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Part I

Introduction
The study of elliptic curves has historically been a subject of almost purely
mathematical interest. However, Koblitz and Miller independently showed that
elliptic curves can be used to implement cryptographic primitives [13], [17]. This
thrust elliptic curves from the abstract realm of pure mathematics to the pre-
eminently applied world of communications security. Public key cryptography
in general advanced the development of the Internet and was in turn further ad-
vanced by this new use. Elliptic curve cryptography (ECC) was also developed
and advanced along with the general field of public key cryptography.

Elliptic curves provide benefits over the groups previously proposed for use
in cryptography. Unlike finite fields, elliptic curves do not have a ring structure
(the two related group operations of addition and multiplication), and hence are
not vulnerable to index calculus like attacks [12]. The direct effect of this is that
using elliptic curves over smaller finite fields yields the same security as using
discrete log or factoring based public key crypto systems of Diffie-Hellman and
RSA with larger moduli. This makes ECC ideally suited to small embedded
and low power devices such as cell phones. So it is unsurprising that as these
type of small devices have increased in popularity in recent years, ECC has as
well.

As elliptic curves are now used in cryptography, the computational aspects
of them have real world applications. The underlying theory is very deep and
touches on many different branches of mathematics. Elliptic curves have a very
rich mathematical structure and the subject of ECC is about determining how
to best apply and efficiently compute with this deep structure.

The maps defined on any mathematical object are a key part of the under-
lying structure. In the case of elliptic curves, the principal maps of interest
are the isogenies. An isogeny is a non-constant function, defined on an elliptic
curve, that takes values on another elliptic curve and preserves point addition.
In short, isogenies are functions that preserve the elliptic curve structure. As
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such, they are a powerful tool for studying elliptic curves and similar to elliptic
curves admit a deep underlying theory that is interesting from many different
perspectives such as complex analysis, algebra, number theory, and algebraic
geometry.

In addition to providing an abstract tool for the study of elliptic curves, iso-
genies are concrete mathematical objects that can be written down and used for
computations. Vélu’s formulas [22] initially provided an algorithm to compute
the codomain and rational maps given the domain and kernel of an isogeny. This
work has been greatly expanded upon and improved by subsequent authors [16],
[2]. Furthermore, the problem of computing an isogeny given the domain and
codomain is also well understood.

With the advent of elliptic curve cryptography, isogenies have found an ap-
plication in cryptology as well. These applications provide motivation for a
more widespread audience to understand and use them. Here we provide a brief
list of these uses and their relevance to the greater field.

The first application of isogenies to cryptography was as a tool in the Schoof-
Elkies-Atkins (SEA) algorithm for counting the number of points on elliptic
curves over finite fields [1]. Originally Schoof had provided an algorithm that,
when given a curve E defined over some finite field Fq, would return the number
of points in the group of points on E defined over Fq. Schoof’s original algo-
rithm was polynomial time, but if n is the number of bits in q then by using
straight forward arithmetic has a complexity of O(n5+ε). The SEA improve-
ment results in a complexity of O(n4+ε) which is significant at such degrees.
This improvement fundamentally uses isogenies.

More recently, isogenies have been used as a tool to analyze the computa-
tional difficulty of the elliptic curve discrete log problem (ECDLP) [9]. Specif-
ically, the paper shows that isogenies can be used to create a randomized al-
gorithm that will reduce the ECDLP from one set of curves to a significantly
larger set of curves in polynomial time. The authors argue that this provides
complexity theoretic evidence that the difficulty of discrete logs on all curves of
the same order is the same.

Isogenies have also been proposed as a tool in constructing random number
generators and hash functions [6]. In particular, isogenies can be used as a
one way function that can be used in these cryptographic primitives. The nice
mathematical properties lend themselves to a rigorous analysis of the security
properties. In turn, these hash functions and random number generators can
be considered provably secure with respect to some hardness assumptions.

Before the introduction of elliptic curves to cryptography, few people in the
field of computer security would be worried about the most efficient way to im-
plement elliptic curve arithmetic. However, this is now a deep and popular area
of research. As isogenies are a tool used in cryptography there is a need for the
field to be more accessible to people without a deep mathematical background.

This document includes an introduction to the basic theory of isogenies
of elliptic curves, viewing them as a generalization of the multiplication by
m map. This is presented in a fashion that only presupposes a familiarity of
elliptic curves and abstract algebra at the level one would need to be comfortable
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with the subject of elliptic curve cryptography. After an introduction to the
basic theory, there are several algorithms for computational aspects of isogenies.
These algorithms focus on how to represent isogenies, and how to deduce one
representation from another. For example, one such method is to determine the
codomain and coordinate maps of an isogeny from the kernel. Another method
determines the kernel and rational maps from the domain and codomain. The
algorithms are presented with proofs of correctness, as well as analyses of the
computational complexity.

Part II

Basic Theory
Throughout this section, unless otherwise noted, we will use the following no-
tation:

K - A field.
K - A fixed algebraic closure of K.
E - A fixed elliptic curve given by the Weierstrass model

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

with coefficients in K.
E(K), E(K) - The set of pairs (x, y) satisfying the Weierstrass equation of E
where x and y are taken in K or K respectively.
ϕ - An isogeny (to be defined later) from E to another elliptic curve E′.

Also, in this exposition, we have tried to give and prove the most general
results. For ease of reading and understanding, most textbook presentations
such as Silverman [20] and Washington [23] both tend to assume that the curve
E is in short Weierstrass form, and assume that the characteristic of K is not 2
or 3. Whenever possible we have favored results that work for a curve in general
Weierstrass form, and try to avoid making conditions on the characteristic of K
as much as is reasonable. For the most part, this does not significantly affect
the proofs or reasoning, aside from adding technical details, that admittedly
makes them a little bit more messy. However, the results for curves in short
Weierstrass form, as well as the characteristic 2, or 3 case, follow immediately
from the general results. Also, the hope is that for a reader who is not as familiar
with the techniques being used, can consult these proofs if they do not see how
to generalize the results in the canonical introductory texts.

1 The Multiplication By m Map

We are interested in studying maps that preserve both the group structure, and
the structure of an elliptic curve as an algebraic variety. It is instructive to see
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if there are any such maps immediately at our disposal. Indeed, one such map
is the multiplication by m map, This map is the usual map computed by adding
a point to itself m-times, and is very familiar in elliptic curve cryptography, as
it is the principal operation in ECDH and ECDSA [23]. It is clear that this
map preserves point addition, and it maps the curve E to itself. As this map
satisfies the properties we are interested in, we shall now investigate it in some
detail.

Recall that the elliptic curve E group operation “point addition” ([20] sec-
tion III.2) is such that for points P = (xP , yP ) and Q = (xQ, yQ) on E the sum
is given by the formulas:

(xP+Q, yP+Q) = (xP , yP ) + (xQ, yQ).

The formulas for xP+Q and yP+Q are

xP+Q = λ2 + a1λ− a2 − xP − xQ

and
yP+Q = −(λ+ a1)xP+Q − ν − a3

where λ and ν are given as follows. If xP 6= xQ then

λ =
yp − yQ
xP − xQ

and ν =
yQxP − yPxQ
xP − xQ

,

and otherwise when xP = xQ then

λ =
3x2

P + 2a2xP + a4 − a1yP
2yP + a1xP + a3

and ν =
−x3

P + a4xP + 2a6 − a3yP
2yP + a1xP + a3

.

Furthermore if P = (x, y) then

−P = (x,−y − a1x− a3).

Immediately, this gives the duplication formula:

x2P =
x4 − b4x2 − 2b6x− b8
4x3 + b2x2 + 2b4x+ b6

, (1)

where b2, b4, b6 and b8 are the b-invariants given in [20] section III.1. This
formula can be substituted in to derive a similar formula for y2P.

So this gives a nice rational map for multiplication by 2 on a curve E. Thus
using a “double-and-add” approach with this formula and the addition formulas,
If P = (x, y) denotes a non-infinite point on E, then there are rational maps for
the coordinates of mP. The rest of this section is devoted to generalizing the
duplication formula to give clear formulas for multiplication by m.

First note that if a point P on E is a two torsion point, meaning 2P is the
point at infinity, denoted here as ∞, then P = −P . So

yP = −yP − a1xP − a3

4



therefore
2yP + a1xP + a3 = 0. (2)

So any two torsion points on E must satisfy this equation. However, we also
have the fact that if P is a two torsion point then the duplication formula for
x2P must go to infinity (because the x-coordinate function on E has a pole
at infinity.) This implies that the denominator of the rational map in (2.1)
evaluates to 0. Therefore if P = (x, y) is a two torsion point then

4x3 + b2x
2 + 2b4x+ b6 = 0. (3)

Which can be seen quite precisely, when working in characteristic not equal to
2 and replacing y by 1

2 (y − a1 x − a3) in the Weierstrass equation for E and
solving for y2 gives

y2 = 4x3 + b2x
2 + 2b4x+ b6

and the points with y = 0 in this new equation are the points satisfying equation
(2.3) on E. Thus the values satisfying (2.3) are x coordinates of a two torsion
point on E. Herein, we refer to the polynomial in equation (2.2) as the bivariate
two torsion polynomial, and the polynomial in equation (2.3) as the univariate
two torsion polynomial.

For the rest of the discussion of the multiplication by m map, to simplify the
presentation we diverge from the general approach and restrict our attention to
the case of characteristic not 2 or 3. So we can assume that our curves are in
short Weierstrass form:

y2 = x3 +Ax+B.

The treatment in this section follows [20] exercise 3.7 and [23] section 3.2. The
reader interested in the values for the general case can see [1] section III.4.

Immediately from the assumption that the curves are in short Weierstrass
form we get a1 = a3 = 0, this gives that the bivariate two torsion polynomial is
2y.

Definition 1.1. The torsion polynomials are polynomials in Z[A,B, x, y, (2y)−1].
The first four are defined explicitly as

ψ1 = 1
ψ2 = 2y

ψ3 = 3x4 + 6Ax2 + 12Bx−A2

ψ4 = 4y(x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4ABx− 8B2 −A3)

the subsequent polynomials are defined inductively as

ψ2m+1 = ψm+2ψ
3
m − ψm−1ψ

3
m+1 (m ≥ 2)

ψ2m = (2y)−1ψm(ψm+2ψ
2
m−1 − ψm−2ψ

2
m+1) (m ≥ 3)

Remark 1.2. Some authors prefer the term division polynomial to torsion poly-
nomial, however herein they mean exactly the same thing.
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Remark 1.3. The torsion polynomials ψ3 and ψ4 are found by looking for the
polynomials that evaluate to 0, when P = (x, y) is a 3 or 4 torsion point, similar
to the approach for finding the 2-torsion polynomial.

It is somewhat awkward to have the torsion polynomials be defined over
some fraction involving the variable y in the denominator. However, it turns
out that we can take the torsion polynomials to be in a less awkwardly defined
polynomial ring.

Lemma 1.4. For all positive integers m the division polynomial ψm is contained
in the polynomial ring Z[A,B, x, y].

Proof. Just by looking at the formulas, we can see that the confusion only
comes in on the definition of ψ2m as that is the only definition that includes the
denominator 2y.

We prove this lemma by arguing that not only is ψ2m a polynomial, it is
evenly divisible by 2y. Clearly this holds when m is 1 and 2. For m greater
than 3 assume that the hypothesis holds for n up to (but not including) 2m Now
suppose that m, then m− 2, m, and m+ 2 are divisible by 2y, factoring these
out of the recurrence shows that the denominator cancels one and the resulting
expression is a polynomial still evenly divisible by 2y. In the case that m is
odd then m− 1 and m+ 1 are even, so by the induction hypothesis ψm−1 and
ψm+1 are polynomials divisible by 2y. Thus substituting this into the recurrence
relation shows that the numerator is divisible by (2y)2. The denominator cancels
out one factor of 2y leaving the result as a polynomial that is divisible by 2y.

Finally given the torsion polynomials we define the polynomials

φm = xψ2
m − ψm+1ψm−1

ωm = ψm+2ψ
2
m−1 − ψm−2ψ

2
m+1.

These polynomials arise in the multiplication by m map that we are trying to
derive.

Next we make and prove some statements about the form of these polyno-
mials.

Lemma 1.5. When m is odd ψm, φm and y−1ωm are polynomials in Z[A,B, x, y2].
When m is even ((2y)−1ψm, φm, and ωm are polynomials in Z[A,B, x, y2].

Proof. For simplicity, in this proof, we will let R be Z[A,B, x, y2]. We will prove
the cases of ψm, φm and ωm separately.

First we show this is true for ψm. For m ≤ 4, this can be seen by observation
of the given formulas. Next we assume that the properties hold for m < 2n,
where 2 < n, so that n+ 2 < 2n. Hence the inductive hypothesis holds for all of
the formulas in the recurrence relation. In the case that n is even then n−2 and
n+ 2 are even as well, then (2y)−1ψi is a polynomial in R for i = n−2, n, n+ 2.
Also, n − 1, n + 1 are odd so ψn+1 and ψn−1 are in R. Hence plugging these
values into the recurrence relation shows that (2y)−1ψ2n is in R. In the case
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that n is odd, then (2y)−1ψn−1 and (2y)−1ψm+1 are in R as m− 1 and m+ 1
are even. And m+ 2, m, and m− 2 are odd so ψm+2, ψm and ψm−2 are in R.
Thus plugging into the recurrence relation gives that (2y)−1ψ2m is in R.

Now we show that the lemma holds for ψ2m+1. We assume that the prop-
erties hold for m < 2n, where 2 ≤ n, so that n + 2 < 2n + 1. If n is even then
ψn+2 and ψn are in 2yR so ψn+2ψ

3
n is in (2y)4R which is contained in R (by

replacing y2 by x3 + Ax + B). Also, n−1 and n+1 are odd so that ψn−1ψ
3
n+1

are in R, hence ψ2n+1 is in R, by the recurrence relation. The case for n odd
is exactly symmetric (the even and odd values are reversed) and it follows that
ψ2m+1 is in R.

Next we examine φm. If m is even then ψm is in 2yR and hence ψ2
m is in

(2y)2R which is contained in R. Furthermore, m − 1 and m + 1 are odd, so
ψm−1 and ψm+1 are in R. Thus φm is in R. If m is odd, then ψm is in R and
ψm−1ψm+1 are in (2y)2R hence in Z[A,B, x, y2]. So φm is in R.

Finally, we show that the properties hold for ωm. If m is odd then so are
m + 2 and m − 2, so that ψm+2 and ψm−2 are in R. Also, m + 1 and m − 1
are even so that ψm+1 and ψm−1 are in 2yR so ψ2

m+1 and ψ2
m−1 are in (2y)2R.

Thus by the definition of ωn it is in R. If m is even then (2y)−1ψm+2 and
(2y)−1ψm−2 are in R and ψm−1 and ψm+1 are in R as well. Hence

2ωm = (2y)−1ψm+2ψ
2
m−1 − (2y)−1ψm−2ψ

2
m+1 (4)

is in R. Now we prove the following by induction: When m is odd

ψm ≡
(
x2 +A

)(m2−1)/4
mod 2 (5)

and when m is even

(2y)−1ψm ≡ (m/2)
(
x2 +A

)(m2−4)/4
mod 2. (6)

We induct on m and divide into the cases of congruence modulo 4 separately.
For m = 1 equation (2.5) holds. Now suppose the lemma holds for all values
less than 4n+ 1 then for m = 4n+ 1 calculating out by the recurrence relation
gives

ψ4n+1 ≡ (x2 +A)(m
2−1)/4 mod 2.

For m = 2 equation (2.6) holds. Now suppose the lemma holds for all values
less than 4n + 2 then for m = 4n + 2 calculating out the recurrence relation
gives

(2y)−1ψ4n+2 ≡ (m/2)(x2 +A)(m
2−1)/4 mod 2.

The cases for m congruent to 3 and 4 are completely analogous to these two
cases. Thus substituting equations (2.5) and (2.6) into equation (2.4) shows
that the right hand side is divisible by 2, and hence ωm is in R.

Remark 1.6. In the polynomial ring Z[A,B, x, y2] we can replace y2 by x3 +Ax+B,
and thus take this ring to be Z[A,B, x].
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Lemma 1.7. The highest degree term of φm(x) is xm
2

and the highest degree
term of ψ2

m(x) is m2x(m2−1).

Proof. First we prove that

ψm(x) =

{
y
(
mx(m2−4)/2 + · · ·

)
m even

mx(m2−1)/2 + · · · m odd
(7)

by induction. We can immediately see that this holds for m ≤ 4.
Suppose m = 2n, and assume that this formula holds up to 2n. we look at

the case of n even and odd separately. Suppose that equation (2.7) holds for all
m′ < 2n. In the case that n is even, then using the induction hypothesis we get
that

ψn+2ψ
2
n = y

(
(n− 1)2(n+ 1)x3n2/2 + · · ·

)
and

ψn−2ψ
2
n+1 = y

(
(n− 2)(n+ 1)2x3n2/2 · · ·

)
so subtracting gives a leading term of 2x3n2/2 (of the univariate in x factor.)
Also, the induction hypothesis gives

ψn = y
(
x(n2−4)/2 + · · ·

)
.

plugging all this into the recurrence verifies that ψ2n satisfies equation (2.7).
In the case that n is odd, then using the induction hypothesis gives that the
leading terms are

ψn+2ψ
2
n = y

(
(n− 1)2(n+ 1)x(3n2−3)/2 + · · ·

)
and

ψn−2ψ
2
n+1 = y

(
(n− 2)(n+ 1)2x(3n2−3)/2 · · ·

)
Also, the induction hypothesis gives

ψn = nx(n2−1)/2 + · · · .

So combining this all via the recurrence relation gives that ψm satisfies the
hypothesis.

Now for the case m = 2n + 1, and assume that the formula holds up to
2n+1. In either case, n even or odd, then (after replacing y2 by x3 + Ax + B)
the expansions are

ψn+1ψ
3
n = (n+ 2)n3x((2n+1)2−1)/2 + · · ·

and
ψn−1ψ

3
n+1 = (n− 1)(n+ 1)3x((2n+1)2−1)/2 + · · ·
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subtracting and plugging into the recurrence relation gives that the expansion
is

ψ2n+1 = (2n+ 1)x((2n+1)2−1)/2 + · · · .

as desired.
Squaring equation (2.7) (and replacing y2 by x3 + Ax + B) gives the

desired equality for ψ2
m.

Now it is a simple matter to show that φm satisfies the statement of the
lemma. Using the identity for ψm gives that the leading term of ψm+1ψm−1

is (m2 − 1)xm
2
. Also the leading term of xψ2

m is m2xm
2
. Using this in the

definition of φm gives that the leading term is xm
2

as desired.

Now that we have thoroughly examined the form of these polynomials, we
can give the rational equation for the multiplication by m map.

Theorem 1.8. If [m] denotes the multiplication by m map on E, then if the
characteristic of K does not divide m then the map is given by rational functions
satisfying:

[m](x, y) =
(
φm(x)
ψ2
m(x)

,
ωm(x, y)
ψ3
m(x, y)

)
.

Proof. We can take the x coordinate map to be univariate in x by lemma 2.1.7.
We do not present a full proof here in an effort to remain brief. However,

there are two ways to prove that this formula is correct. This follows from
induction on m and substituting into the addition formula. This approach is
very concrete and computational but intricate ([1] III.4.) Alternately, there is
an analytic proof that can be found in [23] section 9.5 or [14] section II.1.

Now that we have defined the multiplication by m map, we can look at the
m-torsion of E, that is the set of points on E with order m.

Definition 1.9. The m-torsion subgroup of E is the set of all points in E(K)
with order m, and is denoted E[m]. Then a point P is in E[m] if and only if
mP is the point at infinity.

The following theorem justifies the name of the torsion polynomials.

Corollary 1.10. Suppose that the characteristic of K does not divide m. A
point P = (x, y) on E is a root of ψm if and only if P is an m torsion point.

Proof. By theorem 2.1.8 the x coordinate of mP is given by the map φm(x)
ψ2

m(x) .

If P is an m torsion point then the function φm/ψ
2
m has a pole at P . This

implies that the denominator ψ2
m(P ) is 0, and thus so is ψm(P ). To show the

other direction note that if ψm(P ) is not 0, then φm(P )/ψ2
m(P ) is a value in K

corresponding to the x-coordinate of mP . Thus mP is not the point at infinity,
so P is not an m torsion.

Using this corollary, we can determine the degree of the numerator and
denominator of the x-coordinate map of [m].
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Lemma 1.11. Suppose that the characteristic of K does not divide m. Then
the polynomials φm(x) and ψ2

m(x) have no roots in common.

Proof. By definition ψm = xψ2
m − ψm+1ψm−1. Thus if x is a common root of

φm and ψ2
m, then x is a root of ψm+1ψm−1. So reinterpreting this polynomials

as functions on E implies that there is some P in E(K) such that φm(P ) and
ψm(P ) are both 0 and P is also a root of ψm+1 or ψm−1. And by corollary 2.1.10
this implies that P is an m-torsion, and also an m + 1 or m − 1 torsion point.
And this implies that either gcd(m− 1,m) or gcd(m,m+ 1) is greater than 1.
This is a contradiction, thus φm and ψ2

m must be relatively prime.

Lemma 1.12. Suppose that the characteristic of K does not divide m. Then
E[m] is isomorphic to

Z/mZ× Z/mZ.

Proof. By lemma 2.1.7

ψ2
m(x) = m2x(m2−1) + · · · .

So, as the characteristic of K does not divide m, m is not zero in K and hence
the degree of ψ2

m is m2 − 1. As it is univariate, this implies that it has m2 − 1
roots. Thus there are m2 − 1 points P in E(K) such that ψm(P ) = 0. Thus
E[m] contains m2 points (including the point at infinity.)

First consider the case that m is prime. Then by the fundamental theorem
of finitely generated abelian groups [7] E[m] is isomorphic to either the cyclic
group of m2 elements or the direct sum of two copies of Z/mZ. But by definition,
every point in E[m] has order m so E[m] must be Z/mZ× Z/mZ.

In the case that m = pn, a prime power, this can be seen as follows. The
subgroup E[m] must be a direct sum of two cyclic subgroups, if it was not, then
the fundamental theorem of finitely generated abelian groups implies that E[p]
would be a direct sum of more than two cyclic subgroups, contradicting the
result we just showed. Then assume that the theorem holds for m = pn−1, then
the only two possible isomorphism types for E[pn] are

Z/pn+1Z× Z/pn−1Z or Z/mZ× Z/mZ,

because, as argued above, E[m] must contain m2 points. However, E[m] must
contain only m torsion, and that narrows down the possible isomorphism choices
to one.

Thus by the Chinese remainder theorem if m is composite E[m] must also
be isomorphic to Z/mZ× Z/mZ.

2 Isogenies

In the previous section we saw the multiplication by m map, as an example of
a map that preserves point addition and the structure of the elliptic curve as a
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an algebraic variety. Now we will generalize our analysis to account for all such
maps, the isogenies.

Various authors treat isogenies in different ways. In [20] Silverman takes an
abstract approach favoring an arithmetic geometry point of view. By contrast
in [23] Washington takes a more concrete algebraic and computational point of
view. In the following presentation, we heavily favor the concrete computational
perspective, as the goal is to provide necessary background to understand the
algorithms for some of the computational aspects of isogenies. However, to
provide deeper insight, when it is not overly distracting we will point out the
differences in the more abstract approach to the subject.

We begin with a definition:

Definition 2.1. An isogeny ϕ is a nontrivial rational map of an Elliptic Curve
onto another Elliptic Curve that is also a group homomorphism.

For those familiar with the the abstract language of category theory, isogenies
are the (nontrivial) morphisms in the Category of Elliptic Curves. Indeed,
isogenies are rational maps and hence morphisms in the category of algebraic
varieties, as well as abelian group homomorphisms. It is worth noting that not
all authors even agree on this definition. For example, Silverman allows trivial
isogenies, which expands the definition to all morphisms in the category of
elliptic curves (defined over a field.) However, for our purposes, we restrict our
consideration to the nontrivial case to simplify and avoid having to constantly
distinguish the two cases. As an immediate example of how this choice simplifies
things we have the following fact:

Lemma 2.2. If ϕ : E → E′ is an isogeny, then ϕ is surjective. Meaning that
for a point P ′ in E′(K) there exists a point P in E(K) such that ϕ(P ) is P ′.

Proof. Recall the Theorem of algebraic geometry that all nontrivial mappings
of algebraic curves are surjective ([15]: II.6.8). By definition of an isogeny ϕ is
a nonzero mapping of algebraic curves, hence it must be surjective.

Furthermore, Silverman does not define isogenies as group homomorphisms.
In that presentation, the definition only requires that ϕ preserves the point
at infinity. By looking at the homomorphism that ϕ induces on the principle
divisors of E, one sees that the property of preserving the point at infinity
ϕ implies ϕ is a group homomorphism ([20] Theorem III.4.8.) However, the
reader primarily interested in explicit computational methods can easily skip
that formalism.

We can take the set E(K) as an algebraic variety or as a group. When con-
sidering ϕ as a map of algebraic varieties, it is denoted ϕ(x, y), and is considered
a pair (x′, y′) satisfying the Weierstrass equation of the codomain. When con-
sidering it as a group homomorphism we take P as a general element of E(K)
and denote the evaluation of ϕ on P as ϕ(P ), an element of E′(K) interpreted
as a group. In terms of notation we will use ϕ(P ) and ϕ(x, y) interchangeably.

With just the basic definitions, we can recognize a couple of examples of
isogenies:
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Example 2.3. Let m > 0 be an integer. Suppose the characteristic of K is 0 or
relatively prime to m, then the the multiplication by m map that sends P to
m · P is an isogeny. As we saw above, this map is rational in the coordinates
and it maps points P on E to E. Furthermore, this multiplication distributes
over point addition, and hence is a group homomorphism. Also, E(K) has
infinite order and as argued above the order of the m torsion of E is m2, so
multiplication by m cannot annihilate the whole group of points on the curve,
and hence is non-constant.

Example 2.4. Suppose K = Fq for a prime power q = pn then the Frobenius
map (x, y) 7→ (xq, yq) is an isomorphism. Clearly from its presentation, this
is a rational map in the coordinates. Furthermore, the map xq distributes
over multiplication and addition. Thus if (x, y) satisfies the Weierstrass model:
y2 + a1xy + a3y = x3 + a2x

2 + a4x+ a6 with ai ∈ Fp then

(yq)2 + aq1(xq)(yq) + aq3(yq) = (y2 + a1xy + a3y)q

= (x3 + a2x
2 + a4x+ a6)q

= (xq)3 + aq2(xq)2 + aq4(xq) + aq6

So, given that {aqi }5i=1 are a-invariants of a non-singular curve Eq, the Frobe-
nius mapping: (x, y) 7→ (xq, yq) is a rational map from E to Eq.

Remark 2.5. Because an isogeny ϕ is a rational map, the evaluation at a point
P is given by

ϕ(P ) =
(
px
qx
,
py
qy

)
where px, qx, py, qy are polynomials in the coordinates of P . Additionally, px is
relatively prime to qx, py is relatively prime to qy, and px and py are monic.
Hence this representation is unique.

Definition 2.6. The degree of an isogeny ϕ is the maximum of the degree of
the numerator and denominator of the x-coordinate maps:

deg(ϕ) = max{deg(px),deg(qx)}.

2.1 Coordinate Maps

At this point, as we are working with rational functions on elliptic curves, it
is worthwhile to investigate some basic properties of these maps. To discuss
rational functions we must first precisely state what is meant by this. Because
an elliptic curve is defined by a Weierstrass equation, the points on the curve
satisfy a polynomial equation:

W (x, y) = y2 − x3 + a1xy − a2x
2 + a3y − a4x− a6 = 0

Elliptic curves are irreducible, and hence W is irreducible. Thus the ideal of
K[x, y] generated by W is prime, so that the quotient ring R = K[x, y]/(W ) is
an integral domain. The rational functions on E are the elements in the field
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of fractions of R, denoted by K(E). Occasionally, by abusing notation we will
refer to a polynomial on E which means a rational function on E with trivial
denominator. Before proving anything about rational functions on E, we can
first make the following observation about polynomials on elliptic curves:

Lemma 2.7. Let p(x, y) be a polynomial defined on E. Then there exists polyno-
mials p1(x) and p2(x) both univariate in the x-coordinate such that
p(x, y) = p1(x) + y · p2(x).

Proof. This is shown by induction on the highest degree m of y. For the case
m = 1 we are done. For the case m = 2 this can be seen by replacing y2 by
according to the Weierstrass equation of E. Then assuming that this holds for
n < m and substituting via the inductive hypothesis, results in a polynomial
where the highest degree power of y is less than m.

We can apply this lemma to simplify the form of rational maps on E that
we consider:

Lemma 2.8. Suppose R(x, y) is a rational map on E then there exists polyno-
mials φ1(x), φ2(x), ψ(x) univariate in x such that

R(x, y) =
φ1(x) + yφ2(x)

ψ(x)
.

Proof. Applying lemma 2.2.7 to p(x, y) and q(x, y) immediately gives that there
exists p1(x), p2(x), q1(x), q2(x) such that:

R(x, y) =
p1(x) + yp2(x)
q1(x) + yq2(x)

.

We can multiply the numerator and denominator through by

q1(x)− (y + a1x+ a3)q2(x).

The resulting denominator is

(q1(x))2 − (y2 + a1x+ a3)(q2(x))2 + (a1x+ a3)q1(x)q2(x)

= (q1(x))2 − (x3 + a2x
2 + a4x+ a6)(q2(x))2 + (a1x+ a3)q1(x)q2(x)

= ψ(x).

Applying lemma 2.2.7 to the numerator again gives the desired equality.

Because ϕ is a group homomorphism, it necessarily preserves negation so
ϕ(−P ) = −ϕ(P ). Recalling the explicit formulas for the coordinates of a nega-
tive point:

−(x, y) = (x,−y − a1x− a3).

Now consider an isogeny ϕ : E → E′, where E and E′ are defined by a Weier-
strass equations with coefficients {ai}5i=1 and {a′i}5i=1 respectively. Writing
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ϕ(x, y) = (R1(x, y), R2(x, y)) for rational maps R1(x, y), R2(x, y) and applying
the negation formula it follows that:

ϕ(−P ) = ϕ(x,−y − a1x− a3)
= (R1(x,−y − a1x− a3), R2(x,−y − a1x− a3)). (8)

Likewise:

−ϕ(P ) = −(R1(x, y), R2(x, y))
= (R1(x, y),−R2(x, y)− a′1R1(x, y)− a′3). (9)

These two equations can be combined to greatly simplify the form of the
rational maps of isogenies:

Lemma 2.9. If ϕ is an isogeny, then the x-coordinate map of ϕ can be expressed
as a univariate (in x) rational map: r1(x).

Proof. First we apply lemma 2.2.8 to R1(x, y) so that we have univariate (in x)
polynomials φ1, φ2, ψ with

R1(x, y) =
φ1(x) + yφ2(x)

ψ(x)
.

Combining this with equations (2.8) and (2.9) gives:

φ1(x) + yφ2(x)
ψ(x)

=
φ1(x)− (y + a1x+ a3)φ2(x)

ψ(x)
.

Then subtracting the right hand side from the left hand side it follows that:

(2y + a1x+ a3)φ2(x)
ψ(x)

= 0.

The polynomial 2y + a1x + a3 is the two torsion polynomial for E thus only
satisfied at two torsion points P. Therefore for this polynomial to be satisfied
at all points P = (x, y) we must necessarily have φ2(x) = 0. Thus

R1(x, y) =
φ1(x)
ψ(x)

.

Lemma 2.10. If char(K) 6= 2, then the y-coordinate map of ϕ is of the form:

(y + (a1x+ a3)/2) r2(x)− (a′1r1(x) + a′3)/2

where r2(x) is a univariate rational map and the x-coordinate map of ϕ is given
by r1(x).
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Proof. Similar to the proof of lemma 2.2.9, first apply lemma 2.2.8 to R1(x, y)
so that we have univariate (in x) polynomials φ1, φ2, ψ with

R2(x, y) =
φ1(x) + yφ2(x)

ψ(x)
.

From lemma 2.2.9 we have that the x-coordinate map of ϕ is a univariate rational
map r1(x). Combining both of these facts with equations (2.8) and (2.9) gives
the equality:

φ1(x)− (y + a1x+ a3)φ2(x)
ψ(x)

= −φ1(x) + yφ2(x)
ψ(x)

− (a′1r1(x) + a′3). (10)

Straight forward algebraic manipulation (because we are not in characteristic
2) gives:

φ1(x)
ψ(x)

=
(a1x+ a3)φ2(x)

2ψ(x)
− (a′1r1(x) + a′3)/2.

Then we can substitute this into equation (2.10), and solve for R2(x, y) which
gives:

R2(x, y) = (y + (a1x+ a3)/2)
φ2(x)
ψ(x)

− (a′1r1(x) + a′3)/2

= (y + (a1x+ a3)/2) r2(x)− (a′1r1(x) + a′3)/2,

where r2(x) is a univariate rational map (in x), as desired.

2.2 Separability

With the results we’ve proved about the explicit forms of the rational maps
that occur as coordinate maps in isogenies, we can now discuss some further
properties of isogenies.

Definition 2.11. Let ϕ : E → E′ be an isogeny, and let r1(x) be the x-
coordinate map. If the derivative of the x-coordinate map r′1(x) is not 0 then
ϕ is separable.

With this definition it is instructive to look at some examples:

Example 2.12. Suppose Fp is a finite field with prime order p, and let E/Fp
be an elliptic curve. Then the Frobenius isogeny is given by the rational maps
(xp, yp). So the derivative of the x-coordinate map is,

p · xp−1 = 0

because this in characteristic p. Thus by definition the Frobenius isogeny is not
separable.

Example 2.13. Suppose E/Q, and ϕ : E → E2 is an isogeny, and furthermore
inseparable. Then if r(x) is the x-coordinate map of ϕ then r′(x) = 0 so r(x) is
constant. Which cannot be, hence ϕ cannot be inseparable.
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These two examples show two extremes. In the case of elliptic curves over
Q isogenies are always separable. On the other hand, in the finite field case
Frobenius isogenies are always not separable.

It is instructive to note that there is an alternate (yet equivalent) approach
to the defining the separable property. Silverman prefers a characterization
of separability based on function field extensions. Specifically, an isogeny is a
non-constant map of algebraic curves, so it induces an injection between the
corresponding function fields

ϕ∗ : K(E2)→ K(E1)

by precomposing functions in K(E2) with the isogeny ϕ. Then K(E1) is an
extension of the field ϕ∗K(E2) see ([20] Theorem II.2.4). Using this language
and notation, an isogeny is separable if the corresponding extension of fields
K(E1)/ϕ∗K(E2) is separable. Although the more computationally minded
reader may find this overly abstract, if one is comfortable with algebraic ge-
ometry this equivalent characterization is useful to keep in mind.

Using this definition of separability, it is also instructive to look at the inter-
play between ϕ as a rational map and as a group homomorphism. Because an
isogeny is a rational map, if either of the denominators of the coordinate maps
evaluates to 0, the result of the isogeny will be the point at infinity. Intuitively,
one can think of this as dividing either of the coordinates by 0 will send the
point to infinity. More formally, dividing a coordinate by 0 indicates that the
corresponding point in the projective plane is (0 : 1 : 0), the point at infinity.
Hence, the kernel corresponds to points that form the roots of the denominator
polynomials. By lemma 2.2.8 the denominator polynomials are univariate in
the x-coordinate, and hence have a finite number of roots. Thus the kernel of
an isogeny is a finite subgroup of E(K), with order bounded by the degree of
the isogeny.

Thus we can classify isogenies based on the relation of the order of the kernels
and the degrees as rational maps:

Lemma 2.14. If ϕ : E → E′ is a separable isogeny then | ker(ϕ)| = deg(ϕ).
Otherwise | ker(ϕ)| < deg(ϕ).

Proof. By lemma 2.2.2, we know that ϕ is surjective. So if P = (a, b) ∈ E′(K)
and P not ∞ then there exists (x0, y0) ∈ E(K) such that (a, b) = ϕ(x0, y0). By
lemma 2.2.9 we have that

r1(x0) =
p(x0)
q(x0)

= a.

Furthermore, because E′(K) is infinite we can choose (a, b) with the following
properties:

1. a 6= 0

2. deg(p(x) − aq(x)) = max{deg(p(x)),deg(q(x))} = deg(ϕ) (The only way
that deg(p(x) − aq(x)) < deg(ϕ) is possible is if deg(p(x)) = deg(q(x))
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and α is the leading coefficient of p, β is the leading coefficient of q, and
α− aβ = 0. In this case, we only need restrict a 6= α/β.

We have that deg(p(x) − aq(x)) = deg(ϕ), and hence has deg(ϕ) (possibly
indistinct) roots. As ϕ is a homomorphism the number of distinct roots of
p(x)− aq(x) is exactly | ker(ϕ)|. Now it suffices to determine when p(x)− aq(x)
has repeated roots. The polynomial p(x) − aq(x) has repeated roots at x0

if and only if p(x0) − aq(x0) = 0 and p′(x0) − aq′(x0) = 0. In this case,
ap′(x0)q(x0) = ap(x0)q′(x0). We chose a 6= 0 so this implies that x0 is a root
of p(x)′q(x) − p(x)q′(x). Furthermore, r′1(x) = 0 and hence r1 is by definition
inseparable if and only if p(x)′q(x)− p(x)q′(x) = 0 for all x ∈ K.

So if ϕ is not separable, then every element ofK is a root of p(x)′q(x)− p(x)q′(x)
and hence p(x) − aq(x) must have a repeated root.

If ϕ is separable, then p′(x)q(x) − p(x)q′(x) is not identically 0, and hence
has a finite number of roots. We can let S be this finite set of roots and further
restrict our choice of a so that a 6∈ r1(S). As such, if x0 were a repeated root of
p(x) − aq(x) then the preceding argument shows that x0 ∈ S, a contradiction.
Thus, in the separable case, we conclude that deg(ϕ) = | ker(ϕ)|.

2.3 Isogenies and Differential Forms

An important tool in the study of elliptic curves are the differentials of the func-
tion field K(E). Similarly, this tool is also important to the study of isogenies.
Recall the definition ([20] II.4)

Definition 2.15. The space of differential forms of E, denoted ΩE is the 1-
dimensional K(E)-vector space generated by dx. Here df is the usual differential
operator, such that given f and g in K(E) and a is constant in K

1. d(f + g) = df + dg.

2. d(fg) = fdg + gdf.

3. da = 0.

Using this space, applying the differential operator to the Weierstrass equa-
tion for E gives us the following important value associated to E ([20] III.5):

Definition 2.16. The invariant differential of E, denoted ω is the value:

ω =
dx

2y + a1x+ a3
=

dy

3x2 + 2a2x+ a4 − a1y
.

We want to understand the effect of f under mappings of E so to this end
we make the following definition
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Definition 2.17. Let f be a map from E to a curve E′ where fx and fy are
the x and y coordinate maps, respectively. Let γ be a differential form on E′,
hence γ = αdx′, for some α in K(E′) Then the pullback of γ along f is denoted
f∗γ and is defined as

α(fx, fy)dfx.

Remark 2.18. The map fx is a function on E, so dfx is in ΩE . Thus, f∗ defines
a mapping from ΩE′ to ΩE .

Ultimately we want to use differential forms to study isogenies. However, it is
prudent to look at the effect of another type of map on the invariant differential.
Let Q be any point on a curve E and define tQ : E → E as the translation by
Q map, specifically, tQ(P ) = P + Q. It is useful to the study of isogenies to
understand the pullback of the invariant differential ω along tQ. It turns out
that the invariant differential, is in fact, invariant under translation (hence the
name.)

Lemma 2.19. For any point Q on E the pullback of the invariant differential
ω along the translation map tQ is ω.

Proof. This can be seen by writing out the addition formulas on E and a straight
forward algebraic manipulation confirms that

dxP+Q

2yP+Q + a1xP+Q + a3
=

dxP
2yP + a1xP + a3

,

for any P and Q on E.
There is a more elegant alternate proof ([20] III.5.1) that uses the effect of

t∗Q on the divisor of ω. That proof may be more elucidating for readers familiar
with algebraic geometry.

We can begin to discuss the pullback of invariant differentials along isogenies.
First we can immediately see that the invariant differential of E′ pulls back to
the invariant differential of E.

By applying this fact, we can precisely determine the pullback of the invari-
ant differential along an isogeny of E.

Lemma 2.20. Suppose K is of characteristic not equal to 2. If ϕ : E → E′ is
an isogeny and ω′ is the invariant differential of E′, then ϕ∗ω′ = cω for some
constant c in K.

Proof. By considering ϕ∗ω′ as an element in ΩE there is a g in K(E) such that
ϕ∗ω = gω. Also t∗Qϕ

∗ω′ = ϕ∗t∗ϕ(Q)ω
′, because ϕ is a group homomorphism.

By lemma 2.2.19 it follows that t∗ϕ(Q)ω
′ = ω′ and t∗Qω = ω. Hence for all

Q on E we have:

t∗Qg =
ϕ∗t∗ϕ(Q)ω

′

t∗Qω
′ =

ϕ∗ω′

ω
.

Thus g must be constant, so ϕ∗ω = cω for some c in K.
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Recall that in lemmas 2.2.9 and 2.2.10 we greatly simplified the form of
the x and y coordinate maps of ϕ. Specifically, we showed that the ϕx map
is univariate in the x-coordinate of E, and also we expressed the map ϕy in
terms of the y coordinate and Weierstrass coefficients of E as well as ϕx and
some other rational function, univariate in x. Using the identity for ϕ∗ω, we can
entirely express this other univariate rational function in the map ϕy in terms
of ϕx.

Lemma 2.21. Suppose ϕ : E → E′ is an isogeny with coordinate maps ϕx(x)
and ϕy(x, y) then

ϕy(x, y) = c

(
y +

a1x+ a3
2

)
ϕ′x(x)− a1ϕx(x) + a3

2
,

where c is some constant in K and ϕ′x(x) denotes the derivative of ϕx with
respect to x, as usual.

Proof. By lemma 2.2.20, we have that

dϕx
2ϕy + a1ϕx + a3

=
cdx

2y + a1x+ a3
.

Next we note that dϕx = ϕ′xdx, substituting this in and solving for ϕy(x, y)
gives the desired equality.

Now that we have determined the general form of the coordinate maps of an
isogeny we can characterize the isogenies based on the constant multiple in the
y-coordinate map.

Definition 2.22. An isogeny ϕ : E → E′ is normalized if the pullback of the
invariant differential of E′ along ϕ is equal to the invariant differential of E.
That is, if ω and ω′ are the invariant differentials of E and E′ respectively, then
ϕ∗ω′ equals ω.

2.4 The Dual Isogeny

In the final section on the basic theory of elliptic curve isogenies, we examine
the question: Suppose there is a degree ` isogeny from E1 to E2, is there a
degree ` isogeny from E2 back to E1? The answer is yes. Not only does such a
map exist, but there exists a unique such map satisfying some nice properties.
Here we only prove and state the result for separable isogenies, but it does in
fact hold for all isogenies.

Theorem 2.23. Let ϕ : E1 → E2 be a separable isogeny of degree `. Then there
exists a unique separable isogeny ϕ̂ : E2 → E1 of degree ` such that ϕ̂ ◦ ϕ is the
multiplication by ` map on E1. The isogeny ϕ̂ is called the dual of ϕ.
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Proof. In an effort to remain brief, we present only a high level proof here and
do not delve into the background details.

We suppose that ϕ is separable so the characteristic of K does not divide `.
Thus | ker(ϕ)| is ` by lemma 2.2.14.

By [20] corollary III.4.11, if φ : E1 → E2 and ψ : E1 → E3 are isogenies
and φ is separable with ker(ψ) containing ker(φ) then there is a unique isogeny
λ : E2 → E3 such that ψ = λ◦φ. (The proof of this works by using [20] theorem
III.4.10(c) to generate a tower of Galois extensions: ψ∗K(E3) ⊆ ψ∗K(E2) ⊆
K(E1) and deducing the existence of λ from this.)

Thus in this case, this result gives that there exists a unique isogeny ϕ̂ :
E2 → E1 such that ϕ̂ ◦ ϕ = [`]. Furthermore, we know that |E[`]| is `2 by
lemma 2.1.12. As isogenies are group homomorphisms, ϕ(E[`]) ∼= E[`]/ ker(ϕ).
Hence |ϕ(E[`])| is `. Also ϕ(E[`]) = ker(ϕ) as E[`] is exactly the kernel of
multiplication by `. So thus the order of ker(ϕ̂) is `.

It follows that ϕ̂ must be separable. As [`] is ϕ̂ ◦ϕ and [`] has degree `2 and
ϕ has degree `, then ϕ̂ has degree `. Thus by lemma 2.2.14 is separable.

For a complete proof, including the case of inseparable isogenies see [20]
theorem III.6.1. There is a complete proof in [23], theorem 12.14, that is more
computational. The proof presented above is a hybrid of the two approaches.

Remark 2.24. From the proof of theorem 2.2.23 it follows that ϕ ◦ ϕ̂ is the
multiplication by ` map on E2. Furthermore, ˆ̂ϕ = ϕ.

Part III

Algorithms
Before examining the algorithms for computing isogenies, it is prudent to exam-
ine what exactly this means. In one sense, as an isogeny is a function, computing
it means to evaluate it on some input. By definition isogenies are rational maps,
so given this rational map it is straight forward to perform this evaluation. How-
ever, the rational maps are not the only way to represent an isogeny. In this
chapter we give two methods for computing the rational maps of an isogeny.
First we assume that we know the domain and kernel, and give algorithms for
determining the codomain and rational maps. We also assume that we know
the domain, codomain and degree of an isogeny, and we show how to recover
the kernel and hence rational maps.

3 Computing from the Kernel

Suppose that one knows the kernel and the domain of a separable normalized
isogeny. The algorithms in this section show how to compute the codomain and
the rational maps associated to that isogeny. Even this computational task is

20



complicated by the ambiguity of representing the kernel. There are two choices.
First we can consider the kernel as a list of points in E(K). Alternately, we
can assume that the kernel C is specified by the kernel polynomial, the unique
monic polynomial of lowest degree with roots only at x-coordinates of the finite
points of C. Vélu’s formulas take as input the kernel as a list of points, and
return the rational maps and codomain of the curve. Kohel’s approach takes
the input as the kernel polynomial.

Before going into the details of the algorithms that compute an isogeny given
the kernel, it is useful to look at just exactly what can be computed from this
input. Specifically, we have to consider post composition of an isogeny by curve
isomorphisms (and automorphisms.)

Suppose that ϕ : E → E′ is a separable isogeny with kernel C. Also, suppose
that ρ : E′ → E′′ is an isomorphism of curves defined over K (a separable
isogeny of degree 1.) Then, ρ ◦ ϕ is a separable isogeny from E to E′′. Thus it
is clear that the codomain of an isogeny is not uniquely specified by the kernel.

Now suppose that ρ : E → E′ is a normalized isomorphism of curves (again
here isomorphism denotes a separable isogeny of degree 1.) So the invariant
differential of E′ pulls back to the invariant differential of E. Because ρ is a
separable degree 1 isogeny it is a linear change of variables, this implies that

ρ(x, y) = (x+ r, y + sx+ (sr + t))

for some r, s and t in K. Hence it follows that the c-invariants of E and E′ are
the same, so E and E′ are the same curve. Thus, if E and E′ are isomorphic but
not equal elliptic curves and τ : E → E′ is an isomorphism of elliptic curves, then
τ is not normalized. So post composing a separable normalized isogeny by an
isomorphism to a different elliptic curve results in a non normalized isogeny. It
follows that the kernel uniquely specifies the codomain of a separable normalized
isogeny.

It remains to consider post composition of an isogeny by automorphisms.
That is degree 1 isogenies from a curve E to itself. If the characteristic of K is
not 2 or 3 then by ([20] theorem III.10.1 and proposition A.1.2) any automor-
phism of E is of the form:

(x, y) 7→ (u2x, u3y)

for some u in K. Hence, any nontrivial automorphism will have u not 1, and
then by ([20] section III.1) the pullback of the invariant differential along a
nontrivial automorphism will introduce a factor of u. Thus post composing a
separable normalized isogeny by a nontrivial automorphism will result in a non-
normalized isogeny. (This is also the case if the characteristic of K is 3 and the
j-invariant of E is not 0.) In the case of characteristic K equal to 2 or 3 then
there are additional concerns because the automorphisms do not always have
such a simple form. Namely, there are nontrivial automorphisms of E under
which the pullback of the invariant differential does introduce a scaling factor
(see the proof of proposition A.1.2 in [20] for the specific cases.)
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This shows that there are cases where post composition of a separable nor-
malized isogeny with an automorphism, results in another separable and nor-
malized isogeny with the same kernel and codomain. This indicates that the
kernel and codomain cannot uniquely specify the rational maps for evaluating
a seperable normalized isogeny.

Bearing this in mind, as in [4] we remark that given a kernel of a separable
normalized isogeny we can uniquely determine a codomain curve (and give a
Weierstrass equation for it.) However, we can only specify the rational maps
for evaluating the isogeny up to post composition with an automorphism.

3.1 Vélu’s Approach: Computing from points in the ker-
nel

Vélu’s formulas show how, for any field K, given a Curve E1/K and the Kernel
of an isogeny (as a list of the points of a finite order subgroup of E(K)) how to
determine the codomain of the isogeny, as well as compute the isogeny.

Input: Given a curve in general Weierstrass form:

E1 : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

and a set of points of C that forms a finite subgroup of E1(K).

Output: The general Weierstrass coefficients of a Weierstrass model for the
codomain curve E2 of a separable normalized isogeny with kernel C. Also, co-
ordinate maps (as rational maps on E1) that evaluate a point (x, y) on E1 to a
point on E2.

Step 1: Partition the set of points C :

1. Throw out ∞.

2. Let C2 be all the 2-torsion points in C, let R be the rest of the points in
C.

3. Split R into two equal sized sets such that R+ and R− so that if a point
P is in R+ then −P is in R−.

4. Let S = R+ ∪ C2.

Step 2: Now given Q ∈ S define the following quantities:
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gxQ = 3x2
Q + 2a2xQ + a4 − a1yQ

gyQ = −2yQ − a1xQ − a3

vQ =
{
gxQ if 2Q =∞
2gxQ − a1g

y
Q otherwise

uQ = (gyQ)2

v =
∑
Q∈S

vQ, w =
∑
Q∈S

(uQ + xQvQ)

Step 3: Compute the target image:

First define the values:

A1 = a1, A2 = a2, A3 = a3,
A4 = a4 − 5v, A6 = a6 − (a2

1 + 4a2)v − 7w.

Then the Weierstrass equation of E2 is:

y2 +A1xy +A3y = x3 +A2x
2 +A4x+A6.

Step 4: The formula for computing the image point (α, β) from the point (x, y):

α = x+
∑
Q∈S

(
vQ

x− xQ
− uQ

(x− xQ)2

)
(11)

β =

y −
∑
Q∈S

(
uQ

2y + a1x+ a3

(x− xQ)3
+ vQ

a1(x− xQ) + y − yQ
(x− xQ)2

+
a1uQ − gxQg

y
Q

(x− xQ)2

)
(12)

Remark 3.1. Note that while Vélu’s formulas clearly can be used to evaluate
an isogeny (given the domain and kernel) at a given point of the domain curve,
here we are treating Vélu’s formulas as a way to precompute the rational maps
of the isogeny. These rational maps can be stored and used to evaluate any
number of points on the domain curve.

For a full proof of the correctness of these algorithms one can see Vélu’s
original paper [22], or the reader more familiar with English can read Washing-
ton’s treatment [23] which deals only with the case of characteristic not equal
to 2. Here we will partially prove that these formulas work, stating one lemma
without proof:

Lemma 3.2. The codomain curve E2 found by Vélu’s formulas is nonsingular.

23



The proof requires the Riemann-Hurwitz theorem ([15] section IV.2) This
is a result from algebraic geometry that relates the degree of an unramified
rational map on algebraic curves with the genus of the domain and codomain
curves. The proof of the Riemann-Hurwitz theorem requires considerably more
depth of understanding of algebraic geometry (particularly it uses sheaves) than
most of the other results presented herein. As such, these details are left up to
readers who are more interested in these abstract matters.

Furthermore, as is common with many algorithmic results, those interested
solely in computation can skip this result, or take it without proof. Indeed,
every time one runs Vélu’s formulas, one can perform a check that the calculated
codomain is in fact nonsingular. Thus in effect proving that the codomain is
nonsingular every time the algorithm is run.

The rest of the proof closely follows the presentation in [23]. Before proving
the the main theorem we first prove the following lemma:

Lemma 3.3. The rational maps α(P ) and β(P ) in Vélu’s formulas obey the
following formulas

α(P ) = xP +
∑

Q∈C−{∞}

(xP+Q − xQ)

and
β(P ) = yP +

∑
Q∈C−{∞}

(yP+Q − yQ)

Proof. We will make heavy use of the addition formula in section [20] algorithm
III.2.3 and restated here in section 2.1.

First we will assume that Q ∈ C −{∞} is a two torsion point and P us any
point on E1 distinct from Q. Furthermore, because Q is a two torsion point
gyQ = 0 (as gyQ is the bivariate two torsion polynomial evaluated on the point
Q). This also implies that uQ is also 0. Substituting the addition formula and
expanding in terms of xP and yP gives:

xP+Q =(y2
P − 2yP yQ + y2

Q + a1xP yP

− a1xP yQ − a1xQyP + a1xQyQ − a2x
2
P

+ 2a2xPxQ − a2x
2
Q − x3

P + xPx
2
Q

+ x2
PxQ − x3

Q)/(xP − xQ)2.

We can substitute:

y2 − x3 + a1xy = −a3y + a4x+ a6.

for (x, y) any point on E1 and also

−2yP yQ − a1xQyP − a3yP = yP (gyQ) = 0.

Then by subtracting xQ from the resulting expression for xP+Q − xQ, the de-
nominator becomes:

a4xP − a3yQ + a4xQ + 2a6 = −a1xP yQ + 2a2xPxQ + 3xPx2
Q + x3

Q.

24



Using the Weierstrass equation to make a substitution for the terms uniform in
the coordinates of Q the whole expression becomes

xP+Q − xQ =
(xP − xQ)vQ + yQg

y
Q

(xP − xQ)2
.

Thus this simplifies down to:

xP+Q − xQ =
vQ

xP − xQ
(13)

Now we do a similar evaluation in terms of the y coordinates when translating
by Q. Substituting the addition formula for the y-coordinate, and using the
equality

xP+Q =
vQ

xP − xQ
+ xQ

gives

yP+Q − yQ = −yP − yQ + a1(xP − xQ)
xP − xQ

(
vQ

xP − xQ
+ xQ

)
+
−yPxQ + yQxP − a3xP + a3xQ − yQxP + yQxQ

xP − xQ

= −vQ
a1(xP − xQ) + yP − yQ

(xP − xQ)2
− gyQ.

This simplifies to:

yP+Q − yQ = −vQ
a1(xP − xQ) + yP − yQ

(xP − xQ)2
. (14)

Next we note that if P = Q then xP+Q = yP+Q =∞ as Q is a two torsion.
Then xP = xQ, so xP − xQ = 0 so vQ/(xP − xQ) =∞ and hence in equations
(3.3) and (3.4) both sides of the equations go off to infinity. Thus these equations
hold when P = Q as well.

Now we prove similar results for the case that Q is not a two torsion, and
P is not ±Q. In this case, we need to keep track of multiple different addition
formulas, so we denote λP+Q and νP+Q as the values in the addition formula
for P + Q. Similarly we define λP−Q and νP−Q while computing P −Q. Fur-
thermore, these values are related in the following way:

λP−Q = λP+Q − gyQ, νP−Q = νP+Q +
xP g

y
Q

xP − xQ
.

In the case of the x-coordinates we have that xQ = x−Q so that:

xP+Q − xQ + xP−Q − x−Q = xP+Q + xP−Q − 2xQ.
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Then expanding in terms of xP , xQ, λP+Q and gyQ gives:

xP+Q + xP−Q − 2xQ = 2λP+Q + 2a1λP+Q − 2a2 − 2xP − 4xQ

−
2gyQλP+Q

xP − xQ
−

a1g
y
Q

xP − xQ
+

vQ
xP − xQ

.

Then further expanding in terms of xP and xQ gives that

2λP+Q+2a1λP+Q − 2a2 − 2xP − 4xQ −
2gyQλP+Q

xP − xQ
−

a1g
y
Q

xP − xQ
=(a2

1xPxQ + 6xPx2
Q + 4a2xP + a1a3xP + 2a4xP

− a2
1x

2
Q − 6x3

Q − 4a2x
2
Q − a1a3xQ − 2a4xQ)/(xP − xQ)3.

Then replacing 2a4xP and 2a4xQ via the Weierstrass equation this whole ex-
pression simplifies down to uQ/(xP − xQ)2. Combining this all gives that:

xP+Q − xQ + xP−Q − x−Q =
vQ

xP − xQ
+

uQ
(xP − xQ)2

. (15)

Next we compute a similar equality for the y-coordinates. First we note that
the inversion formula gives:

y−Q − yQ − a1xQ − a3.

Then substituting this gives

yP+Q − yQ = yP−Q − y−Q = yP+Q − yP−Q + a1xQ + a3.

Furthermore, gyP = −2yP − a1xP − a3 by slightly abusing notation, because P
is not necessarily in C. So using this equality and the addition formulas, this
expression becomes

−(λP+Q + a1)
vQ

xP − xQ
− (λP+Q + a1)

(
uQ

(xP − xQ)2
+ 2xQ

)
+

gyQ
xP − xQ

xP+Q + uQ
gyP

(xP − xQ)3

− 2νP+Q −
xP g

y
Q

(xP − xQ)
+ a1xQ − a3.

Now by expressing λP+Q, νP+Q, xP+Q, gxQ, and gyQ as expressions in xP , yP ,
xQ and yQ one can see that

−
a1uQ − gxQg

y
Q

(xP − xQ)2
=− (λP+Q + a1)

(
uQ

(xP − xQ)2
+ 2xQ

)
− 2νP+Q −

xP g
y
Q

(xP − xQ)
+ a1xQ − a3

+ gyQ(f(Q)− f(P )).
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The function f in K(E1) is

f(x, y) = y2 − x3 + a1xy − a2x
2 + a3y − a4.

The Weierstrass equation gives that for any point P on E1 the evaluation f(P ) =
−a6. So f(Q)− f(P ) is 0. Substituting this all back together gives

yP+Q − yQ + yP−Q − y−Q =− uQ
2yP + a1xP + a3

(xP − xQ)3
− vQ

a1(xP − xQ) + yP − yQ
xP − xQ

−
a1uQ − gxQg

y
Q

(xP − xQ)2
. (16)

When Q is a two torsion point, then we argued that gyQ = uQ = 0, thus by
partitioning S into the disjoint sets C2 and R+ and substituting the results of
equations (3.3) and (3.5), we can evaluate the see that the sum in the α map:∑

Q∈S

vQ
xP − xQ

− uQ
(xP − xQ)2

=
∑

Q∈C−{∞}

xP+Q − xQ.

Likewise, by using the results of equations (3.4) and (3.6) we can evaluate the
sum in the β map:

−
∑
Q∈S

uQ
2yP + a1xP + a3

(xP − xQ)3
+ vQ

a1(xP − xQ) + yP − yQ
xP − xQ

+
a1uQ − gxQg

y
Q

(xP − xQ)2

=
∑

Q∈C−{∞}

yP+Q − yQ.

This gives the statement of the lemma.

Now using this proof we finally prove the following theorem.

Theorem 3.4. Steps 1-4 of Vélu’s formulas give the domain and rational maps
to compute a separable normalized isogeny with kernel C.

Proof. Define t = x/y and s = 1/y. Then as functions on E1, t has a simple
zero and s has a zero of order 3 at infinity (Because x is a degree 2 and y is a
degree 3 function on E1, [23] example 11.3).

Divide the Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

through by y3, replacing with s and t and rearranging gives:

s = t3 +−a1st+ a2s
2 − a3s

2 + a4ts
2 + a6s

3.

Now substituting the expression for s into the right hand side gives:

s =t3 − a1(t3 +−a1st+ a2s
2 − a3s

2 + a4ts
2 + a6s

3)t+

a2(t3 +−a1st+ a2s
2 − a3s

2 + a4ts
2 + a6s

3)t2 + · · · .
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By repeating this substitution until we know the coefficients of t3, · · · , t9 gives
and expression:

1
y

= s = t3(1− a1t+ (a2
1 + a2)t2 − (a3

1 + 2a1a2 + a3)t3 + · · · )

(to see this equality, see [20] section IV.1.) Taking the reciprocal gives an
expression for y in terms of t:

y = t−3 + u1t
−2 + u2t

−1 + u3 + u4t+ u5t
2 + u6t

3 +O(t4)

where O(t4) is a function that has a zero of order 4 at ∞ and the coefficients ui
are

u1 = a1, u2 = −a2, u3 = a3, u4 = −(a1a3 + a4),
u5 = a2a3 + a2

1a3 + a1a4,
u6 = −(a2

1a4 + a3
1 + a2a4 + 2a1a2a3 + a2

3 + a6.

Then the fact that x = ty, gives a similar expression for x in terms of t:

x = t−2 + u1t
−1 + u2 + u3t+ u4t

2 + u5t
3 + u6t

4 +O(t5).

Then taking A1, A2, A3, A4 and A6 given in the statement of the theorem, and
define F to be the function of the Weierstrass equation with these coefficients.
Then define G as the function on E1:

G = F (α, β) = β2 − α3 +A1αβ −A2α
2 +A3β −A4α−A6.

Clearly, α and β are rational functions in x and y, hence functions on E1. By
substituting in the expansions of x and y in t into the formulas for α and β, an
intricate calculation of F (α, β) shows that it is O(t). Meaning that the function
G vanishes at ∞. (This calculation can be done by applying the algorithm for
computing the truncated reciprocal in appendix A.2.3.)

The explicit formulas for α and β show that they have poles only at points in
the set C. As F is a polynomial in α and β, G can only have poles where these
functions do. We just saw that G has a zero at ∞. It is clear from lemma 3.1.3
that for any Q ∈ C the rational maps α and β are invariant under translation
by Q, that is α(P +Q) = α(P ) and β(P +Q) = β(P ). Thus G is invariant under
translation by Q as well. So as G has a zero at ∞ then G is zero at every point
in C. Thus G has no poles, and therefore it must be constant, [23] proposition
11.1. (This is an elementary application of divisors of functions on curves.) It
follows that

G(P ) = F (α(P ), β(P )) = 0

and hence (α(P ), β(P )) satisfies the Weierstrass equation with coefficients Ai.
Furthermore, ϕ = (α, β) preserves the point at infinity, and as mentioned before
this implies that ϕ is a group homomorphism. Thus, by definition ϕ is an
isogeny.

Now to show that these formulas specify a separable isogeny, we examine
the degree of the rational map α.
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However, to determine this we first define the function G on E1 as follows:

G(x, y) = x3 − y2 − a1xy + a2x
2 − a3y + a4x+ a6.

From the Weierstrass equation we see that G is 0 for all points on E1. Then
by taking the partial derivatives with respect to x and y and evaluating at
Q = (xQ, yQ) we see:

Gx(xQ, yQ) = 3x2
Q + 2a2xQ + a4 − a1yQ = gxQ,

and
Gy(xQ, yQ) = −2yQ − a1xQ − a3 = gyQ.

Thus if both gyQ and gxQ are 0, then it is clear that

Gx(xQ, yQ) = Gy(xQ, yQ) = 0

and then by example I.1.5 in [20] Q is a singular point, contradicting the fact
that E1 is a nonsingular curves. Because gyQ is the bivariate non-two torsion
polynomial it is 0 if and only if Q is a two torsion point. Therefore, if Q is a
two torsion point then gxQ cannot be 0. Furthermore, if Q is a two torsion point
then vQ is equal to gxQ and hence not 0. Also, if Q is not a two torsion then uQ
is the square of gyQ and hence not 0.

For Q ∈ S, we have:

vQ
xP − xQ

+
uQ

(xP − xQ)2
=
vQ(xP − xQ) + uQ

(xP − xQ)2
.

Let pQ(x) = vQ(x− xQ) + uQ. Then in this notation:

α(x) = x+
∑
Q∈S

pQ(x)
(x− xQ)2

.

Thus if Q is a two torsion then uQ is 0 and vQ is not, hence

pQ(x)
(x− xQ)2

=
vQ

x− xQ
.

Otherwise, if Q is not a two torsion, then uQ is not 0 and hence

pQ(x)
(x− xQ)2

=
vQ(x− xQ) + uQ

(x− xQ)2

is in reduced form.
Define nQ(x) and dQ(x) to be the numerator and denominator respectively

pQ(x)/(x− xQ)2 in reduced form. Thus if Q is a two torsion point then dQ(x)
is x− xQ and otherwise dQ(x) is (x− xQ)2. Likewise, if Q is not a two torsion
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point then nQ(x) is vQ and otherwise nQ(x) is vQ(x − xQ) + uQ. Then define
the polynomial ψ as follows:

ψ(x) =
∏
Q∈S

dQ(x).

Hence ψ is the denominator of α. From the characterization of dQ(x) it is clear
that the highest power of x− xQ that divides ψ is 1 if Q is a two torsion and 2
otherwise.

Next we define ψQ(x) as ψ(x)/dQ(x), and set

r(x) =
∑
Q∈S

ψQ(x)nQ(x).

In the case that Q is a two torsion point then deg(ψQ) is deg(ψ)− 1, and nQ is
constant and hence has degree 0. In the case that Q is not a two torsion point
then deg(ψQ) is deg(ψ) − 2, and nQ is linear and hence has degree 1. Thus in
both cases the degree of ψQ(x)nQ(x) is deg(ψ) − 1. So the degree of r(x) is
deg(ψ)− 1. Then if we define p(x) as xψ(x) + r(x) so deg(p) is deg(ψ) + 1.

Note that the number of points in the set of kernel points C is equal to:

#(two torsion points in S) + 2 ·#(non-two torsion points in S) + 1.

This is clear from the way that the set C was partitioned in step 1. Therefore,
deg(ψ) = #C − 1.

Explicitly, the rational map α is of the form:

α(x) = x+
r(x)
ψ(x)

=
p(x)
ψ(x)

.

Then the degree of p is #C, so by definition 2.2.6 the degree of ϕ is #C. Thus
by lemma 2.2.14, ϕ is separable.

It is also clear that the leading coefficients of p and q are both 1, so that the
coefficient of the pullback of the invariant differential along ϕ must be 1 as well,
hence by definition ϕ is normalized.

This concludes the proof that Vélu’s formulas define a separable normalized
isogeny with specified codomain, and that the isogeny can be computed via the
given rational maps α and β.

For computational purposes, we would like to know the algebraic complex-
ity of applying Vélu’s formulas (for a definition and discussion of algebraic
complexity see appendix A.1.) Measuring complexity in this case is somewhat
complicated by the fact that while the elliptic curve E1 is defined over K, as
an algebraic variety it is fully realized over K and in many ways only makes
sense in this setting. On the one hand, we can look at the algebraic complexity
over K but this is somewhat unsatisfactory in that our input curve is defined
over K and the kernel points are defined over some extension field. Counting K
operations tells us nothing about the actual time we spend operating over finite

30



precision inputs. What we would really like is to get an idea of the algebraic
complexity over K. To get the most in-depth look at the algebraic complexity,
we need to consider the contribution of both the degree of an isogeny as well as
the degree of the extension over which the kernel of the isogeny is defined. (Note
that the following theorem uses the soft-Oh notation, see definition A.1.5.)

Theorem 3.5. Suppose ϕ is an isogeny of degree `, where F/K is a minimal
degree extension such that the kernel ϕ is contained in E(F ). If d is the degree
of F/K, then running steps 1 through 4 of Vélu’s formulas, and also evaluating
equations (3.1) and (3.2) on an actual point of E(K) require O(`) operations in
K, or Õ(`M(d)) operations in K.

Proof. The total algebraic complexity can be determined by a step-by-step anal-
ysis.

In step 1, partitioning the kernel into lists of two torsion and non-two tor-
sion points requires applying the two division polynomial. For each point in
the kernel this requires a constant number of F operations, and checking if the
result is zero or not. So for each point in the kernel this is a constant number of
algebraic operations, so the total complexity for checking all points in the kernel
is Õ(`). Then, sorting the non-two torsion points can be accomplished by order-
ing the other points by x-coordinate, and taking only the even or odd indexed
points. This has the well known complexity of O(`log`) = Õ(`) comparisons
(which some authors take to be F operations [5], [8].) Hence this dominates the
complexity of this step.

In step 2, for Q in ker(ϕ) we compute the values gxQ, gyQ, uQ and vQ. If
ker(ϕ) is contained in E(F ), the for Q in ker(ϕ), the associated values xQ and
yQ are in F . Hence, the values gxQ, gyQ, uQ and vQ are all in F as well, and
computing each of them requires a constant number of F operations. The values
v and w can be updated at each step, and there are O(`) points Q in S so the
total complexity is operations in F .

In step 3, we compute the Weierstrass model of the domain curve from the
values v and w computed in step 2. This only uses a constant number of F
operations.

In step 4, we set the rational maps of the coordinates, these are rational
maps over K of degree O(`).

From this we can see that steps 1 and 2 dominate the algebraic complexity.
So that the total complexity for applying Vélu’s formulas is Õ(`) operations in F .
All F operations are O(M(d)) operations in K, thus we get that computing the
total complexity is Õ(`M(d)) operations in K. Furthermore, once the codomain
curve and the rational maps have been computed, these can be stored. Then
evaluating the isogeny at a point on the domain curve can then be accomplished
in Õ(`M(d)) operations in K. If we are only counting operations in K we can
ignore the M(d) factor in the algebraic complexity.

Ultimately, as in theorem 3.1.5, it is most informative to know exactly what
values impact the algebraic complexity. Here we see that the algebraic complex-
ity is primarily dominated by the degree of the extension over which the kernel

31



is defined. However, leaving the complexity analysis in both ` and d is some-
what unsatisfactory, because it gives the incorrect impression that these two
values are independent when they are anything but. Specifically, the extension
degree d can be expressed in `. The following corollary expresses the algebraic
complexity of Vélu’s formulas uniformly in `.

Theorem 3.6. For an isogeny ϕ of degree ` (not divisible by the characteristic
of K), running Steps 1 through 4 of Vélu’s formulas, and also evaluating equa-
tions (3.1) and (3.2) on an actual point of E(K) require Õ(`M(`2)) operations
in K.

Proof. It suffices to show that there is an extension F/K such that ker(ϕ) is
contained in E(F ) with [F : K] = O(`2).

Because ker(ϕ) is an order ` subgroup it is entirely contained in E[`], and
E[`] is isomorphic to Z/`Z× Z/`Z by lemma 2.1.12. So ker(ϕ) is generated by
at most two elements.

If ker(ϕ) is cyclic let G = (α, β) denote a generator. Then α is a root of the
square of the `-torsion polynomial ψ2

` by corollary 2.1.10. By lemma 2.1.7 ψ2
`

has degree `2 − 1 it follows that L = K(α) is an extension of degree at most
`2 − 1. Then, β is a solution to either a linear or quadratic polynomial over L,
so that F = L(β) is an extension of degree 1 or 2. Thus G in E(F ), so the cyclic
group generated by G, ker(ϕ), is contained in E(F ). Hence [F : K] = O(`2).

Now suppose that ker(ϕ) is generated by two independent elements G1 =
(α1, β1) and G2 = (α2, β2). (In this case independent means that 〈G1〉 ∩ 〈G2〉
is trivial.) If we let L1 = K(α1, β1) and L2 = K(α2, β2) then G1 and G2 are in
E(L1) and E(L2) respectively. Thus E(L1) contains 〈G1〉 and E(L2) contains
〈G2〉. Now suppose that `1 and `2 are the orders ofG1 andG2 respectively. Then
as argued in the cyclic case [L1 : K] = O(`21) and [L2 : K] = O(`22). Furthermore,
ker(ϕ) is exactly 〈G1, G2〉, and because G1 and G2 are independent this implies
that ` = `1`2, thus if F = L1L2 then [F : K] is O(`21`

2
2) = O(`2). Also, both G1

and G2 are in E(F ), so ker(ϕ) is contained in E(F ). Hence, in the case that the
kernel of ϕ is generated by two independent elements, the points of the kernel
are defined over an extension F/K of degree O(`2) just as in the cyclic case.

Only by considering both theorem 3.1.5 and corollary 3.1.6 does one obtain
the most complete view of the complexity of applying Vélu’s formulas. One can
see by the following example that the minimal degree of the extension can be
both 1 and O(`2).
Example 3.7. Let K = F7 and E1 be the elliptic curve defined over K by

y2 = x3 + x.

Likewise, let E2 be the elliptic curve defined over K by

y2 = x3 − 2.

In both cases, the a-invariants a1 and a3 are both 0, so the two torsion poly-
nomial ψ2(x, y) = 2y by definition 2.1.1. Hence the two torsion points are the
ones with y-coordinate equal to 0.
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First we find an isogeny with kernel order ` = 2, such that the kernel is
defined over K. Thus, the point P1 = (0, 0) on E1 is clearly defined over K. So
the isogeny ϕ1 with kernel 〈P1〉 has kernel defined over K.

Now to observe the opposite extreme, we can show the existence of an isogeny
of degree 2 with kernel defined over an extension of degree 3, which is the degree
of the (univariate) two torsion polynomial. As the two torsion points on E2 are
the points with y-coordinate equal to 0, the x-coordinate must be a root of the
polynomial x3 − 2. Exhaustive search shows that 2 is not a cube modulo 7,
so this polynomial is irreducible over K. Let α be any cube root of 2 in K, so
F = K(α) is a degree 3 extension, and a minimal degree extension such that the
two torsion point P2 = (α, 0) on E2(K) is defined. Thus to define an isogeny
ϕ2, of degree ` = 2 with kernel 〈P2〉 it is necessary to work over an extension of
degree equal to the degree of the `-torsion polynomial. As the degree of the ` is
the source of the O(`2) bound in corollary 3.4, this demonstrates an isogeny of
degree ` where kernel is only defined over an extension with degree limited by
the degree of the `-torsion polynomial.

In the worst case scenario, the degree over which the kernel is defined can
grow quadratically in `. However, in practice, the contribution is only dependent
on the extension degree over which the kernel is defined, which may be smaller
in many other cases.

3.2 Kohel’s Approach: Computing from the kernel poly-
nomial

In his dissertation, D. Kohel introduced a new approach for determining the
domain and rational maps from the kernel of an isogeny [16]. Specifically, as
opposed to Vélu’s approach of calculating from a list of points in the kernel,
Kohel introduced the idea of calculating the isogeny from the kernel polynomial.
Specifically, given any finite set S of points on an elliptic curve E(K), there is
a unique monic polynomial of minimal degree, ψ, defined over K such that
ψ(x) = 0 if and only if x is the x-coordinate of a point in S. So, the kernel
polynomial of a separable isogeny is the minimal degree polynomial with roots
at the x-coordinates of the kernel points.

Similar to Vélu’s formulas, Kohel’s formulas give a straight forward algo-
rithm to calculate the codomain and rational maps of an isogeny. To illustrate
this we precisely state the input and output of this algorithm.

Input: Given a curve E1 in general Weierstrass form and a kernel polynomial
ψ(x) of a separable isogeny. Here, we add the restriction that the kernel asso-
ciated to ψ is either odd order, or if it is even order that it is contained in or
equal to the E1[2].
Output: The general Weierstrass coefficients of a Weierstrass model for the
codomain curve E2 of a separable normalized isogeny with kernel polynomial
ψ. Also, coordinate maps (as rational maps on E1) that evaluate a point (x, y)
on E1 to a point on E2.
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Given the explicit formulas in this section it is a simple matter to apply
them to obtain the algorithm.

As stated we restrict to the cases that the kernel of the isogeny is order
two, the whole two torsion, or an odd order. In each case, we assume that the
domain of the isogeny is an elliptic curve with Weierstrass model

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

Just as in Vélu’s formulas, the codomain of the isogeny is given by Weierstrass
model:

y2 + a1xy + a3y = x3 + a2x
2 + (a4 − 5v)x+ (a6 − (a2

1 + 4a2)v − 7w). (17)

If the kernel has an odd order d = 2n + 1, then the kernel polynomial is
given by:

ψ(x) = xn +
n−1∑
i=0

(−1)isi.

If b2, b4, and b6 are the b-invariants of the Weierstrass model of the domain,
then the codomain of the isogeny is given by equation (3.7) where v and w are
given by:

v = 6(s21 − 2s2) + b2s1 + nb4

and
w = 10(s31 − 3s1s2 + 3s3) + 2b2(s21 − 2s2) + 3b4s1 + nb6

where s2 = 0 if n < 2 and s3 = 0 if n < 3.
Then we define the polynomial:

φ(x) =(4x3 + b2x
2 + 2b4x+ b6)(ψ′(x)2 − ψ′′(x)ψ(x))

− (6x2 + b2x+ b4)ψ′(x)ψ(x) + (dx− 2s1)ψ(x)2.

Then let ψ2 denote the bivariate two torsion polynomial (as in equation (2.2)).
If the characteristic of K is not 2, then define:

ω(x, y) =
(
φ′(x)ψ(x)

ψ2(x, y)
2

− φ(x)ψ′(x)ψ2(x, y)
)
− a1φ(x) + a3ψ(x)2

2
ψ(x)

=
(
y +

a1x+ a3

2

)
(φ(x)ψ′(x)− φ′(x)ψ(x))− a1φ(x) + a3ψ(x)2

2
ψ(x)

In the general case, first define:

ψ̃ =
n−2∑
i=0

(
i+ 2

2

)
si+2(−x)i

and
˜̃
ψ = −

n−3∑
i=0

3
(
i+ 3

3

)
si+3(−x)i.
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Note, that while similar to derivatives, these polynomials are not exactly the
second and third derivative of ψ. Then, use these formulas to define:

ω(x, y) =φ′(x)ψ(x)y − φ(x)ψ′(x)ψ2(x, y)+

((a1x+ a3)(ψ2(x, y))2(ψ̃(x)ψ′(x)− ˜̃
ψ(x)ψ(x))+

(a1ψ2(x, y)2 − 3(a1x+ a3)(6x2 + b2x+ b4))ψ̃(x)ψ(x)+

(a1x
3 + 3a3x

2 + (2a2a3 − a1a4)x+ (a3a4 − 2a1a6))ψ′(x)2+

(−(3a1x
2 + 6a3x+ (−a1a4 + 2a2a3))+

(a1x+ a3)(dx− 2s1))ψ′(x)ψ(x) + (a1s1 + a3n)ψ(x)2)ψ(x)

This ends the discussion of the form of the rational maps in the odd degree case.
In the case that the kernel is of order 2, then the kernel polynomial ψ(x) =

x − x0 is the single x-coordinate of the non-infinite point in the kernel. If y0,
the y-coordinate is not known, then it is easily found. If the characteristic of K
is 2, then square roots are unique and we can define

y0 =
√
x3

0 + a2x2
0 + a4x0 + a6,

otherwise define
y0 = −a1x0 + a3

2
.

The codomain is given by equation (3.7) where v and w values are given by:

v = 3x2
0 + 2a1x0 + a4 − a1y0 and w = x0v.

The polynomials φ and ω are given by

φ(x) = (x(x− x0) + v)(x− x0)

and
ω(x, y) = (y(x− x0)2 − v(a1(x− x0) + (y − y0)))(x− x0).

In the case that the kernel is the entire two torsion then

ψ(x) = x3 − s1x2 + s2x− s3

and if b2 and b4 are b-invariants of the Weierstrass model of the domain, then
the codomain is given by the equation (3.7) where the v and w values are given
by:

v = 3(s21−2s2) +
b2s1 + 3b4

2
and w = 3(s21−3s1s2 + 3s3) +

b2(s21 − 2s2) + b4s1
2

.

(Note that we are assuming the characteristic of K is not 2 here, this is fine
because as we saw in section 2.1 multiplication by 2 is not separable in such
fields.) Then define the polynomials:

φ1(x) = ψ′(x)2 + (−2ψ′′(x) + (4x− s1))ψ(x),
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and

ω1(x, y) =
ψ2(x, y)(φ′1(x)ψ(x)φ1(x)ψ′(x))− (a1φ1(x) + a3ψ(x))ψ(x)

2
.

Then we set

φ(x) = φ1(x)ψ(x) and ω(x, y) = ω1(x, y)ψ(x).

This concludes the characterization of the rational maps in the case that the
kernel is contained in E1[2].

We summarize the results of this section as:

Theorem 3.8. If ψ is the kernel polynomial of an isogeny of odd degree, degree
2, or degree 4 if the kernel is also the entire two torsion. The codomain of the
isogeny is given by equation (3.7). The rational maps for the isogeny are given
by: (

φ(x)
ψ(x)2

,
ω(x, y)
ψ(x)3

)
,

where ψ, φ, ω, v and w are given for the individual cases above.

We state this without proof, because it will follow from the results of the
next section.

Certainly Kohel’s formulas simplify the task of computing an isogeny. In-
deed these formulas reduce the problem of computing the isogeny to polynomial
arithmetic and evaluation. However, it is not immediately clear why this is at
all useful, other than conceptual clarity. It does, in fact, work out that Kohel’s
formulas do provide a performance improvement, in some cases.

Specifically, the kernel of an isogeny is defined over some algebraic extension
L/K, it may occur that the kernel polynomial of an isogeny ψ(x) is defined
over an intermediate extension F properly contained in L. When the field of
definition of ψ is of lower degree than the field of definition of the actual points
of the kernel, this can lead to a speed up by simplifying the necessary extension
field arithmetic.

Immediately the question comes to mind: Does it ever occur that using
Kohel’s formulas provides a speed up? Alternately, does it ever occur that
using Kohel’s formulas does not provide a speed up over Vélu’s formulas? The
answer to both questions is yes. This can be seen by examining two extreme
cases: When ψ is defined over K or when the kernel polynomial is only defined
over L, the extension of definition of the kernel of the isogeny. In the first
case, it is sufficient to only perform polynomial arithmetic over K. However, in
the second case Kohel’s algorithms will not provide any speed up over Vélu’s
formulas. The following example illustrates how each of these cases may be
realized.

Example 3.9. Consider the elliptic curve E defined over K = F7 by the Weier-
strass equation y2 = x3 +x+ 1. In this case the a-invariants a1 and a3 are both
zero, so that the two torsion points on E(K) are the points with y-coordinate 0.
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Thus, we see that the minimal polynomial over K of the x-coordinates of the two
torsion points is ψ2(x) = x3 +x+1. We can easily check that this polynomial is
irreducible, by checking that it has no roots in K (as it is degree 3, if it were re-
ducible, it must have a linear factor.) We can further note that this polynomial
is separable (i.e. has no repeated roots) because ψ′(x) = 3x2 + 1 = 3(x2 + 5)
and we can tell that if it did ψ(x) would have a nontrivial factor, contradicting
the fact that it is irreducible.

Now consider a root α of ψ2 and let F = K(α). It turns out that ψ2 splits
completely over F , with roots α, 2α2 + 6 and −2α2 + 4α + 2. So that the
nontrivial two torsion points are:

(α, 0), (2α2 + 6, 0) and (−2α2 + 4α+ 2, 0)

and all are contained in E(F ).
Suppose that ϕ1 is the isogeny with the full two-torsion set as kernel, then

applying Vélu’s formulas requires working over F . However, as the kernel poly-
nomial is defined over K, applying Kohel’s formulas requires that we work over
K. This realizes the case when the kernel polynomial is defined over K but the
kernel is defined over an extension.

However, we can also see the other extreme case, when the kernel polynomial
is only defined over the same extension field as the points of the kernel. If ϕ2 is
the isogeny with order 2 kernel 〈(α, 0)〉, applying Vélu’s formulas requires that
we work over F . However, the kernel polynomial ψ of ϕ is the linear polynomial
x−α. This polynomial is defined over F , so applying Kohel’s formulas requires
working over F as well.

More formally, let ψ(x) in K[x] be the kernel polynomial of the degree `
separable isogeny ϕ. Let F/K be an algebraic extension of minimal degree d such
that the coefficients of ψ(x) are all contained in F . Then because extension field
arithmetic is implemented via polynomial arithmetic, one F multiply takesM(d)
operations in K, so that we can take all F operations to be O(M(d)) operations
in K. As multiplication is the limiting factor in extension field arithmetic we
will take all F operations to be O(M(d)) operations in K. The polynomial ψ
has degree `, so that the degree of all polynomials involved is O(`). Thus, the
polynomial arithmetic in F [x] requires O(M(`)) operations in F , or Õ(M(d`))
operations in K.

This result is summarized in the following theorem:

Theorem 3.10. If ϕ : E1 → E2 is an isogeny with kernel polynomial ψ in F [x],
where F/K is an algebraic extension of degree d, then Kohel’s formulas can be
computed in Õ(M(d`)) operations in K. The formulas can be precomputed and
then evaluated in O(`M(d)) operations in K.

So if we restrict to the case of an isogeny defined over K, then the kernel
polynomial must be defined over K as well. In this case F = K and hence d = 1
so that we get the following corollary.
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Corollary 3.11. If ϕ : E1 → E2 is an isogeny defined over K then Kohel’s
formulas can be computed in O(M(`)) operations in K. The formulas can be
precomputed and then evaluated in O(`) operations in K.

It is common to consider only isogenies defined over K, such as in the case
of the SEA point counting algorithm ([2], [1] chapter VII.) So the assumptions
of corollary 3.1.11 are not unreasonable in practice.

4 Computing from the kernel polynomial: Gen-
eral degree isogenies

Kohel’s idea is a very useful observation, and in many cases leads to improved
performance due to performing the computations over a lower degree extension
field. However, in some cases the restriction of working over an odd degree field
may be overly restrictive. This idea can be generalized to work over arbitrary
degree isogenies [2].

In order to compute a general degree isogeny from a kernel polynomial, we
stipulate that the domain curve must be in short Weierstrass form. This greatly
simplifies the algebra.

Theorem 4.1. Suppose E1 is an elliptic curve in short Weierstrass form

y2 = x3 +Ax+B.

Let ψ be the kernel polynomial of a separable normalised isogeny ϕ with domain
E1 and degree `. Let ψ2 = gcd(x3 +Ax+B,ψ). Then define

D(x) = ψ2/ψ2 = x`−1 − σ1x
`−2 + σ2x

`−3 − σ3x
`−3 + · · · .

Then the coordinate maps of ϕ are given by

α(x) = `x− σ1 − (3x2 +A)I(x)− 2(x3 +Ax+B)I ′(x),

where I(x) = D′(x)
D(x) , and

β(x, y) = yα′(x).

And the codomain curve E2 is given by

y2 = x3 + (A− 5v)x+ (B − 7w),

where v = A(`−1)+3(σ2
1−2σ2) and w = 3Aσ1+2B(`−1) + 5(σ3

1 − 3σ1σ2 + 3σ3).

Proof. The proof of this fact follows from the proof of Vélu’s formulas. As in
Vélu’s formulas C is the set of points of the kernel of a separable normalized
isogeny ϕ.

First we determine the map α. Then by lemma 3.1.3 α(P ) is given by

xP +
∑
Q∈C

xP+Q − xQ.
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As in Vélu’s formulas (section 3.1.1) C is partitioned into the disjoint sets {∞},
C2, R and −R where C2 are the two torsion points and R and −R are the rest
of the points of C sorted from their inverses. Thus we can write D(x) as:∏

Q∈C2

(x− xQ)
∏
Q∈R

(x− xQ)2.

Thus if we let C+ be C2∪R. Then by equations (3.3) and (3.5) in lemma 3.1.3,
if P is (x, y) then

α(P ) = x+
∑
Q∈C+

(
vQ

x− xQ
+ 4

x3
Q +AxQ +B

(x− xQ)2

)

where vQ is 3x2
Q + A if Q is a two torsion and vQ is 2(3x2

Q + A). As E1 is in
short Weierstrass form, when Q is a two torsion x3

Q +AxQ +B is 0. Hence

∑
Q∈C2

xP+Q − xQ =
∑
Q∈C2

(
vQ

x− xQ
+ 2

x3
Q +AxQ +B

(x− xQ)2

)

Now looking at a similar sum for the non-two torsion points gives that the sum
over Q ∈ R ∪ −R is

1
2

∑
Q∈C−C2

(
vQ

x− xQ
+ 4

x3
Q +AxQ +B

(x− xQ)2

)
.

Combining these two equations gives:

α(P ) =
∑

Q∈C−{∞}

(
3x2

Q +A

x− xQ
+ 2

x3
Q +AxQ +B

(x− xQ)2

)
.

It is straight forward algebraic manipulation to show

x− xQ −
3x2 +A

x− xQ
+ 2

x3 +Ax+B

(x− xQ)2
=

3x2
Q +A

x− xQ
+ 2

x3
Q +AxQ +B

(x− xQ)2
.

substituting this into the expression for α gives

α(P ) = `x−σ1−(3x2+A)
∑

Q∈C−{∞}

(x−xQ)−1+2(x3+Ax+B)
∑

Q∈C−{∞}

(x−xQ)−2.

The sum of (x− xQ)−1 is I(x) = D′(x)/D(x). The derivative of (x− xQ)−1 is
−(x− xQ)−2 so the second sum is equal to −I ′(x). This gives the statement of
the Theorem.

Given that the x-coordinate map is α and E1 is in short Weierstrass form,
then the expression for β comes from lemma 2.2.21.

The expression for the coefficients of the codomain curves are given by ex-
panding the values from Vélu’s formulas A− 5v and B − 7w in the symmetric
functions (coefficients) of D(x). Hence the expressions in σ1, σ2 and σ3.
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From this theorem, it seems that to obtain a formula that works for general
degree isogenies, we have sacrificed generality of the curves that we consider.
Indeed we restrict ourselves to the case of curves in short Weierstrass form.
On the other hand, if the characteristic of K is not 2 or 3, then all curves are
isomorphic to a curve in short Weierstrass form. This is certainly encouraging,
and turns out to be quite useful. However, Vélu’s and Kohel’s formulas for
computing isogenies are quite dependent on the underlying Weierstrass model.
We would like to precisely describe how to use theorem 3.2.1 to actually calculate
the rational maps and codomain curve given a kernel polynomial of an isogeny
with domain in general Weierstrass form. The only restriction we make is that
K must be of characteristic not 2 or 3.

First we note that in both Vélu’s and Kohel’s formulas, the codomain of the
computed isogeny has the same coefficients on the y, xy, and x2 coefficients as
the domain curve. In the algorithm that we give, we maintain the same con-
vention. However, the argument that we present will show that one can easily
post compose with any Weierstrass isomorphism to obtain a separable isogeny.
The approach is straight forward, but requires that we be careful when we pre-
compose the isogeny with a Weierstrass isomorphism.

Input: A curve E1 in general Weierstrass form, defined over a curve of charac-
teristic not 2 or 3. A kernel polynomial ψ of a separable normalized isogeny ϕ
with domain E1 and degree `.
Output: The general Weierstrass coefficients of a Weierstrass model for the
codomain curve E2 (with the same coefficients on y, xy and x2 as E1) of a
separable normalized isogeny with kernel polynomial ψ. Also, coordinate maps
(as rational maps on E1) that evaluate a point (x, y) on E1 to a point on E2.

1. Calculate s = −a1/2, r = −(a2−sa1−s2)/3 and t = −(a3 +ra1)/2. Then
define the Weierstrass isomorphism ρ : E1 → Ẽ1 by

x̃ = x− r, ỹ = y − sx+ rs− t

and its inverse ρ−1 : Ẽ1 → E1 is given by

x = x̃+ r, y = ỹ + sx̃+ t.

Then Ẽ1 is in short Weierstrass form with coefficients

A = a4 − sa3 + 2ra2 − (t+ rs)a1 + 3r2 − 2st

and
B = a6 + ra4 + r2a2 + r3 − ta3 − t2 − rta1.

2. Define ψ̃ = ψ ◦ ρ−1. Use theorem 3.2.1 with domain curve Ẽ1 and kernel
polynomial ψ̃ to calculate an isogeny ϕ̃ : Ẽ1 → Ẽ2.
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3. Let A2 and B2 be the coefficients of Ẽ2. Let r, s, and t be as in the first
step. Define the Weierstrass isomorphism τ : Ẽ2 → E2 by

x′ = x̃+ r, y′ = ỹ + sx̃+ t.

Then E2 has coefficients a′1 = a1, a′2 = a2, a′3 = a3,

a′4 = A2 + sa3 − 2ra2 + (t+ rs)a1 − 3r2 + 2st

and
a′6 = B2 − ra4 − r2a2 − r3 + ta3 + t2 + rta1.

4. Calculate ϕ = τ ◦ ϕ̃ ◦ ρ.

Corollary 4.2. This algorithm correctly returns a separable normalized isogeny
of degree ` with codomain E1 and kernel polynomial ψ.

Proof. This is succinctly summarized in the following commutative diagram:

E1
ϕ //

ρ

��

E2

Ẽ1 ϕ̃
// Ẽ2

τ

OO

The equations for ρ, ρ−1 and the curve Ẽ1 are correct based on the prop-
erties of Weierstrass isomorphisms ([20] III.1.2.) The isogeny ϕ̃ is separable
and has codomain Ẽ2 by theorem 3.2.1. Once again, the Weierstrass isogeny
τ and codomain E2 are also correct based on the properties of Weierstrass iso-
morphisms. The only tricky thing is to note is that ψ̃ = ψ ◦ ρ−1 is the kernel
polynomial of τ ◦ ϕ̃. Then, because ρ−1 ◦ ρ is the identity, it follows that ψ is
the kernel polynomial of ϕ.

The composite map ϕ is a separable isogeny, as ρ, ϕ̃ and τ are separable
isogenies (Weierstrass isomorphisms are degree 1 isogenies.)

It also follows that ϕ is normalized, as ϕ̃ is normalized and because ρ and
τ have no scaling factors. Thus the pullback of the invariant differential of E1

along the composite map has no scaling factors introduced.

We conclude this section with a brief discussion of the algebraic complexity
of applying the algorithms of this section. Unsurprisingly the complexity of
this algorithm is not terribly different than applying Kohel’s formulas. Unless
one calculates out the composite rational map as a quotient of polynomials
written out as the canonical sum of multiples of powers of x, In which case, the
complexity can gain a factor of `.

Theorem 4.3. Let ϕ : E1 → E2 be an isogeny of degree ` with kernel poly-
nomial ψ ∈ F [x], where F is some degree d algebraic extension of K. Then
computing ϕ by the algorithm of this section takes O(M(`d)) operations in K.
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If one leaves ϕ as a sequence of maps (instead of computing the explicit com-
posite) the complexity of applying these formulas is O(`M(d)) If one computes
out the rational maps for ϕ as a quotient of polynomials, written as a sum of
multiples of powers of x then this step takes O(M(d`)

√
`) operations in K and

will dominate the complexity of precomputing ϕ.

Proof. The dominant factor in applying the formulas of theorem 3.2.1 is poly-
nomial multiplication. These polynomials are of degree O(`) over F hence the
dominant algebraic complexity is O(M(d`)). Computing the Weierstrass isomor-
phisms takes a constant number of F operations, and hence does not contribute
to the algebraic complexity.

Likewise evaluating the Weierstrass isomorphisms takes a constant number of
F operations. However, as in the case of Kohel’s formulas, this takes O(`M(d))
operations in K.

There are multiple algorithms for evaluating the composite ϕ̃ ◦ ρ, the best
asymptotic complexity that does not contain a dependence on the underlying
field is

O(M(`)
√
` log `) = O(M(`)

√
`)

operations in F ([2] 2.5, [3].) Hence this is O(M(`d)
√
`) K operations.

5 Computing from Domain and Codomain

The algorithms from the previous section show how to determine the coordinate
maps and codomain of an isogeny given a domain and kernel. However, there is
a sort of inverse question to this. Suppose we have the domain and codomain
of a degree ` separable isogeny. Can we recover the kernel of this isogeny?
Fortunately, the answer is yes.

In this section we prove this by displaying a naive algorithm to recover
the kernel, given a domain and codomain. However, this naive algorithm has
abysmal performance, so we also present Stark’s algorithm which can achieve a
much better complexity with a few assumptions about the input.

5.1 A Naive Approach

Here we briefly sketch a brute force approach for recovering the kernel of an
isogeny from the domain and codomain. So given a domain E1, a codomain E2

and a degree `. We will only suppose that p = char(K) does not divide `. Then
we search for the kernel of ϕ : E1 → E2 as follows. As ker(ϕ) is of order `, it is
contained in E1[`], the ` torsion of E1. By lemma 2.1.12 E1[`] is isomorphic to
Z/`Z× Z/`Z. So we enumerate all ` order subgroups S of E1[`] and run Vélu’s
formulas on each one, checking if the calculated codomain is isomorphic to E2.
If we find one, then there is a separable isogeny ϕ : E1 → E2 with kernel S. If
we do not find any such kernel, then there is not a degree ` isomorphism from
E1 to E2.
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Next, we briefly analyze the algebraic complexity of this approach when `
is prime. For ` prime the group Z/`Z × Z/`Z has ` + 1 subgroups of order `
and in this case Vélu’s formulas has algebraic complexity O(`M(`2)). So this
algorithm has algebraic complexity O(`2M(`2)). In general, if ` is composite
then E[`] has more than `+ 1 order ` subgroups, so this complexity can not be
better than O(`2M(`2)). This complexity is worse than O(`4) and hence this is
not a particularly practical algorithm.

5.2 Stark’s Algorithm

In contrast to the Naive approach in the previous section, Stark’s algorithm is
a subcubic algorithm for computing the kernel polynomial of an isogeny given
the degree, domain and codomain. The main idea underlying this algorithm is
that if there exists an isogeny ϕ : E1 → E2 with x-coordinate map N(x)/D(x)
and ℘1 and ℘2 are the respective Weierstrass functions of E1 and E2 then ℘1

and ℘2 are related by

℘2(z) = ℘1

(
N(z)
D(z)

)
([2] 6.1.) In [21] Stark proposed a continued fraction approach to recover the
rational function N(z)/D(z). Specifically by expanding ℘2 as a continued frac-
tion in ℘1, hence approximating N(z)/D(z). This algorithm has been written
up in [2], a more clearly written version of the algorithm occurs in Moody’s
dissertation ([18] algorithm 3.) The algorithm operates as follows:

Input: Given a domain E1 and codomain E2 both in short Weierstrass form of
a degree ` isogeny ϕ, where 4` < p, in the case of positive characteristic p.
Output: The denominator D(x) of the x-coordinate map of ϕ.

1. Let S = ℘1 mod z4`

2. Let T = ℘2 mod z4`

3. Set n = −1, q−2 = 1, and q−1 = 0.

4. While deg(qn) < `− 1 do:

(a) Find r and t−2r such that

T (z) =
t−2r

z2r
+ · · ·+ t0 + t2z

2 + · · · .

(b) Set n = n+ 1 and an = 0.

(c) While 0 ≤ r do:

i. Set an = an + t2rz
r

ii. Set T = T − t−2rS
r mod z4`.
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iii. Find r and t−2r such that

T (z) =
t−2r

z2r
+ · · ·+ t0 + t2z

2 + · · · .

(d) Set qn = anqn−1 + qn−2.

(e) If n = `− 1 go to step 5.

(f) Set T (z) = 1/T (z) mod z4`.

5. Return D(x) = qn(x).

This algorithm is straight forward, except for a few steps. In step 4f com-
puting the truncated reciprocal can be done in time O(M(`)) by the algorithm
stated in section A.2.3. So that the complexity of the main loop is O(`M(`))
Also, we have not shown how to compute ℘1 and ℘2 as in steps 1 and 2, which
we will proceed to show.

Before moving on to discussing how to compute the Weierstrass functions
on E1 and E2, we make some general remarks about this algorithm.

Remark 5.1. This algorithm assumes that the input is in short Weierstrass form.
As we will show, this is a requirement of the algorithm for computing ℘1 and
℘2. However, using the methods described in section 3.2 for characteristic not
2 or 3 we can calculate Ẽ1 and Ẽ2 in short Weierstrass form, and isomorphic
to to E1 and E2 respectively. Then by appropriately pre and post composing
with these isomorphisms we can determine the isogeny ϕ : E1 → E2. Also, note
that restricting to characteristic 2 and 3 is implied by the fact that 4` < p in
the case of positive characteristic p.

Remark 5.2. Notice that this algorithm outputs the denominator D(x) of ϕx.
However the algorithms in sections 3.1.2 and 3.2 take input as a kernel polyno-
mial ψ. However, ψ and D are simply related as ψ = ψ2ψ>2, where ψ2 is the
greatest common divisor of ψ and the univariate two torsion polynomial of E1.
Then D = ψ2(ψ>2)2. Thus we can easily compute ψ from D.

Remark 5.3. Note that the value T in this algorithm is always a Laurent series
in z2. From an implementation point of view, it is straight forward to store
this as a Laurent series in z. However this requires storing twice as many coeffi-
cients, half of which will always be 0, and will waste operations while performing
operations on T. By careful implementation, one can succinctly store this Lau-
rent series and perform operations on it that do not waste cycles performing
multiplications by 0.

The remainder of this section is on how to compute the Weierstrass ℘ func-
tion of a curve in short Weierstrass form. We do not go into any background
details of this function and point the interested reader to [20] VI.3.3. For our
purposes, the ℘ function is a Laurent series over K of the form

℘(z) =
1
z2

+
∞∑
i=0

ciz
−2i. (18)

44



Furthermore, ℘ satisfies the differential equation

(℘′(z))2 = 4
(
℘(z)3 +A℘(z) +B

)
(19)

We now give two approaches for solving for ℘ mod zn. First we give a
straight forward algorithm with complexity O(n2) and then give an algorithm
with complexity O(M(n)).

The first straight forward approach ([2] 3.2) is to combine equations (3.8)
and (3.9) and use the fact that

c1 = −A
5
, and c2 = −B

7
.

Differentiating equation (3.9) gives

℘′′(z) = 6℘(z)2 + 2A.

Then solving for cj gives

cj =
3

(j − 2)(2j + 3)

j−2∑
i=1

cicj−1−i.

Directly computing these coefficients then takes O(n2) operations in K. Note
that this implies that if we are working in positive characteristic p, then we
must have 2n+ 3 < p, otherwise the formula will have a division by 0.

The second approach is a more complicated algorithm, but it can solve for
℘ in time O(M(n)). This approach was introduced in [2] 3.3, and proceeds as
follows. Let

Q(z) =
1

℘(z)
and R(z) =

√
Q(z)

where either choice of square root will do here. Then

R′(z)2 = BR(z)6 +AR(z)4 + 1.

Thus calculating out the first 3 terms of R gives

R(z) = z +
A

10
z5 +

B

14
z7 + · · ·

squaring implies that

Q(z) = z2 +
A

5
z6 +

B

7
z8 + · · · .

This in turn implies that

℘(z) =
1
z2
− A

5
z2 +

B

7
z4 + · · · .

So this yields the algorithm to compute ℘(z) as follows:
Input: A and B coefficients of an elliptic curve E in short Weierstrass form,
and degree n.
Output: The truncated Weierstrass function ℘ mod zn associated to E.
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1. Compute R mod z2n+6 by the algorithm for first order nonlinear differ-
ential equations in section A.2.2 with G(t) = Bt6 + At4 + 1.

2. Compute Q = R mod z2n+5.

3. Compute ℘ = 1/Q mod z2n+1.

The algorithm for solving first order nonlinear differential equations in sec-
tion A.2.2 requires O(M(n)), as does squaring and reciprocal (see appendix
A.2.3) so that the total complexity for computing ℘ is O(M(n)).

Because computing the functions ℘1 and ℘2 have complexity O(M(n)) these
steps do not impact the algebraic complexity of Stark’s Algorithm. Thus we
can take the algebraic complexity of Stark’s algorithm as O(nM(n)).
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Part IV

Algebraic Complexity Theory
and Algorithms
This appendix provides some background on algebraic complexity theory and
some efficient polynomial arithmetic algorithms. These two subjects are very
broad in their own right and the purpose of this appendix is not to provide any
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sort of deep or complete introduction. Both subjects also provide powerful tools
for analyzing and understanding number theoretic algorithms. The computa-
tional aspects of elliptic curves and isogenies are no exception, so this material
is useful for deeper understanding of the results in the body of this document.
The results collected here are provided as either a refresher or brief introduction
to the few results that are used through out the rest of this document. There
are several very good introductions to this deep subject such as [5] and [8].

A Algebraic Complexity

Simply put, the algebraic complexity of a number theoretic algorithm measures
the number of mathematical operations that the algorithm takes, and how this
value scales with the input size. In the case of combinatorial algorithms, the
analysis is based on how many operations they use based on the number of
bits of input ([11] I.1.) While in many cases this closely corresponds to the
algebraic complexity, measuring the number of operations of a mathematical
algorithm based on the number of bits in the input may not be particularly
informative. For instance, using the number of bits in the input presupposes a
fixed representation, and constantly considering this may be cumbersome. To be
more precise, algebraic complexity is measured as follows, for a given algorithm,
the size of the input is measured in one or more variables that captures the size
of the input. Then for a given input, the underlying ring or field of the input is
identified. The algebraic complexity is measured as how many operations in the
underlying field or ring are used based on the size of the input. Ring operations
are considered as addition, subtraction, and multiplication. Field operations are
the ring operations as well as inversion. Sometimes, (depending on the context)
comparison operations such as equals, greater than or less than are considered
ring/field operations as well.

This definition may seem somewhat uninformative, so it is useful to look at
a few examples.

Example A.1. Consider polynomial arithmetic: given two polynomials f and g
in K[x] for some field K with n = min{deg(f), deg(g)}. The complexity of the
polynomial arithmetic is measured as the number of K operations it takes to
compute h = f + g, h = f − g or h = f · g respectively. Specifically, addition
and subtraction both take n K operations, measuring multiplication is more
complicated and we denote the number of operations as M(n).

Example A.2. Consider matrix addition and multiplication of two m ×m ma-
trices over a ring R, we consider the size of the input to be the dimension m.
In this case the naive algorithm for addition requires exactly m2 additions. The
naive algorithm for multiplications requires computing m2 inner products, each
of which takes m multiplications in R and m−1 additions in R. Thus the naive
algorithm for multiplication takes 2m3 −m2 operations in R.

Ultimately, it would be nice to not worry about the exact number of algebraic
operations an algorithm uses, but rather to just get an idea of the way that
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this number scales as the input size changes. The solution is to measure the
asymptotic complexity of the algorithm, that is if the input grows arbitrarily
large, we want a function that dominates the number of operations the algorithm
takes. This can be rigorously defined ([8] 25.7), but we first must introduce the
following definition:

Definition A.3. A function f : N → R is eventually positive if there exists
some N such that for all n ≥ N , f(n) is positive.

The asymptotic complexity of an algorithm is measured in big-oh notation.
The precise definition and notation of this is:

Definition A.4. For an input of size n the number of underlying field (ring)
operations used by an algorithm is O(f(n)), if f is an eventually positive func-
tion, and there exists a positive integer N such that for all n ≥ N , there exists
a positive constant C such that for input size of n, the algorithm uses no more
than Cf(n) operations.

From this it is clear that the naive algorithm for matrix multiplication in
example A.1.2 is O(m3). Which would have been a much easier analysis than
actually counting each operation.

The notion of big-oh notation can be relaxed to ignore logarithmic factors,
and his is called soft-oh notation. The precise definition of this is as follows:

Definition A.5. For an input of size n the number of underlying field (ring)
operations used by an algorithm is Õ(f(n)), if f is an eventually positive func-
tion, and there exists a positive integer N such that for all n ≥ N , there exists
positive constants b and C such that for input size n, the algorithm uses no
more than C(log(3 + f(n)))bf(n) operations.

To illustrate the differences between these two asymptotic measurements,
consider the algebraic complexity of matrix multiplication in example A.1.2.
Because any algorithm must keep track of the indices of the elements of the ma-
trices that are being multiplied, this requires keeping around counters that can
hold values up to m so the length of these variables (in bits) and complexity of
arithmetic is O(logm). If we take these operations into account the algorithm
has complexity O(m3 logm). But this is cumbersome, and uninformative be-
cause as m grows the m3 term will dominate the logm factor, so it is convenient
to consider the soft-Oh asymptotic complexity Õ(m3).
Remark A.6. There are algorithms that are, in practice, better than the naive
algorithm for matrix multiplication. In this case, computing the product of two
m×m matrices is Õ(mω) where ω can be taken to be at most log2 7 = 2.807...
([8] 12.1.)

B Efficient Polynomial Arithmetic

As mentioned in the previous section the algebraic complexity of polynomial
multiplication is more complicated than just the naive algorithm that uses O(n2)
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operations in the underlying field K (where n is the degree of the polynomi-
als.) For example, the algorithm for fast Fourier multiplication has algebraic
complexity O(n log n log log n) = Õ(n) ([8] 8.2.) Although, the values for n
where the exact run times are better than other methods may be quite high.
This is just an indicator of how complicated analyzing the costs of polynomial
multiplication can be. Herein, we are not interested in the exact complexity
of polynomial multiplication. As such, we treat polynomial multiplication as a
subroutine and denote the cost as M(n). However, we do make the assumption
that the complexity of polynomial multiplication is “superlinear,” and by this
mean that

M(m)
m

≤ M(n)
n

when m ≤ n. This implies that

i∑
i=1

M(2i) ≤ 2M(2i), (20)

a fact that will come in handy when analyzing algorithms for computing trun-
cated power series of polynomials [2].

Recall that Starks algorithm (section 3.3.2) requires that we compute the
Weierstrass ℘ functions associated to the domain and codomain. This requires
solving a system of differential equation, and the algorithms for that in turn
require computing the truncated reciprocal and exponential functions of poly-
nomials. We first demonstrate the algorithms for solving the differential equa-
tions, and then show how to compute the reciprocal and exponential functions
efficiently enough to give these algorithms O(M(n)) complexity. For now, to
analyze the complexity of solving the system of linear equations we will assume
this complexity.

Stark’s algorithm to recover the kernel polynomial of an isogeny requires
solving a first order nonlinear differential equation. To show how to do that,
we will first present an algorithm for solving first order linear differential equa-
tions, and then show how this can be used to solve the desired system of linear
equations.

B.1 Solving a system of first order linear differential equa-
tions

To solve a system of linear differential equations, we use the following algorithm
from [2] 2.3, originating from [3].

Input: A degree n, univariate polynomials a, b, and c in K[z] of degree at most
n, where a(0) 6= 0, and a scalar α in K.
Output: A polynomial f such that

af ′ + bf = c mod zn

and f(0) = α.
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1. Let B = b/a mod zn−1.

2. Let C = c/a mod zn−1.

3. Let J = expn
(∫
CB

)
.

4. Return
f =

1
J

∫
CJ mod zn.

The correctness of this algorithm can be seen directly by verifying that f
does in fact satisfy the desired equations. Here

∫
denotes the antiderivative.

So we note that to calculate the antiderivative we require that 1, · · · , n − 1
are units in K (thus for positive characteristic n ≤ p.) In steps 1, 2 and 4,
we calculate reciprocals and hence have complexity O(M(n)). Computing the
truncated exponential in step 3 has complexity O(M(n)) as well. Computing
the antiderivatives in steps 3 and 4 are O(n). Hence the whole algorithm is
O(M(n)).

B.2 Solving a system of first order nonlinear differential
equations

Now to show how to solve the nonlinear system of differential equations we re-
state a special case of an algorithm from [3] as relayed in [2] section 2.4.

Input: A polynomial G in K[t], scalars α and β in K, and degree n.
Output: The polynomial f such that f ′(z)2 = G(f)(z) mod zn and f(0) = α
and f ′(0) = β (here G(f) indicates the polynomial formed by composing G with
f .)

1. Set f = α+ βz and s = 2.

2. While s < n do

(a) Set a = 2f ′.

(b) Set b = G′(f) (Where G′ denotes the derivative of G with respect to
t.

(c) Set c = G(f)− (f ′)2.

(d) Use the algorithm for first order linear differential equations to solve
for f mod zs by computing f2 such that

af ′2 + bf2 = c

with f2(0) = 0.

(e) Set f = f2 + f mod zs.

(f) Let s = 2s− 1.

3. Return f.
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The correctness of this algorithm follows from the fact that if f1 = f mod zs

then f2 = f − f1 mod z2s−1 is a solution of the linearized differential equation

2f ′1f
′
2 −G′(f2) = G(f1)− (f ′1)2.

Note that for this algorithm to work 1, · · · , n − 1 must be units (i.e. n ≤ p in
positive characteristic,) so that we can use the algorithm for solving first order
linear differential equations. We briefly analyze the complexity here. Calculat-
ing a, b, and c to precision s requires O(M(n)) and, as argued above, solving
the system of linear differential takes O(M(s)) as well. Thus equation (A.1)
implies that the whole complexity is O(M(n), as the magnitude of s roughly
doubles with each iteration.

B.3 Polynomial reciprocal and exponential functions

Next, we describe the polynomial functions of truncated reciprocal and trun-
cated exponential. Then we describe how to compute these values in time
O(M(n)).

For the truncated reciprocal of degree n, one can guess that this means that
given a polynomial f , the reciprocal polynomial g is the polynomial such that

f(z)g(z) ≡ 1 mod zn,

however to compute this, we can apply the iterative formula:

gi = − 1
f0

i∑
j=1

figi−j

for i ≥ 1, where g0 = 1/f0, the reciprocal of the constant coefficient which must
be nonzero. It is less clear what the truncated exponential, denoted expn(f), of
a polynomial is. However, it is just the evaluation of the power series

n−1∑
i=0

f i

n!
mod zn.

In each of these cases, assuming that the input polynomial f is of degree n,
using these straight forward iterative formulas requires O(n2) operations in K.

In the case of the algorithms for computing the ℘-function, using O(n2)
algorithms for exponential and reciprocal this would dominate the complex-
ity, leading to O(n3) algorithms. As the complexity of these algorithms is the
bottleneck, it is prudent to investigate different algorithms. It turns out that
there are algorithms for both reciprocal and exponential that have complexity
O(M(n)). Both of these algorithms use a technique called Newton iteration.
The Newton iteration approach is a generalization of Newton’s method for find-
ing roots. Whereas Newton’s method finds roots by approximation in the usual
Euclidean metric of analysis, Newton iteration uses the p-adic metric where p
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is some prime ideal ([8] chapter 9.) Here we do not give a proof of correctness,
rather we just state the iterations.

The Newton iteration for computing the reciprocal of f is

gi+1 = gi (2− fhi) mod z2i+1

for i ≥ 0 where g0 is 1/f0. So computing iteration i requires O(M(2i+1)) opera-
tions in K. Thus equation (A.1) implies that computing the truncated reciprocal
to precision n requires O(M(n)) operations ([2] 2.1, [8] algorithm 9.3.)

The Newton iteration for computing the exponential of f is

gi+1 = gi (1 + f − log2i+1(g)) mod z2i+1

for i ≥ 0, where g0 = 1. Similarly to how we defined the exponential function
on polynomials by the power series expansion, we can define the truncated
logarithm as

logn(g) = −
n−1∑
i=1

1
i
(1− g)i mod zn.

However, the logarithm can also be obtained by computing the truncated power
series of g′/g and taking the antiderivative. The derivative and antiderivative
operations on a polynomial take O(n) operations, and, as we just saw, calculat-
ing the reciprocal takes O(M(n)) operations, so that calculating the logarithm
of a polynomial can be computed in time O(M(n)). Thus it follows that iteration
i takes O(M(2i+1)) operations in K. And again, by equation (A.1) it follows
that computing the truncated exponential to precision n requires O(M(n)) op-
erations in K ([2] 2.2.)

Part V

Elliptic curve isogenies in Sage
As of release 4.0.2, Sage [19] includes an implementation of elliptic curve isoge-
nies. This implementation was written by the author as part of the research for
this project. The purpose of this appendix is to briefly describe and advertise
this new elliptic curve isogeny functionality in Sage.
First we initialize an elliptic curve:

sage: F = GF(19);
sage: E = EllipticCurve(F, [0,0,0,1,2]); E
Elliptic Curve defined by y^2 = x^3 + x + 2 over Finite Field of size 19
sage: E.order()
12

The order 3 subgroup of the points defined over F19 is {∞, (8, 3), (8, 16)}.
Then, like in Vélu’s formulas we can specify the isogeny by giving this list

of points to the constructor:
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sage: P = E((8,3))
sage: phi = EllipticCurveIsogeny(E, [0*P, P, 2*P]); phi
Isogeny of degree 3 from Elliptic Curve defined by y^2 = x^3 + x + 2
over Finite Field of size 19 to Elliptic Curve defined by
y^2 = x^3 + 9*x + 3 over Finite Field of size 19

Alternately, we can use the kernel polynomial ψ(x) = x − 8 to construct the
isogeny as in the algorithms of sections 3.1.2 and 3.2:

sage: R.<x> = F[]
sage: phi = EllipticCurveIsogeny(E, x-8); phi
Isogeny of degree 3 from Elliptic Curve defined by y^2 = x^3 + x + 2
over Finite Field of size 19 to Elliptic Curve defined by
y^2 = x^3 + 9*x + 3 over Finite Field of size 19

An isogeny object can be called as a function to evaluate the result at points
on the domain curve:

sage: P = E.random_point(); P
(14 : 9 : 1)
sage: phi(P)
(16 : 14 : 1)
sage: P = E.random_point(); P
(8 : 3 : 1)
sage: phi(P)
(0 : 1 : 0)

The rational maps function returns the coordinate maps:

sage: phi.rational_maps()
((x^3 + 3*x^2 - 6*x + 7)/(x^2 + 3*x + 7),
(x^3*y - 5*x^2*y - 4*x*y - 4*y)/(x^3 - 5*x^2 + 2*x + 1))

The codomain function returns the codomain of the isogeny:

sage: E2 = phi.codomain(); E2
Elliptic Curve defined by y^2 = x^3 + 9*x + 3
over Finite Field of size 19

The constructor can also work to generate the isogeny from the domain and
codomain, and the equals operator has been overloaded so that it works with
isogenies (even when they are instantiated in different ways):

sage: psi = EllipticCurveIsogeny(E, None, E2, 3)
sage: psi == phi
True

The dual function returns the dual isogeny:
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sage: phihat = phi.dual(); phihat
Isogeny of degree 3 from Elliptic Curve defined by y^2 = x^3 + 9*x + 3
over Finite Field of size 19 to Elliptic Curve defined by
y^2 = x^3 + x + 2 over Finite Field of size 19
sage: P = E.random_point(); P
(17 : 7 : 1)
sage: phihat(phi(P)) == 3*P
True

For more complete and in-depth documentation of the sage EllipticCurveIsogeny
class, see the Sage documentation.
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