
Practical Key Recovery Attacks On Two McEliece Variants

Valérie Gauthier Umaña and Gregor Leander

Department of Mathematics
Technical University of Denmark

Denmark
{v.g.umana, g.leander}@mat.dtu.dk

Abstract. The McEliece cryptosystem is a promising alternative to conventional public key encryption
systems like RSA and ECC. In particular, it is supposed to resist even attackers equipped with quantum
computers. Moreover, the encryption process requires only simple binary operations making it a good
candidate for low cost devices like RFID tags. However, McEliece’s original scheme has the drawback
that the keys are very large. Two promising variants have been proposed to overcome this disadvantage.
The first one is due to Berger et al. presented at AFRICACRYPT 2009 and the second is due to Barreto
and Misoczki presented at SAC 2009. In this paper we first present a general attack framework and
apply it to both schemes subsequently. Our framework allows us to recover the private key for most
parameters proposed by the authors of both schemes within at most a few days on a single PC.

Keywords. public key cryptography, McEliece cryptosystem, coding theory, post-quantum cryptogra-
phy

1 Introduction

Today, many strong, and standardized, public key encryption schemes are available. The most
popular ones are based on either the hardness of factoring or of computing discrete logarithms in
various groups. These systems provide an excellent and preferable choice in many applications, their
security is well understood and efficient (and side-channel resistant) implementations are available.

However, there is still a strong need for alternative systems. There are at least two important
reasons for this. First, RSA and most of the discrete log based cryptosystems would break down
as soon as quantum computers of an appropriate size could be built (see [11]). Thus, it is desirable
to have algorithms at hand that would (supposedly) resist even attackers equipped with quantum
computers. The second reason is that most of the standard schemes are too costly to be implemented
in very constrained devices like RFID tags or sensor networks. This issue becomes even more
important when looking at the future IT landscape where it is anticipated that those tiny computer
devices will be virtually everywhere [13].

One well-known alternative public encryption scheme that, to today’s knowledge, would resist
quantum computers is the McEliece crypto scheme [9]. It is based on the hardness of decoding
random (looking) linear codes. Another advantage is that for encryption only elementary binary
operations are needed and one might therefore hope that McEliece is suitable for constrained devices
(see also [6] for recent results in this direction). However, the original McEliece scheme has a serious
drawback, namely the public and the secret keys are orders of magnitude larger compared to RSA
and ECC.

One very reasonable approach is therefore to modify McEliece’s original scheme in such a way
that it remains secure while the key size is reduced. A lot of papers already followed that line of
research (see for example [10,7,2]), but so far no satisfying answer has been found. Two promising
recent schemes in this direction are a McEliece variant based on quasi-cyclic alternant codes by

Berger et al. [4] and a variant based on quasi-dyadic matrices by Barreto and Misoczki [3]. As we
will explain below both papers follow a very similar approach to find suitable codes. The reduction
in the key size of both schemes is impressive and thus, those schemes seemed to be very promising
alternatives when compared to RSA and ECC.

In this paper, however, we show that many of the parameter choices for both schemes can be
broken. For some of them the secret key can be computed, given the public one, within less than
a minute for the first variant and within a few hours for the second scheme. While there remain
some parameter choices that we cannot attack efficiently, it seems that further analysis is needed
before those schemes should be used.

Our attack is based on a general framework that makes use of (linear) redundancy in subfield
subcodes of generalized Reed Solomon Codes. We anticipate therefore that any variant that reduces
the key size by introducing redundancy in such (or related) codes might be affected by our attack
as well.

We describe the two variants in Section 3 briefly, giving only the details relevant for our attack
(for more details we refer the reader to the papers [4,3]). In Section 4 we outline the general
framework of the attack and finally apply this framework to both schemes (cf. Section 5 and 6).

2 Notation

Let r,m be integers and q = 2r. We denote by Fq the finite field with q elements and by Fqm its
extension of degree m. In most of the cases we will consider the case m = 2 and we stick to this
until otherwise stated. For an element x ∈ Fq2 we denote its conjugate xq by x.

Given an Fq basis 1, ω of Fq2 we denote by ψ : Fq2 → F2
q the vector space isomorphism such

that ψ(x) = ψ(x0 + ωx1) =
(
x1

x0

)
. Note that, without loss of generality, we can choose θ such that

ψ(x) =
(φ(x)
φ(θx)

)
where φ(x) = x+ x with x = xq. Note that we have the identity

φ(x) = φ(x). (1)

A fact that we will use at several instances later is that given a = φ(αx) and b = φ(βx) for some
α, β, x ∈ Fq2 we can recover x as linear combination of a and b (as long as α, β form an Fq basis of
Fq2). More precisely it holds that

x =
α

βα+ βα
b+

β

βα+ βα
a (2)

Adopting the notation from coding theory, all vectors in the papers are row vectors and vectors
are right multiplied by matrices. The i.th component of a vector x is denote by x(i). Due to space
limitations, we do not recall the basis concepts of coding theory on which McEliece and the two
variants are based on. They are not needed for our attack anyway. Instead we refer the reader to [8]
for more background on coding theory and in particular on subfield subcodes of Generalized Reed
Solomon codes.

3 Two McEliece Variants

We are going to introduce briefly the two McEliece variants [4,3] that we analyzed. For this, we
denote by xi, ci two sets of elements in Fq2 of size n. Furthermore let t be an integer. Both variants

have a secret key parity check matrix of the form:

(secret key) H =


φ(c0) φ(c1) . . . φ(cn−1)
φ(θc0) φ(θc1) . . . φ(θcn−1)

...
...

...
φ(c0xt−1

0) φ(c1xt−1
1) . . . φ(cn−1x

t−1
n−1)

φ(θc0xt−1
0) φ(θc1xt−1

1) . . . φ(θcn−1x
t−1
n−1)

 =

 sk0
...

sk2t−1

 (3)

Thus, both schemes are based on subfield subcodes of Generalized Reed Solomon codes (see [8] for
more background on those codes). Note that Goppa codes, the basic building block for the original
McEliece encryption scheme are a particular kind of subfield subcodes of Generalized Reed Solomon
codes. To simplify the notation later we denote by ski the i.th row of H.

The public key in both variants is

(public key) P = SH, (4)

where S is a secret invertible 2t × 2t matrix. Actually, in both schemes P is defined to be the
systematic form of H, which leads to a special choice of S. As we do not make use of this fact for
the attacks one might as well consider S as a random invertible matrix.

In both cases, without loss of generality c0 and x0 can be supposed to be 1. In fact, given that
the public key H is not uniquely defined, we can always include the corresponding divisions needed
for this normalization into the matrix S.

The main difference between the two proposals is the choice of the constants ci and the points
xi. In order to reduce the keysize, both of the public as well as of the secret key, those 2n values
are not chosen independently, but in a highly structured way.

Both schemes use random block-shortening of very large private codes (exploiting the NP-
completeness of distinguishing punctured codes [14]) and the subfield subcode construction (to
resist the classical attack of Sidelnikov and Shestakov, see [12]). In [4,3] the authors analyze the
security of their schemes and demonstrate that none of the known attack can be applied. They
also prove that the decoding an arbitrary quasi-cyclic (reps. an arbitrary quasi-dyadic) code is
NP-complete.

For the subfield subcode construction, both schemes allow in principle any subfield to be used.
However the most interesting case in terms of key size and performance is the case when the subfield
is of index 2 (i.e. m = 2) and we focus on this case only.

Both schemes use a block based description of the secret codes. They take b blocks of ` columns
and t rows. The subfield subcode operation will transform each block into a ` × 2t matrix and
the secret parity check matrix H is the concatenation of the b blocks. Thus, one obtains a code of
length `b.

Note that when we describe the variants, our notation will differ from the one in [4,3]. This is
an inconvenience necessary in order to unify the description of our attack on both variants.

3.1 The Quasi-Cyclic Variant

Berger et al. propose [4] to use quasi-cyclic alternant codes over a small non-binary field. Let α be
a primitive element of Fqm and β ∈ Fqm an element of order ` (those are public values). The secret

key consists of b different values yj and aj in Fqm where b is small, i.e. b ≤ 15 for the proposed
parameters. The constants ci and points xi are then defined by

c`j+i := βisaj and x`j+i := βiyj (5)

for all 0 ≤ i ≤ ` − 1 and 0 ≤ j ≤ b − 1. Here 1 ≤ s ≤ ` − 1 is a secret value. Table 1 lists the
parameters proposed in [4]. Note that in [4] cyclic shifts (modulo `) of the columns are applied.
This does not change the structure of the matrix (since β has order `) and that is why we can omit
this from our analysis.

Table 1. Parameters proposed in [4] and the running time/complexity of our attacks. The attacks were carried on
a PC with an Intel Core2 Duo with 2.2 GHz and 3 GB memory running MAGMA version V2.15 − 12. Times are
averaged over 100 runs.

q qm ` t b Public key Assumed Complexity (log2) Av. running time (sec) Av. running time (sec)
size (bits) security attack Section 5.1 attack Section 5.2 attack Appendix B

I 51 100 9 8160 80 74.9 – –
II 51 100 10 9792 90 75.1 – –
III 28 216 51 100 12 13056 100 75.3 – –
IV 51 100 15 20400 120 75.6 – –

V 75 112 6 6750 80 – – 47
VI 210 220 93 126 6 8370 90 87.3 62 –
VII 93 108 8 14880 100 86.0 75 –

3.2 The Quasi-Dyadic Variant

Misoczki and Barreto propose [3] to use binary Goppa codes in dyadic form. They consider (quasi)
dyadic Cauchy matrices as the parity check matrix for their code. However, it is well known that
Cauchy matrices define generalized Reed Solomon codes [3] and thus, up to a multiplication by an
invertible matrix which we consider to be incorporated in the secret matrix S, the scheme has a
parity check matrix of the form (3).

Again, the only detail to be described here is how the constants ci and points xi are chosen.
First we choose ` = t a power of two. Next, choose v = [Fqm : F2] = mr elements in Fqm :
y0, y1, y2, y4, · · · , y2v . For each j =

∑v
k=0 jk2

k such that jk ∈ {0, 1} (i.e. the binary representation
of j) we define

yj =
v∑
k=0

jky2k + (WH(j) + 1)y0 (6)

for 0 ≤ j ≤ #Fqm−1 and WH(j) is the Hamming weight of j. Moreover, choose b different elements
ki with 0 ≤ i ≤ #Fqm − 1, b different elements ai ∈ Fqm and define

x`i+j := yki⊕j and c`i+j := ai (7)

for all 0 ≤ j ≤ `−1 and 0 ≤ i ≤ b−1. This choice implies the following identity. For j =
∑u−1

f=0 jf2f ,
where u = log2(`) it holds that

x`i+j =
u−1∑
f=0

jfx`i+2f + (WH(j) + 1)xli. (8)

Note that in [3] dyadic permutations are applied. However, this does not change the structure of
the matrix and that is why we can omit this from our analysis.

Table 2 lists the parameters proposed in [3, Table 5].

Table 2. Sample parameters from [3] along with the complexity of our attack. Running time was measured on a PC
with an Intel Core2 Duo with 2.2 GHz and 3 GB memory running MAGMA version V2.15− 12.

q qm ` t b public key size assumed security complexity of the attack (log2) estimated running time(h)

128 128 4 4096 80 43.7 36
128 128 5 6144 112 43.8 41

28 216 128 128 6 8192 128 44.0 47
256 256 5 12288 192 44.8 107
256 256 6 16384 256 44.9 125

4 General Framework of the Attack

The starting observation for our analysis and attacks is the following interpretation of the entries
in the public key P .

Proposition 1. Let H be the 2t × n parity check matrix defined as in Equation (3). Multiplying
H by a 2t× 2t matrix S we obtain a 2t× n matrix P of the form

P = SH =


φ(c0g0(x0)) φ(c1g0(x1)) . . . φ(cn−1g0(xn−1))
φ(c0g1(x0)) φ(c1g1(x1)) . . . φ(cn−1g1(xn−1))

...
...

...
φ(c0g2t−1(x0)) φ(c1g2t−1(x1)) . . . φ(cn−1g2t−1(xn−1))


where gi are polynomials with coefficients in Fq2 of degree less than t. Moreover, if S is bijective
the polynomials gi form an Fq basis of all polynomials of degree at most t− 1.

The proof of this proposition can be found in Appendix A.
This observation allows us to carry some of the spirit of the attack of Sidelnikov and Shestakov

(see [12]) on McEliece variants based on Reed-Solomon codes over to the subfield subcode case.
The basic idea is that multiplying the public key P by a vector results (roughly speaking) in the
evaluation of a polynomial at the secret points xi. More precisely the following holds.

Proposition 2. Continuing the notation from above, multiplying the public parity check matrix P
with a vector γ ∈ F2t

q results in

γP = (φ(c0gγ(x0)), . . . , φ(cn−1gγ(xn−1))) (9)

where gγ(x) =
∑2t−1

i=0 γigi(x).

As the values γ, gγ and γP are extensively used below we summarize their relation in Table 3.
Thus, if we would have the possibility to control the polynomial gγ (even though we do not

know the polynomials gi) then γP reveals, hopefully, useful information on the secret key. While
in general, controlling gγ seems difficult, it becomes feasible in the case where the secret points xi
and the constants ci are not chosen independently, but rather fulfil (linear) relations. The attack
procedure can be split into three phases.

Table 3. The relation among the values γ, gγ and γP . The polynomials gi are defined in Proposition 1

γ A vector in F2t
q

gγ The polynomial defined by gγ(x) =
∑2t−1
i=0 γigi(x).

γP A vector in Fnq whose entries are given by φ(cigγ(xi)).

Isolate: The first step of the attack consists in choosing polynomials gγ that we want to use in the
attack. The main obstacle here is that we have to choose gγ such that the redundancy allows us
to efficiently recover the corresponding γ. As we will see later, it is usually not possible to isolate
a single polynomial gγ but rather to isolate a vector space of polynomials (or, equivalently, of
vectors γ) of sufficiently small dimension.

Collect: After the choice of a set of polynomials and the recovery of the corresponding vectors γ, the
next step of the attack consists in evaluating those polynomials at the secret points xi. In the
light of Proposition 2 this is simply done by multiplying the vectors γ with the public parity
check matrix P .

Solve: Given the information collected in the second step of the attack, we now have to extract the
secret key, i.e. the values xi and ci. This corresponds to solving a system of equations. Depending
on the type of collected information this is done simply by solving linear equations, by first
guessing parts of the key and then verifying by solving linear equations, or by solving non-linear
equations with the help of Gröbner basis techniques. The advantage of the first two possibilities
is that one can easily determine the running time in general while this is not true for the last
one. However, the use of Gröbner basis techniques allows us to attack specific parameters very
efficiently.

4.1 The Isolate Phase and the Collect Phase in Detail

The redundancy in the choice of the points xi and the constants ci will allow us to identify sets of
polynomials or more precisely vector spaces of polynomials. In this section we elaborate a bit more
on this on a general level. Assume that we are able to identify a subspace Γ ⊆ F2t

q such that for
each γ ∈ Γ we know that gγ is of the form

gγ = α1x
d1 + α2x

d2 + . . . αrx
dr

for some αi ∈ Fq2 and di < t. Equation (9) states that multiplying γ with the public key yields

γP = (φ(c0gγ(x0)), . . . , φ(cn−1gγ(xn−1))) .

Using the assumed form of gγ , and writing αi = αi,1 + αi,2θ with αi,1, αi,2 ∈ Fq, we can rewrite
φ(cgγ(x)) as

φ(cgγ(x)) = φ(c(α1x
d1 + α1x

d1 + . . . αrx
dr))

= α1,1φ(cxd1) + α1,2φ(θcxd1) + · · ·+ αr,1φ(cxdr) + αr,2φ(θcxdr).

Recalling that we denote by ski the i.th row of the secret key (cf. Equation 3), we conclude that

γP = α1,1 sk2d1 +α1,2 sk2d1+1 +α2,1 sk2d2 +α2,2 sk2d2+1 + · · ·+ αr,2 sk2dr+1 .

Now, if the dimension of Γ is 2r this implies that there is a one to one correspondence between the
elements γ ∈ Γ and the coefficient vector (α1, . . . , αr). Stated differently, there exists an invertible
2r × 2r matrix M such that for a basis γ1, . . . , γ2r of Γ we have γ1

...
γ2r

P = M

 sk2d1
...

sk2dr+1

 , (10)

where we now know all the values on the left side of the equation. This has to be compared to the
initial problem (cf Equation 4) we are facing when trying to recover the secret key given the public
one, where S is an invertible 2t× 2t matrix. In this sense, the first step of the attack allows us to
break the initial problem into (eventually much) smaller subproblems. Depending on the size of r
(which will vary between 1 and log2 t in the actual attacks) and the specific exponents di involved,
this approach will allow us to efficiently reconstruct the secret key.

Note that we are actually not really interested in the matrix M , but rather in the values xi and
ci. Therefore, a description of the result of the isolate and collect phase that is often more useful
for actually solving for those unknowns is given by

M−1

 γ1
...
γ2r

P =

 sk2d1
...

sk2dr+1

 . (11)

The advantage of this description is that the equations are considerably simpler (in particular linear
in the entries of M−1) as we will see when attacking specific parameters.

5 Applying the Framework to the Quasi-Cyclic Variant

In the following we show how the framework described above applies to the McEliece variant from
[4] defined in Section 3.1. In particular we are going to make use of Equation (5). Recall that β is
an element of order ` in Fq2 . If ` is a divisor of q − 1, such an element is in the subfield Fq. This is
the case for all the parameters in Table 1 except the parameter set V . We first focus on this case,
the case that β is not in the subfield is considered in Appendix B. Section 5.1 describes an attack
that works for parameters I-IV,VI and VII. Furthermore, for parameters VI and VII we describe
attacks that allow us to recover the secret key within a few seconds in Section 5.2.

Note that in any case the secret value s (cf. Equation (5)) can be recovered very efficiently
before applying the actual attacks, and we therefore assume it to be known from now on. However,
due to space limitations and the fact that s is small anyway, we do not explain the details for
recovering s.

5.1 The case β ∈ Fq (parameters I-IV,VI and VII)

In this part we describe an attack that works essentially whenever β is in the subfield. The attack
has a complexity of roughly q6× (ndb)(4nd + b)2(log2 q

2)3 (where nd = blog2(t− `)c) which is lower
than the best attacks known so far. Moreover, the attack is a key recovery attack, thus running the
attack once allows an attacker to efficiently decrypt any ciphertext. However, these attacks are far
from being practical (cf. Table 1 for actual values).

In the attack we apply the general framework twice. The first part will reduce the number of
possible constants ci to q6 values. In the second part, for each of those possibilities, we try to find
the points xi by solving an over defined system of linear equations. This system will be solvable for
the correct constants and in this case reveal the secret points xi.

Recovering the Constants cj

Isolate: We start by considering the simplest possible candidate for gγ , namely gγ(x) = 1. The task
now is to compute the corresponding vector γ. Multiplying the desired vector γ with the public key
P we expect (cf. Equation (9)) to obtain the following

γP = (φ(c0gγ(x0)), . . . , φ(cn−1gγ(xn−1))) = (φ(c0), φ(c1), . . . , φ(cn−1)).

Now, taking Equation (5) into account, this becomes

γP =
(
φ(a0), φ(βsa0), φ(β2sa0) . . . , φ(β(`−1)sa0),

φ(a1), φ(βsa1), φ(β2sa1) . . . , φ(β(`−1)sa1),
...

...
φ(ab−1), φ(βsab−1), φ(β2sab−1) . . . , φ(β(`−1)sab−1)

)
.

Since β is in the subfield we have φ(βx) = βφ(x) for any x ∈ Fq2 . Using this identity we see that γ
corresponding to the constant polynomial gγ fulfils

γP = φ(a0)v0 + φ(a1)v1 + · · ·+ φ(ab−1)vb−1

where
vi = (0, . . . , 0︸ ︷︷ ︸

i`

, 1, βs, β2s, . . . , β(`−1)s, 0, . . . 0︸ ︷︷ ︸
((b−1)−i)`

) for 0 ≤ i ≤ b− 1.

In other words, the γ we are looking for is such that γP is contained in the space U spanned by
v0 up to vb−1, i.e. γP ∈ U = 〈v0, . . . , vb−1〉. Thus to compute candidates for γ we have to compute
a basis for the space Γ0 = {γ | γP ∈ U}. We computed this space for many randomly generated
public keys and observed the following.

Experimental Observation 1 The dimension of the space Γ0 is always 4.

We do not prove this, but the next lemma explains why the dimension is at least 4.

Lemma 1. Let γ be a vector such that gγ(x) = α0 + α1x
`. Then γ ∈ Γ0.

Proof. To show that γ is in Γ0 we have to show that γP is a linear combination of the vectors vi. To
see this, it suffices to note that gγ(βx) = α0 +α1(βx)` = α0 +α1x

` = gγ(x) as β` = 1. As the points
xi fulfil Equation (5) we conclude γP = φ(a0gγ(y0))v0 +φ(a1gγ(y1))v1 + · · ·+φ(ab−1gγ(yb−1))vb−1.

ut

As, due to Observation 1, dim(Γ0) = 4 we conclude that

{gγ | γ ∈ Γ0} = {α0 + α1x
` | α0, α1 ∈ Fq2}.

Collect Phase: Denote by γ1, . . . , γ4 a basis of the four dimensional space Γ0. Referring to Equation
(11) we get

M−1


γ1

γ2

γ3

γ4

P =


sk0

sk1

sk2`

sk2`+1

 . (12)

for an (unknown) 4× 4 matrix M−1 with coefficients in Fq.

Solve Phase: We denote the entries of M−1 by (βij). The i.th component of the first two rows of
Equation (12) can be rewritten as

β00(γ1P)(i) + β01(γ2P)(i) + β02(γ3P)(i) + β03(γ4P)(i) = sk(i)
0 = φ(ci) = ci + ci

β10(γ1P)(i) + β11(γ2P)(i) + β12(γ3P)(i) + β13(γ4P)(i) = sk(i)
1 = φ(θci) = θci + θci.

Dividing the second equation by θ and adding the two implies

δ0(γ1P)(i) + δ1(γ2P)(i) + δ2(γ3P)(i) + δ3(γ4P)(i) =
(
θ

θ
+ 1
)
ci, (13)

where

δi =
(
β0i +

β1i

θ

)
∈ Fq2 .

Assume without loss of generality that c0 = 1. Then, for each possible choice of δ0, δ1 and δ2 we
can compute δ3 (using c0 = 1) and subsequently candidates for all constants ci. We conclude that
there are (q2)3 possible choices for the constants ci (and thus in particular for the b constants
a0 = c0, . . . , ab−1 = c(b−1)`). We will have to repeat the following step for each of those choices.

Recovering Points xi Given one out of the q6 possible guesses for the constants ci we now explain
how to recover the secret values xi by solving an (over defined) system of linear equations. Most of
the procedure is very similar to what was done to (partially) recover the constants.

Isolate Here we make use of polynomials gγ = xd for d ≤ t − 1. The case gγ = 1 is thus a special
case d = 0. Following the same computations as above, we see that for the vector γ corresponding
to gγ = 1 it holds that γP ∈ Ud where

Ud = 〈v(d)0, . . . , v(d)b−1〉 (14)

and
v(d)i = (0, . . . , 0︸ ︷︷ ︸

i`

, 1, βs+d, β2(s+d), . . . , β(`−1)(s+d), 0, . . . 0︸ ︷︷ ︸
((b−1)−i)`

) for 0 ≤ i ≤ b− 1.

As before we define Γd = {γ | γP ∈ Ud}, and, based on many randomly generated public keys we
state the following.

Experimental Observation 2 For d ≤ t− ` the dimension of the space Γd is always 4.

Similar as above, the next lemma, which can be proven similar as Lemma 1, explains why the
dimension of Γd is at least 4.

Lemma 2. Let γ be a vector such that gγ(x) = α0x
d + α1x

d+`. Then γ ∈ Γd.

As, due to Observation 2, dim(Γd) = 4 we conclude that

{gγ | γ ∈ Γd} = {α0x
d + α1x

d+` | α0, α1 ∈ Fq2}.

Collect Phase: Denote by γ(d)1, . . . γ(d)4 a basis of the four dimensional space Γd. Referring to
Equation (11) we get

M−1
d


γ(d)1

γ(d)2

γ(d)3

γ(d)4

P =


sk2d

sk2d+1

sk2(`+d)

sk2(`+d)+1


for an (unknown) 4×4 matrix M−1

d with coefficients in Fq from which we learn (similar to Equation
(13))

(θ
θ

+ 1
)
cix

d
i = δ(d)0(γ(d)1P)(i) + δ(d)1(γ(d)2P)(i) + δ(d)2(γ(d)3P)(i) + δ(d)3(γ(d)4P)(i) (15)

for unknowns δ(d)i ∈ Fq2 (and unknowns xi). How to solve such a system? Here, the freedom of
choice in d allows us to choose 1 ≤ d ≤ t − ` as a power of two. In this case, Equations (15)
become linear in the bits of xi when viewed as binary equations for a fixed guess for ci. Let nd
be the number of possible choices for d, i.e. nd = blog2(t − `)c. We get a linear system with
(log2 q

2)(4nd + b) unknowns (4nd for the unknowns δ(d)i and b unknowns for the points x`j = yj)
and (log2 q

2)ndb equations (log2 q
2 equation for each d and each component i = j`). Thus whenever

b > 4 and nd ≥ 2 (i.e. t ≥ 4) this system is likely to be over defined and thus reveals the secret
values xi. We verified the behavior of the system and observed the following.

Experimental Observation 3 Only for the right guess for the constants ci the system is solvable.
When we fix wlog x0 = 1, for the right constants there is a unique solution for the values xi.

As there are q6 possibilities for the constants and it takes roughly (ndb)(4nd+b)2(log2 q
2)3 binary

operations to solve the system, the overall running time of this attack is q6×(ndb)(4nd+b)2(log2 q
2)3.

For the concrete parameters the attack complexity is summarized in Table 1.

5.2 Practical Attacks for parameter sets VI and VII

In this part we describe how, using Gröbner basis techniques, we can recover the secret key for the
parameter sets VI and VII of Table 1 within a few seconds on a standard PC. The attack resembles
in large parts the attack described above. The main difference in the solve phase is that we are not
going to guess the constants to get linear equations for the points, but instead solve a non-linear
system with the help of Gröbner basis techniques.

Isolate: Again, we make use of polynomials gγ = xd but this time with the restriction t− ` ≤ d < `.
To recover the corresponding vectors γ we make use of the space Ud defined by Equation (14). Now,
with the given restriction on d it turns out that the situation, from an attacker’s point of view, is
nicer as for Γd = {γ | γP ∈ Ud}, we obtain

Experimental Observation 4 For t− ` ≤ d < ` the dimension of the space Γd is always 2.

Thus, we isolated the polynomials g(x) = αdx
d in this case. In other words

{gγ | γ ∈ Γd} = {αxd | α ∈ Fq2}.

The reason why we did not get the second term, i.e. xd+` in this case, is that the degree of gγ is
bounded by t− 1 and d+ ` exceeds this bound.

Collect Phase: Denote by γ(d)1, γ(d)2 a basis of the two dimensional space Γd. Referring to Equation
(11) we get

M−1
d

(
γ(d)1

γ(d)2

)
P =

(
sk2d

sk2d+1

)
,

for an (unknown) 2× 2 matrix M−1
d with coefficients in Fq.

Solve Phase: We denote the entries of M−1
d by (βij). The i.th component of the first row can be

rewritten as

β00(γ(d)1P)(i) + β01(γ(d)2P)(i) = cix
d
i + cixdi (16)

Again, we can assume x0 = c0 = 1. This (for i = 0) reveals β00(γ(d)1P)(0) + β01(γ(d)2P)(0) = 0 and

thus β01 = β00(γ(d)1P)(0)

(γ(d)2P)(0)
. Substituting back into Equation (16) we get

β00

(
(γ(d)1P)(i) +

(γ(d)1P)(0)

(γ(d)2P)(0)
(γ(d)2P)(i)

)
= cix

d
i + cixdi .

For parameter sets VI and VII we successfully solved this set of equations within seconds on a
standard PC using MAGMA [5]. For parameters VI, d ranges from 33 to 92 and for parameters VII
from 15 to 92. Thus in both cases we can expect to get a highly overdefined system. This allows us
to treat ci and xdi as independent variables, speeding up the task of computing the Gröbner basis
by a large factor. An example code running the attack for parameter set VI can be found at [1].
The average running times are summarized in Table 1.

This attack does not immediately apply to parameters I to IV as here the range of d fulfilling
t−` ≤ d < ` is too small (namely d ∈ {49, 50}) which does not result in sufficiently many equations.
However, we anticipate that using Gröbner basis techniques might speed up the attack for those
parameters as well.

6 Applying the Framework to the Dyadic Variant

In this section we introduce, in a very similar way as we did in Section 5.1, how to apply the general
framework of the attack to the McEliece variant introduced in [3] and described in Section 3.2. For
u = log2 t the attack to be described a complexity of roughly q2 × (log2 q

2)3(u2 + 3u+ b)2u(u+ b)
binary operations, which for the parameters given in [3] means that we can recover the secret key
within at most a few days with a standard PC (cf. Table 1 for actual values).

Recovering Constants cj

Isolate phase: As before we consider gγ(x) = 1 and we want to compute the corresponding vector
γ. From Equation (9) we have that

γP = (φ(c0gγ(x0)), . . . , φ(cn−1gγ(xn−1))) = (φ(c0), φ(c1), . . . , φ(cn−1)).

Now, taking Equation (7) into account, this becomes

γP = (φ(a0), φ(a0), φ(a0) . . . , φ(a0),
φ(a1), φ(a1), φ(a1) . . . , φ(a1),

...
...

φ(ab−1), φ(ab−1), φ(ab−1) . . . , φ(ab−1)) .

We see that γ corresponding to the constant polynomial gγ fulfils

γP = φ(a0)v0 + φ(a1)v1 + · · ·+ φ(ab−1)vb−1

where
vi = (0, . . . , 0︸ ︷︷ ︸

i`

, 1, 1, 1, . . . , 1, 0, . . . 0︸ ︷︷ ︸
((b−1)−i)`

) for 0 ≤ i ≤ b− 1.

Let U be the space spanned by v0 up to vb−1. The γ that we are looking for is such that

γP ∈ U = 〈v0, . . . , vb−1〉.
Thus in order to find γ we have to compute a basis for the space Γ0 = {γ | γP ∈ U}. We did

this for many randomly generated public keys and observe the following.

Experimental Observation 5 The dimension of the space Γ0 is always 2.

The next lemma shows, why the dimension is at least 2.

Lemma 3. Let γ be a vector such that gγ(x) = α0. Then γ ∈ Γ0.

Note that dimΓ0 = 2 is actually the best case we can hope for within our framework.

Collect Phase: Denote by γ1, γ2 a basis of the two dimensional space Γ0. Referring to Equation
(11) we get

M−1

(
γ1

γ2

)
P =

(
sk0

sk1

)
(17)

for an (unknown) 2× 2 matrix M−1 with coefficients in Fq.

Solve Phase: We denote the entries of M−1 by (βij). We get(
β00 β01

β10 β11

)(
γ1
γ2

)
P =

(
φ(c0), φ(c1), · · · , φ(cb−1)
φ(θc0), φ(θc1), · · · , φ(θcb−1)

)
.

Assuming wlog that c0 = 1, we can compute β01 as a function of β00 and β11 as a function of
β10. Then guessing β00 and β10 allows us to recover all the constants. We conclude that there are
q2 possible choices for the b constants a0, . . . , ab−1. We will have to repeat the following step for
each of those choices.

Recovering Points xi Assuming that we know the constants ci we explain how to recover the
secret values xi by solving an (over-defined) system of linear equations. If the set of constants that
we have chosen in the previous step is not the correct one, the system will not be solvable.

Isolate: We start by considering gγ(x) = x, and multiply the desired vector γ with the public key
P . We expect (cf. Equation (9)) to obtain the following:

γP = (φ(c0gγ(x0)), . . . , φ(cn−1gγ(xn−1)))

then
γP = (φ(a0x0), φ(a0x1), . . . , φ(a0x`−1),

φ(a1x`), φ(a1x`+1), . . . , φ(a1x2`−1),
...

...
...

φ(ab−1x(b−1)`), φ(ab−1x(b−1)`+1), . . . , φ(ab−1xb`−1)).

(18)

Recalling Equation (8) we see that the vector γ we are looking for fulfils

(γP)(`i+j) =
u−1∑
f=0

jf (γP)(`i+2f) + (1 +WH(j))(γP)(`i) ∀ 0 ≤ i < b, 0 ≤ j < ` (19)

where j =
∑u−1

f=0 jf2f is the binary representation of j. Denoting Γ1 = {γ ∈ F2t
q | γ fulfils (19)} we

got the following observation by randomly generating many keys.

Experimental Observation 6 The dimension of the space Γ1 is always u+ 1.

Clearly, the dimension is at least u + 1 as we are actually only checking if gγ is F2 affine and
therefore if γ is such that gγ(x) = α0 + α1x+ α2x

2 + · · ·+ αux
2u−1

then γ ∈ Γ1.

Collect Phase: A straight-forward application of Equation (10) would lead to a linear system that
becomes only over-defined for a large number of blocks. Thus, in order to avoid this we modify the
collect phase as follows. Let γ ∈ Γ1 be given. We have

γP = (φ(a0gγ(x0)), φ(a0gγ(x1)), . . . , φ(a0gγ(xl−1)),
φ(a1gγ(x`)), φ(a1gγ(x`+1)), . . . , φ(a1gγ(x2`−1)), . . .)

where gγ is an F2 affine polynomial. Making use of the identity

x0 + xi = x` + x`+i ∀ 0 ≤ i < `

allows us to compute µ(i)
γ = φ(a0(gγ(x0 + xi) + g(0))) and ν

(i)
γ = φ(a1(gγ(x0 + xi) + g(0))). As

we assume we know the constants a0 and a1, given µ
(i)
γ and ν

(i)
γ we can recover (cf. Equation (2))

z
(i)
γ = gγ(x0 + xi) + g(0) (as long as (a0, a1) is an Fq basis of Fq2). Next, by solving a system of

linear equations, we compute a γ′ such that

z
(i)
γ′ = θz(i)

γ .

It turns out that the corresponding polynomial gγ′ is unique up to adding constants, i.e. gγ′ = θgγ+c.
Summarizing our findings so far we get

γP = (φ(a0gγ(x0)), φ(a0gγ(x1)), . . . , φ(ab−1gγ(xn−1)))
γ′P = (φ(θa0gγ(x0) + a0c), φ(θa0gγ(x1) + a0c), . . . , φ(θab−1gγ(xn−1) + ab−1c)).

This, again using Equation (2), allows us to compute

δ = (a0gγ(x0), a0gγ(x1), . . . , ab−1gγ(xn−1)) + (a0c
′, a0c

′, . . . , ab−1c
′) + (a0c

′′, a0c
′′, . . . , ab−1c

′′)

for (unknown) constants c′, c′′. Repeating this procedure for different elements γ ∈ Γ1 will eventually
result in δ1, . . . , δu+2 that span a space of dimension u+2. The data we collected can thus be written
as

 δ1
...

δu+2

 = M


(a0, a0, . . . , ab−1)
(a0, a0, . . . , ab−1)

(a0x0, a0x1, . . . , ab−1xn−1)
...

...
(a0x

2u−1

0 , a0x
2u−1

1 , . . . , ab−1x
2u−1

n−1)

 (20)

for an invertible (u+ 2)× (u+ 2) matrix M .

Solve Phase: Multiplying Equation (20) by M−1 yields equations that, when viewed as binary
equations, are linear in the entries of M−1 and the values xi (as we assume the ai to be known).
The first two rows of M are determined by the (known) values of the constants ai. Thus we are left
with Nu = log2(q2)(u(u+ 2) + (u+ b)) unknowns, i.e. the remaining u(u+ 2) entries of M−1 and
the u+ b points

x0, x1, x2, x4, . . . , x2u−1 , x`, x2`, x3`, . . . x(b−1)`

(all other points are given as linear combinations of those). The number of equations is Ne =
log2(q2)(u + b) × u. In particular, whenever b ≥ 4 and u ≥ 4, i.e. t ≥ 24, we get more equations
than unknowns and can hope for a unique solution. We implemented the attack and observed the
following.

Experimental Observation 7 Only for the right guess for the constants ci the system is solvable.
In this case the constants x0 and x1 could be chosen as arbitrary non-zero elements in Fq2.

As there are q2 possibilities for the constants and it takes roughly (NeN
2
u) binary operations

to solve the system, the overall running time of this attack is q2 × (log2 q
2)3(u2 + 3u+ b)2u(u+ b)

binary operations. In Table 2 we computed the complexity of the attack for the sample parameters
given in [3, Table 5]. A implementation of the attack in MAGMA can be obtained from [1]

Acknowledgement

We like to thank the authors of [4] for providing us a sample implementation of their cipher. We
also like to thank Søren Thomsen and Tom Høholdt for fruitful discussions.

References

1. anonymous. Source Code for attacking two McEliece Variants. anonymous, October 2009.
2. M. Baldi and F. Chiaraluce. Cryptanalysis of a new instance of McEliece cryptosystem based on QC-LDPC

Codes. IEEE International Symposium on Information Theory, pages 2591–2595, 2007.
3. Paulo S. L. M. Barreto and Rafael Misoczki. Compact McEliece Keys from Goppa Codes. In Proceedings of

the 16th International Workshop on Selected Areas in Cryptography, SAC 2009, volume 5867 of Lecture Notes in
Computer Science. Springer-Verlag, 2009.

4. Thierry P. Berger, Pierre-Louis Cayrel, Philippe Gaborit, and Ayoub Otmani. Reducing Key Length of the
McEliece Cryptosystem. In Bart Preneel, editor, AFRICACRYPT, volume 5580 of Lecture Notes in Computer
Science, pages 77–97. Springer, 2009.

5. Wieb Bosma, John J. Cannon, and Catherine Playoust. The Magma Algebra System I: The User Language. J.
Symb. Comput., 24(3/4):235–265, 1997.

6. T. Einsenbarth, T. Güneysu, S. Heyse, and C. Paar. MicroEliece: McEliece for Embedded Devices. In Proceedings
of CHES 2009, LNCS. Springer, 2009. to appear.

7. P. Gaborit. Shorter keys for code based cryptography. International Workshop on Coding and Cryptography,
Bergen, Norway, 2005.

8. F. J. MacWilliams and N. J. Sloane. The theory of error-correcting codes. North Holland, Amsterdam, 1977.
9. Robert .J. McEliece. A public key cryptosystem based on alegbraic coding theory. DSN progress report, 42-

44:114–116, 1978.
10. C. Monico, J. Rosenthal, and A. Shokrollahi. Using low density parity check codes in the McEliece cryptosystem.

IEEE International Symposium on Information Theory, page 215, 2000.
11. Peter W. Shor. Algorithms for quantum computation: Discrete logarithms and factoring. In IEEE Symposium

on Foundations of Computer Science, pages 124–134, 1994.
12. V. M. Sidelnikov and S. O. Shestakov. On cryptosystem based on gerenalized reed-solomon codes. Discrete

Mathematics, 4(3):57–63, 1992.
13. Mark Weiser. The computer for the 21st century. Scientific American, Special Issue on Communications,

Computers, and Networks September, September 1991.
14. C. Wieschebrink. Two NP-complete problems in coding theory with an application in code based cryptography.

IEEE International Symposium on Information Theory, pages 1733–1737, 2006.

A Proof of Proposition 1

Proof. For the proof it is enough to consider the effect of multiplying a vector s ∈ Ftq by H. For
convenience we label the coordinates of s as

s = (α0, β0, α1, β1, . . . , αt−1, βt−1)

We compute

sH = s


φ(θc0) . . . φ(θcn−1)
φ(c0) . . . φ(cn−1)

...
...

φ(θc0xt−1
0) . . . φ(θcn−1x

t−1
n−1)

φ(c0xt−1
0) . . . φ(cn−1x

t−1
n−1)


=

(
t−1∑
i=0

αiφ(θc0xi0) +
t−1∑
i=0

βiφ(c0xi0), . . . ,
t−1∑
i=0

αiφ(θcn−1x
i
n−1) +

t−1∑
i=0

βiφ(cn−1x
i
n−1)

)

=

(
φ(c0

t−1∑
i=0

(θαi + βi)xi0), . . . , φ(cn−1

t−1∑
i=0

(θαi + βi)xin−1)

)
= (φ(c0g(x0)), . . . , φ(cn−1g(xn−1)))

where g(x) =
∑t−1

i=0(θαi + βi)xi. ut

B A practical attack for parameter set V

Recall that β is an element of order ` in Fq2 . Attacks for the case that β is actually in the subfield
Fq are discussed in Section 5. In the case that β is not in the subfield things are a little different
and we focus on this case here.

Isolate Phase: Assume that again we would like to isolate the polynomial gγ(x) = xd. Multiplying
the vector γ with the public key P yields

γP =
(
φ(a0y0), φ(βs+da0y0), φ(β2(s+d)a0y0) . . . , φ(β(`−1)(s+d)a0y0),

φ(a1y1), φ(βs+da1y1), φ(β2(s+d)a1y1) . . . , φ(β(`−1)(s+d)a1y1),
...

...
φ(ab−1yb−1), φ(βs+dab−1yb−1), . . . , φ(β(`−1)(s+d)ab−1yb−1)

)
.

However, as β is not in the subfield we cannot continue as before. Instead (γP)(0) and (γP)(1)

allow to recover a0y0 by means of (γP)(0) = φ(a0y0) and (γP)(1) = φ(βs+da0y0) using Equation
(2), which reveals a0y0 as

a0y0 =
(γP)(0)βs+d + (γP)(1)

βs+d + 1
.

The same argument reveals ajyj using (γP)(j`) and (γP)(j`+1). Therefore, when looking for γ
corresponding to xd we can solve for all γ such that γP fulfils

(γP)(j`+i) = φ

(
βi(s+d)

(γP)(j`)βs+d + (γP)(j`+1)

βs+d + 1

)
(21)

for 0 ≤ j < b and 0 ≤ i < `. We denote by Γd the space of all possible solutions, i.e.

Γd = {γ | γP fulfils Equation (21) }

Experimental Observation 8 The dimension of Γd is in {4, 6, 8}.

We next explain those dimensions.

Lemma 4. {gγ | γ ∈ Γd} contains all polynomials

α0x
d + αd+`1 + α2x

r + α4x
r+`

of degree at most t− 1 where r = q(d+ s)− s mod `.

Proof. For this we first claim that any polynomial fulfilling either g(βx) = βdg(x) or βsg(βx) =
βd+sg(x) is in the set. The first condition is obvious and the second follows from the fact that in
this case (using Equation (1))

φ(βsg(βx)) = φ(βd+sg(x)) = φ(βd+sg(x))

and
φ(g(x)) = φ(g(x)).

If g(x) is a monomial g(x) = xr we get

g(βx) = βrg(x)

Thus, to fulfil the second equations r has to fulfil.

r = q(d+ s)− s mod `

ut

Clearly, the smaller the dimension of Γd is, the better the attack. We pick only those d such
that dimΓd = 4 (avoiding the exponents d+ ` and r + `). The condition for this is

t− ` ≤ d ≤ ` and r − ` ≤ d ≤ `

and βd+s /∈ Fq. In this case
{gγ | γ ∈ Γd} = {α0x

d + α1x
r}

where r = q(d+s)−s mod `. For parameter set V, we ran through all possible values s and verified
that in any case the number of suitable exponents d is at least 8.

Collect Phase: The collect phase, too, is different in this case. Denote by γ(d)1, γ(d)2 two linearly
independent elements in Γd. Define

gγ(d)1 = α0x
d + α1x

r

and
gγ(d)2 = α′0x

d + α′1x
r.

We have

(γ(d)1P)(i`) = φ(aig(yi))

= φ(ai(α0y
d
i + α1y

r
i))

= φ(aiα0y
d
i + aiα1yri)

and

(γ(d)1P)(i`+1) = φ(aiβsg(βyi)) = φ(aiβs(α0β
dydi + α1β

ryri))

= φ(βs+daiα0y
d
i + βs+raiα1yri))

= φ(βs+d(aiα0y
d
i + aiα1yri))

where we made use of the identity βs+r = βs+d. Thus, given (γ(d)1P)(i`) and (γ(d)1P)(i`+1) allows
us to compute

ηi = aiα0y
d
i + aiα1yri

and similarly
η′i = aiα

′
0y
d
i + aiα′1y

r
i .

We obtain vectors η, η′ ∈ Fbq2 such that(
η
η′

)
=
(
α0 α1

α′0 α
′
1

)(
a0y

d
0 , a1y

d
1 , . . . , ab−1y

d
b−1

a0yr0, a1yr1, . . . , ab−1y
r
b−1

)
Stated differently, there exist elements β0, β1, β2, β3 such that(

β0 β1

β2 β3

)(
η
η′

)
=
(
a0y

d
0 , a1y

d
1 , . . . , ab−1y

d
b−1

a0yr0, a1yr1, . . . , ab−1y
r
b−1

)
. (22)

Solve Phase: We only consider the first row of Equation (22). In other words

β0η
(i) + β1η

′(i) = aiy
d
i .

Again, we assume wlog that a0 = y0 = 1 and this allows us to represent β1 in terms of the unknown
β0. Thus, we finally get equations

β0η
(i) +

(
β0η

(0) + 1
η′0

)
η′(i) = aiy

d
i .

Using the computer algebra package MAGMA this system of equations can be solved very quickly
on a standard PC. We give the running time in Table 1.

