
Efficient Strong Designated Verifier Signature Schemes without

Random Oracles or Delegatability

Qiong Huang∗ Guomin Yang† Duncan S. Wong∗ Willy Susilo‡

Abstract

Designated verifier signature (DVS) is a cryptographic primitive that allows a signer to convince
a verifier the validity of a statement in a way that the verifier is unable to transfer the conviction
to a third party. In DVS, signatures are publicly verifiable. The validity of a signature ensures that
it is from either the signer or the verifier. Strong DVS (SDVS) enhances the privacy of the signer
so that anyone except the designated verifier cannot verify the signer’s signatures.

In this paper we propose a highly efficient SDVS scheme based on pseudorandom functions,
which is proved to be secure in the standard model. Compared with the most efficient SDVS
scheme secure in the random oracle model, our scheme has almost the same complexity in terms
of both the computational cost of generating a signature and signature size. A signature of our
scheme is simply the output of a pseudorandom function. The security of the scheme is tightly
reduced to the hardness of DDH problem and the security of the pseudorandom function.

Since our scheme is vulnerable to delegatability attacks, the study of which was initiated by
Lipmaa, Wang and Bao in ICALP 2005, we then propose another construction of SDVS, which is
the first one immune to delegatability attacks. The scheme is also very efficient, and has the same
signature size with that of Lipmaa-Wang-Bao non-delegatable DVS scheme. We show that it is
secure based on discrete logarithm assumption and gap Diffie-Hellman assumption in the random
oracle model.

Keywords: strong designated verifier signature, non-delegatability, non-transferability, random ora-
cles, standard model, signature scheme

∗Department of Computer Science, City University of Hong Kong, Hong Kong S.A.R., China P.R.
{csqhuang@student.cityu.edu.hk, duncan@cityu.edu.hk}.

†Temasek Laboratories, National University of Singapore, Singapore. {tslyg@nus.edu.sg}
‡School of Computer Science and Software Engineering, University of Wollongong, Australia. {wsusilo@uow.edu.au}.

Contents

1 Introduction 1
1.1 Related Work . 1
1.2 Our Contribution . 3
1.3 Outline . 3

2 Strong Designated Verifier Signature 4
2.1 Unforgeability . 4
2.2 Non-transferability . 5
2.3 Privacy of Signer’s Identity . 5
2.4 Non-Delegatability . 6

3 Tools and Assumptions 6

4 SDVS without Random Oracles 7

5 SDVS without Delegatability 11

6 Comparison 13

7 Conclusions and Future Work 14

A Security Proofs of SDVS2 15

1 Introduction

In undeniable signatures [7], given a signature from Alice (the signer), Bob (the verifier) cannot check
the validity of it by himself. Instead, Alice proves the validity (or invalidity) of the signature to
Bob interactively. However, Alice can only decide when to prove, but not who to verify. So the
conviction can be transferred to one or many verifiers. To solve this problem, Jakobsson, Sako and
Impagliazzo [14] introduced the notion of designated verifier proofs (DVP) in Eurocrypt 1996, which
allows Alice to prove the validity of a statement to Bob so that Bob is convinced of the validity of
the statement, but unlike ordinary signature schemes, he could not transfer this conviction to anyone
else. This is called non-transferability, and is usually achieved by proving either the validity of the
statement or the knowledge of Bob’s secret key, so that Bob is also able to produce the ‘same’ proof
transcripts. Designated Verifier Signatures (DVS) are the non-interactive version of DVP. They are
publicly verifiable so that if a signature is valid, any third party is convinced that it was produced by
either Alice or Bob. DVS has applications in voting, i.e. a voting center should not able to convince
others that a voter has voted, undeniable signatures, i.e. use DVS to non-interactively confirm/disavow
a signature, and other applications where only certain people can be convinced of something.

In some cases it is required that if Cindy does not know Bob’s secret key, she cannot tell if a
signature for Bob is from Alice or other signers. Jakobsson et al. then introduced in the same
work [14] a variant of DVS to enhance the signer’s privacy, called strong designated verifier signature
(SDVS), which requires that any two signer’s signatures for the same verifier are indistinguishable to
anyone other than the designated verifier. This property had not been formally studied and defined
until 2004. Laguillaumie and Vergnaud [17] for the first time formally defined the property ‘privacy
of signer’s identity ’ to capture the ‘strongness’ of SDVS.

Jakobsson et al. [14] suggested a generic approach for constructing SDVS. Each user in the system
holds two key pairs, one for a DVS scheme and the other for a public key encryption scheme. To sign
a message M , Alice first uses its signing key to produce a DVS signature on M for Bob and then
encrypts the signature under Bob’s encryption key. The ciphertext is sent as the SDVS signature
to Bob, who first decrypts the ciphertext using his decryption key to obtain Alice’s DVS signature,
and then checks the validity of the signature using verification keys of both Alice and Bob. This
approach is conceptually simple, however, the resulting scheme is not efficient enough, as it requires
the encryption of a DVS signature which usually is comprised of several group elements.

1.1 Related Work

Ring Signature. DVS focuses on the setting in which there are only two parties who can produce
indistinguishable signatures. Rivest, Shamir and Tauman [23] extended the notion to the setting in
which there are a number of signers, and introduced the notion of ring signatures. The signers form
a group, and any signer in the group can produce indistinguishable signatures, but anyone outside of
it cannot. Anyone is ensured that a valid signature is from the group, but cannot tell the identity of
the real signer. Rivest et al. proposed the first ring signature scheme based on trapdoor permutations
and symmetric encryption in the random oracle model [3]. The first efficient ring signature scheme
secure without random oracles was proposed by Shacham and Waters [25], which is based on Waters
signature [30]. Since DVS is the two-user version of ring signature, it turns out that the two-user
version of Shacham-Waters scheme is a DVS scheme secure without random oracles.

UDVS. Steinfeld, Bull, Wang and Pieprzyk [26] studied another variant of DVS, named universal
designated verifier signature (UDVS), in which a (standard) signature holder can designate any third
party as the verifier and transform the signature into a DVS signature for that party. They proposed a
UDVS scheme based on Boneh-Lynn-Shacham (BLS) short signature scheme [6], thus only secure in the

1

random oracle model. They also showed that UDVS is equivalent to identity-based key encapsulation
mechanism. Zhang, Furukawa and Imai [31] proposed another UDVS scheme based on Boneh-Boyen
short signature [4] in the standard model. Laguillaumie, Libert and Quisquater [16] and Huang,
Susilo, Mu and Wu [12] came up with the same UDVS scheme based on Waters signature, which is
also secure without random oracles. Vergnaud presented in [29] another two UDVS schemes, one based
on Boneh-Boyen signature and secure in the standard model but requiring a very strong assumption
named knowledge-of-exponent assumption [8], and the other based on BLS signature and thus secure
in the random oracle model.

MDVS. The notion of multi-designated verifiers signature (MDVS) was first studied by Jakobsson et
al. [14] as well. In MDVS, the signer can designate many parties as verifiers for checking the validity
of a signature. Jakobsson et al. proposed a concrete scheme of MDVS based on their DVS scheme by
aggregating the public keys and secret keys of all the designated verifiers so that only if all of them
cooperate together can they simulate the signatures. Laguillaumie and Vergnaud [18] were the first
to give a formal definition of MDVS. They gave a construction of MDVS based on ring signatures,
which however, fails to provide privacy of signer’s identity [17]. They also gave another construction
of bi-designated verifier signature scheme based on bilinear maps, protecting the anonymity of signers.

IBDVS. The above studies of (variants of) DVS are in the public key infrastructure setting. Another
interesting topic is identity-based designated verifier signature (IBDVS). Susilo, Zhang and Mu [28]
proposed the first identity-based strong designated verifier signature (IBSDVS) scheme with random
oracles based on Bilinear Diffie-Hellman (BDH) assumption. Huang, Susilo, Mu and Zhang [13]
proposed a SDVS scheme based on Diffie-Hellman key exchange. Their scheme is very efficient, and
has the shortest signature, which simply is the hash of the message and the common key shared between
Alice and Bob. The security is based on Gap Diffie-Hellman (GDH) assumption in the random oracle
model. They also showed how to deploy their technique to the identity-based setting to obtain an
IBSDVS scheme.

Non-Delegatable DVS. In ICALP 2005 Lipmaa, Wang and Bao [19] initiated the study of dele-
gatability attacks in DVS. Roughly speaking, a DVS scheme is non-delegatable if one produces a valid
signature, it must ‘know ’ the secret key of either Alice or Bob. In other words, there exists an extractor
which given oracle access to the forger algorithm (and the message), outputs the secret key of either
the signer or the verifier. Though delegatability is desirable in some settings, e.g. proxy DVS, it is
undesirable in many other settings [19].

Many schemes were shown to be vulnerable to delegatability attacks, such as [24, 26, 27, 17].
Lipmaa et al. then proposed the first non-delegatable DVS scheme with tight security reduction using
the technique of Katz and Wang [15]. The signer’s public key consists of gx

1 , gx
2 , and a signature is

a non-interactive zero-knowledge proof of the equal discrete logarithm of the two components in the
public key. Unforgeability of their scheme tightly reduces to the Decisional Diffie-Hellman (DDH)
assumption, and the non-delegatability is proved by rewinding the forger in the random oracle model.
Huang, Susilo, Mu and Wu [11] proposed a UDVS scheme based on BLS signature, which is also
immune to delegatability attacks. Their signature is a proof of knowledge of either a BLS signature
or the verifier’s secret key. Very recently, Huang, Susilo and Wong [10] proposed the first IBDVS
scheme supporting non-delegatability, which is based on Gentry-Silverberg hierarchical identity-based
encryption scheme [9]. The signature also contains a proof of knowledge showing either Alice or Bob’s
secret key is involved in the generation.

To the best of our knowledge, all the non-delegatable DVS schemes (and variants) use Fiat-Shamir
heuristic to implement the proof of knowledge, and therefore their security relies on the randomness
of the underlying hash function. So far there is no DVS scheme in the standard model that supports
non-delegatability. The dilemma is due to the lack of an efficient non-interactive proof of knowledge

2

system which allows the extraction of the witness in the position of exponents, since in almost all the
signature schemes the secret key is the exponent in the public key.

1.2 Our Contribution

In the line of research on DVS and its variants, there are some problems that have been open since
their introduction, for example:

1. construction of non-delegatable DVS and its variants without random oracles;
2. construction of non-delegatable SDVS in the random oracle model;
3. construction of SDVS without random oracles which is much more efficient than the generic

construction [14].

In this work we give complete and affirmative answers to the last two problems. Specifically, we con-
struct an SDVS scheme which is provably secure without resorting to the random oracle heuristic. The
scheme is surprisingly simple and much more efficient than the aforementioned generic construction.
The signer S shares a common key with each designated verifier. To sign a message M for verifier V ,
S uses the key shared with V as the key to select a pseudorandom function PRF. Its signature on
M is simply the output of PRF on input M , and thus is very short. The security of our scheme, e.g.
unforgeability and privacy of signer’s identity, tightly reduces to that of the pseudorandom function
and the hardness of DDH problem. Our scheme also enjoys the perfect non-transferability, as S and
V can produce the same signature on any message.

Regarding the security proofs, we use a slightly different approach here. Usually in the proof one
gradually changes the game in the setup of public keys and the way that the adversary’s queries are
handled, and finally comes to a game in which the adversary wins only with the desired advantage.
However, the condition on winning the game remains untouched. While in our proofs, besides the
aforementioned modifications to the game, we also change step-by-step the condition that the adversary
wins the game. In this way, we are able to tightly reduce the security of this extremely simple scheme
to DDH assumption and the security of the pseudorandom function.

Regarding the delegatability attacks, it is not hard to see that the scheme is vulnerable to such
attacks, since the key for the pseudorandom function is derived from the common key shared between
S and V . If one knows the shared key, certainly it can represent S to sign any message for V . We
then propose another efficient construction of SDVS, which to the best of our knowledge, is the first
non-delegatable SDVS scheme. The signature is a proof of knowledge of the secret key of either S or
V , and thus the non-delegatability is achievable. The price of supporting this extra property is that
the security of the scheme is only provable in the random oracle model. Unforgeability of the scheme
is based on Discrete Logarithm (DL) assumption, and the privacy of signer’s identity relies on the
intractability of Gap Diffie-Hellman (GDH) problem.

1.3 Outline

In the next section we give the formal definition of SDVS, as well as its security model. We then
review in Sec. 3 the definition of pseudorandom functions and the underlying assumptions used in
our construction. The construction of SDVS scheme without random oracles is presented in Sec. 4,
followed by its security analysis. The non-delegatable SDVS scheme is then proposed in Sec. 5, along
with its security proofs in the random oracle model. We compare our schemes with some existing
(S)DVS schemes in the literature in Sec. 6. Finally, the paper is concluded in Sec. 7.

3

2 Strong Designated Verifier Signature

Roughly speaking, strong designated verifier signature (SDVS) allows the signer to sign documents so
that only the intended verifier can verify the validity of its signatures and in the meanwhile prevents
the verifier to transfer the conviction. Below we give the formal definition of this notion.

Definition 2.1 (SDVS). A Strong Designated Verifier Signature (SDVS) scheme in the public-key
infrastructure setting consists of the following four (probabilistic) polynomial-time algorithms.

– Kg: takes as input 1k where k is the security parameter, and outputs a public/secret key pair,
i.e. (pk, sk)← Kg(1k).

– Sign: takes as input the secret key of the signer S, public keys of S and V (the designated verifier)
and the message M , and outputs a signature σ on M , i.e. σ ← Sign(sks, pks, pkv,M).

– Sim: takes as input the secret key of the verifier V , public keys of S (the signer) and V and the
message M , and outputs a signature σ on M , i.e. σ ← Sim(skv, pks, pkv,M).

– Ver: takes as input the secret key of the verifier V , public keys of S (the signer) and V , the
message M and the purported signature σ, and outputs a bit b, which is 1 for acceptance and 0
for rejection, i.e. b← Ver(skv, pks, pkv,M, σ).

The correctness of SDVS requires that for any (pks, sks)← Kg(1k), (pkv, skv)← Kg(1k) and any
message M ∈ {0, 1}∗,

Pr[Ver(skv, pks, pkv,M,Sign(sks, pks, pkv,M)) = 1] = 1,

and Pr[Ver(skv, pks, pkv,M,Sim(skv, pks, pkv,M)) = 1] = 1

Besides the correctness, a secure SDVS should also satisfy unforgeability, non-transferability and
privacy of signer’s identity. If an SDVS scheme is said to be non-delegatable, it should also support
non-delegatability. We define these properties in the following subsections respectively.

2.1 Unforgeability

Unforgeability requires that any third party other than the signer S and the designated verifier V ,
cannot forge a signature on behalf of S with non-negligible probability. Formally, it is defined by the
following game played between a game challenger C and a probabilistic polynomial-time adversary A:

1. C prepares the key pairs of S and V , i.e. (pks, sks) and (pkv, skv), and gives (pks, pkv) to A.
2. In this phase, A adaptively issues queries to the following oracles for polynomially many times:

– OSign: Given a message M , the oracle returns a signature σ on M to A, which is valid with
respect to pks and pkv.

– OSim: Given a message M , the oracle returns a signature σ on M to A, which is valid with
respect to pks and pkv.

– OVer: Given a query of the form (M,σ), the oracle returns a bit b which is 1 if σ is a valid
signature on M with respect to pks and pkv, and 0 otherwise.

3. Finally, A outputs its forgery, (M∗, σ∗). It wins the game if

(a) 1← Ver(skv, pks, pkv,M
∗, σ∗), and

(b) A did not query OSign and OSim on input M∗.

Definition 2.2 (Unforgeability). An SDVS scheme is said to be (t, qSign, qSim, qVer, ε)-unforgeable if
there is no adversary A which runs in time at most t, issues at most qSign queries to OSign, at most
qSim queries to OSim, and at most qVer queries to OVer, and wins the game with probability at least ε.

4

2.2 Non-transferability

Non-transferability says that given a message-signature pair (M,σ) which is accepted by the designated
verifier, it is infeasible for any probabilistic polynomial-time distinguisher to tell whether the message
was signed by the signer or the designated verifier. Formally, we consider the following definition.

Definition 2.3 (Non-Transferability). An SDVS scheme is non-transferable if the signature output
by the signer is computationally indistinguishable from that output by the designated verifier, i.e.

{Sign(sks, pks, pkv,M)} ≈ {Sim(skv, pks, pkv,M)}

That is, for any probabilistic polynomial-time distinguisher D, for any (pks, sks)← Kg(1k), (pkv, skv)←
Kg(1k), any message M ∈ {0, 1}∗, it holds that∣∣∣∣∣Pr

[
σ0 ← Sign(sks, pks, pkv,M), σ1 ← Sim(skv, pks, pkv,M)

b
$← {0, 1}, b′ ← D(pks, sks, pkv, skv, σb)

: b′ = b

]
− 1

2

∣∣∣∣∣ < ε(k)

where ε(k) is a negligible function1 in the security parameter k, and the probability is taken over the
randomness used in Kg, Sign and Sim, and the random coins consumed by D. If the two distributions
are identical, we say that the SDVS scheme is perfectly non-transferable.

2.3 Privacy of Signer’s Identity

Privacy of signer’s identity (PSI), first defined by Laguillaumie and Vergnaud [17], formalizes of the
motivation for the introduction of SDVS. Basically, it requires that one cannot tell signatures generated
by signer S0 for V apart from those by S1, if it does not know V ’s secret key. Below is the formal
definition of PSI, modeled by a game played between the challenger C and a distinguisher D.

1. C generates the key pairs for signers S0, S1 and verifier V , i.e. (pks0
, sks0), (pks1

, sks1), and
(pkv, skv), and invokes D on input (pks0

, pks1
, pkv).

2. D issues queries adaptively for polynomially many times as in the unforgeability game, except
that all the oracles take an additional input d ∈ {0, 1} indicating the signer. That is, the oracles
generate/verify signatures with respect to pksd

and pkv.
3. D outputs a message M∗. C then tosses a coin b ∈ {0, 1}, computes the challenge signature

σ∗ ← Sign(sksb
, pksb

, pkv,M
∗), and returns σ∗ to D.

4. D continues to issue queries as in Step 2 except that it could not query OVer on input (d,M∗, σ∗)
for any d ∈ {0, 1}. Finally it outputs a bit b′, and wins the game if b′ = b.

Definition 2.4 (Privacy of Signer’s Identity). An SDVS scheme is said to be (t, qSign, qSim, qVer, ε)-
PSI-secure if there is no adversary D which runs in time at most t, issues at most qSign queries to
OSign, at most qSim queries to OSim, and at most qVer queries to OVer, and wins the game above with
probability that deviates from one-half by more than ε.

Remark 1 : If the signing/simulation algorithm of an SDVS scheme is deterministic, the distinguisher
D in the game above is also restricted from asking OSign and OSim for a signature on M∗ for any
d ∈ {0, 1}. Otherwise, D trivially breaks the PSI.

1A function f : N → N is negligible in the security parameter k if for every polynomial q(·), there exists some K ∈ N
such that for every k > K, f(k) < 1/q(k).

5

2.4 Non-Delegatability

Intuitively, non-delegatability requires that if one produces a valid signature on a message, it must
‘know’ the secret key of S or V . Formally, we consider the following definition, which is modified from
[19].

Definition 2.5 (Non-delegatability). Let κ ∈ [0, 1] be the knowledge error, and F be a forger algo-
rithm. Let FM be F with M as its input, and oracle calls to FM be counted as one step. An SDVS
scheme is non-delegatable with knowledge error κ if there exists a positive polynomial poly(·) and a
probabilistic oracle machine K such that for every probabilistic polynomial-time algorithm F , machine
K satisfies the following condition:

Denote by ε the probability that F on input M , produces a valid signature on M . For
every (pks, sks)← Kg(1k), (pkv, skv)← Kg(1k), and every message M ∈ {0, 1}∗, if ε > κ,
then on input M and on (black-box) oracle access to FM , K produces either sks or skv in
expected polynomial time with probability at least (ε− κ)/poly(k).

Remark 2 : Readers may notice that our definition of non-delegatability is different from the original
one given in [19]. However, like the two equivalent definitions of proofs of knowledge [1], it can be
shown that Def. 2.5 is equivalent to Lipmaa et al.’s definition.

3 Tools and Assumptions

Pseudorandom Function Ensemble: Roughly speaking, pseudorandom functions are functions
whose output distribution is computationally indistinguishable from that of truly random functions,
if the seeds are random. The following definition is from [20].

Definition 3.1. Let {Ak, Bk}k∈N be a sequence of domains and let F = {PRFk}k∈N be a function
ensemble such that the random variable PRFk assumes values in the set of Ak → Bk functions. Then
F is called an efficiently computable pseudorandom function ensemble if the following conditions hold:

1. (efficient computation) There exist probabilistic polynomial-time algorithms I nd V, and a map-
ping from strings to functions, φ, such that φ(I(1k)) and PRFk are identically distributed and
V(i, x) = (φ(i))(x).

2. ((t, ε)-pseudorandomness) For every probabilistic polynomial-time oracle machine D which runs
in time at most t, ∣∣∣Pr

[
DPRFk(1k) = 1

]
− Pr

[
DRFk(1k) = 1

]∣∣∣ < ε,

where R = {RFk}k∈N is the corresponding uniform function ensemble (i.e. ∀k, RFk is uniformly
distributed over the set of Ak → Bk functions).

Assumptions: Let p, q be two large primes and q|p − 1. Let G be a multiplicative group of order q
and g be its generator. For example, G is an order-q subgroup of Z∗

p.

Definition 3.2 (DL Assumption). The Discrete Logarithm (DL) assumption (t, ε)-holds in G if there
is no algorithm A which runs in time at most t, and satisfies the following condition:

Pr[x $← Zq;x′ ← A(g, gx) : x′ = x] ≥ ε

where the probability is taken over the random choices of x ∈ Zq, and the random coins used by A.

6

Definition 3.3 (DDH Assumption). The Decisional Diffie-Hellman (DDH) assumption (t, ε)-holds in
G if there is no algorithm A which runs in time at most t, and satisfies the following condition:

Pr[a, b, c
$← Zq;Z0 ← gab;Z1 ← gc; d $← {0, 1}; d′ ← A(g, ga, gb, Zd) : d′ = d] ≥ ε

where the probability is taken over the random choices of a, b, c ∈ Zq and d ∈ {0, 1}, and the random
coins used by A.

Definition 3.4 (GDH Assumption). The Gap Diffie-Hellman (GDH) assumption (t, ε)-holds in G if
there is no algorithm A that given access to a DDH oracle Oddh which on input (g1, g2, g

u
1 , gv

2) ∈ G4

tells if the given tuple is a DDH tuple (i.e. u
?= v), runs in time at most t, and satisfies the following

condition:
Pr[a, b

$← Zq;Z ← AOddh(g, ga, gb) : Z = gab] ≥ ε

where the probability is taken over the random choices of a, b ∈ Zq, and the random coins used by A.

4 SDVS without Random Oracles

Let G be a cyclic multiplicative group of large prime order q, and g be its generator. Let λ(·) and
`(·) be two positive polynomials in the security parameter k. Let F = {PRFK}K∈KPRF

be a family of
pseudorandom functions PRFK : {0, 1}λ → {0, 1}` with key space KPRF. We assume that the message
space is {0, 1}λ.2 Let H : G → KPRF be a collision-resistant hash function. Our SDVS scheme is
depicted in Fig. 1, where for simplicity, we omit the usage of function H, and simply use the shared
key (i.e. K = gxsxv) as the key for the pseudorandom function.

Kg(1k): Sign(sks, pks, pkv,M):

x
$← Zq

return (pk, sk) := (gx, x)
parse sks as xs

set K ← pkxs
v

return σ ← PRFK(M)
Ver(skv, pks, pkv,M, σ): Sim(skv, pks, pkv,M):

parse skv as xv

set K ← pkxv
s

return σ
?= PRFK(M)

parse skv as xv

set K ← pkxv
s

return σ ← PRFK(M)

Figure 1: Our SDVS Scheme in the Standard Model, SDVS1

Below we analyze the security of SDVS1. As we shall see later (Theorem 4.2), the scheme SDVS1 is
perfectly non-transferable. Hence, it suffices to consider the case in which the adversary in the games
of unforgeability and privacy of signer’s identity does not make queries to oracle OSim, as these queries
can be perfectly handled using oracle OSign.

Security Analysis. It is known that pseudorandom function is a (deterministic) message authen-
tication code that is strongly unforgeable under chosen message attacks [2]. After obtaining many
signatures on messages at its choices, the adversary still could not forge a new one. On the other hand,
the pseudorandomness of the function tells that after obtaining many outputs, the output of the func-
tion on a new input still looks random to the distinguisher. Hence, the adversary against the privacy
of signer’s identity cannot distinguish which signer produced the challenge signature. Formally, we
have the following theorems.

2We can also assume the message space to be {0, 1}∗ and then use a collision-resistant hash function to map the
messages to {0, 1}λ.

7

Theorem 4.1. Suppose that A is an adversary that (t, qSign, qVer, ε) breaks the unforgeability of SDVS1.
There exist an algorithm A1 that (t1, εddh) breaks the DDH assumption, and an algorithm A2 that
(t2, εprf) breaks the pseudorandomness of F such that

t1, t2 ≈ t, and εddh + εprf > ε−
qSign + qVer

2`
.

Proof. We’ll prove the theorem by a series of games. Let A be an adversary against the unforgeability
of our SDVS scheme. Let Gi be the i-th game, and Xi be the event that A outputs a valid forgery in
Game Gi without violating the constraints.

G0: This is the original game. The challenger C chooses a, b
$← Zq, and invokes A on input (pks, pkv) =

(ga, gb). Let K := pkb
s = pka

v = gab. For each signing query M and each verification (M,σ), C simulates
the corresponding answer using gab as the key for the pseudorandom function. The adversary finally
outputs (M∗, σ∗), and wins the game if M∗ is new and σ∗ = PRFgab(M∗). By definition, we have that

Pr[X0] = ε (1)

G1: This game differs from Game G0 in that when handling the adversary’s queries, the key for the
pseudorandom function is chosen as a random element of G, i.e. K

$← G. Besides, the validity of the
adversary’s forgery is now also with respect to this random key K. If the success probabilities of the
adversaries in games G1 and G0 differ non-negligibly, it leads to an algorithm for breaking the DDH
assumption. Therefore, we have that

|Pr[X1]− Pr[X0]| ≤ εddh (2)

for some algorithm A1 that (t1, εddh) breaks the DDH assumption with t1 ≈ t. A1 works as below.

Given an instance of DDH problem, i.e G, g, q, ga, gb, Z where Z is either equal to gab or a random
element of G, A1 sets pks := ga and pkv := gb and invokes A on input (pks, pkv) and the group de-
scription G, g, p. To answer a signing query on message M , A1 computes and returns σ ← PRFZ(M);
to answer a verification query (M,σ), it computes and returns σ

?= PRFZ(M). Finally, A outputs its
forgery, (M∗, σ∗). The adversary A1 then tests if σ∗ = PRFZ(M∗). If so, it outputs 1, meaning that
Z = gab; otherwise it outputs 0, meaning that Z is randomly chosen from G. Obviously, if Z = gab,
the game simulated by A1 is Game G0, and A outputs a valid forgery with probability Pr[X0]. If Z
is a random element of G, the game simulated by A1 is Game G1, and A outputs a valid forgery with
probability Pr[X1]. Let b be the bit output by A1. Then we have∣∣∣Pr

[
b = 1|Z = gab

]
− Pr

[
b = 1|Z $← G

]∣∣∣ = |Pr[X0]− Pr[X1]|

By the DDH assumption, we then have equation (2).

G2: Notice that in Game G1 the key for the pseudorandom function is independent from the two public
keys, and the adversary can obtain information about the function only via issuing queries. We now
modify the game so that the pseudorandom function is replaced with a truly random function. That
is, the signature on a message is now randomly chosen from {0, 1}`. We obtain that

|Pr[X2]− Pr[X1]| ≤ εprf (3)

To see the equation above, we construct an algorithm A2 to (t2, εprf)-break the pseudorandomness of
F with t2 ≈ t.

8

Given an oracle function F (·) which is either a pseudorandom function chosen from F or a truly
random function, the adversary A2 randomly selects a group (G, g, q) and chooses a, b ← Zq, and
invokes A on input (pks, pkv) = (ga, gb) and the group description. A2 maintains a table T which is
initially empty. On input a signing query M , if there is a tuple (M,σ) in T , A2 returns σ. Otherwise, it
submits M to function F and obtains the answer σ. It returns σ to A and stores (M,σ) in T . On input
a verification query (M,σ), if (M,σ) is in table T , A2 returns 1; otherwise, it submits M to F and
obtains σ′. It stores (M,σ′) in T , and returns 1 if σ′ = σ, and 0 otherwise. Since the pseudorandom
function is deterministic, there is only one signature on each message. Hence, the simulation of oracle
OSign is perfect. Finally, A outputs a forgery (M∗, σ∗) where M∗ is distinct from all messages it ever
submitted to A2. A2 submits M∗ to F and obtains σ′∗. If σ′∗ = σ∗, it outputs 1, indicating that its
oracle function is a pseudorandom function from F; otherwise, it outputs 0, indicating that its oracle
is a truly random function. Obviously, if F is chosen from F, A2 perfectly simulated Game G1; if F
is a truly random function, A2 perfectly simulated Game G2. Therefore, we obtain equation (3).

Note that in Game G2, the signature on a message is a random string from {0, 1}`, therefore, after
issuing qSign signing queries and qVer verification queries, the probability that the forgery output by
the adversary is valid in Game G2 is upper bounded by

Pr[X2] ≤
1

2` − qSign − qVer
<

qSign + qVer

2`
(4)

Combining equations (1)–(4), we get that

ε = Pr[X0]
≤ |Pr[X0]− Pr[X1]|+ |Pr[X1]− Pr[X2]|+ Pr[X2]

< εddh + εprf +
qSign + qVer

2`

This completes the proof.

Theorem 4.2. SDVS1 is perfectly non-transferable.

Proof. Since both the signer and the verifier can compute the same key K = gxsxv and thus can obtain
the same signature on any message M , i.e. σ = PRFK(M) for each message M .

Theorem 4.3. Suppose that there is an adversary D that (t, qSign, qVer, ε)-breaks the PSI of SDVS1.
Then there exists an adversary A1 that (t1, εddh)-breaks DDH assumption and an adversary A2 that
(t2, εprf)-breaks the pseudorandomness of F with

t1, t2 ≈ t, and ε1 + ε2 ≥
ε

2

Proof. Let D be the distinguisher against privacy of signer’s identity. We consider the following games,
and we denote by Xi the event that the adversary outputs the correct bit in Game Gi.

G0: This is the original game. C chooses a0, a1, c ∈ Zq at random and invokes the adversary D on
input (pks0

, pks1
, pkv) = (ga0 , ga1 , gc). It simulates oracles for D using a0, a1, c. Let K0 = ga0c and

K1 = ga1c. Essentially, the real keys used in the simulation of oracles are K0 and K1, and Kb is used
in the generation of the challenge signature σ∗ for a random b ∈ {0, 1}. By definition, we have that

Pr[X0] = ε +
1
2

(5)

9

G1: This game differs from Game G0 in that now the key K0 is chosen at random from G. The difference
between D’s success probabilities in Game G0 and Game G1 is then bounded by the intractability of
DDH problem, and we have

|Pr[X1]− Pr[X0]| ≤ εddh (6)

To see the equation above, we use D to build another algorithm D1 to (t1, εddh)-break the DDH
assumption with t1 ≈ t.

Given a random instance of DDH problem, i.e. (G, g, q, ga0 , gc, Z) where a0, c are random elements
of Zq unknown to it, D1 randomly chooses a1 ∈ Zq, and invokes D on input (pks0

, pks1
, pkv) =

(ga0 , ga1 , gc) and the group description. It also sets K0 := Z and K1 = (gc)a1 .
Given a signing query (d,M), D1 computes and returns σ ← PRFKd

(M). Given a verification

query (d,M, σ), it computes and returns σ
?= PRFKd

(M). When D submits its challenge message M∗,
D1 chooses a random bit b, and returns σ∗ ← PRFKb

(M∗). The successive queries issued by D are
handled as above. Finally, D outputs a bit b′. Then D1 outputs 1 if b′ = b, indicating that Z = ga0c,
and 0 otherwise, indicating that Z is a random element of G.

It is readily seen that if Z = ga0c, the game simulated by D is identical to Game G0, and D outputs
the correct answer with probability Pr[X0]; on the other hand, if Z is a random element of G, the
game is identical to Game G1, and D outputs the correct bit with probability Pr[X1]. Let the bit
output by D1 be δ. We have that∣∣∣Pr [δ = 1|Z = ga0c]− Pr

[
δ = 1|Z $← G

]∣∣∣ = |Pr[X0]− Pr[X1]|

Therefore, we obtain the equation (6).

G2: Now we replace K1 with a random element of G as well. Note that in this game, both K0 and K1

are randomly chosen from G. Similar to Game G1, we have that

|Pr[X2]− Pr[X1]| ≤ εddh (7)

G3: We modify the game so that the function PRFK0 is now replaced with a truly random function.
That is, for each message M , the signer S0’s signature is now chosen at random from {0, 1}` instead
of being computed as PRFK0(M). We have

|Pr[X3]− Pr[X2]| ≤ εprf (8)

To prove the equation above, we construct an algorithm D2 to (t2, εprf)-break the pseudorandomness
of F with t2 ≈ t.

Given an oracle function F (·), D2 randomly chooses a group (G, g, q), and selects a0, a1, c ∈ Zq

and K1 ∈ G uniformly. It invokes D on input (pks0
, pks1

, pkv) = (ga0 , ga1 , gc). D2 maintains a table
T containing entries of the form (d, M, σ), which is initially empty.

Given a signing query (d, M), if there is a tuple (d,M, σ) in table T , D2 returns σ. Otherwise, if
d = 0, D2 forwards M to F and obtains σ; if d = 1, D2 computes and returns σ ← PRFK1(M). In
either case, D2 stores (d, M, σ) in T and returns σ to D. Given a verification query (d, M, σ), if it is
contained in T , D2 returns 1. Otherwise, if d = 0, it submits M to F , obtains σ′ and returns σ′

?= σ;
if d = 1, it computes and returns σ

?= PRFK1(M). In either case, D2 stores (d,M, σ′) in T .
When D submits its challenge message M∗, D2 tosses a coin b. If the output is 0, it sends M∗

to F and obtains σ∗; if the outputs is 1, it computes σ∗ ← PRFK1(M
∗). D2 then returns σ∗ to the

adversary. All the successive queries are handled as above. Finally, D outputs b′. If b′ = b, D2 outputs

10

1 indicating that F is a pseudorandom function chosen from F; otherwise, it outputs 0 indicating that
F is a truly random function.

Clearly, if F is chosen from F, D2 perfectly simulated Game G2 and D outputs the correct bit with
probability Pr[X2]; if it is a truly random function, D2 perfectly simulated Game G3 and D outputs
the correct bit with probability Pr[X3]. Therefore, we obtain the equation (8).

G4: In this game the function PRFK1(·) is also replaced with a truly random function. That is, the
signer S1’s signatures are now chosen at random from {0, 1}` as well. Similarly, we have that

|Pr[X4]− Pr[X3]| ≤ εprf (9)

Note that in Game G4 both of the signers’ signatures are randomly chosen from {0, 1}`, including
the challenge signature. Thus, the answers to all the queries issued by D provide no help to it. That is,
D does not obtain any information about the bit b at all from its queries and the challenge signature.
Hence, we have that

Pr[X4] =
1
2

(10)

Combining equations (5)–(10), we obtain that

Pr[X0] ≤
4∑

i=1

|Pr[Xi]− Pr[Xi−1]|+ Pr[X4]

≤ 2εddh + 2εprf +
1
2

This completes the proof.

5 SDVS without Delegatability

It is clear that our SDVS scheme based on pseudorandom functions is delegatable. The signer S or the
verifier V can simply release K = gxsxv to any third party so that it can sign any message on behalf of
S for V . Below in Fig. 2 we give another construction of SDVS, called SDVS2, which does not suffer
from the delegatability issue but at the price of provable security in the random oracle model only,
where G is a multiplicative group of large prime order q, g is its generator, and H : {0, 1}∗ ×G3 → Zq

is a collision-resistant hash function which will be modeled as a random oracle in the security proofs.
The idea behind the construction above is that in order to sign a message M , the signer S produces

a signature of knowledge showing that it knows the secret key of either S or V , i.e.

σ = SPK {x : pks = gx ∨ pkv = gx} (M)

So either sks or skv must be involved in the generation of σ. To make the scheme a ‘strong’ DVS, we
propose to include the common key shared between S and V , i.e. K = pkxs

v = pkxv
s = gxsxv , into the

message to be signed. Thus, the signature of knowledge becomes

σ = SPK {x : pks = gx ∨ pkv = gx} (M,K)

Security Analysis. For the security of SDVS2, we have the following theorems.

Theorem 5.1. If DL assumption (tdl, εdl)-holds in G, SDVS2 is (tuf , qH, qSign, qSim, qVer, εuf)-strongly
unforgeable in the random oracle model, where

tuf ≈ tdl, and εuf ≤
√

32qHεdl

11

Kg(1k): Ver(skv, pks, pkv,M, σ):

x
$← Zq

return (pk, sk) := (gx, x)
parse σ as (cs, zs, cv, zv), skv as xv

set Rs ← gzspk−cs
s , Rv ← gzvpk−cv

v , K ← pkxv
s

return cs + cv
?= H(M,K, Rs, Rv)

Sign(sks, pks, pkv,M): Sim(skv, pks, pkv,M):
parse sks as xs

select at random rs, zv, cv
$← Zq

set Rs ← grs , Rv ← gzvpk−cv
v , K ← pkxs

v

set c← H(M,K, Rs, Rv)
set cs ← c− cv, zs ← rs + csxs

return σ := (cs, zs, cv, zv)

parse skv as xv

select at random rv, zs, cs
$← Zq

set Rv ← grv , Rs ← gzspk−cs
s , K ← pkxv

s

set c← H(M,K, Rs, Rv)
set cv ← c− cs, zv ← rv + cvxv

return σ := (cs, zs, cv, zv)

Figure 2: Our Non-delegatable SDVS Scheme, SDVS2

Again, as shown in Theorem 5.2, SDVS2 is perfectly non-transferable, thus we don’t need to handle
the adversary’s queries to oracle OSim, it is sufficient for us to merely consider how to deal with signing
queries, verification queries and hash queries in the proof, which is deferred to Appendix A.

Remark 3 : Unlike DVS-KW in [19], the unforgeability of DVS-KW is proved in the non-programmable
random oracle model [21], while the proof above is in the programmable random oracle model. Be-
sides, the security reduction above is not tight, since we need to rewind the adversary in order to
extract the discrete logarithm from the signatures. However, these losses are expectable, because the
unforgeability of our scheme relies on the hardness of discrete logarithm problem, which is believed to
be much harder than DDH problem, the underlying problem of the unforgeability of DVS-KW.

Note that in SDVS2, both S and V can produce identically distributed proofs using their respective
secret key, because (the interactive version of) the proof of knowledge is perfect special honest-verifier
zero-knowledge and both S and V can compute the same key K. Therefore, we have the following
theorem immediately.

Theorem 5.2. SDVS2 is perfectly non-transferable.

Theorem 5.3. If there is an algorithm F which for some message M , can produce valid signatures
in polynomial time and with probability ε after issuing at most qH queries to the random oracle, then
SDVS2 is non-delegatable with knowledge error 1/q in the random oracle model.

Proof. Assume that ε > κ = 1/q, where 1/q is the probability that the adversary guesses the value of
H(M, gxsxv , Rs, Rv) without asking the random oracle.

Let FM be a forger with input message M . Consider two runs of FM byK on the same random tape.
In both runs, K executes FM step-by-step, except that K returns different random values (c versus c̄)
as the answer to the hash query H(M,K, Rs, Rv) where K = gxsxv . Since (K, Rs, Rv) are in the hash
input, their values must be unchanged in the two runs. Let Rs = grs and Rv = grv for some rs, rv ∈ Zq.
Suppose that both signatures are valid, one must have that cs + cv = H(M,K, gzspk−cs

s , gzvpk−cv
v) and

c̄s + c̄v = H(M,K, gz̄spk−c̄s
s , gz̄vpk−c̄v

v), from which have that

zs = rs + xscs (11)
zv = rv + xvcv (12)

z̄s = rs + xsc̄s (13)
z̄v = rv + xv c̄v (14)

12

If cs 6= c̄s, then from equations (11) and (13) we have that xs = (zs − z̄s)/(cs − c̄s). Similarly, if
cv 6= c̄v, from equations (12) and (14) we have that xv = (zv − z̄v)/(cv − c̄v). Since cs + cv 6= c̄s + c̄v, it
must be that either cs 6= c̄s or cv 6= c̄v. Then we can extract the secret key of either S or V as above.

Note that in the analysis above, the value of K = gxsxv is unknown to the extractor K. Since the
forger FM may make many hash queries of the form (M, ·, Rs, Rv), in order to rewind FM to the proper
status, i.e. the status that FM made the hash query (M, gxsxv , Rs, Rv), K needs to guess at random
the hash query in which the second element is the correct value of K (and the last two elements are
Rs and Rv). This brings a factor 1/qH to the success probability of the extractor. Conditioned on
that the random guess is correct, by a similar analysis to that in [22, 5], we have that with probability
at least (ε− 1/q)/16, FM produces another valid signature σ′ on the same message M in the second
run, which together with the valid signature in the first run, enables K to extract either sks or skv.
Hence, the probability that K succeeds in extracting either sks or skv is at least (ε− 1/q)/16qH.

Theorem 5.4. If GDH assumption (tgdh, εgdh)-holds in G, SDVS2 is then (t, qSign, qSim, qVer, ε)-PSI-
secure in the random oracle model, where

t ≈ tgdh and ε ≤ εgdh +
2
q

We defer the proof to Appendix A.

6 Comparison

In Table 1 we compare our schemes with some existing (S)DVS schemes in the literature, where we
denote the size of a signature and the size of a public key by ‘|sig|’ and ‘|pk|’, respectively; by ‘strong’
we mean if the scheme supports privacy of signer’s privacy; by ‘non-dele’ we mean if the scheme
supports non-delegatability; and by ‘model’ we mean that the security of the scheme is in the random
oracle model (rom) or the standard model (std).

scheme |sig| |pk| strong non-dele model
[14] 2|Zp|+ 3|Zq| 1|Zp| × × rom
[18] nr + 1|GT | 1|G|

√
× rom

[19] 4|Zq| 2|Zp| ×
√

rom
[13] |H(·)| 1|Zp|

√
× rom

SDVS1 |PRFK(·)| 1|Zp|
√

× std
SDVS2 4|Zq| 1|Zp|

√ √
rom

Table 1: Comparison with other schemes.

From the comparison one can see that in terms of signature size, SDVS1 which is secure in the
standard model, outperforms schemes in [14, 18, 19] which are secure in the random oracle model, and
is comparable with the scheme in [13] which so far is the most efficient SDVS scheme in the random
oracle model. Besides, SDVS1 has almost the same computational efficiency as [13]. On the other
hand, to the best of our knowledge, SDVS2 is the first SDVS scheme that is non-delegatable, which
compared with Lipmaa-Wang-Bao DVS scheme [19], has the same signature size and shorter public
key.

13

7 Conclusions and Future Work

In this paper we proposed the a pretty efficient SDVS scheme that has quite short signatures, and is
provably secure in the standard model. Since it is vulnerable to delegatability attacks, we then pro-
posed the first non-delegatable SDVS scheme which is as efficient as Lipmaa-Wang-Bao DVS scheme,
at the price of provable security in the random oracle model.

Many problems about DVS and its variants are still left unsolved, i.e. the construction of non-
delegatable DVS and variants in the standard model. It seems that non-delegatable DVS without
random oracles is much harder to achieve. The user secret key in most of the signature schemes in
the literature is comprised of element(s) of the group Zq, and usually is put on the exponent position
of the public key. As far as we know there is no method for extracting the exponent from element(s)
in the underlying group G without resorting to the random oracle heuristic. We leave this problem as
our future work.

References

[1] M. Bellare and O. Goldreich. On defining proofs of knowledge. In CRYPTO92, volume 740 of LNCS, pages
390–420. Springer, 1992.

[2] M. Bellare and C. Namprempre. Authenticated encryption: Relations among notions and analysis of the
generic composition paradigm. In ASIACRYPT00, volume 1976 of LNCS, pages 531–545. Springer, 2000.

[3] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient protocols.
In CCS, pages 62–73. ACM, 1993.

[4] D. Boneh and X. Boyen. Short signatures without random oracles. In EUROCRYPT04, volume 3027 of
LNCS, pages 56–73. Springer, 2004.

[5] D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In CRYPTO04, volume 3152 of LNCS,
pages 41–55. Springer, 2004.

[6] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the weil pairing. J. Cryptology, 17(4):297–319,
2004. A preliminary version appeared in Asiacrypt 2001.

[7] D. Chaum and H. van Antwerpen. Undeniable signatures. In CRYPTO89, volume 435 of LNCS, pages
212–216. Springer, 1989.

[8] I. Damg̊ard. Towards practical public key systems secure against chosen ciphertext attacks. In CRYPTO91,
volume 576 of LNCS, pages 445–456. Springer, 1991.

[9] C. Gentry and A. Silverberg. Hierarchical id-based cryptography. In ASIACRYPT02, volume 2501 of
LNCS, pages 548–566. Springer, 2002.

[10] Q. Huang, W. Susilo, and D. S. Wong. Non-delegatable identity-based designated verifier signature. Cryp-
tology ePrint Archive, Report 2009/367, 2009. http://eprint.iacr.org/.

[11] X. Huang, W. Susilo, Y. Mu, and W. Wu. Universal designated verifier signature without delegatability.
In ICICS06, volume 4307 of LNCS, pages 479–498. Springer, 2006.

[12] X. Huang, W. Susilo, Y. Mu, and W. Wu. Secure universal designated verifier signature without random
oracles. International Journal of Information Security, 7(3):171–183, 2007.

[13] X. Huang, W. Susilo, Y. Mu, and F. Zhang. Short designated verifier signature scheme and its identity-
based variant. International Journal of Network Security, 6(1):82–93, 2008.

[14] M. Jakobsson, K. Sako, and R. Impagliazzo. Designated verifier proofs and their applications. In EURO-
CRYPT96, volume 1070 of LNCS, pages 143 – 154. Springer, 1996.

[15] J. Katz and N. Wang. Efficiency improvements for signature schemes with tight security reductions. In
CCS, pages 155–164. ACM, 2003.

14

http://eprint.iacr.org/

[16] F. Laguillaumie, B. Libert, and J.-J. Quisquater. Universal designated verifier signatures without random
oracles or non-black box assumptions. In SCN06, volume 4116 of LNCS, pages 63–77. Springer, 2006.

[17] F. Laguillaumie and D. Vergnaud. Designated verifier signatures: Anonymity and efficient construction
from any bilinear map. In SCN04, volume 3352 of LNCS, pages 105–119. Springer, 2004.

[18] F. Laguillaumie and D. Vergnaud. Multi-designated verifiers signatures. In ICICS04, volume 3269 of
LNCS, pages 495–507. Springer, 2004.

[19] H. Lipmaa, G. Wang, and F. Bao. Designated verifier signature schemes: Attacks, new security notions
and a new construction. In ICALP05, volume 3580 of LNCS, pages 459–471. Springer, 2005.

[20] M. Naor and O. Reingold. Number-theoretic constructions of efficient pseudo-random functions. J. ACM,
51(2):231–262, 2004.

[21] J. B. Nielsen. Separating random oracle proofs from complexity theoretic proofs: The non-committing
encryption case. In CRYPTO02, volume 2442 of LNCS, pages 111–126. Springer, 2002.

[22] D. Pointcheval and J. Stern. Security arguments for digital signatures and blind signatures. J. Cryptology,
13(3):361–396, 2000.

[23] R. Rivest, A. Shamir, and Y. Tauman. How to leak a secret. In C. Boyd, editor, ASIACRYPT01, volume
2248 of LNCS, pages 552–565. Springer, 2001.

[24] S. Saeednia, S. Kremer, and O. Markowitch. An efficient strong designated verifier signature scheme. In
ICISC03, volume 2971 of LNCS, pages 40–54. Springer, 2003.

[25] H. Shacham and B. Waters. Efficient ring signatures without random oracles. In T. Okamoto and X. Wang,
editors, PKC07, volume 4450 of LNCS, pages 166–180. Springer, 2007.

[26] R. Steinfeld, L. Bull, H. Wang, and J. Pieprzyk. Universal designated-verifier signatures. In ASI-
ACRYPT03, volume 2894 of LNCS, pages 523–542. Springer, 2003.

[27] R. Steinfeld, H. Wang, and J. Pieprzyk. Efficient extension of standard Schnorr/RSA signatures into
universal designated-verifier signatures. In PKC04, volume 2947 of LNCS, pages 86–100. Springer, 2004.

[28] W. Susilo, F. Zhang, and Y. Mu. Identity-based strong designated verifier signature schemes. In ACISP04,
volume 3108 of LNCS, pages 313–324. Springer, 2004.

[29] D. Vergnaud. New extensions of pairing-based signatures into universal designated verifier signatures. In
ICALP06, volume 4052 of LNCS, pages 58–69. Springer, 2006.

[30] B. Waters. Efficient identity-based encryption without random oracles. In R. Cramer, editor, EURO-
CRYPT05, volume 3494 of LNCS, pages 114–127. Springer, 2005.

[31] R. Zhang, J. Furukawa, and H. Imai. Short signature and universal designated verifier signature without
random oracles. In ACNS05, volume 3531 of LNCS, pages 483–498. Springer, 2005.

A Security Proofs of SDVS2

(Proof of Theorem 5.1). Let F be a forger algorithm against the unforgeability of SDVS2, which
runs in time at most tuf , makes at most qH hash queries, qSign signing queries, qSim simulation queries
and qVer verification queries, and wins the unforgeability game with probability at least εuf . We then
use it as a subroutine to build another algorithm A for solving the DL problem.

Given a random instance of DL problem, i.e. (G, g, q, y), where y = gx for some unknown x ∈ Zq,
A randomly chooses x̄ ∈ Zq and tosses a coin. If the outcome is head, it sets pks := gx̄ and pkv := y;
otherwise it sets pks := y and pkv = gx̄. For simplicity, we assume that the outcome is head. The rest
simulation in the other case can be done similarly. A then invokes F on input (pks, pkv) and then
simulates oracles for it. It maintains a hash table HT which is initially empty.

15

Hash Queries: Given a query (M,K, Rs, Rv), if there is a tuple ((M,K, Rs, Rv), c) in HT , A returns
c; otherwise, it randomly selects a fresh c ∈ Zq, stores ((M,K, Rs, Rv), c) in HT and returns c.

Signing Queries: On input a message M , A computes the answer by calling the Sign algorithm using
its knowledge of x̄. That is, A randomly selects rs, zv, cv ∈ Zq, and computes Rs ← grs , Rv ← gzvpk−cv

v .
It sets c← H(M, pkx̄

v , Rs, Rv) and cs ← c− cv, zs ← rs + csx̄. The signature σ := (cs, zs, cv, zv) is then
returned to F .

Verification Queries: Given a message M and an alleged signature σ := (cs, zs, cv, zv), A computes
Rs ← gzspk−cs

s and Rv ← gzvpk−cv
v , and checks if cs + cv = H(M, pkx̄

v , Rs, Rv). If so, A returns 1;
otherwise, it returns 0.

Finally, F outputs its forgery, i.e. (M∗, σ∗) where σ∗ = (c∗s, z
∗
s , c∗v, z

∗
v). If σ∗ is not a valid signature

of S on M∗ for V , A aborts. Otherwise, A computes

R∗
s ← gz∗spk−c∗s

s and R∗
v ← gz∗vpk−c∗v

v .

Let c∗ be the hash value of (M∗, pkxs
v , R∗

s, R
∗
v). A then rewinds F to the status of asking for the

hash value of (M∗, pkxs
v , R∗

s, R
∗
v), and feeds F with c̄∗ 6= c∗. The subsequent queries issued by F are

answered as above. Again, we assume that F outputs another valid forgery on the same message, i.e.
(M∗, σ̄∗) where σ̄∗ = (c̄∗s, z̄

∗
s , c̄∗v, z̄

∗
v) such that c̄∗ = c̄∗s + c̄∗v 6= c∗s + c∗v = c∗ but gz̄∗spk

−c̄∗s
s = R∗

s and
gz̄∗vpk

−c̄∗v
v = R∗

v (otherwise A aborts). If c∗v 6= c̄∗v, A outputs the discrete log of y as

x = logg y =
z∗v − z̄∗v
c∗s − c̄∗s

Otherwise, it aborts.

(Probability Analysis): It is readily seen that the oracles are simulated by A perfectly using its
knowledge of x̄ (which is the secret key of either pks or pkv, depending on the outcome of the coin toss
at the onset of the simulation). Therefore, F outputs its first valid forgery with probability at least
εuf . Then by a similar analysis with that in [22, 5] we have that with probability at least ε2uf/16qH, F
outputs its valid forgery in the second run again which satisfies the aforementioned conditions. Since
setting y as the public key of S or V (at the onset of the simulation by A) is completely random and
the whole simulation is perfect, we then have that with probability one-half it holds that c∗v 6= c̄∗v.
Thus, from the two valid forgeries A can successfully compute the discrete log of y with probability
at least

εdl ≥
ε2uf

16qH
· 1
2

=
ε2uf

32qH

This completes the proof.

(Proof of Theorem 5.4). Assume that D is an adversary against the privacy of signer’s identity,
which runs in time t, issues at most qSign signing queries, qSim simulation queries and qVer verification
queries, and wins with probability 1/2 + ε. Using D as a subroutine, we build an algorithm E for
solving the GDH problem.

Given a random instance of GDH problem, say, (G, g, q, gu, gw) and a DDH oracle, E randomly
selects u′ ∈ Zq, and sets pks0

= gu, pks1
= gugu′

and pkv = gw. It invokes D on input (pks0
, pks1

, pkv),
and then simulates oracles for it. E maintains two tables, HT and ST , which are initially empty. For
simplicity, we assume that D does not duplicate queries, and we do not consider queries to OSim in
the proof.

16

Hash Queries: Given an input (M,K, Rs, Rv), if there is a tuple ((M,K, Rs, Rv), c) in table HT , E
returns c. Otherwise, it submits (g, pks0

, pkv,K) and (g, pks1
, pkv,K) to the DDH oracle, and obtains

two bits, b0 and b1. If b0 = 1, E outputs K and halts; if b1 = 1, it outputs K/(gw)u′
and halts;

otherwise (b0 = b1 = 0), it selects at random a fresh c ∈ Zq, stores ((M,K, Rs, Rv), c) in HT and
returns c.

Signing Queries: Given a bit d and a message M , E randomly chooses cs, cv, zs, zv ∈ Zq, and
computes Rs = gzspk−cs

sd
, Rv = gzvpk−cv

v and c = cs + cv. If c was ever used, E repeats the process
above. It then stores ((M,⊥, Rs, Rv), c) in HT and returns σ := (cs, zs, cv, zv). Meanwhile, it stores
(d,M, σ) into signature table ST . Note that though E does not know gxsd

xv , the simulated signature
is still identically distributed as real ones.

Verification Queries: Given a bit d, a message M and an alleged signature σ = (cs, zs, cv, zv), if
there is a tuple (d, M, σ) in table ST , E returns 1; otherwise, it returns 0.

The intuition behind the simulation of verification oracle is that if a signature was ever returned by
E to the adversary, it must be valid. Otherwise, if the signature is invalid, certainly the oracle should
return 0; if it is valid, then the adversary forged a valid signature. In this case, with probability at
least 1− 1/q it holds that D made a hash query (M,K, Rs, Rv), where K = pkxv

sd
, Rs = gzspk−cs

sd
and

Rv = gzvpk−cv
v . According to the simulation of the hash oracle, E obtained guw and halted. Thus,

the only case left is that the signature is valid but the adversary did not ask the random oracle for
the hash of (M,K, Rs, Rv). Therefore, the simulation of the verification oracle is at most 1/q different
from the real one.

When it is ready, D submits a challenge message M∗. E then flips a coin b, randomly chooses
c∗s, c

∗
v, z

∗
s , z∗v ∈ Zq, and computes R∗

s = gz∗spk
−c∗s
sb , R∗

v = gz∗vpk
−c∗v
v and c∗ = c∗s +c∗v. Again, if c∗ was used,

E repeats the process above. It then returns σ∗ := (c∗s, z
∗
s , c∗v, z

∗
v), and stores ((M∗,⊥, R∗

s, R
∗
v), c

∗) in
HT and (b, M∗, σ∗) in ST , and . E continues to simulate oracles for D and monitor the hash queries
as above. Finally, D outputs a bit b′. If until now E has not halted, it aborts and fails to find gab.

Probability Analysis: From above we see that all the queries are perfectly handled, except there
is a 1/q difference in the simulation of verification oracle. Notice that in order to win the PSI game,
D has to make hash queries with (M,K, Rs, Rv) where K = gxs0xv or K = gxs1xv . Otherwise, since
the outputs of oracle H are completely random, D would have no information about c∗ at all if it did
not make a hash query on (M∗,K,R∗

s, R
∗
v), except that it guesses the hash value at random, which is

correct with probability at most 1/q. Therefore, we have that

εgdh ≥
(

1− 1
q

) ((
1
2

+ ε

)
−

(
1
2

+
1
q

))
=

(
1− 1

q

) (
ε− 1

q

)
> ε− 2

q

This completes the proof.

17

	Introduction
	Related Work
	Our Contribution
	Outline

	Strong Designated Verifier Signature
	Unforgeability
	Non-transferability
	Privacy of Signer's Identity
	Non-Delegatability

	Tools and Assumptions
	SDVS without Random Oracles
	SDVS without Delegatability
	Comparison
	Conclusions and Future Work
	Security Proofs of SDVS2

