
Generic One Round Group Key Exchange in the Standard Model

M. Choudary Gorantla1, Colin Boyd1, Juan Manuel González Nieto1, and Mark Manulis2

1 Information Security Institute, Faculty of IT, Queensland University of Technology
GPO Box 2434, Brisbane, QLD 4001, Australia.

Email: mc.gorantla@isi.qut.edu.au, {c.boyd,j.gonzaleznieto}@qut.edu.au
2 Cryptographic Protocols Group, Department of Computer Science

TUDarmstadt & CASED, Germany.
Email: mark@manulis.eu

Abstract. Minimizing complexity of group key exchange (GKE) protocols is an important milestone
towards their practical deployment. An interesting approach to achieve this goal is to simplify the
design of GKE protocols by using generic building blocks. In this paper we investigate the possibility of
founding GKE protocols based on a primitive called multi key encapsulation mechanism (mKEM) and
describe advantages and limitations of this approach. In particular, we show how to design a one-round
GKE protocol which satisfies the classical requirement of authenticated key exchange (AKE) security,
yet without forward secrecy. As a result, we obtain the first one-round GKE protocol secure in the
standard model. We also conduct our analysis using recent formal models that take into account both
outsider and insider attacks as well as the notion of key compromise impersonation resilience (KCIR).
In contrast to previous models we show how to model both outsider and insider KCIR within the
definition of mutual authentication. Our analysis additionally implies that the insider security compiler
by Katz and Shin from ACM CCS 2005 can be used to achieve more than what is shown in the original
work, namely both outsider and insider KCIR.
Keywords. Group Key Exchange, Key Encapsulation Mechanism, Key Compromise Impersonation

1 Introduction

The computation of a common secret key among a group of members communicating over a public
network is usually performed through a group key exchange (GKE) protocol. The secrecy (indistin-
guishability) of the established group key is modelled through the requirement called authenticated
key exchange (AKE) security [12, 10, 11]. The classical AKE-security notion comes in different
flavours depending on whether the protocol provides forward secrecy or not. Informally, a protocol
with forward secrecy ensures that the secrecy of the group key is preserved despite possible user
corruptions in the future. The user corruptions also have different flavours depending on whether
only long-lived secrets are leaked (weak corruption [12, 23]) or the ephemeral, session-dependent in-
formation from the internal states can be revealed as well (strong corruption [14]). Bresson et al. [12]
also define mutual authentication (MA) security as a desired notion of security for GKE protocols.
The notion of MA-security requires that parties who complete the protocol should output identical
session keys and that each party should be ensured of the identity of the other participating parties

However, as discussed by Katz and Shin [22] and Bohli et al. [2] the above security notions are not
adequate if the GKE protocol should resist misbehaviour of its participants; in particular, preventing
honest users from computing different keys and from having distinct views on the identities of other
participants. Bresson and Manulis [14] merged the insider security requirements defined by Katz
and Shin into their notion of MA-security in the presence of malicious insiders, improving upon the
notion of MA-security from Bresson et al. [12]. This stronger MA-security can be obtained for any
AKE-secure GKE protocol using Katz and Shin’s compiler, which we refer to as the KS-compiler.

Recently, AKE- and MA-security notions have been further extended by Gorantla et al. [20]
considering outsider and insider key compromise impersonation resilience (KCIR). Informally, a
GKE protocol with KCIR ensures that an honest party cannot be impersonated by an adversary
which has access to the private keys of other parties. The notion of outsider KCIR was modelled
within AKE-security and insider KCIR was embedded into MA-security [20]. However, these notions
defy the natural expectation that insider KCIR should imply outsider KCIR. It also remains unclear
whether the KS-compiler can be used to achieve the additional insider KCIR or not.

Key Encapsulation Mechanisms. Cramer and Shoup [16] formalised the concept of hybrid
encryption which securely merges public and symmetric encryption techniques to encrypt mes-
sages. In short, the public key part called key encapsulation mechanism (KEM) is used to generate
and encrypt a random session key, while data encryption mechanism (DEM) based on symmetric
techniques is used to encrypt the actual message using that session key. The KEM primitive has
been further extended to multi KEM (mKEM) by Smart [24]. mKEM is useful in scenarios where
a single message should be encrypted for multiple recipients.

It is evident from their properties, especially by generating a random session key, that KEMs
can also be utilized for the establishment of secure shared keys. In fact, the question of constructing
key establishment protocols from KEMs has been investigated in the two-party setting: Gorantla et
al. [21] provided generic constructions in both the directions based on signcryption KEMs, whereas
Boyd et al. [6] presented a generic one-round protocol using plain encryption KEMs. The natural
question is, thus, whether mKEMs in turn can be utilized for the design of GKE protocols? The non-
triviality of the problem, in contrast to what one may think after having [21, 6], is the consideration
of insider attacks which are not present in the two party case.

1.1 Our Contributions

In this paper, we extend the technique of Boyd et al. [6] to the group setting and present a generic
one-round GKE protocol using mKEM as a building block which we prove AKE-secure in the
standard model, yet without forward secrecy. The main reason for lack of forward secrecy is that
mKEMs known today are not forward secure. Since forward secrecy is a desirable goal for some
applications we also discuss the modified two-round version of the protocol based on one-time
mKEM and digital signatures.

We enrich KCIR notions for GKE by including a definition of outsider KCIR into MA-security.
In this way we achieve the natural implication between insider and outsider KCIR. We demonstrate
the usefulness of the new notion by showing that the generic transformation of Bresson et al. [12]
to achieve outsider MA-security is not sufficient for outsider KCIR.

Our new definition also highlights the separation between AKE-security and KCIR. As observed
by Boyd and Mathuria [8, §5.5, p.166] two-party protocols can always achieve KCIR if each party
encrypts its ephemeral pubic key with the partner’s long-term public key. This holds also for the
generic two-party protocol of Boyd et al.[6]. However, when we move to the group setting this
observation does not hold any more with respect to AKE-security. As an example, we show that
our one-round GKE protocol does not achieve AKE-security with outsider KCIR. Nevertheless, we
show that our protocol still achieves MA-security with outsider KCIR. Thanks to the implication
from insider KCIR to outsider KCIR we can show this by proving that our protocol when compiled
with the KS-compiler achieves MA-security with insider KCIR.

Katz and Shin [22] informally mentioned that the KS-compiler could provide KCIR. Gorantla et
al. [20] also speculated that when the KS-compiler is applied to the protocol of Boyd and González

2

Nieto [7] it would result in a GKE protocol secure under both AKE-security and MA-security with
KCIR. However, we observe that the KS-compiler does not necessarily guarantee AKE-security
with outsider KCIR.

1.2 Related Work

Boyd [4] presented three classes of one round key exchange protocols, which may be seen as a
different paradigm to the classical Diffie-Hellman key exchange. In Class 1, the parties exchange
random nonces in clear as their contributions towards the session key. A long-term shared symmetric
key is then used to derive the session key. Constructing concrete GKE protocols in this class is not
very interesting as the assumption that all the parties in the group initially share a common
symmetric key seems unrealistic [5]. In Class 2, only one party uses confidential and authentication
channels to send its nonce while all other parties send their nonces in clear. Concrete protocols in
the Class 2 can be constructed using public key encryption and signature schemes. The protocol of
Boyd and González Nieto [7] falls into this class. In Class 3, all the parties use confidential channels
to send their nonces. Our proposed protocol falls into this class. A major drawback of protocols in all
the three classes is that they cannot provide forward secrecy. However, a distinctive feature of Class
3 protocols is that they can be proven secure under the AKE-security notion without employing
public key signatures. Hence, Class 3 protocols seem suitable to construct efficient deniable GKE
protocols [3]. We do not formally explore this possibility in the current work.

Bohli et al. [2] defined contributiveness as another desired security notion for GKE protocols.
This notion demands that a proper subset of insiders should not predetermine the resulting session
key. Bresson and Manulis [14] strengthened this notion by considering strong corruptions where the
ephemeral session state of an instance might also be revealed in addition to the long-term private
key of the party. They also proposed compilers to achieve contributiveness in both weak and strong
corruption models [13].

1.3 Organization

Section 2 reviews existing notions of AKE-security and MA-security with insider KCIR and also
presents a new notion of MA-security with outsider KCIR. In Section 3, we describe our one-round
GKE protocol based on mKEM and prove it AKE-secure without forward secrecy. Additionally,
we mention how to extend this protocol with an additional round and obtain forward secrecy. In
Section 4, we prove that the compiler by Katz and Shin [22] if executed with our protocol provides
MA-security with outsider and insider KCIR. Section 5 gives security and efficiency comparison
of existing GKE protocols. Appendix A describes the background concepts that serve as building
blocks in our paper.

2 Security Model for GKE Protocols

In this section, we review existing notions of AKE-security and MA-security considered for GKE
protocols. We also present our new notion of MA-security with outsider KCIR.

Let U = {U1, . . . , UN} be a set of N parties. The protocol may be run among any subset of
these parties. Each party Uj for j ∈ [1, N] is assumed to have a pair of long-term public and private
keys, (pk j , sk j) generated during an initialization phase prior to the protocol run. A GKE protocol
π executed among n ≤ N users is modelled as a collection of n programs running at the n different

3

parties in U . Each instance of π within a party is defined as a session and each party may have
multiple such sessions running concurrently.

Let πi
U be the i-th run of the protocol π at party U ∈ U . Each protocol instance at a party is

identified by a unique session ID. We assume that the session ID is derived during the run of the
protocol. The session ID of an instance πi

U is denoted by sidiU . We assume that each party knows
who the other participants are for each protocol instance. The partner ID pidiU of an instance πi

U ,
is a set of identities of the parties with whom πi

U wishes to establish a common group key. Note
that pidiU includes the identity of U itself.

An instance πi
U enters an accepted state when it computes a session key skiU . Note that an

instance may terminate without ever entering into an accepted state. The information of whether
an instance has terminated with acceptance or without acceptance is assumed to be public. Two
instances πi

U and π
j
U ′ at two different parties U and U ′ respectively are considered partnered iff (1)

both the instances have accepted, (2) sidiU= sidjU ′ and (3) pidiU= pidjU ′ .
The communication network is assumed to be fully controlled by an adversary A, which sched-

ules and mediates the sessions among all the parties. A is allowed to insert, delete or modify the
protocol messages. If the adversary honestly forwards the protocol messages among all the partic-
ipants, then all the instances are partnered and output identical session keys. Such a protocol is
called a correct GKE protocol. In addition to controlling the message transmission, A is allowed to
ask the following queries.

– Execute(pid) prompts a complete execution of the protocol among the parties in pid with a
unique session ID sid. A is given all the protocol messages, modelling passive attacks.

– Send(πi
U ,m) sends a message m to the instance πi

U . If the message is pid, the instance πi
U is

initiated with partner ID pid. The response of πi
U to any Send query is returned to A.

– RevealKey(πi
U) If π

i
U has accepted, A is given the session key skiU established at πi

U .
– Corrupt(Uj) The long-term secret key sk j of Uj is returned to A. Note that this query returns

neither the session key (if computed) nor any session specific internal state.
– RevealState(πi

U) The ephemeral internal state of πi
U is returned to A. We assume that the

internal state is erased once πi
U has accepted.

– Test(πi
U) A random bit b is secretly chosen. If b = 1, A is given κ1 = skiU established at πi

U .
Otherwise, a random value κ0 chosen from the session key probability distribution is given.
Note that a Test query is allowed only once that too on an accepted instance.

Corrupted Parties, Corrupted Instances and Insiders. We call a party U corrupted if it has
been issued a Corrupt query, while a protocol instance πi

U is called corrupted if a RevealState(πi
U)

query has been asked. Note that there exist uncorrupted protocol instances at corrupted parties
when the session specific ephemeral secrets are not revealed. A party is called an insider in a
particular protocol run if both the party and the protocol instance are corrupted or if the adversary
issues a Corrupt query to the party and then impersonates it i.e. when the adversary issues a Send
query on behalf of πi

U with a message m not previously output by πi
U .

2.1 AKE-Security

The notion of freshness is central to the definition of AKE-security. Informally, a session is consid-
ered fresh if the session key established in that session is not trivially compromised. In Figure 1, we
review different notions of freshness defined for GKE protocols in the literature. The first notion

4

is a slightly revised notion from Katz and Yung [23], considering RevealState queries. This notion
does not capture either forward secrecy or KCIR. Hence, the adversary is not allowed to corrupt
any party associated with the test session. The second notion considers forward secrecy and may be
seen as a stronger notion than that of Bresson and Manulis [14], where the corruption of a party U ′

is allowed after the session πi
U has accepted. This differs from the notion of Bresson and Manulis,

where the adversary is not allowed to issue a corrupt query until πi
U and all its partners have ac-

cepted. The second notion may also be seen as a revised notion from Katz and Shin [22] considering
RevealState queries. The third notion, which was recently defined by Gorantla et al. [20], considers
both forward secrecy and outsider KCIR.

The basic notion of freshness (not considering forward secrecy or KCIR) [23]
An instance πi

U is fresh if the following conditions hold:

1. the instance πi
U or any of its partners has not been asked a RevealKey after their acceptance

2. the instance πi
U or any of its partners has not been asked a RevealState before their acceptance

3. there has not been a Corrupt(U ′) query for any U ′ ∈ pidiU (including U ′ = U)
The notion of freshness with forward secrecy [22, 14]

An instance πi
U is fs-fresh if the following conditions hold:

1. the instance πi
U or any of its partners has not been asked a RevealKey after their acceptance

2. the instance πi
U or any of its partners has not been asked a RevealState before their acceptance

3. there has not been a Corrupt(U ′) query for any U ′ ∈ pidiU (including U ′ = U) before πi
U has accepted

The notion of freshness with outsider KCIR and forward secrecy [20]
An instance πi

U is kcir-fs-fresh if the following conditions hold:

1. the instance πi
U or any of its partners has not been asked a RevealKey after their acceptance

2. the instance πi
U or any of its partners has not been asked a RevealState before their acceptance

3. If πj

U′ ∈ pidiU and A asked Corrupt(U ′), then any message that A sends to πi
U on behalf of πj

U′ must come from

π
j

U′ intended to πi
U .

Fig. 1. Notions of Freshness

Definition 1 (AKE-Security). An adversary AAKE against the AKE-security notion is allowed to
make Execute, Send, RevealState, RevealKey and Corrupt queries in Stage 1. AAKE makes a Test
query to an instance πi

U at the end of Stage 1 and is given a challenge key κb as described earlier. It
can continue asking queries in Stage 2. Finally, AAKE outputs a bit b′ and wins the AKE security
game if (1) b′ = b and (2) the instance πi

U that was asked Test query remained fresh(or fs-fresh/kcir-
fs-fresh correspondingly) till the end of AAKE ’s execution. Let SuccAAKE be the success probability
of AAKE in winning the AKE security game. The advantage of AAKE in winning this game is
AdvAAKE = |2 · Pr[SuccAAKE] − 1|. A protocol is called AKE-secure if AdvAAKE is negligible in the
security parameter k for any polynomial time AAKE .

Remark 1. It is clear that if a GKE protocol does not have forward secrecy, the AKE-security
of the session key can be compromised by revealing the long-term key of a protocol participant.
An adversary can perform a KCI attack on GKE protocols without forward secrecy by replaying
messages of past successful executions or even by relaying messages from an honest party. The KCI
attacks of Gorantla et al. [20] on Boyd and González Nieto [7] and Bresson et al. [9] protocols
work in the same way. As the AKE-security notion with outsider KCIR implies that at most n− 1

5

corruptions are allowed, it is necessary for a protocol realizing this notion to have at least (partial)
forward secrecy when n − 1 parties are corrupted or (full) forward secrecy. However, as evident
by Gorantla et al.’s KCI attack on Al-Riyami and Paterson’s protocol [1], having forward secrecy
alone is not sufficient for a GKE protocol to have AKE-security with outsider KCIR. We leave it
an open problem to define AKE-security notion with outsider KCIR and partial forward secrecy
and to construct a GKE protocol realizing it.

2.2 MA-Security

We present two notions of MA-security with KCIR, one in the presence of only outsiders and another
in the presence of insiders. The notion of MA-security with KCIR in the presence of insiders was
defined by Gorantla et al. [20], while the notion of MA-security with outsider KCIR is new.

Definition 2 (MA-Security with Outsider KCIR). An adversary AMA against the MA-security
of a correct GKE protocol π is allowed to ask Execute, Send, RevealState, RevealKey and Corrupt
queries. AMA violates the MA-security of the GKE protocol if at some point during the protocol
run, there exists an uncorrupted instance πi

U that has accepted with a key skiU and another party
U ′ ∈ pidiU that is uncorrupted at the time πi

U accepts such that there are no insiders in pidiU and

1. there exists no instance π
j
U ′ with (pidjU ′ , sid

j
U ′) = (pidiU , sid

i
U) or

2. there exists an instance πj
U ′ with (pidjU ′ , sid

j
U ′) = (pidiU , sid

i
U) that has accepted with sk

j
U ′ 6= skiU .

The above definition implies that AMA must be passive for any corrupted party in pidiU . Note
that in a protocol execution with n parties, the above definition also implies that AMA is allowed
to corrupt up to n− 1 parties.

Let SuccAMA be the success probability of AMA in winning the above security game. A protocol
is said to provide MA-security with outsider KCIR if SuccAMA is negligible in the security parameter
k for any polynomial time AMA.

Definition 3 (MA-Security with Insider KCIR). An adversary AMA against the MA-security of a
correct GKE protocol π is allowed to ask Execute, Send, RevealState, RevealKey and Corrupt queries.
AMA violates the MA-security of the GKE protocol if at some point during the protocol run, there
exists an uncorrupted instance πi

U (although the party U may be corrupted) that has accepted with
a key skiU and another party U ′ ∈ pidiU that is uncorrupted at the time πi

U accepts such that

1. there is no instance π
j
U ′ with (pidjU ′ , sid

j
U ′) = (pidiU , sid

i
U) or

2. there is an instance π
j
U ′ with (pidjU ′ , sid

j
U ′) = (pidiU , sid

i
U) that has accepted with sk

j
U ′ 6= skiU .

Note that this notion implies that there can be up to n− 2 insiders (i.e. except U and U ′). Let
SuccAMA be the success probability of AMA in winning the above security game. A protocol is said
to provide MA-security with insider KCIR if SuccAMA is negligible in the security parameter k for
any polynomial time AMA.

3 One Round GKE protocol from mKEM

Smart [24] formalised the notion of mKEM by extending the concept of KEM. Using an mKEM
scheme, a user who wants to encrypt a large message to n parties can encapsulate a single session key

6

Computation

Each Ui executes an mKEM with public keys {pk j |1 ≤ j ≤ n; j 6= i} as input and obtains the symmetric key
and encapsulation pair (Ki, Ci)

(Ki, Ci)← Encap({pk j |1 ≤ j ≤ n; j 6= i})

Broadcast

Each Ui broadcasts the computed encapsulation Ci along with its identity.

Ui → U \ {Ui} : Ci, Ui

Key Computation

1. Each Ui executes the decapsulation algorithm using its private key sk i and on each of the incoming encap-
sulations Cj and obtains the symmetric keys Kj , where 1 ≤ j ≤ n, j 6= i.

Kj ← Decap(sk i, Cj) for each 1 ≤ j ≤ n, j 6= i

2. Each Ui then computes the session ID as the concatenation of all the outgoing and incoming messages
exchanged i.e. sid = (C1‖ · · · ‖Cn‖U), where U is the set of identities of all the n users.

3. The session key κ is then computed as

κ = fK1
(sid)⊕ fK2

(sid)⊕ · · · ⊕ fKn(sid)

where f is a pseudo random function.

Fig. 2. A generic GKE protocol from mKEM

to all the parties at once and then apply a DEM with the session key to encrypt the actual message.
Smart also defined the notion of indistinguishability under chosen ciphertext attacks (IND-CCA)
for mKEM. The definition and security model for mKEM have been reviewed in Appendix A.1.

In Figure 2, we present a generic construction of GKE protocol based on mKEM. The parties
can establish the group session key by executing an mKEM in parallel. Let U = {U1, U2, · · · , Un} be
the set of protocol participants. The protocol uses an mKEM scheme (KeyGen, Encap,Decap). Let
(pk i, sk i) be the public-private key pair of the party Ui, generated using the KeyGen algorithm. Each
party starts the protocol by running the Encap algorithm and then broadcasts the encapsulation
Ci to the other parties in the group. Upon receiving the encapsulations each party runs the Decap
algorithm for each encapsulation intended for it and retrieves the symmetric keys. The session ID
is defined as the concatenation of all the encapsulations along with the group identity U .

The session key is finally computed by each party from the symmetric key it has generated
during the Encap algorithm and all the symmetric keys decapsulated. A pseudo random function
(PRF) f is used to derive the session key. Note that the session key derivation in our protocol is
slightly different from the approach used in Boyd et al. [6]. In Boyd et al.’s protocol a randomness
extraction function is first applied to the symmetric keys Ki’s before using them as seeds to a PRF
to derive the session key. In our protocol, we directly use the symmetric keys generated by the
IND-CCA secure mKEM as seeds to f to simplify the protocol design. As shown in the proof below
this does not effect the security of the protocol.

3.1 Proof of Security

Theorem 1. The protocol in Figure 2 is AKE-secure without forward secrecy as per Definition 1
assuming the underlying mKEM is IND-CCA secure. The advantage of AAKE is given as

7

AdvAAKE ≤ n ·
q2s
|C|

+ n · qs · (AdvACCA + n ·AdvAPRF)

where n ≤ N is the number of parties in the protocol, N is the number of public keys in the
system, qs is the number of sessions AAKE is allowed to activate, |C| is the size of the ciphertext
space, ACCA is a polynomial adversary against the IND-CCA security of the underlying mKEM
and APRF is a polynomial adversary adversary against the pseudo random function.

Sketch of Proof. We prove the theorem in a sequence of games. Let Si be the event that AAKE

wins the AKE-security game in Game i.

Game 0. This is the original AKE-security game as per Definition 1. We have

AdvAAKE = |2 · Pr[S0]− 1| (1)

Game 1. This game is the same as the previous one except that if two different sessions at user
Ui output identical message Ci, then the game aborts. Let Repeat be such an event. As there
are n users in the protocol, we have

|Pr[S1]− Pr[S0]| ≤ n · Pr[Repeat] (2)

As the adversary is allowed to activate at most qs number of sessions, we have

Pr[Repeat] ≤
q2s
|C|

(3)

Game 2. This is the same as the previous game except that a value t
R
← [1, qs] is chosen. If the

Test query does not occur in the t-th session the game aborts and outputs a random value. Let
E2 be the event that the guess is correct.

Pr[S2] = Pr[S2|E2] Pr[E2] + Pr[S2|¬E2] Pr[¬E2] = Pr[S1]
1

qs
+

1

2

(

1−
1

qs

)

(4)

Game 3. This is the same as the previous game except that a value i∗
R
← [1, n] is chosen. If a

session at the user Ui∗ is not asked the Test query the game aborts and outputs a random value.
Let E3 be the event that the guess is correct.

Pr[S3] = Pr[S3|E3] Pr[E3] + Pr[S3|¬E3] Pr[¬E3] = Pr[S2]
1

n
+

1

2

(

1−
1

n

)

(5)

Game 4. This is identical to the previous game except that, the test query asked is answered
as follows: The symmetric generated by the user Ui∗ in the test instance πt

Ui∗
is replaced by a

random key chosen uniformly from {0, 1}k. We claim that

|Pr[S4]− Pr[S3]| ≤ AdvACCA (6)

The queries asked by AAKE can be simulated by ACCA as follows: ACCA generates the key pairs
for the user Ui∗ and obtains the public key corresponding to the users U ′ = {U1, · · · ,Un} \

8

{Ui∗} from its challenger. ACCA returns the set U ′ to its challenger and obtains the challenge
(C∗,K0,K1) as described in Definition 4.
The Execute or Send query issued to πt

Ui∗
is answered using the challenge encapsulation C∗

as the outgoing message. The Execute or Send queries issued to the partner instances of πt
Ui∗

are answered trivially as the per the protocol specification. Note that a Corrupt query on any
user in U and RevealState or RevealKey on the test instance (or its partner instances) are not
allowed. RevealKey queries on all other sessions are answered using the decapsulation oracle
access as part of the IND-CCA game. When AAKE asks the Test query, ACCA selects a random
bit θ and picks Kθ from the keys {K0,K1} given by the mKEM challenger. ACCA now uses
the key Kθ as a seed to the pseudo-random function f and computes the challenge key κ∗ =
fK1

(sid)⊕ · · · ⊕ fKθ
(sid)⊕ · · · ⊕ fKn(sid). Note that the symmetric keys Ki for 1 ≤ i ≤ n, i 6= i∗

are generated by ACCA. The key κ∗ is returned to AAKE .
Let θ′ be the output of AAKE . If θ′ = 1 (guess for real key), θ is returned to the mKEM
challenger. Otherwise 1 − θ is returned. This game is essentially AAKE playing the IND-CCA
game against the mKEM with respect to the public keys {pk1, · · · , pkn} \ {pk i∗}. Hence, the
IND-CCA game can be won at least whenever AAKE succeeds in this game.

Game 5. This is identical to the previous game except that the output of each fKi
for 1 ≤ i ≤ n

is replaced by a random value chosen uniformly from {0, 1}k. We have,

|Pr[S5]− Pr[S4]| ≤ n ·AdvAPRF (7)

By combining Equations 1 to 7, we have the desired advantage for AAKE .

3.2 Instantiating the protocol

Smart [24] presented an efficient IND-CCA secure mKEM based on ElGamal encryption scheme.
However, it has been proven secure in the random oracle model. Although our generic construction
does not assume random oracles, a concrete realization with this mKEM will only be secure in the
random oracle model.

Smart also proposed a generic mKEM from any public key encryption scheme. This construc-
tion was proven IND-CCA secure assuming that the underlying encryption scheme was IND-CCA
secure [24, Theorem 2]. Hence, generic mKEMs in the standard model can be constructed from
public key encryption schemes which are also secure in the standard model [17, 16, 15]. This means
that our protocol can be realized in the standard model by using the generic mKEM construction.
However, note that the security in the standard model comes at the price of additional compu-
tational efficiency and longer message size. Nevertheless, this instantiation will result in the first
concrete GKE protocol which has only one round of communication.

3.3 Achieving Forward Secrecy

Our one-round protocol in Figure 2 does not provide forward secrecy. However, it can be used as
a building block for a two-round GKE protocol that achieves this additional goal. This protocol
runs as follows: In the first round, each user Ui chooses an ephemeral asymmetric key pair (pk i, sk i)
for mKEM and broadcasts pk i to the group. In the second round users perform the one-round
protocol in Figure 2 using asymmetric mKEM keys from the first round. It is easy to see that such

9

construction involving one-time mKEMs results in an unauthenticated GKE protocol with forward
secrecy. The AKE-security of this protocol can be achieved using digital signatures similar to [23];
in particular, one can treat one-time pk i as a nonce of Ui and require the additional signature of
Ui on Ci|pk1| . . . |pkn in the second round.

4 Achieving MA-Security with KCIR

Bresson et al. [12] proposed a generic transformation that turns an AKE-secure GKE protocol π
into a protocol π′ that provides MA-security in the presence of an outsider adversary. Yet, their
notion of MA-security did not consider KCIR. The transformation uses the well known technique of
constructing an “authenticator” using the shared session key established in π. It works as follows:
Let κi be the session key computed by Ui in protocol π. The protocol π′ requires an additional
round in which each party Ui computes a message authi = H(κi, i), where H is a hash function
(modelled as random oracle in the proof) and broadcasts it to all other parties. Each party verifies
the incoming messages using the session key established at their end. If the verification is successful,
π′ terminates with each party Ui accepting the session key κ′i = H(κi, 0).

We show that the above transformation does not necessarily guarantee MA-security with out-
sider KCIR. For example, consider a protocol π which does not have forward secrecy like the
protocol of Boyd and González Nieto [7] or our one-round protocol in Figure 2. Definition 2 implies
that an adversary against MA-security with outsider KCIR can issue up to n − 1 Corrupt queries
but must then remain passive on behalf of corrupted users. As the protocol π does not have forward
secrecy, corrupting a single party Ui is enough to obtain the session key κi. The adversary can now
easily impersonate an uncorrupted party Uj in protocol π′ by computing authj = H(κi, j). Hence,
transformations based on shared keys cannot be used to obtain MA-security with outsider KCIR.

Instead, we show that the KS-compiler [22] when applied to our protocol achieves MA-security
with both outsider and insider KCIR. The KS-compiler has been reviewed in Appendix A.2. Katz
and Shin [22] showed that this compiler provides AKE-security and MA-security in the presence
of insiders, yet without considering KCI attacks. Here, we show that this compilation technique is
also sufficient to obtain MA-security with outsider and insider KCIR. It is easy to see that MA-
security with insider KCIR implies MA-security with outsider KCIR, i.e. given an adversary against
MA-security with outsider KCIR, one can construct an adversary against MA-security with insider
KCIR. For this reason we only need to prove that the compiled protocol guarantees MA-security
with insider KCIR.

Theorem 2. If we apply the KS-compiler (in Figure 3) to our protocol in Figure 2, the resulting
protocol provides MA-security with insider KCIR. The success probability of the adversary AMA is
given as

n2 ·AdvACMA + n ·
q2s
|C|

+AdvAcoll

where n is the number of parties in the protocol, qs is the number of sessions AMA is allowed to
activate, |C| is the size of the ciphertext space, ACMA is a polynomial adversary against the unforge-
ability of the signature scheme under chosen message attack and Acoll is a polynomial adversary
adversary against the collision resistance of the pseudo-random function F in the KS-compiler.

10

Sketch of Proof. The proof is given in a sequence of games. Let Si be the event that AMA wins the
MA-security game in Game i.

Game 0. This is the original MA-security game as per Definition 1. We have

SuccAMA = Pr[S0] (8)

Game 1. This game is identical to the previous game except that the simulation fails when AMA

issues a Send query that contains a valid signature σi on the message (Ui, sidi, pidi, acki) such
that the message has not been previously output by an oracle πi

U and Ui has not been corrupted.
Let Forge be such an event. We have

|Pr[S1]− Pr[S0]| ≤ Pr[Forge] (9)

If Forge occurs, we can use AMA to forge a signature generated by the underlying signature
scheme in the KS-compiler for a given public key in a chosen message attack as follows: The
given public key is assigned to a party Ui, one of the n parties in the group. All other parties are
initialized as normal according to the protocol. All queries to the parties can be easily answered
by following the protocol specification since all secret keys are known, except for the signing
key corresponding to the given public key of the forgery attack game. In the latter, the signing
oracle that is available as part of the chosen message attack can be used to simulate the answers.
Note that as part of the MA with insider KCIR game, AMA is allowed to corrupt up to n − 1
parties. Hence, the probability ofAMA not corrupting Ui is

1

n
. The probability ofAMA outputting

a valid forgery on behalf of this user is also 1

n
. Hence AdvACMA ≥ 1

n2 · Pr[Forge] i.e., we have

Pr[Forge] ≤ n2 ·AdvACMA (10)

Game 2. This game is the same as the previous one except that if two different sessions at user
Ui output identical message Ci, then the game aborts. Let Repeat be such an event. As there
are n users in the protocol, we have

|Pr[S2]− Pr[S1]| ≤ n · Pr[Repeat] (11)

As the adversary is allowed to activate at most qs number of sessions, we have

Pr[Repeat] ≤
q2s
|C|

(12)

Game 3. This is the same as the previous game except that the simulation fails if a collision
occurs in F . Let Collision be the event.

|Pr[S3]− Pr[S2]| ≤ Pr[Collision] (13)

Collision occurs when two honest parties Ui and Uj compute keys ski and skj such that

acki = Fski(v0) = Fskj (v0) = acki but, sk
′
i = Fski(v1) 6= Fskj (v1) = sk′j

11

Hence, we have

Pr[Collision] ≤ AdvAcoll (14)

If Game 3 does not fail, all the honest partnered parties compute the same session key. Hence,
Pr[S3] = 0.

By combining Equations 8 to 14, we have the claimed advantage for AMA.

Remark 2. Note that the protocol obtained after applying Katz and Shin’s compiler to our one-
round GKE protocol still does not achieve forward secrecy. Hence, as discussed in Remark 1, it
cannot achieve AKE-security with KCIR. However, from Theorem 2 it is evident that forward
secrecy is not necessary for a GKE protocol to achieve MA-security with insider KCIR.

5 Conclusion

Rounds AKE AKE-FS AKE-KCIR MA MA-Out-KCIR MA-In-KCIR Model

Boyd and González Nieto [7] 1 Yes No No No No No ROM

Katz and Yung [23] 3 Yes Yes Yes∗ honest Yes∗ No Std.

Bohli et al. [2] 2 Yes Yes Yes Yes Yes Yes ROM

Bresson and Manulis [14] 3 Yes Yes Yes∗ Yes Yes Yes∗ Std.

Furukawa et al. [18] 2 Yes Yes Yes∗ Yes Yes Yes∗ Std.

Our Protocol 1 Yes No No No No No Std.

Our Protocol + KS-compiler 2 Yes No No Yes Yes Yes Std.
Table 1. Security and efficiency comparison among existing GKE protocols

Table 1 gives a comparison of the security of some of the existing GKE protocols. The column
“Rounds” shows the number of communication rounds required to complete the protocol. The terms
“AKE” refers to AKE-security, “AKE-FS” refers to AKE-security with forward secrecy and “AKE-
KCIR” refers to AKE-security with KCI resilience. Similarly “MA” refers to mutual authentication
and “MA-Out-KCIR” and “MA-In-KCIR” refers to mutual authentication with outsider and insider
KCIR respectively. The entry “Yes∗” says that the corresponding protocol appears to be secure
under the notion but there is no formal proof. The last column in the table says whether the
protocol is proven in the random oracle model or in the standard model.

It can be observed from the table that our protocol is the only one-round GKE protocol secure
in the standard model. Although the protocol of Bohli et al. satisfies all the desired notions of
security, it requires two-rounds of communication and moreover proven secure only in the random
oracle model. Of the other protocols which are proven secure in the standard model, the protocols
of Bresson and Manulis and Furukawa et al. [18] appear to satisfy all the desired notions, but
they require three and two communication rounds respectively. Applying the KS-compiler to our
protocol results in a two-round GKE protocol that satisfies the MA-security notion with insider
KCIR. However, the resulting protocol still cannot provide forward secrecy or AKE-security with
KCIR. The approach outlined in Section 3.3 with the combination of the KS-compiler results in a

12

GKE protocol that appears to satisfy all the desired notions of security. However, this protocol will
have three rounds of communication.

Although our one-round GKE protocol cannot achieve all the security notions, it will be very
useful in scenarios where communication efficiency highly desired. Unlike the previously known
one-round GKE protocol, our protocol has been proven secure in the standard model. We have also
discussed generic techniques with which the security of the protocol can be enhanced. However, as
expected this additional security guarantee comes at the price of extra number of rounds. We leave
it an open problem to construct an efficient mKEM in the standard model, which can in turn be
used to construct efficient one-round GKE protocol using our approach.

References

1. Al-Riyami, S.S., Paterson, K.G.: Tripartite Authenticated Key Agreement Protocols from Pairings. In: Cryp-
tography and Coding, 9th IMA International Conference. Volume 2898 of LNCS., Springer (2003) 332–359

2. Bohli, J.M., Gonzalez Vasco, M.I., Steinwandt, R.: Secure group key establishment revisited. Int. J. Inf. Sec.
6(4) (2007) 243–254

3. Bohli, J.M., Steinwandt, R.: Deniable Group Key Agreement. In: Progress in Cryptology–VIETCRYPT’06,
Revised Selected Papers. Volume 4341 of LNCS., Springer (2006) 298–311

4. Boyd, C.: Towards a classification of key agreement protocols. In: The Eighth IEEE Computer Security Foun-
dations Workshop–CSFW’95, IEEE Computer Society (1995) 38–43

5. Boyd, C.: On Key Agreement and Conference Key Agreement. In: Information Security and Privacy–ACISP’97.
Volume 1270 of LNCS., Springer (1997) 294–302

6. Boyd, C., Cliff, Y., González Nieto, J.M., Paterson, K.G.: One-Round Key Exchange in the Standard Model.
International Journal of Applied Cryptography 1(3) (2009) 181–199

7. Boyd, C., González Nieto, J.M.: Round-Optimal Contributory Conference Key Agreement. In: Public Key
Cryptography–PKC’03. Volume 2567 of LNCS., Springer (2003) 161–174

8. Boyd, C., Mathuria, A.: Protocols for Authentication and Key Establishment. Information Security and Cryp-
tography. Springer (August 2003)

9. Bresson, E., Chevassut, O., Essiari, A., Pointcheval, D.: Mutual Authentication and Group Key Agreement for
Low-Power Mobile Devices. In: Proc. of MWCN 03, World Scientific Publishing (October 2003) 5962

10. Bresson, E., Chevassut, O., Pointcheval, D.: Provably Authenticated Group Diffie-Hellman Key Exchange - The
Dynamic Case. In: Advances in Cryptology–ASIACRYPT’01. Volume 2248 of LNCS., Springer (2001) 290–309

11. Bresson, E., Chevassut, O., Pointcheval, D.: Dynamic Group Diffie-Hellman Key Exchange under Standard
Assumptions. In: Advances in Cryptology–EUROCRYPT’02. Volume 2332 of LNCS., Springer (2002) 321–336

12. Bresson, E., Chevassut, O., Pointcheval, D., Quisquater, J.J.: Provably authenticated group Diffie-Hellman key
exchange. In: CCS’01: Proceedings of the 8th ACM conference on Computer and Communications Security,
ACM (2001) 255–264

13. Bresson, E., Manulis, M.: Contributory Group Key Exchange in the Presence of Malicious Participants. IET
Information Security 2(3) (2008) 85–93

14. Bresson, E., Manulis, M.: Securing Group Key Exchange against Strong Corruptions. In: Proceedings of ACM
Symposium on Information, Computer and Communications Security (ASIACCS’08), ACM Press (2008) 249–260

15. Canetti, R., Halevi, S., Katz, J.: Chosen-Ciphertext Security from Identity-Based Encryption. In: Advances in
Cryptology–EUROCRYPT’04. Volume 3027 of LNCS., Springer (2004)

16. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption schemes secure against adaptive
chosen ciphertext attack. Technical report, http://shoup.net/ (2002)

17. Cramer, R., Shoup, V.: A Practical Public Key Cryptosystem Provably Secure Against Adaptive Chosen Ci-
phertext Attack. In: Advances in Cryptology–CRYPTO’98. Volume 1462 of LNCS., Springer (1998)

18. Furukawa, J., Armknecht, F., Kurosawa, K.: A Universally Composable Group Key Exchange Protocol with
Minimum Communication Effort. In: Security and Cryptography for Networks–SCN 2008. Volume 5229 of
LNCS., Springer (2008) 392–408

19. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J. ACM 33(4) (1986) 792–807
20. Gorantla, M.C., Boyd, C., González Nieto, J.M.: Modeling Key Compromise Impersonation Attacks on Group

Key Exchange Protocols. In: Public Key Cryptography–PKC’09. Volume 5443 of LNCS., Springer (2009) 105–123

13

21. Gorantla, M.C., Boyd, C., Nieto, J.M.G.: On the connection between signcryption and one-pass key establishment.
In Galbraith, S.D., ed.: IMA Int. Conf. Volume 4887 of LNCS., Springer (2007) 277–301

22. Katz, J., Shin, J.S.: Modeling insider attacks on group key-exchange protocols. In: Proceedings of the 12th ACM
Conference on Computer and Communications Security–CCS’05, ACM (2005) 180–189

23. Katz, J., Yung, M.: Scalable Protocols for Authenticated Group Key Exchange. In: Advances in Cryptology–
CRYPTO’03. Volume 2729 of LNCS., Springer (2003) 110–125

24. Smart, N.P.: Efficient Key Encapsulation to Multiple Parties. In: Security in Communication Networks–SCN’04.
Volume 3352 of LNCS., Springer (2004) 208–219

A Preliminaries

We first review the definition and notion of security considered for mKEM and then briefly describe
Katz and Shin’s compiler.

A.1 Multi KEM

An mKEM takes the public keys of n parties as input and outputs a session key K and an encap-
sulation of K under all the n public keys. It is formally specified by three algorithms as described
below:

KeyGen: This is a probabilistic algorithm that takes the domain parameters as input and outputs
a public-private key pair (pk , sk).

Encap: This is a probabilistic algorithm that takes the domain parameters, the public keys of n
receivers (pk1, . . . , pkn) and outputs a session key K ∈ {0, 1}k and an encapsulation C of K
under the public keys (pk1, . . . , pkn).

Decap: This is a deterministic algorithm that takes the domain parameters, an encapsulation C

and a private key sk i as input and outputs either a key K or ⊥.

For an mKEM to be considered valid it is required that for all key pairs (pk i, sk i), i ∈ [1, n] if
(K,C) = Encap({pk1, pk2, . . . , pkn}) then Decap(C, sk i) = K for each i ∈ [1, n].

The IND-CCA notion of security for mKEM is defined in a similar way to the traditional KEMs
as below.

Definition 4. An mKEM is IND-CCA secure if the advantage of any probabilistic polynomial
time adversary in the following game is negligible in the security parameter k.

Setup: The challenger runs the KeyGen algorithm and obtains n key pairs (pk i, sk i) for 1 ≤ i ≤ n.
All the public keys P = {pk1, · · · , pkn} are given to the adversary.

Phase 1: The adversary is allowed to issue decapsulation queries as below:

Decap: The adversary issues this query with input P ′ ⊆ P and an encapsulation C. The
challenger returns either a key K or ⊥ after executing the Decap algorithm on C using
the private keys corresponding to P ′. Note that if Decap on input C produces different
symmetric keys for two different private keys of users in P ′, then the encapsulation C is
deemed invalid and the adversary is returned ⊥.

Challenge: The adversary gives a set of keys P∗ ⊆ P to the challenger. The challenger first chooses
b ∈ {0, 1}. It then runs the Encap algorithm using P∗ and generates (Kb, C

∗). It then sets K1−b

to be a random key drawn uniformly from the key space i.e., K1−b
R
← {0, 1}k. Both the keys

{K0,K1} are given to the adversary along with the challenge encapsulation C∗.

14

Phase 2: The adversary is allowed to issues queries to challenger as in Phase 1 with the following
restriction: A decapsulation query on an encapsulation C ′ (includes C ′ = C∗) that trivially
reveals the session key Kb is not allowed.

3

Guess The goal of the adversary is to guess which one of the two keys {K0,K1} is encapsulated
in C∗. It finally outputs a guess bit b′ and it succeeds if b′ = b. The advantage of the adversary
is given as AdvACCA = |2 · Pr[b′ = b]− 1|.

A.2 Katz and Shin Compiler

Katz and Shin [22] proposed a compiler that turns any AKE secure GKE protocol into a univer-
sally composable GKE protocol that achieves mutual authentication in the presence of insiders. The
compiler uses messages authenticated with signatures generated by long-term private keys of the
parties. Let Σ = (Gen, Sign,Verify) be a public key signature scheme which is existentially unforge-
able against chosen message attack, where Gen is an algorithm that generates a signing key pair,
Sign is a signing algorithm and Verify is a verification algorithm. The compiler also uses a pseudo
random function family [19] F with collision-resistance. A formal definition of collision-resistant
pseudo random function family is given below.

Definition 5 ([22]). Let F = {F k} with F k = {Fs}s∈{0,1}k be a pseudo random function family
(PRF). We say that F is collision-resistant PRF if there is an efficient procedure Sample such that
the following is negligible in k for all polynomial time adversaries A:

Pr
[

v0 ← Sample(1k); s, s′ ← A(1k, v0) : s, s′ ∈ {0, 1}k
∧

s 6= s′
∧

Fs(v0) = Fs′(v0)
]

Informally, the definition requires that for all k there exists an (efficiently computable) v0 such

that the function defined by g(x)
def
= Fx(v0) is collision-resistant. Katz and Shin also sketch a way

of constructing collision-resistant PRF in the standard model from any one-way permutation. Note
that the above definition of collision-resistance for PRFs is different from the (standard) collision
resistance considered for keyed hash functions.

In Figure 3, we present the KS-compiler. The users first compute a session key sk by executing
an initial GKE protocol π. The compiler starts by using the session key as a seed to the PRF with
two publicly known strings to compute an acknowledgment message ack and a session key sk ′.
The message ack is then signed with the user’s signing key and the signature along with the user’s
identity is broadcast to all other users, which serves as key confirmation message. If all the incoming
signatures verify correctly , the compiled protocol π′ accepts sk ′ as the session key; otherwise, π′

terminates without accepting.

3 This restriction is necessary to address benign malleability [24].

15

Let F be a collision-resistant PRF, and assume that v0 is output by Sample(1k) and publicly-known. Let v1 6= v0 also
be publicly-known.

Initialization Phase: During the initialization phase of π′, each player Ui runs Gen(1k) to generate long-term
verification/signing keys (PKi,SK i) (in addition to any keys needed for π).

The Protocol: Players run protocol π. If Ui would terminate without accepting in π, then it terminates without
accepting in π′. Otherwise, if Ui would accept (in protocol π) with (sidi, pidi, sk i), this player performs the
following additional steps:

1. Ui computes acki = Fski
(v0) and sk ′

i = Fski
(v1). Next, Ui erases all its local state except for acki, sk

′

i, sidi
and pidi. Then, Ui computes a signature σi ← SignSKi

(Ui, sidi, pidi, acki) and sends the message (Ui, σi) to
all players in pidi.

2. Upon receipt of |pidi − 1| messages (Uj , σj) from all other players Uj ∈ pidi \ {Ui}, player Ui checks that
VrfyPKj

((Uj , sidi, pidi, acki), σj) = 1 for all Uj ∈ pidi. Assuming all verifications succeed, Ui accepts, erases
its internal state, and outputs (sidi, pidi, sk

′

i). If any of the verifications do not succeed, Ui terminates without
accepting (and with no output).

Fig. 3. Katz and Shin Compiler [22]

16

