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Abstract

Network coding allows the routers to mix the received information before forwarding them
to the next nodes. Though this information mixing has been proven to maximize network
throughput, it also introduces security challenges such as pollution attacks. A malicious node
could insert a malicious packet into the system and this corrupted packet will propagate more
quickly than in traditional copy-and-forward networks. Several authors have studied secure
network coding from both information theoretic and probabilistic viewpoints. In this paper,
we show that there are serious flaws in several of these schemes (the security “proofs” for
these schemes were presented in these publications).

1 Introduction

Maximum flow minimum cut (MFMC) theory has been one of the most important principles for
network traffic routing. However, MFMC theorem only works if there is one sender and one
receiver. When there are multiple receivers (multicast scenario), the maximum flow problems
become NP-hard and there is no efficient way to multicast the same message to all receivers with
maximum network capacity. Network coding [2] has been designed to overcome these problems
and it has been shown that networking code can achieve better performance than traditional copy
and forward networking technology. In particular, it has been shown that random linear code
can be used to broadcast a message to multiple recipients with maximum network capacity with
probabilistic reliability. Deterministic polynomial networking code has also been designed to
achieve maximum network capacity.

Though network coding techniques have been extensively studied and mature techniques are
now available for practical network coding, secure network coding has been poorly addressed.
Without efficient techniques for reliable and private network coding, it is infeasible to widely de-
ploy network coding techniques. Cai and Yeung [5, 7, 8] have proposed a general framework and
obtained theoretical bounds for network error correction. Based on these theoretical bounds, Cai
and Yeung [9] have designed algorithms for achieving network coding based secure communi-
cation against passive adversaries (wire tappers). Later, Jaggi, Langberg, Katti, Ho, Katabi, and
Medard [12] studied network coding based secure communication techniques against Byzantine
adversaries. It should be noted that in these two papers, the adversary model is based on the num-
ber of communication links that could be controlled by the adversary. This is very different from
the more powerful model based on the number of nodes that could be controlled by the adver-
sary. The link based adversary model may be realistic in wire based networks, it is unrealistic in
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wireless networks such as sensor networks [10]. Thus the application of these results could be
limited.

Cryptographic techniques have also been used by researchers to protect network coding secu-
rity against pollution attacks. For example, the following schemes have been proposed: Yu, Wei,
Ramkumar, and Guan [18], Zhao, Kalker, Medard, and Han [19], Charles, Jain, and Lauter [6],
and Boneh, Freeman, Katz and Waters [4]. In this paper, we will show that all these protocols
except the last one are either completely insecure or non-practical for network coding.

Non-network-coding based perfectly secure message transmission techniques have been exten-
sively studied in a series of papers. For example, Wang and Desmedt [17] have recently designed
techniques for secure point-to-point communication in general networks with feedback channels
against Byzantine adversaries.

2 Random Linear Network Coding

In this section, we briefly discuss the concept and notations of network coding. The network is
modelled by a directed graph. There is a source node and several sink nodes. In network coding,
the source node generates the data packets that she wishes to deliver to the sink nodes over the net-
work. To do so, the source node encodes her data and transmits the encoded data via its outgoing
edges, according to some encoding algorithm that we will discuss later. Each intermediate node
receives data packets from its incoming edges, combines them by some encoding algorithms, and
transmits the encoded data via its outgoing edges. Note that the node may transmits different data
packets on different outgoing edges. The advantage of network coding is showed in the Figure 1
from [2]. In this Figure, we assume that the source node has two data packets A and B and wants
to deliver them to the two sink nodes at the bottom. Assuming that all links have a capacity of
one packet per unit of time, for traditional copy-and-forward network communication, there is no
possibility for the source node to deliver these two packets to the two sink nodes in one unit time.
However, if the upper intermediate node XORs the received packets and forward A ⊕ B to the
middle link, both sink nodes obtain two distinct packets in every unit of time.

Figure 1: Network coding

Network coding has been extensively studied by researchers in the past few years. The works
in [11, 13, 15, 16] show that simple random linear coding is sufficient for achieving maximum
capacity bounds in multicast traffic. In the following, we introduce notations for the random linear
coding.
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Without loss of generality, we assume that the source node generates the messagesw1, . . . , wt ∈
Fn−tp , where Fp is the finite field. In another word, each wi consists of n − t elements from Fp.
First, the source node pads the messages with the t× t identity matrix I as follows:

M1

M2

· · ·
Mt

 =


w1

w2

· · ·
wt

I


Thus we can consider the messages as M1, . . . ,Mt ∈ Fnp .

For one message transmission session, each node with k incoming edges receives v1, · · · , vk ∈
Fnp from its k incoming edges respectively. For each outgoing edge, the node chooses random
α1, . . . , αk ∈ Fp and transmits α1v1 + · · ·+ αkvk on this outgoing edge.

Without loss of generality, we also assume that there are t virtual nodes which transmits the
values M1, . . . ,Mt to the source node. So the source node transmits random linear combinations
of these messages to its outgoing edges instead of the original messages.

Note that if one sink node receives vi = (ui,1, . . . , ui,n−t, βi,1, . . . , βi,t), then we have the
following property

vi = (βi,1, . . . , βi,t)


M1

M2

. . .
Mt


Thus if the receiver node could collect t packets v1, . . . , vt, she could recover the original message
as 

M1

M2

. . .
Mt

 =

 β1,1 · · · β1,t

· · · · · · · · ·
βt,1 · · · βt,t

−1


v1
v2
. . .
vt


3 Information Theoretic Approach to Network Coding

Cai and Yeung [5, 7, 8] have proposed a general framework and obtained theoretical bounds for
network error correction. Based on these theoretical bounds, Cai and Yeung [9] designed al-
gorithms for achieving network coding based secure communication against passive adversaries
(wire tappers). Jaggi, Langberg, Katti, Ho, Katabi, and Medard [12] studied network coding based
secure communication techniques against Byzantine adversaries. It should be noted that in these
two papers, the adversary model is based on the number of communication links that are con-
trolled by the adversary. This is very different from the more powerful model based on the number
of nodes that are controlled by the adversary. Thus the application could be limited. For exam-
ple, Dong, Curtmola, and Nita-Rotaru [10] pointed out that this model is not realistic in sensor
networks.

For example, in the Figure 2 from Cai and Yeung [9], the sender s generates a random key
k1 and sends the encrypted versions of the message m1 + k1 and m1 − k1 on the two outgoing
links respectively. It is clear that any single link will not be able to recover the message m1 nor
the key k1. Thus this message transmission protocol is secure against any single corrupted link.
However, the node a0 could easily recover the message by summing up the two received packets:
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(m1 − k1) + (m1 + k1) = 2m1. In another word, the protocol proposed by Cai and Yeung [9] is
not secure against one single corrupted node.

Figure 2: Cai and Yeung’s private network coding

The same model is used by Jaggi, Langberg, Katti, Ho, Katabi, and Medard [12] to design
secure message transmission protocols in network coding against active (Byzantine style) adver-
saries. Since the adversary model is based on the maximum number of links controlled by the
adversary, these message transmission protocols are not secure against an adversary who controls
only one node and is able to generate t-outgoing corrupted messages.

Though the link based adversary models used in [9] and [12] may be sufficient in some appli-
cations where it is hard for the adversary to control one single node, these models are not valid in
many applications where the adversary could control several nodes. Thus it is preferred to study
information theoretic message transmission network coding protocols in the node based adversary
models.

4 Probabilistic approach to secure network coding

In addition to the information theoretic approaches for secure network coding that we have dis-
cussed in the previous section. Several efforts have been made to design cryptographic protocols
for secure network coding. In this section, we describe these efforts and discuss their security.

4.1 Signature Scheme from Infocom 08

Yu, Wei, Ramkumar, and Guan [18] designed a homomorphic digital signature scheme for net-
work coding against pollution attacks. The homomorphic signature scheme was designed with the
purpose that:

• Each intermediate node can verify whether a received packet has a valid signature.

• Without access to the private key, each intermediate node can generate a random linear
combination of the incoming messages together with a digital signature on the combined
message. In another word, after the source node generates a digital signature on the mes-
sages, other nodes may be able to generate a digital signature on the linear space expanded
by the original message vectors.
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Specifically, their signature scheme is as follows. The source node has an RSA private key
d, and public key (N, e). Without loss of generality, we assume that these parameters are chosen
securely and meets the security requirements (e.g., N is at 1024 bits or 2048 bits). Furthermore,
let p and q be two primes such that q|(p − 1) and g1, · · · , gn ∈ Zp be randomly chosen numbers
with order q (mod p). We assume that all nodes in the network have an authentic copy of the
system parameters (N, e), p, q, g1, · · · , gn.

In one session, the source node generates the digital signatures for messages M1, . . . ,Mt as
follows. The signature on Mi = (mi,1, · · · ,mi,n) is computed as:

S(Mi) =

 n∏
j=1

g
mi,j

j

d

mod N

Now assume that an intermediate node receives message-signature pair (v, S(v)), where v =
(u1, . . . , un), it can verify the digital signature as follows:

S(v)e =
n∏
j=1

g
uj

j mod p mod N

Furthermore, assume that the intermediate node receives (v1, S(v1)), · · · , (vk, S(vk)) from its
k incoming edges respectively, where S(vk) is the digital signature on vk. For each outgoing edge,
the node chooses random α1, . . . , αk ∈ Fp and computes the digital signature on the combined
message v = α1v1 + · · ·+ αkvk as follows:

S(v) =
n∏
j=1

S(vj)αj

The correctness of the signature scheme is straightforward and omitted here. The authors in [18]
have provide a security proof for the above signature scheme. In the following, we show a few
attacks on this signature scheme.

4.1.1 Attack 1

This attack is derived from the “batch verification” properties provided by the authors in their
original paper [18]. Assume that the adversary observes a message-signature pair (M ′, S(M ′))
from session one and a message-signature pair (M ′′, S(M ′′)) from session two. For any random
numbers β1, β2, the adversary can generate the “digital signature” S(M) on the message M =
β1M

′ + β2M
′′ as S(M ′)β1S(M ′′)β2 . It should be noted that this message M belongs neither

to session one nor to session two. One may propose that a session ID could be embedded into
the message space, but there is no easy way to do that. One may also propose that the system
parameters g1, · · · , gn be changed for each session. That is, different sessions do not share the
same parameters. But then the protocol will become very inefficient and one may wonder what
is the advantage of network coding then (compared to traditional copy and forward techniques)
since the network capacity may be significantly reduced. Our next attack shows that even if one
adds some the session ID to the signature, it may still be easily broken.
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4.1.2 Attack 2

Assume that the adversary observes a digital signature S(M) on the messageM = (m1,m2, · · · ,mn).
For any message M ′ = (m,m2, · · · ,mn) chosen by the adversary, she may compute a number x
such that m = m1 + e · x. Then the signature on the message M ′ is S(M ′) = S(M) · gx1 . The
reason is due to the following fact:

S(M ′)e = S(M)ege·x1 = ge·x1

n∏
j=1

g
mj

j = gm1+ex
1 · · · gmn

n

Similarly, the adversary can generate a digital signature S(M ′′) for any messageM ′′ = (m′1, · · · ,m′n)
at her choice. This attack shows that even if the source node distributes different system parame-
ters for different session, it still does not work!

4.2 Digital signature on orthogonal vectors from ISIT 07

Zhao, Kalker, Medard, and Han [19] introduce a different scheme to authenticate messages in
network coding. Roughly speaking, their technique is based on the following ideas:

• In order for the source node to authenticate messages M1, · · · ,Mt, the source node finds a
vector u which is orthogonal to all these messages (that is, Mi ·u = 0 for all 1 ≤ i ≤ t) and
digitally sign u. The intermediate and receiver nodes will accept a received message M if
and only if M · u = 0.

The intuition for this scheme is that a received message M should be accepted if only if it be-
longs to the linear space spanned by the vectors M1, · · · ,Mt. The authors [19] think that this is
“equivalent” to the fact that M · u = 0. Unfortunately, this argument is not valid. There are many
vectors M ′ with the property M ′ · u = 0 but M ′ does not belong to the linear space spanned by
the vectors M1, · · · ,Mt. In the following, we describe the signature scheme and simple attacks on
the scheme.

The parameters for the system consists of a generator g for the groupG of order p. The private
key for the source node is n random elements {α1, · · · , αn} from Fp. The public key for the
source node is {gα1 , · · · , gαn}. We assume that all nodes in the network have an authentic copy
of the system parameters (g,G, p) and the public key of the source node.

For the source node to sign the messages Mi = (mi,1, · · · ,mi,n) (1 ≤ i ≤ t), the source node
finds a nonzero vector u ∈ Fnp with the property that

u ·Mi = 0 i = 1, · · · , t

Then the digital signature is x = (u1α
−1
1 , · · · , unα−1

n ) together with a standard signature on x
To verify whether x is a valid signature on a message M = (m1, · · · ,mn), one needs to check

whether
n∏
i=1

(gαi)ximi = 1

The correctness of the signature scheme is straightforward and is omitted here. The authors in
[19] have provided a security proof for the above signature scheme. In the following, we show a
few attacks on this signature scheme.
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4.2.1 Attack 1

This attack was noticed by the authors in their original paper [19]. Assume that x is the digital
signature for session one (of file F ) and x′ is the digital signature for session two (of file F ′).
Furthermore, assume that the message M = (m1, . . . ,mn) is from session one. Then one can
construct a message M ′ = (m′1, · · · ,m′n) for session two, where m′i = ximi/x

′
i. This is true

since
n∏
i=1

(gαi)x
′
im

′
i =

n∏
i=1

(gαi)ximi = 1.

Obviously, M ′ is not a valid message for session two. This attack shows that each session needs
the secure deployment of a different public/private keys, which could use too much of the network
coding capacity.

4.2.2 Attack 2

It is straightforward that if the adversary can collect t messages, then she will be able to recover
the original message. At the same time, the adversary will also be able to compute the original
orthogonal vector u. Here we assume that the implementation for computing u from the messages
is public so u can be uniquely recovered. By the fact that x = (u1α

−1
1 , · · · , unα−1

n ), the adversary
will be able to recover the private key of the source node. Thus she will be able to create any
signature on any chosen message.

4.2.3 Attack 3

This attack shows that the digital scheme based on orthogonal vectors are completely infeasible
for practical purposes.

Let M1, · · · ,Mt be the message vectors where Mi = (mi,1, · · · ,mi,n−t, 0, · · · , 0, 1, 0, . . . , 0).
It is straightforward to check that the following vector u is orthogonal to all of these messages and
satisfies the requirements for the orthogonal signature.

(11, · · · , 1n−t,−
n−t∑
j=1

m1,j ,−
n−t∑
j=1

m2,j , . . .−
n−t∑
j=1

mt,j)

Now letM ′i = (m′i,1, · · · ,m′i,n−t, 0, · · · , 0, 1, 0, . . . , 0) wherem′i,1, · · · ,m′i,n−t is any permutation
of mi,1, · · · ,mi,n−t. It is clear that M ′i is orthogonal to u. Thus it will be accepted as a valid
message. However, M ′i is not a linear combination of the original messages.

The reason why this attack is successful is as follows:

• The linear space spanned by the original messages M1, · · · ,Mt is t-dimensional.

• Assume that u be any fixed vector which is orthogonal to the message space. Then u is
orthogonal to a subspace of dimension n − 1 which contains the message space. Thus, for
n− 1 > t, there is a huge room for the adversary to generate fake messages.

4.3 Charles, Jain, and Lauter’s signature scheme

Charles, Jain, and Lauter [6] have designed a signature scheme for network coding. The scheme
is based on bilinear maps which we will discuss first.
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4.3.1 Bilinear maps and the bilinear Diffie-Hellman assumptions

In the following, we briefly describe the bilinear maps and bilinear map groups. The details could
be found in Joux [14] and Boneh and Franklin [3].

1. G1, G2, and GT are three (multiplicative) cyclic groups of prime order q.

2. g1, g2 are generators of G1, G2 respectively.

3. ê : G1 ×G2 → GT is a bilinear map.

A bilinear map is a map ê : G×G→ G1 with the following properties:

1. bilinear: for all x, y ∈ Z, we have ê(gx1 , g
y
2) = ê(g1, g2)xy.

2. non-degenerate: ê(g1, g)2 6= 1.

We say that G1, G2 are bilinear groups if the group action in G1, G2 can be computed efficiently
and there exists a group GT and an efficiently computable bilinear map ê : G1 × G2 → GT as
above. Concrete examples of bilinear groups are given in [14, 3]. For convenience, throughout the
paper, we view G1, G2, and GT as multiplicative groups though the concrete implementation of
G1, G2 could be additive elliptic curve groups.

4.3.2 The signature scheme

We first briefly discuss the network coding signature scheme by Charles, Jain, and Lauter [6].
The system parameter consists of the bilinear group G = 〈G,G,GT , ê〉 and (n+ 1) elements

g1, · · · , gn, g ∈ G that are chosen by the source node. Note that here we assume that G = G1 =
G2 for the bilinear groups.

For each session, the source node chooses secret key (s1, · · · , sn). Then the signature on the
message Mi = (mi,1, · · · ,mi,n) is (gs1 , · · · , gsn , S(Mi)) where

S(Mi) =
n∏
j=1

g
mi,jsj

j

Now assume that an intermediate node receives message-signature pair (v, (h1, · · · , hn, S(v))),
where v = (u1, . . . , un), it can verify the digital signature as follows:

n∏
j=1

ê(guj

j , hj) = ê(S(v), g)

Furthermore, assume that the intermediate node receives (v1, (h1, · · · , hn, S(v1))), · · ·, and
(vk, (h1, · · · , hn, S(vk))) from its k incoming edges respectively, where S(vi) is the digital sig-
nature on vi = (ui,1, · · · , ui,n). For each outgoing edge, the node chooses random α1, . . . , αk ∈
Fp and computes the digital signature on the combined message v = α1v1 + · · · + αkvk as
(h1, · · · , hn, S(v)) where

S(v) =
n∏
j=1

g
sj

∑t
i=1 αiui,j

j =
t∏
i=1

n∏
j=1

g
αisjui,j

j =
t∏
i=1

S(vi)αi

The correctness of the signature scheme is straightforward and omitted here. The authors in
[6] have provide a security proof for the above signature scheme. In the following, we show a few
attacks on this signature scheme.
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4.3.3 Attacks

Our first analysis shows that the values (gs1 , · · · , gsn) have to be distributed to all nodes in a secure
channel for each session. The reason is as follows.

• Assume that the adversary observes one signature (gs1 , · · · , gsn , S(Mi)) on the message
Mi = (mi,1,mi,2, · · · ,mi,n). For any message M ′ = (m,mi,2, · · · ,mi,n) chosen by
the adversary, the adversary can compute a number β such that m = mi,1β

−1. Then(
gβs1 , · · · , gsn , S(Mi)

)
is a signature for M ′. It is straightforward for the adversary to

generate signatures on any message M ′′ by modifying the values of (gs1 , · · · , gsn).

Boneh, Freeman, Katz and Waters [4] observed that, for this signature scheme, if both sessions
share (gs1 , · · · , gsn), then the adversary can easily combine the signatures on messages from two
sessions to generate a new signature on a fake message:

• Assume that M ′ is from session one and M ′′ is from session two. The signatures on the two
messages are h1, · · · , hn, S(M ′) and h1, · · · , hn, S(M ′′).

• For any β1 and β2, one can compute the signature on the message β1M
′ + β2M

′′ as
S(M ′)β1S(M ′′)β2 .

Combining these attacks, it is clear that the network coding signature in [6] requires a secure
channel for each session. This may be achieved by letting the source node digital sign the value
(gs1 , · · · , gsn) using a traditional digital signature scheme. But this will certainly introduce ex-
tra overhead for the network traffic which may significantly reduce the performance of network
coding.

4.4 Boneh, Freeman, Katz and Waters signature schemes

In previous sections, we show that all these signature schemes are either non-secure or non-
practical. In this section, we briefly describe a recent effort by Boneh, Freeman, Katz and Waters
[4]. They designed two provable secure digital signature schemes NCS1 and NCS2 for network
coding. However, the first scheme NCS1 is based on bilinear maps, which may require more
powerful computing capabilities for the intermediate nodes (could be routers). Thus it may be
impractical for some applications (see, e.g., [10] for some discussions) though may be acceptable
for systems with relatively powerful routers.

The signature scheme NCS2 requires longer signatures to be delivered for each session, which
could reduce the advantage of the network coding if the session message is relatively smaller,
which is often true in wireless communications such as sensor networks.
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