assumption of the theorem. We have proven (T3-2) of Theorem 3.

6 Conclusions

In this paper, we defined an underlying computational problem and its decisional
problem. As an application of their problems, we proposed an efficient DVS
scheme without random oracles. We proved our DVS scheme satisfying security
based on the difficulty of the problems. Also we proved that the difficulty of the
computational problem was tightly reduced to the Strong Unforgeability of our
proposed conventional signature scheme related to asymmetric pairings.
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A Security Proof of Lemma 1 (SUF for DVS)

Proof (Proof of Lemma 1). Let €, ; (4,5 = 1,2) be the probability in (4.2.2-4, j)
that B can generate a valid output for the Assumption I game after he receive
the valid output of the simulator description from A. Let ¢ , be the probability
that B can generate g3 from only (M,, 0. 2) and (M;,0j2) in (4.2.2-1.2).

Since €} , = €21 and €11 + €7 , = 1, we have
1,2 ) ) 1,2 ’

Pr [B breaks (qo, to, €0)-Assumption I

(11 + €12+ €21 +e2,2) Pr[A breaks (¢,t,¢)-SUF of DVS]

> S (e11 +¢€) ) Pr[A breaks (¢,t,¢)-SUF of DVS]

N — DN~ N~

Pr[A breaks (q,t,¢)-SUF of DVS] .
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B Security Proof of Theorem 2 (PSID for DVS)

Proof. Suppose that there exists an adversary, A, who breaks the (g, t, €)-(Strong)
Privacy of Signature’s Identity (PSID) of our DVS scheme DVS:

1
Pr [A breaks (g, t,£)-SUF of DVS] — 3 >e. (7)

We construct a simulator, B, to play the Decisional Assumption II game. The
simulator B will take the Decisional Assumption II challenge (2) for z, 7. €r Z,
and run A executing the following steps.

B.1 Simulator Description

Setup: The simulator B sends

params = (G, Gr,p, e, 91)

to the adversary A. B generates g¥, (97)%, g% € G from y, s,t €r Z,,. He generates
b er {0,1}, and sends

PKs, = (97.9{) and PKs, = (97", 91)
to A. Also B sends
PKp = (92,%)
to the adversary A, where z = e(g1, g2).

Queries 1: The adversary A issues (b1, M1),..., (bg,, My, ) where b; € {0,1}
(i =1,...,q1) means the index of either Sy or Sy. These queries may be asked
adaptively such that each query M; may depend on the replies to My, ..., M;_1.
In the case b; = 0, the simulator B generates the signature for Sp:

i +1/ri M,
;= (g£,g§ i g) )

and sends it to A. In the case b; = 1, B generates the signature for Sy:

) 1/r:\ ° s
0; = ((951)1/S,(g§+ /T) ~gé”t) ,

and sends it to A.

Challenge: The adversary A submits a message M, € M for M, & {M;,..., M, }.
The simulator B selects random bit b €g {0,1}. In the case b = 0, the simulator
B generates the signature for Sy:

Oy = (95*,R-gé”*y) (= (95*795+M"y““*) if R= gé”“/“) :
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and sends it to A. In the case b = 1, B generates the signature for S;:

0= ((95*)1/5 ,R? -gé”*t) (: (95*/5793””1*”5/”) if R = 95“”") :

and sends it to A.

Guess: The adversary A outputs a guess b’ € {0,1}. If & = b then B outputs

a guess of R = 1 (indicating that R = g§+1/r*); otherwise, it outputs R = 0.

B.2 Analysis

If R=gy 1/ then the simulation is perfect, and A will guess the bit b cor-
rectly with probability 1/2 + &’. Otherwise, R is uniformly random, and thus
04 is uniformly random and independent, and can not impart no information
regarding the bit b. From (7), we have that

‘ Pr [A (91,gz,gf,g£i79§+1/”’95*vR ‘ 1= 1""’q) - 1}

) ri . e | .
~Pr [A(gl,gz,gf,g?,g§+ gy gt z:l,---,q) :1} ‘

1
> ‘5 — Pr[A breaks (g, t,¢)-PSID of DVS]‘ >e
for z,7r; €r Zy,re € Ly, ri & {r1,...,7¢} and R €g G, which is a contradiction
to the assumption € > ¢y in Theorem 2. We have proven the theorem. O

C Security Proof of (T3-1) in Theorem 3 (SUF for S)

An outline of the proof is as follows. Suppose that there exists an adversary,
A, who breaks the Strong Unforgeability (SUF) of our signature scheme S in
Section 5.1, and a challenger, B, takes the Assumption I challenge (with g; € G
and gs € Ga). After A and B execute the strongly unforgeable game, A outputs
a valid tuple for a message and a signature. Then B replies the Assumption
I response with non-negligible probability. This is a contradiction to hold the
Assumption I.

Proof (of (T3-1) in Theorem 8). Suppose that there exists an adversary, A, who
breaks (g, t,e)-SUF of our signature scheme S:

Pr[A breaks (¢, t,£)-SUF of §] > ¢ . (8)

We construct a simulator, B, to play the Assumption I game. The simulator B
will take the Assumption I challenge (1) for x,r; €r Z; (i = 1,...,q) and run
A executing the following steps.
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C.1 Simulator Description

Setup: The simulator B generates ¢! € G; from y €g Z,. He generates b €r
{0,1}, and sends to the adversary A either

(C°1'1) (Gla GQvGTapv év f7 glaQQagfvg%) ifb=0 , Or
(C°1'2) (Gla GQvGTapv év f7 glaQQag%mgin) lf b =1.

The adversary A cannot know whether the received parameter is in the cases

(C.1-1) or (C.1-2).

Signature Queries: The adversary A issues signature queries Mi,..., M,.
These queries may be asked adaptively so that each query M; may depend on
the replies to My, ..., M;_1.

In the case (C.1-1), the simulator B generates the signature

(O’i,l;O’i,Q) = (g?, (QS-H/”) '(93>Mi) (: (g?,gngMin/”)) )

and sends it to A. In the case (C.1-2) and M; # 0, B generates

M;
i) 1/Mi +1/ra\ T /Mi y+ Mot M /7
(0i1,0i2) = ((95 )M (95 " ) '93) (: (g;/ , gy MM/ )) ,

and sends it to A. In the case (C.1-2) and M; = 0, B generates (0;1,0;2) =
(g;",ggﬂ/ri) for 7} €r Zy, and sends it to A.

Output: The adversary A outputs (M, 0,) such that o, = (0.,1,042) € G3isa
valid signature of M., and (M, 04.1,042) ¢ {(M1,011,01,2), ..., (My,0¢1,042)} -

C.2 Analysis
The signature o, is valid. In the case (C.1-1), assume that (04,1, 042) 1= (gg* 29
for r, € Z;‘ and

(M*7T*> # (Mivri) (9)
fori=1,...,q (ie. (My,7y) ¢ {(M1,71),...,(Mg,7q)}). Also, in the case (C.1-
2), assume that (o4 1,042) 1= (gg*,gngM*IH/r*) for r. € Z; and

(Mi, ri/M;) (mod p) for M; #0 ,
(M) # { (0,7) (modp)  for M; =0

fori=1,...,q.
(C.2-1.1) If ry ¢ {r1,...,74} in the case (C.1-1), the simulator B calculates
(gg*,ggﬂ/”) = (0*71, Os2 - (gg)iM*) which is a valid output for the Assump-

tion I game.

(C.2-1.2) Otherwise in the case (C.1-1), assume that r, = r; (1 < j < g).
Then we have M, # M, from (9). Though the simulator B can calculate g5 =

T+Miy+1/7s
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(0'*72/O'j72)1/(M*7Mj) from the only (M., 0. 2) and (M;,0;2), he does not seem

to propose a valid output for the Assumption I game. However, notice that A
does not know whether B simulates (C.2-1.2) or the following (C.2-2.1).

(C.2-2.1) In the case (C.1-2), if there exists an index j (1 < j < ¢) such that
o {Tj/Mj for M* 7& Mj and Mj 7é 0 ,

T\, for My#£0and M; =0,
the simulator B can calculate g3 such as (C.2-1.2). He can generate (g;i , g;—H/Ti)
for v/ & {r1,...,7rq}, which is a valid output for the Assumption I game.

(C.2-2.2) Otherwise in the case (C.1-2), assume that r. # r;/M; for M; # 0,
and assume that r, # r; for M; = 0. Since B cannot obtain new information of
solving the Assumption I game from A at the simulator description in Section
C.1, it seems that B cannot propose a valid output for the game.

Let Pr[B breaks (qo, to, £0)-Assumption I ] be the probability that B gener-
ates a valid output for the Assumption I game.

Lemma 2.
1
3 Pr|A breaks (q,t,¢)-SUF of S| < Pr[B breaks (qo, to,€o)-Assumption I] .

Proof (Proof of Lemma 2). Let ¢, ; (i,j = 1,2) be the probability in (C.2-i, j)
that B can generate a valid output for the Assumption I game after he receive
the valid output of the simulator description from .A. Let ¢/ , be the probability
that B can generate g3 from only (M., 0, 2) and (M;,0;2) in (C.2-1.2).

Since 5’172 =¢e91 and €11 + 5’172 =1, we have

Pr [B breaks (qo, to, €0)-Assumption I |

1
= 5(6111 +€12+€E21+ 5272) Pr [.A breaks (q, t,E)—SUF of S]

1
> 5(51,1 + &} 5) Pr[A breaks (g, t,e)-SUF of S]

1
=3 Pr[A breaks (g,t,¢)-SUF of S] .

From the assumption in Theorem 3,
Pr [B breaks (qo, to, €)-Assumption I | < g . (10)
From (8), (10) and Lemma 2, we have

1
< —
-2
< Pr[B breaks (qo, to, €p)-Assumption I | < &g ,

Pr[A breaks (g, t,e)-SUF of S]

| ™

which is a contradiction to the assumption /2 > €y in Theorem 3.
Therefore, we have Pr[A breaks (g, t,¢)-SUF of S] < e. O



