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Abstract

Bellare and Kohno (2004) introduced the notion of balance to quantify the resistance of a hash
function h to a generic collision attack. Motivated by their work, we consider the problem of quantifying
the resistance of h to a generic multi-collision attack. To this end, we introduce the notion of r-balance
µr(h) of h and obtain bounds on the success probability of finding an r-collision in terms of µr(h). These

bounds show that for a hash function with m image points, if the number of trials q is Θ
(

rm( r−1

r
)µr(h)

)

,

then it is possible to find r-collisions with a significant probability of success. The behaviour of random
functions and the expected number of trials to obtain an r-collision is studied. These results extend
and complete the earlier results obtained by Bellare and Kohno (2004) for collisions (i.e., r = 2). Going
beyond their work, we provide a new design criteria to provide quantifiable resistance to generic multi-
collision attacks. Further, we make a detailed probabilistic investigation of the variation of r-balance
over the set of all functions and obtain support for the view that most functions have r-balance close to
one.

1 Introduction

An (n,m)-hash function is a map h : X → Y , where |X| = n, |Y | = m and n > m > 0. A collision for
h is a pair of distinct points x, x′ ∈ X such that h(x) = h(x′). Since n > m, collisions necessarily exist.
For cryptographic applications, h should be designed such that it is infeasible for a resource-bounded
adversary to find a collision for h. Such a function is called collision resistant. The notion of a collision
has been generalized to that of a multi-collision. An r-way collision (or r-collision) consists of r distinct
domain points x1, x2, · · · , xr such that, h(x1) = h(x2) = · · · = h(xr). Again, for certain cryptographic
applications, the design goal is to ensure that for some suitable range of r, r-collisions are hard to find for
a resource-bounded adversary.

Given a hash function h, an algorithm to find an r-collision for h is called an attack. A generic attack
does not consider the manner in which the function h is defined, i.e., it does not consider the “internal
structure” of h. Instead, some points are picked from the domain and h is applied to them with the hope
that a subset of the points will yield an r-collision. In the context of generic attacks, the number of times
h is evaluated is taken to be the resource measure of an adversary.
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Suppose that q points x1, x2, · · · , xq are picked. Then the probability of obtaining an r-collision in-
creases monotonically with q. The domain points on which to apply h can be chosen in different ways.

1. Sampling without replacement. An r-collision by definition requires the domain points to be
distinct. Hence, one would like to use uniform random sampling without replacement to select the
domain points. In particular, xi is selected uniformly at random from X \{x1, . . . , xi−1}. Since it has
to be ensured that xi is distinct from x1, . . . , xi−1, this method is not very convenient to implement.
Also, the lack of independence among the xi’s makes it more difficult to analyse this scenario.

2. Sampling with replacement. In this method the domain points are independent and uniformly
distributed, i.e., xi is distributed uniformly over X and is independent of the previous choices.
From an algorithmic point of view, this is much more simpler to implement than sampling without
replacement.

3. Picking distinct points without sampling. Suppose that h is a uniform random function from
X to Y . Then it is pointless to use a sampling strategy for picking the domain points. One can
simply pick any q distinct points, apply h to them and look for a collision. The probability of success
does not depend on the particular set of q points that has been picked. This can also be considered
to be the uniform random distribution of q balls to m bins and then looking for a bin with at least
r balls.

In this formulation, the problem has been studied in the literature. McKinney [McK66] gives an exact
formula for the probability of finding r-collisions in q trials. But this formula gets more difficult to
evaluate as r grows. One can also express this probability using a multinomial cumulative distribution
function. Levin [Lev81] provides an efficient way to compute a multinomial distribution function by
expressing it as the conditional distribution of independent Poisson random variables given fixed
sum. These approximations, however, provide little intuition on the asymptotic behaviour of the
complexity of finding an r-collision. For r = 2, the complexity is Θ(m1/2) and the attack is usually
called the birthday attack.

Most works in the cryptography literature follow Point 3 above, i.e., these works ignore the actual hash
function and instead analyse a random function. See for example the exposition in [Pre93] and the more
recent consideration of the problem in [STKT06]. It is then (implicitly) implied that the results for a
random function also hold for the actual hash function.

This approach has been eloquently criticised by Bellare and Kohno [BK04]. They argue that, given
a concrete hash function h, one cannot assume that h has “random behaviour”, since then, one ends up
“not analysing the given h, but rather analysing an abstract and ideal object which ultimately has no
connection to h, regardless of the design principle underlying h”.

The specific case of r = 2 (i.e., collisions) is considered in [BK04]. Suppose that the domain points
x1, . . . , xq are chosen using sampling with replacements as explained above. Then, it is usually assumed
that the birthday attack applies to the hash function h. Bellare and Kohno [BK04] explain the drawback
of this argument. Suppose that a point x is drawn uniformly at random from X. Then it does not follow
that the point h(x) is uniformly distributed over Y . Instead, the probability that a h(x) equals a particular
y ∈ Y is |h−1(y)|/|X|, where h−1(y) is the set of all pre-images of y under h. So the points h(x1), . . . , h(xq)
are uniformly distributed over Y if and only if h is regular, i.e., every range point has the same number
of pre-images under h. This need not be true for the particular hash function under consideration. In
fact, Bellare and Kohno [BK04] comprehensively cover textbook discussions of birthday attacks on hash
functions and point out the inadequate and sometimes incorrect viewpoints that have been provided.

Having exposed the fallacy in the analysis of collision resistance of a concrete hash function h, Bellare
and Kohno [BK04] turn to the problem of quantifying the collision resistance of h. They introduce an

2



important measure µ(h), called the balance of a hash function h. This is defined to be µ(h) = − logm((n2
1 +

· · ·+ n2
m)/n2), where Y = {y1, . . . , ym} and ni is the number of pre-images of yi. In other words, −µ(h) is

the logarithm of the probability that h(x) = h(x′) for x, x′ picked uniformly and independently from X.
Note that this includes the possibility that x = x′ which is a trivial collision, i.e., −µ(h) is the logarithm
of the probability of obtaining a possibly trivial collision. The rationale for considering possibly trivial
collisions in the definition of balance is that if n is large, then with high probability it is a proper collision.

An extensive analysis is carried out to quantify the collision resistance of h in terms of the balance.
To this end, two quantities are introduced: Ch(q) and Qh(c), where Ch(q) is the probability of finding a
collision in q trials and Qh(c) = min{q : Ch(q) ≥ c} is the minimum number of queries required to find a
collision with probability c. Bounds on Ch(q) are obtained in terms of the balance µ(h) and these bounds
are then translated to obtain bounds on Qh(c). Section 1.3 summarizes the bounds that they obtain.
They further show that regular functions offer (slightly) better collision resistance compared to random
functions.

1.1 Our Contributions

The work done by Bellare and Kohno in [BK04] is for r = 2. We continue and to a certain extent complete
the work started in [BK04] by considering r-collisions for arbitrary r ≥ 2. As noted above, like [BK04],
we also work in the setting where the domain points are chosen according to uniform random sampling
with replacement. We call this the generic multi-collision attack. The first question that we consider is
the following.

What is the notion of balance of an (n,m)-hash function h in the context of r-collisions?

To answer this question, we introduce µr(h) which we call the r-balance of the function h. This is defined
to be −(logm pr)/(r − 1), where pr is the probability that r points chosen independently and uniformly at
random from the domain form an r-collision. For r1 < r2, we show the relation between r1-balance and
r2-balance. As in [BK04], the notion of r-balance then leads to the following question.

How is the performance of the generic multi-collision attack for finding r-collisions related to
the notion of r-balance?

Similar to [BK04], we study two quantities.

1. C
(r)
h (q). This is the probability of finding an r-collision in q trials.

2. Q
(r)
h (c). This is the minimum number of queries required to find an r-collision with probability c.

Upper and lower bounds are obtained on C
(r)
h (q). These bounds on C

(r)
h (q) are translated to obtain upper

and lower bounds on Q
(r)
h (c). From this it follows that for an (n,m)-hash function, the number of queries

required to find an r-collision with significant probability is Θ(rm
r−1

r
µr(h)).

Following the agenda set out in [BK04], we next consider a uniform random (n,m)-hash function and

introduce C
$(r)
n,m(q) (resp. Q

$(r)
n,m(c)), which is the probability (resp. number of queries) for finding an r-

collision with q queries (resp. probability c). Again bounds on C
$(r)
n,m(q) are obtained which are used to

obtain bounds on Q
$(r)
n,m(c). It is shown that if h is a regular (n,m)-hash function, then for a certain range

of q, the upper bound on C
(r)
h (q) is lesser than a lower bound on C

$(r)
n,m(q). As a consequence, using the

same number of queries, the probability of finding an r-collision for a regular function is lesser than that
of a uniform random function. This shows that compared to random functions, regular functions provide
better resistance to the generic multi-collision attack.
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Expected number of trials. In Section 4, we provide bounds on the expected number of trials to obtain
an r-collision. For collisions, this was done by Bellare and Kohno and we adapt their general arguments
to combine with the bounds obtained in this paper.

In an earlier work, Klamkin and Newman [KN67] consider the following problem: given m equally
likely alternatives, repeatedly choose the alternatives one by one with replacements until one item occurs
r times. They study the expected number of trials for this event to occur and show that as m goes to
infinity the expected number of trials is approximately rΓ(1 + 1/r)m(r−1)/r, where Γ denotes the usual
Gamma function defined by

Γ(u) =

∫ ∞

0
e−xxu−1dx.

In Section 4.2, we show the relation between this problem and finding r-collisions for a concrete hash
function. In the process, we generalise their approach to work when the alternatives are not necessarily
equally likely.

Textbook discussion. Most textbooks analyse collisions obtained by the birthday attack. As mentioned
earlier, inadequacies of such analysis has been discussed in [BK04]. On the other hand, to the best of our
knowledge, no textbook analyses r-collisions with respect to the generic multi-collision attack. The only
analysis available in the literature is using the “balls and bins” approach as discussed above.

Relation to the work of Bellare and Kohno [BK04]. At a general level, we follow the path set out
in [BK04]. Some of the results that we obtain for general r have, in a way, been already anticipated by the
results for r = 2 in [BK04]. Having said this, we would also like to note that our analysis and proofs are
not straightforward extensions of [BK04]. Some of the important differences are noted below.

Definition of balance. A straightforward extension of the Bellare and Kohno’s definition of balance will
be based on the logarithm of (nr

1 + · · ·+ nr
m)/nr. The quantity (nr

1 + · · ·+ nr
m)/nr is the probability

that h(x1) = · · · = h(xr) when x1, . . . , xr are sampled with replacement from the domain. This would
include possibly trivial r-collisions, i.e., it would include the possibility that xi = xj for some i 6= j.

The definition of r-balance that we define is based on the probability of actual r-collisions and not
possibly trivial r-collisions. As we show later, this probability is ((n1)r + · · · + (nm)r)/n

r, where
(ni)r = ni(ni − 1) · · · (ni − r +1). This expression is somewhat more complicated, but, we are able to
satisfactorily analyse it. The advantage is that our bounds are better than what would be obtained
otherwise.

Lower bound on the success probability. In [BK04], the lower bound on Ch(q) is shown to hold only
for a certain range of q.

In contrast, the lower bound on C
(r)
h (q) that we obtain holds for all q. This is a consequence of the

fact that C
(r)
h (q) is monotone increasing in q. (Similarly, Ch(q) is also monotone increasing in q,

but, [BK04] do not consider the consequences of this fact.)

Upper bound on the number of queries. The lower bound on success probability translates into an
upper bound on the number of queries.

We note an issue of interpretation. In [BK04], it is mentioned that the bounds on Qh(c) are meaningful

only for a certain range of c. But, more precisely, as we point out later, the lower bound on Q
(r)
h (c)

holds for all c, while the upper bound holds only for a certain range of c. This means that for a
value of c outside this range, we cannot upper bound the number of queries required to obtain success
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probability c. But, we still can say that at least a certain number of queries will be required to obtain
success probability c.

Going beyond the Bellare-Kohno agenda. There are two main issues that are considered in this
work but have not been considered in [BK04].

1. One criticism about the notion of r-balance is that it is impractical to compute its value for practical
hash functions. This may be considered to limit the usefulness of the notion. Our argument against
this is twofold.

First, the notion of r-balance helps in exactly pinning down the resistance of a hash function to
generic multi-collision attack. This highlights its central role in our understanding of multi-collisions
which is important irrespective of whether one can compute the value or not.

Second, and from a more practical point of view, we show that this notion leads to a possibly new
design criteria for practical hash functions. Suppose that a designer wishes to provably ensure a
certain degree of resistance to r-collision attacks, i.e., the designer wishes to prove that finding r-
collisions must require a minimum number of hash function evaluations. In Section 2.6, we show
that using the notion of r-balance one can satisfactorily give a rather precise answer to this question.
In particular, we show that if the number of pre-images of any range point is bounded above, then
r-balance has a provable lower bound which translates into a provable lower bound on the number
of hash function evaluations to find an r-collision using the generic attack.

2. An important question regarding r-balance is whether most functions have r-balance close to one.
We make a detailed investigation of this question using a probabilistic approach. The balance of a
random function is a random variable. Probability concentration bounds for this random variable
is obtained using Markov inequality, Chebyshev inequality and Chernoff bound. This allows us to
support the view that most functions have r-balance close to one.

1.2 Related Work

The property of r-collision freeness has been suggested as a useful tool in building cryptographic protocols.
It has been used for the micropayment scheme Micromint of Rivest and Shamir [RS96], for identification
schemes by Girault and Stern [GS94] and for signature schemes by Brickell et. al. [BPVY00].

The intuition behind relying on r-collision freeness is that finding multi-collisions is harder than finding
collisions. This is true when the function is truly random. But concrete hash functions mostly lack
“random behaviour”. For the case of hash functions based on an iterated construction, Joux [Jou04]
has demonstrated that r-collisions in iterated hash functions are not much harder to find than ordinary
collisions, even for very large values of r. Following Joux’s attack, several works [NS07, HS06] have extended
the attack to more general classes of constructions.

There are several space efficient algorithms that find cycles in random graphs. These methods can be
used to find collisions in a hash function. It would be interesting to find space efficient algorithms to find
multi-collisions. This problem has been addressed recently by Joux and Lucks in [JL09]. They give an
algorithm to find 3-collisions that roughly uses mδ storage and whose running time is m1−δ for δ ≤ 3. This
shows that finding 3-collisions in time m2/3 would require m1/3 units of storage.

1.3 Bounds Obtained by Bellare and Kohno [BK04]

The following results summarize the bounds on Ch(q) and Qh(c) obtained in [BK04].
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Theorem 1.1. [BK04] Let h be an (n,m)-hash function and m ≥ 2. Let α ≥ 0 be any real number. Then
for any integer q ≥ 2

(1 − α2/4 − α) ·
(

q

2

)

·
(

1

mµ(h)
− 1

n

)

≤ Ch(q) ≤
(

q

2

)

·
(

1

mµ(h)
− 1

n

)

, (1)

the lower bound being true under the additional assumption that

q ≤ α ·
(

1 − m

n

)

· mµ(h)/2. (2)

Theorem 1.2. [BK04] Let h be an (n,m)-hash function and n ≥ 2m ≥ 4. Let α ≥ 0 be any real number
such that β = 1 − α2/4 − α > 0. Let c be a real number in the interval 0 ≤ c < 1. Then

√
2c · mµ(h)/2 ≤ Qh(c) ≤ 1 +

√
4c

β
· mµ(h)/2 , (3)

the upper bound being true under the additional assumption that

c ≤ (α · (1 − m/n) − m−µ(h)/2)2 · β

4
. (4)

2 Balance-Based Analysis of the Generic Multi-Collision Attack

The generic multi-collision attack that we consider is the following. Given an (n,m)-hash function h :
X → Y do the following.

1. Pick x1, . . . , xq independently and uniform at random from X.

2. Compute yi = h(xi) for 1 ≤ i ≤ q.

An r-collision is found if there are indices i1, . . . , ir with 1 ≤ i1 < i2 < · · · < ir ≤ q such that yi1 = · · · = yir

and the domain points xi1, . . . , xir are distinct. To find an r-collision we certainly need q ≥ r.

Our goal here is to analyse the performance of the generic multi-collision attack in terms of what we
call the r-balance of h. Equivalently, we want to analyse how the following quantities vary with r-balance.

• C
(r)
h (q): probability that an r-collision for h is found in q trials (q ≥ r). This function is monotonically

increasing in q since the probability of finding r-collisions cannot decrease as the number of trials
increases.

• Q
(r)
h (c): the minimum number of trials required to obtain an r-collision with probability greater than

or equal to c. That is,

Q
(r)
h (c) = min{q : C

(r)
h (q) ≥ c}. (5)

Higher the value of c, more is the number of trials needed to find an r-collision. Hence Q
(r)
h (c) is

monotonically increasing in c.

Note that, for a balance-based analysis of the generic multi-collision attack, the definition of balance
given in [BK04] will not be useful. We need to define balance in the context of r-collisions. From the

definition, it follows that C
(2)
h (q) = Ch(q) and Q

(2)
h (c) = Qh(c).
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2.1 Notation

If d is a non-negative integer, then [d] = {1, 2, · · · , d}. For an integer r ≥ 2, [d]r denotes the set of all
r-element subsets of [d]. [d]r,2 denotes the set of all 2-element subsets of [d]r. Let r ≥ 2 and d ≥ 0 be
integers. Then (d)r is defined as follows.

(d)r =

{
d(d − 1) · · · (d − r + 1) if d ≥ r
0 otherwise

Let h : X → Y be an (n,m)-hash function. For any y ∈ Y , h−1(y) = {x ∈ X : h(x) = y}. Let
Y = {y1, y2, · · · , ym}. Then for i ∈ [m], ni = |h−1(yi)| denotes the size of the set of pre-images of yi under
h.

2.2 Definition of r-Balance

A natural way to define the r-balance of h would be in terms of the probability of finding r-collisions for
h. To this end, we first prove the following result.

Proposition 2.1. Let h : X → Y be a hash function whose domain X and range Y = {y1, y2, · · · , ym}
have sizes n,m ≥ r, respectively. For i ∈ [m], let ni = |h−1(yi)| denote the size of the pre-image of yi under
h. Let r elements be chosen independently and uniformly at random from the domain X. The probability
that they form an r-collision is

pr =

∑m
i=1(ni)r

nr
.

Proof. Let r elements w1, w2, · · · , wr be picked independently and uniformly at random from the domain
X. Let E be the event that these elements form an r-collision. Let A denote the event that these are distinct
and for 1 ≤ i ≤ m, let Bi be the event that h(w1) = · · · = h(wr) = yi. Then E = AB1 ∪AB2 ∪ · · · ∪ABm.

Since Bi’s are mutually exclusive events, we have

Pr[E] =

m∑

i=1

Pr[ABi] =

m∑

i=1

Pr[A|Bi] · Pr[Bi] =

m∑

i=1

ni(ni − 1) · · · (ni − r + 1)

nr
i

· nr
i

nr

=

m∑

i=1

ni(ni − 1) · · · (ni − r + 1)

nr

Since pr = Pr[E], the proposition follows.

Definition 2.1. Let h : X → Y be a hash function with |X| = n and Y = {y1, y2, · · · , ym}. Let n ≥ r
and pr > 0. The r-balance of h, denoted µr(h), is defined as

µr(h) =
1

r − 1
· logm

(
1

pr

)

. (6)

If ni < r for all i, then there cannot be any r-collisions, that is, pr = 0. A necessary condition for the
existence of an r-collision is that ni ≥ r for at least one i. If n ≥ rm, then an r-collision will certainly exist
but there could be an r-collision even if n < rm. We only require the condition that pr > 0.
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Consider the case r = 2. From the definition of µ(h), we have

m−µ2(h) =

∑m
i=1 ni(ni − 1)

n2
=

∑m
i=1 ni

2

n2
−
∑m

i=1 ni

n
= m−µ(h) − 1

n
.

This shows that µ2(h) is always greater than µ(h). The difference gets smaller as n grows larger.

The following lemma will be useful in obtaining bounds on the r-balance of a hash function.

Lemma 2.2. Let r ≥ 2 be an integer. Let n1, n2, · · · , nm be non-negative integers such that
∑m

i=1 ni = n.
Then

m ·
( n

m

)

r
≤

m∑

i=1

(ni)r ≤ (n)r.

The upper bound is attained when exactly one of the ni equals n and all others are zero, while the lower
bound is attained when all the nis are equal.

Proof. We will prove the bounds using a counting argument. Let S(ni) denote the set of all distinct
arrangements of ni things taken r at a time. Then |S(ni)| = (ni)r for i = 1, · · ·m. If nj ≤ r − 1 for some j
then S(nj) = ∅. Assume, without loss of generality, that the first k of the ni’s are greater than r − 1. By
definition n =

∑m
i=1 ni. Let S denote the set of all distinct arrangements of n things taken r at a time.

Each arrangement in S(ni) is also present in S. This shows that S(n1) ∪ S(n2) ∪ · · · ∪ S(nk) ⊆ S. Also
since the S(ni)’s are disjoint, we have

(n1)r + (n2)r + · · · + (nk)r ≤ (n1 + n2 + · · · + nk)r = (n)r

Equality occurs when k = 0 i.e., one of the ni’s is equal to n and the rest are zero. This gives the upper
bound on

∑m
i=1(ni)r.

Now we claim that
∑m

i=1(ni)r attains its minimum when all ni’s are equal i.e., n1 = n2 = · · · = nm = n
m .

Suppose there exist ni and nj such that ni > n
m and nj < n

m . Assume, without loss of generality, that
i = 1 and j = 2. To prove the claim, we need but show that

(n1 − 1)r + (n2 + 1)r + · · · + (nk)r < (n1)r + (n2)r + · · · + (nk)r.

Let Ti denote the set containing ni items. Clearly, T1 ∪ T2 ∪ · · · ∪ Tm = X. Let x ∈ T1. The number of
arrangements of items in T1 taken r at a time that contain x is equal to r(n1 − 1)r−1. Suppose we remove
x from T1 and put it in T2. Then the number of arrangements of items in T2 taken r at a time that contain
x is equal to r(n2)r−1. Thus we have

((n1)r + (n2)r + · · · + (nk)r) − ((n1 − 1)r + (n2 + 1)r + · · · + (nk)r)

= |S(n1) ∪ S(n2) ∪ · · · ∪ S(nm)| − |S(n1 − 1) ∪ S(n2 + 1) ∪ · · · ∪ S(nm)|
= |S(n1) ∪ S(n2)| − |S(n1 − 1) ∪ S(n2 + 1)|
= |S(n1 − 1)| + r(n1 − 1)r−1 + |S(n2)| − |S(n1 − 1)| − |S(n2)| − r(n2)r−1

= r(n1 − 1)r−1 − r(n2)r−1

> 0

since n1 − 1 > n2. This gives the lower bound.

The following proposition provides the minimum and maximum values of the r-balance of a function
and the conditions under which they are attained. The proof follows directly from the definition of µr(h)
and Proposition 2.2.
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Proposition 2.3. Let h be an (n,m)-hash function. Then

1

r − 1
logm

nr

(n)r
≤ µr(h) ≤ 1

r − 1
logm

nr

m ·
(

n
m

)

r

(7)

The lower bound is attained when h is a constant function and the upper bound is attained when h is a
regular function.

Let µmin
r (n,m) and µmax

r (n,m) denote the minimum and maximum values of the r-balance of an (n,m)-
hash function. The quantity µmin

r (n,m) can be approximated as follows.

µmin
r (n,m) =

1

r − 1
logm

nr

(n)r
=

1

r − 1
logm

1
(
1 − 1

n

)
· · ·
(
1 − r−1

n

)

≈ 1

r − 1
logm

1

e−1/n · · · e−(r−1)/n
=

1

r − 1
logm

1

e−(r
2)/n

=
r

2n(ln m)
.

This shows that, for large n, the µmin
r (n,m) is close to zero. Similarly one can approximate µmax

r (n,m) as
follows.

µmax
r (n,m) =

1

r − 1
logm

nr

m ·
(

n
m

)

r

=
1

r − 1
logm

mr−1

(
1 − m

n

)
· · ·
(

1 − (r−1)m
n

)

≈ 1

r − 1
logm

mr−1

e−m/n · · · e−(r−1)m/n

=
1

r − 1
logm

(

mr−1e(
r
2)m/n

)

= 1 +
rm

2n(ln m)
.

This shows that for large n, µmax
r (n,m) is close to one.

2.3 Relation Between r1-Balance and r2-Balance

One natural question that arises is whether it is easy to find r2-collisions for a given hash function given
that r1-collisions can be found easily, for r1 6= r2. We will analyse this by looking at the difference between
the r1-balance and r2-balance of the function. In the following discussion, we will write µr in place of
µr(h).

Proposition 2.4. Let h be an (n,m)-hash function with n1 ≥ n2 ≥ · · · ≥ nm where the ni’s are as defined
earlier. Let 2 ≤ r1 < r2 ≤ n1. Let nj be the smallest among the ni’s which is greater than or equal to r2.
Let the function fr1,r2 be defined as follows:

fr1,r2(x) = (x − r1)(x − r1 − 1) · · · (x − r2 + 1).

Then (
r2 − 1

r1 − 1

)

µr2 −
1

r1 − 1
logm

nr2−r1

fr1,r2(nj)
≤ µr1 ≤

(
r2 − 1

r1 − 1

)

µr2 −
1

r1 − 1
logm

nr2−r1

fr1,r2(n1)
.

Note. For practical values of n, m and small r2, nj will be equal to nm for most functions.
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Proof. Let r1 be fixed. We will prove this result using induction on r2. For the base case, suppose that
r2 = r1 + 1 = r, say.

(nj − r + 1)

m∑

i=1

(ni)r−1 ≤
m∑

i=1

(ni)r ≤ (n1 − r + 1)

m∑

i=1

(ni)r−1. (8)

From the definition of r-balance we have

(r − 1)µr − (r − 2)µr−1 = logm n + logm

∑m
i=1(ni)r−1
∑m

i=1(ni)r
. (9)

Combining inequality (8) and Equation (9) we get

logm
n

n1 − r + 1
≤ (r − 1)µr − (r − 2)µr−1 ≤ logm

n

nj − r + 1
(

r − 1

r − 2

)

µr −
1

r − 2
logm

n

nj − r + 1
≤ µr−1 ≤

(
r − 1

r − 2

)

µr −
1

r − 2
logm

n

n1 − r + 1
. (10)

This completes the proof of the base case. Suppose now that the result holds for r2 − 1. We need to show
that it holds for r2. First, consider the lower bound. By induction hypothesis we have

µr1 ≥
(

r2 − 2

r1 − 1

)

µr2−1 −
1

r1 − 1
logm

nr2−r1−1

fr1,r2−1(nj)
. (11)

Inequality (10) gives us a lower bound on µr2 as follows:

µr2−1 ≥
(

r2 − 1

r2 − 2

)

µr2 −
1

r2 − 2
logm

n

nj − r2 + 1
.

Substituting this lower bound in inequality (11), we get,

µr1 ≥
(

r2 − 2

r1 − 1

)((
r2 − 1

r2 − 2

)

µr2 −
1

r2 − 2
logm

n

nj − r2 + 1

)

− 1

r1 − 1
logm

nr2−r1−1

fr1,r2−1(nj)

=

(
r2 − 1

r1 − 1

)

µr2 −
1

r1 − 1
logm

nr2−r1

(nj − r2 + 1)fr1,r2−1(nj)

=

(
r2 − 1

r1 − 1

)

µr2 −
1

r1 − 1
logm

nr2−r1

fr1,r2(nj)
.

Applying the same technique to the upper bound, we get the required result.

The following corollary follows directly from Proposition 2.4 and is simpler to understand.

Corollary 2.5.
∣
∣
∣
∣
µr1 −

(
r2 − 1

r1 − 1

)

µr2

∣
∣
∣
∣
<

1

r1 − 1
logm

nr2−r1

fr1,r2(nj)
≤ 1

r1 − 1
logm

nr2−r1

fr1,r2(nm)
.

We can interpret Proposition 2.4 as follows: If r2 collisions can be found easily for a given hash function,
then it is not much harder to find r1 collisions for r2 > r1. If r1-balance (resp. r2-balance) is known for
a function, then one can get some idea of the value r2-balance (resp. r1-balance). Note that the bounds
coincide for regular and constant functions.

Note. If r2-collisions do not exist, then we cannot say anything about how hard it is to find r1-collisions.
For example, consider a function for which (r+1)-collisions do not exist. Then ni ≤ r for all i ∈ {1, · · · ,m}.
Finding r-collisions for functions of such form is not necessarily easy. If ni = r for all i (and so n = rm),
then the function is a regular function and has the maximum balance. We later show that such functions
offer the maximum resistance (among all (rm,m) functions) to generic multi-collision attacks.
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2.4 Bounds on C
(r)
h (q)

For I ∈ [q]r, I = {i1, i2, · · · , ir}, define a random variable ZI as follows.

ZI =

{
1 if xi1 , xi2 , · · · , xir form an r-collision
0 otherwise

From Proposition 2.1 and the definition of r-balance we have

E[ZI ] = Pr[ZI = 1] =

∑m
i=1(ni)r

nr
= m−(r−1)µr(h) = pr (12)

Then Z =
∑

I∈[q]r
ZI denotes the number of r-collisions. The expected value of Z is

(q
r

)
m−(r−1)µr(h).

We are interested in an r-collision and would like to know the number of queries required to have the
expected value of Z to be equal to 1. This is given by the value of q such that (q)r = r! × m(r−1)µr(h).
Using the inequality (q − r)r < (q)r, it can be easily shown that choosing q = r + (r!)1/r × m(r−1)µr(h)/r

ensures that E[Z] ≥ 1. This gives an indication of the “right” value of q required to obtain an r-collision.

We now consider that q trials are made and obtain bounds on C
(r)
h (q). An upper bound on C

(r)
h (q) is

easy to obtain.

Theorem 2.6 (Upper Bound on C
(r)
h (q)). Let h be an (n,m)-hash function with n ≥ r and m ≥ 2. Then

for any integer q ≥ r,

C
(r)
h (q) ≤

(
q

r

)

pr. (13)

Proof. Let {i1, . . . , ir} ⊆ [q]. The probability that xi1, . . . , xir forms an r-collision is pr. The result now
follows from the union bound on probability.

To obtain a lower bound on C
(r)
h (q), we need the following lemma.

Lemma 2.7. Let h be an (n,m)-hash function and ℓ be an integer such that ℓ > r. Then
(

m∑

i=1

(ni)ℓ

)r

≤
(

m∑

i=1

(ni)r

)ℓ

. (14)

As a consequence, pℓ ≤ p
ℓ/r
r .

Proof. Without loss of generality assume that n1 ≥ n2 ≥ · · · ≥ nm. Let Ai = (ni)ℓ, Bi = (ni)r and
Ci = (ni − r) · · · (ni − ℓ + 1), so that Ai = BiCi. We are required to show

(B1C1 + · · · + BmCm)r ≤ (B1 + · · · + Bm)ℓ. (15)

Consider the multinomial expansion of the left hand side of this equation. A term of this expansion is of
the form

r!

d1! d2! · · · dm!
(B1C1)

d1(B2C2)
d2 · · · (BmCm)dm

where d1 + · · · + dm = r. We show that this term is less than or equal to

ℓ!

(d1 + ℓ − r)! d2! · · · dm!
B

d1+(ℓ−r)
1 Bd2

2 · · ·Bdm
m

which (since ℓ > r) is a term in the multinomial expansion of the right hand side of (15). This inequality
is shown by separately proving the following two inequalities.

11



1. r!
d1! d2!···dm! ≤ ℓ!

(d1+ℓ−r)! d2!···dm! .

2. (B1C1)
d1(B2C2)

d2 · · · (BmCm)dm ≤ B
d1+(ℓ−r)
1 Bd2

2 · · ·Bdm
m .

Point (1) holds if
r!

d1!
≤ ℓ!

(d1 + ℓ − r)!
, i.e., if

ℓ(ℓ − 1) · · · (r + 1)

(d1 + ℓ − r)(d1 + ℓ − r − 1) · · · (d1 + 1)
≥ 1.

This inequality holds if for 1 ≤ j ≤ ℓ − r, r + j ≥ d1 + j which clearly holds since d1 ≤ r.

Now consider the second point, which holds if Cd1
1 Cd2

2 · · ·Cdm
m ≤ Bℓ−r

1 . For 1 ≤ j ≤ ℓ − r, let Ej =
(n1 − r − j + 1)d1 · · · (nm − r − j + 1)dm . Clearly Ej ≤ E1 for 1 ≤ j ≤ ℓ − r. Then, it follows that

Cd1
1 Cd2

2 · · ·Cdm
m = E1E2 · · ·Eℓ−r ≤ E1

ℓ−r

Point (2) now follows if E1 ≤ B1. Using the assumption that n1 ≥ ni for 1 ≤ i ≤ m, it follows that

E1 = (n1 − r)d1 · · · (nm − r)dm ≤ (n1 − r)d1+···+dm = (n1 − r)r ≤ (n1)r = B1

This completes the proof of (14).

By definition,

pℓ =

∑m
i=1(ni)ℓ

nℓ
≤ (
∑m

i=1(ni)r)
ℓ/r

nℓ
=

(∑m
i=1(ni)r

nr

)ℓ/r

= pℓ/r
r .

This completes the proof.

Theorem 2.8 (Lower Bound on C
(r)
h (q)). Let h be an (n,m)-hash function with n ≥ r and m ≥ 2. Then

C
(r)
h (q) ≥ 1

2

(

2 −
r−1∑

k=0

(
r

k

)(
q − r

r − k

)

pr
(r−k)/r

)

·
(

q

r

)

· pr. (16)

Proof. Let [q]r,2 denote the set of all 2-element subsets of [q]r. By the principle of inclusion and exclusion,
we have

C
(r)
h (q) = Pr




∨

I∈[q]r

ZI = 1



 (17)

=
∑

I∈[q]r

Pr[ZI = 1] −
∑

I,J∈[q]r
I 6=J

Pr[ZI = 1 ∧ ZJ = 1]

+ · · · + (−1)(
q
r)−1 Pr




∧

I∈[q]r

ZI = 1



 (18)

Considering the first two terms in the above equation will give us a lower bound on C
(r)
h (q).

C
(r)
h (q) ≥

∑

I∈[q]r

Pr[ZI = 1] −
∑

{I,J}∈[q]r,2

Pr[ZI = 1 ∧ ZJ = 1] (19)
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∑

I∈[q]r

Pr[ZI = 1] =

(
q

r

)

Pr[ZI = 1] =

(
q

r

)

· pr (20)

In order to obtain the required lower bound, we need to maximize the second term of Equation (19). This
is where our proof deviates from the one given in [BK04].

For k = 0, 1, · · · , r − 1, let Tk be the number of pairs {I, J} ∈ [q]r,2 such that |I ∩ J | = k. The k

common elements can be chosen in
(
q
k

)
ways. The remaining r − k elements in I can be chosen in

(
q−k
r−k

)

ways and for each such I, we can choose the remaining r− k elements in J in
(q−r
r−k

)
ways. But this way we

are counting every unordered pair twice (i.e., {I, J} and {J, I} are indistinguishable but both are counted).
Therefore, we have

Tk =
1

2

(
q

k

)(
q − k

r − k

)(
q − r

r − k

)

=
1

2

(
q

r

)(
r

k

)(
q − r

r − k

)

(21)

We can now break up the second term in Equation (19) as follows:

∑

{I,J}∈[q]r,2

Pr[ZI = 1 ∧ ZJ = 1] =
r−1∑

k=0

Tk · Pr[ZI = 1 ∧ ZJ = 1 | (|I ∩ J | = k)] (22)

Let xI and xJ denote the set of points corresponding to the index sets I and J respectively. Suppose I
and J are disjoint (i.e., k = 0). Due to the disjointedness of I and J and the sampling strategy, the value
ZI takes is independent of the value ZJ takes. So when k = 0, we have,

Pr[ZI = 1 ∧ ZJ = 1] = Pr[ZI = 1] · Pr[ZJ = 1] = pr
2. (23)

When k ≥ 1, the events ZI = 1 and ZJ = 1 indicate that the elements in xI map to a common point and
so do the elements in xJ . Since I ∩ J 6= ∅, the common image of the elements of both xI and xJ must be
the same. Hence Pr[ZI = 1 ∧ ZJ = 1|(|I ∩ J | = k)] is the probability that the 2r − k distinct elements
corresponding to the index set I ∪ J form a 2r − k-collision. That is,

Pr[ZI = 1 ∧ ZJ = 1] = p2r−k (24)

Combining Equations (21), (22), (23) and (24), we obtain the following:

Pr[ZI = 1 ∧ ZJ = 1] = T0 · pr
2 +

r−1∑

k=1

Tk · p2r−k (25)

To obtain an upper bound on the above expression, we need an upper bound on p2r−k. From Lemma 2.7,
we have

p2r−k ≤ p(2r−k)/r
r = prp

(r−k)/r
r . (26)

Combining Equations (21), (25) and (26), we obtain

∑

{I,J}∈[q]r,2

Pr[ZI = 1 ∧ ZJ = 1] ≤ 1

2

(
q

r

)

· pr ·
r−1∑

k=0

(
r

k

)(
q − r

r − k

)

pr
(r−k)/r (27)

Combining Equations (19), (20) and (27), we obtain the lower bound stated in Equation (16) as follows.
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Figure 1: Behaviour of L
(r)
h (q) for r = 2 and r = 3 with m = 232 and µr = 0.9.

C
(r)
h (q) ≥

(
q

r

)

· pr −
1

2

(
q

r

)

· pr ·
r−1∑

k=0

(
r

k

)(
q − r

r − k

)

pr
(r−k)/r

=
1

2

(
q

r

)

· pr ·
(

2 −
r−1∑

k=0

(
r

k

)(
q − r

r − k

)

pr
(r−k)/r

)

Towards a better lower bound. We now discuss the behaviour of this lower bound. Let

s
(r)
h (q) = 2 −

r−1∑

k=0

(
r

k

)(
q − r

r − k

)

pr
(r−k)/r

and let the lower bound of Theorem 2.8 be denoted L
(r)
h (q). We have

L
(r)
h (q) =

1

2
· pr

(
q

r

)

s
(r)
h (q).

L
(r)
h (q) is a polynomial in q of degree 2r. One can make the following observations about this polynomial.
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Table 1: h is a hash function with n = 2512, m = 2160 and µ2(h) = 0.8.

r qmax
(r)
h Lower bound Upper bound Ratio

on C
(r)
h (q) on C

(r)
h (q) (upper bound/lower bound)

3 1.9327 × 1025 2.9312 × 10−3 1.0391 × 10−2 3.5449
4 2.4385 × 1028 8.6908 × 10−5 3.7393 × 10−4 4.3025
5 1.6855 × 1030 1.6724 × 10−6 8.4565 × 10−6 5.0565
6 2.7482 × 1031 2.2583 × 10−8 1.3117 × 10−7 5.8083
7 1.9718 × 1032 2.2585 × 10−10 1.4813 × 10−9 6.5587
8 8.4939 × 1032 1.7403 × 10−12 1.2719 × 10−11 7.3085
9 2.6088 × 1033 1.065 × 10−14 8.5817 × 10−14 8.0579
10 6.3321 × 1033 5.3018 × 10−17 4.6689 × 10−16 8.8062

• The binomial coefficient
(
q
r

)
= 1

r!q(q − 1) · · · (q − (r − 1)) and it vanishes at the points 0, 1, · · · , r − 1

which means these are roots of L
(r)
h (q). It is also monotone increasing and positive for q ≥ r.

• s
(r)
h (q) is decreasing in q and becomes negative after a certain point causing L

(r)
h (q) to decrease.

• The polynomial s
(r)
h (q) has exactly one sign change and by Descartes’ rule of signs it will have at

most one positive real root.

These observations show that L
(r)
h (q) has exactly r +1 non-negative real roots including 0, 1, · · · , r− 1.

This is because L
(r)
h (q) is positive at q = r and after a certain point becomes negative which means it is

zero at exactly one point after r − 1. Let the (r + 1)st real root be denoted as θ. In the interval ranging

from q = r to q = θ, the curve representing L
(r)
h (q) must have one turning point. Figure 1 gives some

examples to show how L
(r)
h (q) behaves. Let the value of q at which the curve turns be denoted qmax

(r)
h and

let cmax
(r)
h = L

(r)
h (qmax

(r)
h ). For q ≤ qmax

(r)
h the lower bound will be L

(r)
h (q). For q > qmax

(r)
h , L

(r)
h (q) is

decreasing but the probability of finding r-collisions cannot decrease as we increase the number of trials.

Hence L
(r)
h (qmax

(r)
h ) is a better lower bound. Based on this discussion and Theorems 2.6 and 2.8, we are

able to state more appropriate bounds on C
(r)
h (q).

Theorem 2.9. Let h be an (n,m)-hash function. Then

max
r≤t≤q

L
(r)
h (t) ≤ C

(r)
h (q) ≤

(
q

r

)

· pr. (28)

Note. Theorem 2.9 is valid for all q (and for all r ≥ 2). This is to be contrasted with the bound obtained
in [BK04] for the case r = 2 (see Theorem 1.1).

How close are the bounds? Since L
(r)
h (q) is difficult to analyse, we provide computational results to

show how close the bounds are. Table 1 provides lower and upper bounds on C
(r)
h (q) for different values

of r and a fixed h. Both the bounds are evaluated at qmax
(r)
h . For values of q ≥ qmax

(r)
h , the gap between
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the bounds increases. The table indicates that the bounds are quite close. The ratio increases by around
0.75 with every one-step increases in r.

The lower bound stated in Theorem 2.9 can be further simplified as shown below.

Corollary 2.10. Let h be an (n,m)-hash function. Assume n ≥ r ≥ 2. Let

α(q) = qm−( r−1
r )µr(h). (29)

Then C
(r)
h (q) ≥ max

r≤t≤q

1

2
(3 − (α(t) + 1)r) ·

(
t

r

)

· m−(r−1)µr(h).

Proof. We proceed as in the proof of Theorem 2.8 upto Equation (27). It is after this point that the proof
will deviate. Using Equations (19), (20) and (27) we get

C
(r)
h (q) ≥

(
q

r

)

· pr −
1

2

(
q

r

)

· pr ·
r−1∑

k=0

(
r

k

)(
q − r

r − k

)

pr
(r−k)/r

=
1

2

(
q

r

)

· pr ·
(

2 −
r−1∑

k=0

(
r

k

)(
q − r

r − k

)

pr
(r−k)/r

)

≥ 1

2

(
q

r

)

· pr ·
(

2 −
r−1∑

k=0

(
r

k

)

qr−kpr
(r−k)/r

)

=
1

2

(
q

r

)

· pr ·
(

2 −
r−1∑

k=0

(
r

k

)

(α(q))r−k

)

=
1

2

(
q

r

)

· pr · (2 − ((α(q) + 1)r − 1))

=
1

2

(
q

r

)

· pr · (3 − (α(q) + 1)r).

Using the same arguments that led to Theorem 2.9, we get the bound stated in Corollary (2.10).

This simplification actually weakens the bound since qr−k is a weak upper bound on
(q−r
r−k

)
but can make

it easier to work with the expressions.

2.5 Bounds on Q
(r)
h (c)

Now we obtain upper and lower bounds on Q
(r)
h (c). These bounds can be directly obtained from the bounds

on C
(r)
h (q).

Theorem 2.11. Let h be an (n,m)-hash function with n ≥ r and m ≥ 2. Let τ = s
(r)
h (qmax

(r)
h ). Let c be

a real number such that 0 ≤ c < 1. Then

c1/r
(r

e

)

m( r−1
r )µr(h) ≤ Q

(r)
h (c) ≤

(
2c

τ

)1/r

· rm( r−1
r )µr(h), (30)

the upper bound being true when c < cmax
(r)
h .
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Table 2: h is a hash function with m = 280 and µr(h) = 0.9.

r cmax
(r)
h

2 5.67003 × 10−2

3 2.93125 × 10−3

4 8.69089 × 10−5

5 1.67242 × 10−6

6 2.25836 × 10−8

7 2.25855 × 10−10

8 1.74035 × 10−12

Proof. From Theorem 2.9 we have

C
(r)
h (q) ≤

(
q

r

)

m−(r−1)µr(h)

︸ ︷︷ ︸

U
(r)
h

(q)

.

To get the lower bound of Equation (30) we need to solve for q in the equation U
(r)
h (q) = c.

c =

(
q

r

)

m−(r−1)µr(h) ≤
(qe

r

)r 1

m(r−1)µr(h)

and so q ≥ c1/r
(

r
e

)
m( r−1

r )µr(h). This proves the lower bound of Equation (30).

Similarly the upper bound can be obtained by finding the minimum value of q such that L
(r)
h (q) ≥ c.

Since the maximum value of L
(r)
h (q) is cmax

(r)
h the minimum such q will be less than qmax

(r)
h . By definition,

s
(r)
h (q) is decreasing in q which implies s

(r)
h (q) > τ for q < qmax

(r)
h . Combining this with Theorem 2.9 we

have for q ≥ qmax
(r)
h ,

C
(r)
h (q) ≥ max

r≤t≤q
L

(r)
h (t) ≥ 1

2
s
(r)
h (q) ·

(
q

r

)

· pr ≥ 1

2
s
(r)
h (q) ·

(q

r

)r
pr ≥ τ

2
·
(q

r

)r
pr.

If q is such that C
(r)
h (q) ≥ (τ/2)(q/r)rpr ≥ c, then Q

(r)
h (c) ≤ q. Let the minimum such q be denoted

q∗. Clearly q∗ is a solution to (τ/2)(q/r)rpr = c. The upper bound on Q
(r)
h (c) follows from this.

Theorem 2.11 establishes our claim that the number of trials required to find r-collisions with a sig-

nificant probability of success is Θ
(

rm( r−1
r )µr(h)

)

. For a given hash function h, the number of trials

required to obtain an r-collision with a given probability c is at least as much as the lower bound. Also

for c ≤ cmax
(r)
h , the number of trials required to obtain success probability c will not exceed the upper

bound on Q
(r)
h (c). For values of c greater than cmax

(r)
h we are unable to say anything about the maximum

number of trials required to attain success probability c. But, the lower bound still continues to hold, i.e.,
we are still able to say that at least those many queries will be required to attain success probability c.

It would be interesting to know the range of values of c for which the upper bound on Q
(r)
h (c) holds

for different values of r. Because of the form of L
(r)
h (q), we are unable to get a closed form expression for
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Table 3: n = 2512, m = 2160 and c = 0.78.

µ4(h) Lower bound on Q
(4)
h (c)

0.22 1.22456 × 108 ≈ 226

0.33 1.15233 × 1012 ≈ 240

0.44 1.08436 × 1016 ≈ 253

0.55 1.0204 × 1020 ≈ 266

0.66 9.60207 × 1023 ≈ 279

0.77 9.03568 × 1027 ≈ 292

0.88 8.5027 × 1031 ≈ 2106

0.99 8.00115 × 1035 ≈ 2119

cmax
(r)
h . Table 2 shows how cmax

(r)
h varies with r when m and µr(h) are fixed. One can observe that the

value of cmax
(r)
h is decreasing rapidly with increasing values of r which means that as r grows larger the

upper bound of Theorem 2.11 is valid across smaller ranges of c.

Sensitivity of Q
(r)
h (c) to r-balance. We provide some computational results that indicate how the

number of trials required by the generic multi-collision attack changes according to the r-balance of the

function being attacked. Table 3 shows the lower bound on Q
(4)
h (c) for a fixed c and for functions with

different values of 4-balance. The table indicates that for functions with higher 4-balance it is harder to
find 4-collisions using the generic multi-collision attack when compared to functions with low 4-balance.

2.6 Applicability of our Results

It is practically infeasible to compute or estimate the r-balance of a given hash function. In [BK04], the
authors address this question for the case r = 2. Some experiments are performed on SHA-1 and the
balance is computed considering only small blocks of the output string. The details are as follows. Let
SHAn : {0, 1}n → {0, 1}160 denote the restriction of SHA-1 to inputs of length n < 264. Let SHAn;t1···t2 :
{0, 1}n → {0, 1}t2t1+1 denote the function that returns the t1-th through t2-th output bits of SHAn . Bellare
and Kohno ask what exactly is the balance of SHA32;t1···t2 when t2 − t1 + 1 ∈ {8, 16, 24} and whether the
functions SHAm;t1···t2 ,m ∈ {160, 256, 1024, 2048}, appear regular when t2 − t1 + 1 ∈ {8, 16, 24}. They
calculate the balance of SHA32;t1···t2 for all pairs t1, t2 such that t2 − t1 + 1 ∈ {8, 16, 24} and t1 begins on
a byte boundary (i.e., they look at all 1-, 2-, and 3-byte portions of the SHA-1 output). The values they
calculate indicate that, for the specified values of t1, t2 , the balance of SHA32;t1···t2 is high.

However, these experiments do not provide any information about the balance of the actual SHA-1.
Instead of pondering over how to compute the r-balance of a given function, we discuss what could be
done to ensure a hash function has certain r-balance.

Proposition 2.12. A hash function will have r-balance at least ν, if it is constructed in such a way that
no range point has more than n/m(ν(r−1)+1)/r pre-images.

Proof. Essentially, we want the following to hold:

µr =
1

r − 1
logm

nr

∑m
i=1(ni)r

≥ ν

18



or equivalently,
∑m

i=1(ni)r ≤ nrm−(r−1)ν . Suppose that for all i ∈ {1, 2, · · · ,m}, ni ≤ n/mδ for some
δ ∈ [0, 1]. Then

m∑

i=1

(ni)r ≤ m
( n

mδ

)

r
≤ m

( n

mδ

)r
.

To ensure r-balance at least ν, it is enough if δ is such that m
( n

mδ

)r
≤ nrm−(r−1)ν . Solving for δ, we

obtain, δ ≥ (1/r) × (ν(r − 1) + 1). This completes the proof.

So while building a hash function with r-balance at least ν, the designer must ensure that no range
point has more than n/m(ν(r−1)+1)/r pre-images. According to Theorem 2.11, this makes sure that an
attacker will need at least c1/r(r/e)mν(r−1)/r trials to obtain an r-collision with probability at least c.
From Proposition 2.4, ensuring a lower bound on r2-balance also provides a lower bound on r1-balance.
So, a designer can pick a suitable r2 and ensure that the hash function has a high enough r2-balance.

For example, suppose we want a 256-bit hash function with 180-bit security against the generic
multi-collision attack for 4-collisions. In other words, we would like the attack to make at least 2180

queries to ensure that a 4-collision is obtained with a constant probability of success c. So, we require
c1/r(r/e)mν(r−1)/r > 2180 where m = 2256 and r = 4. Taking logarithms to base two and assuming c ≈ 1,
under reasonable approximations, the 4-balance µ4 must be at least (4/3) × 180/256 = 0.9375. We can
ensure this by designing the function in such a way that every range point has at least n×2−244 pre-images.
Clearly, this method can be extended for higher values of r.

3 Random Functions

In this section, we consider a uniform random (n,m) function. Our purpose is two-fold.

1. First, we would like to address the question of whether the balance of most functions is close to
one. A combinatorial approach to this problem would be to count the number of functions which
have balance close to one and then estimate this count as a fraction of the total number of (n,m)
functions. Such a direct counting method is extremely difficult to carry out. Instead we adopt a
probabilistic approach. The balance of a random function is a random variable. We can then study
its expectation, variance and more importantly probability concentration bounds using Chebyshev’s
inequality and Chernoff bound. This analysis shows that the probability that the balance of a random
function is close to one is itself very close to one. From this we conclude that most functions have
balance close to one.

2. The second reason for considering random functions is to study the efficacy of the generic multi-
collision attack in Section 2 on random functions. For the case of r = 2, this was investigated by
Bellare and Kohno [BK04]. We generalize their result to the case of r > 2 and for r = 2 provide
somewhat improved result.

3.1 Distribution of r-Balance

Consider a hash function picked uniformly at random from the set of all (n,m)-functions. A natural
question that arises - how close is the r-balance of this function to 1? Also, it would be of general interest
to know how r-balance is distributed for uniform random functions.

Consider the experiment of picking an (n,m)-function uniformly at random from the set of all (n,m)
functions. A more convenient way to view this is the following: for each domain point, pick a range
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point independently and uniformly at random. Now, the number of pre-images of any range point is a
random variable. By Ni, i = 1, . . . ,m, we denote the number of pre-images of the i-th range point. For
a fixed i, define indicator random variables Uj for j ∈ {1, 2, · · · , n} as follows: Uj = 1 if xj maps to yi

and 0 otherwise. Clearly Ni =
∑n

j=1 Uj . Since Uj is a Bernoulli trial with success probability 1/m, Ni is

binomially distributed, i.e., Ni ∼ Bin
(
n, 1

m

)
having probability density function given by

Pr[Ni = k] =

(
n

k

)
1

mk

(

1 − 1

m

)n−k

.

Note that the Ni’s are identically distributed but not independent due to the constraint that
∑m

i=1 Ni = n.

For any positive integer r, define Pr = (
∑m

i=1(Ni)r)/n
r and Λr = 1/(r − 1) × logm(1/Pr). Then Pr

and Λr are random variables defined from the random variables Ni’s. This Λr is the balance of a uniform
random function. We are interested in finding the probability of Λr being close to 1. For this, we only
need to look at the distribution of the Ni’s and their falling factorials. First, we shall prove some identities
involving the falling factorials of a random variable which follows the binomial distribution. Somewhat
surprisingly, we were not able to locate these results in the literature.

Proposition 3.1. Let X,Y ∼ Bin(n, ξ). Then the following statements are true.

1. E[(X)r] = (n)r ξr.

2. (n)2rξ
2r ≤ E[(X)r

2] < (n)r ξrr! (nξ + 1 − ξ)r.

3. E[(X)r(Y )r] = (n)2r ξ2r.

Proof. We will now prove each of the results stated above.

1. E[(X)r] =
∑n

k=0(k)r
(n
k

)
ξk(1 − ξ)n−k = ξr

∑n
k=r(k)r

(n
k

)
ξk−r(1 − ξ)n−k. Differentiating both sides

of (x + y)n =
∑n

k=0

(n
k

)
xkyn−k r times partially with respect to x gives us (n)r(x + y)n−r =

∑n
k=r(k)r

(n
k

)
xk−ryn−k. Substituting x = ξ and y = 1 − ξ, we obtain E[(X)r] = (n)r ξr.

2.

E[(X)r
2] =

n∑

k=0

(k)r(k)r

(
n

k

)

ξk(1 − ξ)n−k = ξr
n∑

k=r

(k)r(k)r

(
n

k

)

ξk−r(1 − ξ)n−k.

Multiplying both sides of the identity (n)r(x+y)n−r =
∑n

k=r(k)r
(n
k

)
xk−ryn−k by xr, we get (n)rx

r(x+

y)n−r =
∑n

k=r(k)r
(n
k

)
xkyn−k. Let g0(x) = xr(x + y)n−r and define gs(x) = ∂gs−1

∂x . Clearly,

(n)rgr(x) =

n∑

k=r

(k)r(k)r

(
n

k

)

xk−ryn−k. (31)

It can be shown by induction that

gs(x) = (x + y)n−r−s
s∑

j=0

(
s

j

)

(n − j)s−j(r)jx
r−jyj. (32)
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Combining Equations (31) and (32) and substituting x = ξ and y = 1 − ξ, we get

E[(X)r
2] = (n)r ξr

r∑

j=0

(
r

j

)

(n − j)r−j(r)jξ
r−j(1 − ξ)j

< (n)r ξrr!

r∑

j=0

(
r

j

)

nr−jξr−j(1 − ξ)j

= (n)r ξrr! (nξ + 1 − ξ)r

The lower bound follows from Jensen’s inequality.

3.

E[(X)r(Y )r] =
∑

0≤k,l≤n

(k)r(l)r
n!

k! l! (n − l − k)!
ξkξl(1 − 2ξ)n−k−l

= ξ2r
∑

r≤k,l≤n

(k)r(l)r
n!

k! l! (n − l − k)!
ξk−rξl−r(1 − 2ξ)n−k−l.

Consider the trinomial expansion of (x + y + z)n

(x + y + z)n =
∑

0≤k,l≤n

n!

k! l! (n − k − l)!
xkylzn−k−l. (33)

Differentiating partially (33) r times with respect to x gives us

(n)r(x + y + z)n−r =
∑

0≤l≤n
r≤k≤n

(k)r
n!

k! l! (n − k − l)!
xk−rylzn−k−l.

Differentiating partially the above equation r times with respect to y gives us

(n)2r(x + y + z)n−2r =
∑

r≤k,l≤n

(k)r(l)r
n!

k! l! (n − k − l)!
xk−ryl−rzn−k−l.

Substituting x = ξ, y = ξ and z = 1 − 2ξ, we obtain E[(X)r(Y )r] = (n)2r ξ2r.

We note that it is possible to obtain a closed form expression for E[(X)2r ] in terms of the hypergeometric
function. But, this does not seem to be useful in the present context and so, we did not pursue this further.
Using Proposition 3.1(1), we get the expected value of Pr as follows.

E[Pr] =
1

nr
E

[
m∑

i=1

(Ni)r

]

=
1

nr

m∑

i=1

E[(Ni)r] =
m

nr

(n)r
mr

=
(n)r
nr

1

mr−1
. (34)
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From Proposition 3.1 we can obtain an upper bound on the variance Pr as follows.

Var[Pr] = Var

[∑m
i=1(Ni)r

nr

]

=
1

n2r
E





(
m∑

i=1

(Ni)r

)2


− (E[Pr])
2

=
1

n2r
E





m∑

i=1

(Ni)r
2 +

∑

i6=j

(Ni)r(Nj)r



− (n)r
2

n2rm2r−2

=
1

n2r

(

mE[(N1)r
2] + m(m − 1)E[(N1)r(N2)r]

)

− (n)r
2

n2rm2r−2

<
1

n2r

(

m
(n)r
m2r

(n + m − 1)r + m(m − 1)
(n)2r

m2r

)

− (n)r
2

n2rm2r−2

=
(n)r

n2rm2r−2

(
(n + m − 1)r

m
+ (n − r)r

(

1 − 1

m

)

− (n)r

)

<
(n)r(n + m − 1)r

n2rm2r−1

Now consider the random variable Λr. We seek an upper bound on Pr[Λr < 1 − ε] where 0 < ε < 1. The
first simple result is the following.

Proposition 3.2. For 0 < ε < 1, Pr[Λr < 1 − ε] ≤ (n)r

nr
1

mε(r−1) .

Proof. Using the definition of balance, we get

Pr[Λr < 1 − ε] = Pr[m−(r−1)Λr > m−(r−1)(1−ε)] = Pr[Pr > m−(r−1)(1−ε)]

By Markov’s inequality, we have Pr[Pr > m−(r−1)(1−ε)] ≤ E[Pr]

m−(r−1)(1−ε)
=

(n)r
nr

1

mε(r−1)
.

For practical hash functions (n)r/n
r is almost 1. Suppose that m = 2160, r = 4 and ε = 0.01, then

we have Pr[Λ4 < 0.99] ≤ 1/24.8 < 0.035 which is quite low. This suggests that for most functions the
4-balance may be close to 1. But we need a stronger statement to substantiate this claim.

Proposition 3.3. For 0 < ε < 1, Pr[Λr < 1 − ε] < (n)r

nrm2ε(r−1) e
r(m−1)

n .
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Proof. An application of Chebyshev’s inequality gives us the following.

Pr
[

Pr > m−(r−1)(1−ε)
]

<
E[Pr

2]

m−2(r−1)(1−ε)

=
m2(r−1)(1−ε)

n2r

(

mE[(N1)r
2] + m(m − 1)E[(N1)r(N2)r]

)

=
m2(r−1)(1−ε)

n2r

(

m
(n)r(n + m − 1)r

m2r
+ (m2 − m)

(n)2r

m2r

)

=
(n)r

n2rm2ε(r−1)

(
(n + m − 1)r

m
+ (n − r)r

(

1 − 1

m

))

<
(n)r

n2rm2ε(r−1)

(
(n + m − 1)r

m
+ (n + m − 1)r

(

1 − 1

m

))

=
(n)r(n + m − 1)r

n2rm2ε(r−1)

=
(n)r

nrm2ε(r−1)

(

1 +
m − 1

n

)r

<
(n)r

nrm2ε(r−1)
e

r(m−1)
n . (35)

Observe that the bound of Proposition 3.3 is almost a square of the bound given by Proposition 3.2
which makes it better. Consider, for example, n = 2512, m = 2160, r = 4 and ε = 0.01. As mentioned
earlier, for practical hash functions (n)r/n

r is almost 1. Ignoring this term, we get Pr[Λ4 < 0.99] ≤ 0.0035
which is better compared to the Markov bound. As ε → 1 the bound on Pr[Λr < 1 − ε] decreases
exponentially and faster than the bound of Proposition 3.2. This reinforces our claim that most functions
have r-balance near 1.

For a stronger statement, we will use the results from Section 2.6 and perform a Chernoff bound based
analysis. In the earlier analysis we showed that Pr[Λr < 1−ε] is small. Here we will show that Pr[Λr ≥ 1−ε]
is large.

Proposition 3.4. For 0 ≤ ε ≤ 1,

Pr[Λr ≥ 1 − ε] ≥ 1 − exp

(

ln m +
n

m1−ε(r−1
r )

(

1 − ε

(
r − 1

r

)

ln m

)

− n

m

)

. (36)

Proof. Let δ = 1 − ε(r − 1)/r. From Proposition 2.12, it follows that if Ni ≤ n/mδ for all i ∈ {1, · · · ,m}
then Λr ≥ 1 − ε. As a result we have,

Pr[Λr ≥ 1 − ε] ≥ Pr

[
m∧

i=1

(

Ni ≤
n

mδ

)
]

= 1 − Pr

[
m∨

i=1

(

Ni >
n

mδ

)
]

≥ 1 − m · Pr
[

N1 >
n

mδ

]

.

We now need to show that m Pr[N1 > n/mδ] is “vanishingly” small. Let ∆ = m1−δ − 1. Then Pr[N1 >
n

mδ ] = Pr[N1 > (1 + ∆) n
m ]. We know that E[N1] = n/m.
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Using the standard form of Chernoff bound (more details can be found in [MR95, pp. 68], we get

m Pr[N1 > (1 + ∆)E[N1]] < m

(
e∆

(1 + ∆)1+∆

)E[N1]

= m
1

en/m

(
e

1 + ∆

)(1+∆)n/m

= exp
(

ln m + (1 + ∆)
n

m
(1 − ln(1 + ∆)) − n

m

)

= exp
(

ln m +
n

mδ
(1 − (1 − δ) ln m) − n

m

)

= exp

(

ln m +
n

m1−ε( r−1
r )

(

1 − ε

(
r − 1

r

)

ln m

)

− n

m

)

.

This completes the proof.

For values of ε ≥ r
(r−1) ln m , the second term in the exponent is negative and hence m Pr[N1 > n/mδ]

decreases exponentially. This implies that Pr[Λr ≥ 1 − ε] will be close to 1 indicating that most functions
have balance close to 1. Consider, for example, ε = r

(r−1) lnm . Then Proposition 3.4 shows that Pr[Λr ≥
1 − r/((r − 1) ln m)] ≥ 1 − m/ exp(n/m). The quantity m/ exp(n/m) is vanishingly small, so that with
overwhelming probability Λr is greater than 1 − r/((r − 1) ln m). Taking concrete values, let m = 2160,
n = 2512 and r = 4. Then the probability that Λ4 is greater than 0.99 is at least 1 − exp(111 − 2352).

Even as ε becomes less than r
(r−1) ln m the probability will be very close to one as long as the expression

within the exponent of (36) remains negative. At the point where the value within the exponent changes
sign, the lower bound on probability becomes a huge negative quantity. We find this sudden change of the
bound from being very close to one to a huge negative quantity to be a surprising feature. But, there does
not seem to be any easy way to determine this “knee” point. On the other hand, the range of values for
which this bound is valid seems to substantiate that the r-balance of most functions is concentrated near
one.

3.2 Generic Attack on Random Functions

Consider a uniform random (n,m)-hash function. We consider the resistance of such a hash function to
the generic multi-collision attack mentioned in Section 2. Our aim is to show that the attack works better
against uniform random functions compared to regular functions. This is shown by proving that the success
probability of the attack is higher for a uniform random function than for a regular function. For r = 2,
this was shown by Bellare and Kohno. Informally, one may consider that having higher success probability
means that it is easier to find r-collisions.

Let C
$(r)
n,m(q) be the probability that the generic multi-collision attack on a uniform random (n,m)-hash

function succeeds in q trials. Here the probability is over the choice of the function and the points picked

by the attack. Similarly, let Q
$(r)
n,m(c) denote the minimum number of trials required to obtain an r-collision

with probability greater than or equal to c.

Let h : X → Y be a uniform random function i.e., for any x ∈ X and y ∈ Y , Pr[h(x) = y] = 1/m.
Consider the experiment of choosing r elements independently and uniformly at random from the domain
X. Let p$

r denote the probability that these r elements form an r-collision. Let r elements w1, w2, · · · , wr

be picked independently and uniformly at random from the domain X. If A is the event that these are
distinct and B is the event that h(w1) = · · · = h(wr), then p$

r = Pr[A] · Pr[B]. Clearly,

Pr[A] =
(n)r
nr

and Pr[B] = m · 1

mr
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since there are m choices for the common image. Thus we have,

p$
r =

(n)r
nr

· 1

mr−1
.

Note that from (34), p$
r is equal to the expectation of Pr. This is not surprising, since both these quantities

relate to the probability of an r-collision for a uniform random (n,m) function, although in different ways.

Consider the generic multi-collision attack on a uniform random (n,m)-hash function. The bounds on

C
$(r)
n,m(q) and Q

$(r)
n,m(c) are obtained in a manner similar to that for a concrete hash function and we state

some of the results without proofs.

Lemma 3.5. Let ℓ be an integer such that ℓ > r. Then p$
ℓ ≤ (p$

r)
ℓ/r

Theorem 3.6. For a uniform random (n,m)-hash function with n > r the following holds.

max
r≤t≤q

L$(r)
n,m(t) ≤ C$(r)

n,m(q) ≤
(

q

r

)

· p$
r (37)

where the function L
$(r)
n,m(t) is defined as follows:

L$(r)
n,m(t) =

1

2

(

2 −
r−1∑

k=0

(
r

k

)(
t − r

r − k

)

(p$
r)

(r−k)/r

)

·
(

t

r

)

· p$
r (38)

For the purpose of comparison to regular functions we will use a simplified version of the lower bound

on C
$(r)
n,m(q). This is obtained in a manner similar to the one given in the proof of Corollary 2.10.

Corollary 3.7. For a uniform random (n,m)-hash function with n > r, let

α$(q) = qm−( r−1
r ). (39)

Then

C$(r)
n,m(q) ≥ max

r≤t≤q

1

2

(

3 − (α$(t) + 1)r
)

·
(

t

r

)

· p$
r (40)

We now proceed towards obtaining bounds on Q
$(r)
n,m(c). The upper bound can be obtained the same

way as in Theorem 2.11. Only a proof of the lower bound is provided here.

Theorem 3.8. Consider a uniform random (n,m)-hash function with n > r and let c be a real number
such that 0 ≤ c < 1. Then

c1/rr · e( r−1
2n

−1) · m( r−1
r ) ≤ Q$(r)

n,m(c) ≤ min{q : L$(r)
n,m(q) = c}, (41)

the upper bound being true when
c < cmax$

r(n,m). (42)

where cmax$
r(n,m) denotes the maximum positive value that the function L

$(r)
n,m(q) attains.
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Proof. From Theorem 3.6 we have

C$(r)
n,m(q) ≤

(
q

r

)

p$
r

︸ ︷︷ ︸

U
$(r)
n,m (q)

To get the lower bound of Equation (41) we need to solve for q in the equation U
$(r)
n,m (q) = c.

c =

(
q

r

)

·
(

1 − 1

n

)(

1 − 2

n

)

· · ·
(

1 − r − 1

n

)

· 1

mr−1

≤
(qe

r

)r
e−1/ne−2/n · · · e−(r−1)/n · 1

mr−1

=
(qe

r

)r
e−r(r−1)/2n · 1

mr−1

Solving for q in the above inequality will give

q ≥ c1/rr · e( r−1
2n

−1) · m( r−1
r )

Comparison with regular functions. Let C
reg(r)
n,m (q) denote the probability of success of the generic

multi-collision attack on a regular (n,m)-hash function. Let the maximum value of r-balance be denoted
µmax

r and let the value of pr corresponding to µmax
r be denoted as p

reg
r . Since all regular functions have the

same value for pr, we have C
reg(r)
n,m (q) = C

(r)
h (q) for some function h with maximum balance.

Lemma 3.9. Let n, m and r be integers such that r ≥ 2 and n ≥ rm. Then

n(n − 1) · · · (n − (r − 1))

n(n − m) · · · (n − (r − 1)m)
> 1 +

m − 1

n − m
· r(r − 1)

2

Proof. The condition n ≥ rm ensures that the denominator n(n − m) · · · (n − (r − 1)m) is non-zero.

n(n − 1) · · · (n − (r − 1))

n(n − m) · · · (n − (r − 1)m)
=

n − 1

n − m
· n − 2

n − 2m
· · · n − (r − 1)

n − (r − 1)m

=

(

1 +
m − 1

n − m

)

·
(

1 +
2(m − 1)

n − 2m

)

· · ·
(

1 +
(r − 1)(m − 1)

n − (r − 1)m

)

> 1 +
m − 1

n − m
+

2(m − 1)

n − 2m
+ · · · + (r − 1)(m − 1)

n − (r − 1)m

> 1 +
m − 1

n − m
+

2(m − 1)

n − m
+ · · · + (r − 1)(m − 1)

n − m

= 1 +
m − 1

n − m
· r(r − 1)

2

Theorem 3.10. Let r ≥ 2 and n ≥ rm and

β = 1 +
m − 1

n − m
· r(r − 1)

2
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Then
C$(r)

n,m(q) > Creg(r)
n,m (q) (43)

for all q such that q ≤
((

3 − 2
β

)1/r
− 1

)

m(r−1)/r.

Proof. From (39) recall that α$(q) = qm−( r−1
r ) and by the bound given on q, we have 1/β ≤ (3− (α$(q) +

1)r)/2. This will be used in the computation below. Also Lemma 3.9 is used in the last but one step of
the computation.

From Corollary 3.7 and Lemma 3.9, we have

C$(r)
n,m(q) ≥ max

r≤t≤q

1

2
(3 − (α$(t) + 1)r)

(
t

r

)

p$
r

≥ 1

2
(3 − (α$(q) + 1)r)

(
q

r

)

p$
r

≥ 1

β

(
q

r

)
(n)r
nr

1

mr−1

=
1

β

(
q

r

)
(n)r
nr

1

mr−1

=
1

β

(
q

r

)
(n)r
nr

1

mr−1

n(n − m) · · · (n − (r − 1)m)

n(n − m) · · · (n − (r − 1)m)

=
1

β

(n)r
n(n − m) · · · (n − (r − 1)m)

(
q

r

)
m
(

n
m

)

r

nr

>
1

β

(

1 +
m − 1

n − m
· r(r − 1)

2

)(
q

r

)

preg
r

≥ Creg(r)
n,m (q)

Theorem 3.10 shows that for a certain range of q, it is easier to find r-collisions for random functions
than for regular functions. So, random functions provide lesser security compared to regular functions.
The value of β is greater than 1 and consequently, the value of (3 − 2/β) is also greater than 1 so that
the upper bound on q required in Theorem 3.10 is not vacuous. So, for this range of q, it is easier to find
r-collisions for uniform random functions than for regular functions. A similar result has been obtained
by Bellare and Kohno [BK04] for r = 2, but only when n equals 2m and m ≥ 5. For these values of the
parameters, choosing q ≤ 0.37m1/2 satisfies the condition of Theorem 3.10 while the range of q obtained
in [BK04] is q ≤ 0.1m1/2. Further, Theorem 3.10 holds for n ≥ rm and hence, even for r = 2, it is more
general than [BK04].

Note. We would like to emphasize that we have considered only generic multi-collision attacks. For
attacks which “look into” the structure of a hash function, a regular function may become completely
vulnerable. So, the comparative strengths of random versus regular functions discussed above must not be
taken to mean that regular functions are better than random functions against all kinds of attacks.
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4 Expected Number of Trials to Obtain an r-Collision

In this section, we get back to the study of a concrete hash function as opposed to a uniform random
function. Recall that the determining factor for an r-collision is the probability ni/n that a randomly
chosen domain point maps to the i-th range point.

Consider the following strategy. Points are picked from the domain one by one, until an r-collision is
obtained. Clearly, the number of domain points picked is a random variable. We are interested in the
expectation of this random variable. This is worked out in Section 4.1.

Interestingly, there is a much earlier work by Klamkin and Newman [KN67] which considers a similar
problem. We interpret and extend their work in terms of a concrete hash function in Section 4.2.

4.1 Case of Actual r-Collisions

Let h denote the given hash function. Suppose the domain points are chosen independently and uniformly
at random and h is applied to each of them. The process is continued as long as necessary until an

r-collision occurs. We would then like to know the expected number of trials E
(r)
h to obtain an r-collision.

For the case of r = 2, this was analysed by Bellare and Kohno. Given a hash function h, they denoted

by Eh the expected number of trials required to obtain a collision (i.e., Eh = E
(2)
h ) and obtained bounds

on Eh. These bounds are obtained from two facts of a more general nature. They show that if q ≥ 2 is the
number of trials then q(1 − Ch(q − 1)) ≤ Eh ≤ q/Ch(q). The arguments used to obtain these bounds also
go through for general r.

Proposition 4.1. For any q ≥ r,

q(1 − C
(r)
h (q − 1)) ≤ E

(r)
h ≤ q

C
(r)
h (q)

.

Proof. The ideas involved in the proof are from [BK04]. Let D
(r)
h (q) be the probability that the first r-

collision is found at trial number q. Then
∑

i≥q D
(r)
h (i) is the probability that the first r-collision is found

after (q−1) trials which is equal to the probability that the first (q−1) trials do not provide an r-collision.

So,
∑

i≥q D
(r)
h (i) = 1 − C

(r)
h (q − 1). Then

E
(r)
h =

∑

i≥1

iD
(r)
h (i) ≥ q

∑

i≥q

D
(r)
h (i) = q(1 − C

(r)
h (q − 1)).

Obtaining the upper bound is a little more involved. Consider the trials to be conducted in batches of q
trials each, i.e., trials with xq(i−1)+1, . . . , xqi are conducted in batch number i. Let Xi = 1 if an r-collision is
found in batch number i and 0 otherwise. Since the xjs are chosen independently and uniformly at random,

the random variables X1,X2, . . . are mutually independent Bernoulli trials with Pr[Xi = 1] = C
(r)
h (q) for

all i ≥ 1. Let Y be a random variable whose value is i if Xi = 1 and Xk = 0 for 1 ≤ k ≤ i − 1. Then Y
follows the geometric distribution. Denote C

(r)
h (q) by ε and then the expected value of qY can be computed

as

E[qY ] = qε + 2q(1 − ε)ε + · · · + iq(1 − ε)i−1ε + · · ·

= qε

(
1

ε2

)

=
q

ε
=

q

C
(r)
h (q)

.
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The above process of batching ignores the possibility that an r-collision can occur between the trials of
batch number i and the trials of the previous batches. So, batching can only increase the expected number
of trials to find an r-collision and hence

E
(r)
h ≤ E[qY ] =

q

C
(r)
h (q)

.

This completes the proof.

To obtain more meaningful bounds, we need to evaluate the bounds in Proposition 4.1 for some values

of q. A good value of q is qmax
(r)
h which is the point where the function L

(r)
h (q) attains its maximum, i.e.,

the value of q for which the lower bound on C
(r)
h (q) attains the maximum value cmax

(r)
h . This gives the

following bounds.

qmax
(r)
h

(

1 − C
(r)
h

(

qmax
(r)
h − 1

))

≤ E
(r)
h ≤ qmax

(r)
h

cmax
(r)
h

.

As noted in Section 2.4, it is difficult to obtain a closed form expression for qmax
(r)
h , so it is still difficult

to understand what the above bounds really mean. Further, these bounds are not in terms of the balance.
To get them in terms of the balance, we have to evaluate the bounds for suitable values of q. In fact, we
evaluate the lower and upper bounds in Proposition 4.1 for different values of q.

Let Q = m((r−1)/r)µr(h). Then from Theorem 2.6

C
(r)
h (Q − 1) ≤

(
Q − 1

r

)

pr ≤ Qrpr

r!
=

1

r!
.

This shows

E
(r)
h ≥

(

1 − 1

r!

)

m
(r−1)

r
µr(h). (44)

The upper bound involves a little more calculation. From Corollary 2.10 we have that, for α(q) =

qm−( r−1
r )µr(h),

C
(r)
h (q) ≥ 1

2
(3 − (α(q) + 1)r) ·

(
q

r

)

· m−(r−1)µr(h).

Put α(q) = δr. We specify the exact value of δr later.

For q ≥ r, we have (1 − (r − 1)/q) ≥ 1/r and so

q!

r!(q − r)!
=

q(q − 1) · · · (q − r + 1)

r!
=

qr

r!

(

1 − 1

q

)

· · ·
(

1 − r − 1

q

)

≥ qr

r!

(

1 − r − 1

q

)r−1

≥ qr

r!rr−1
.

Putting q = δrm
((r−1)/r)µr(h) = δrQ, we have

C
(r)
h (δrQ) ≥ 1

2
(3 − (δr + 1)r)

δr
rQ

rm−(r−1)µr(h)

r!rr−1

=
1

2

(3 − (δr + 1)r)δr
r

r!rr−1
.
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Proposition 4.1 now shows that

E
(r)
h ≤ δrQ

C
(r)
h (δrQ)

≤ 2r!rr−1

δr
r(3 − (δr + 1)r)

× δrm
(r−1)

r
µr(h)

=
2r!rr−1

δr−1
r (3 − (δr + 1)r)

× m
(r−1)

r
µr(h).

The value of δr is chosen such that it maximizes xr−1(3 − (x + 1)r). This in turn, minimizes the upper
bound. Differentiating xr−1(3−(x+1)r) with respect to x and setting to zero, we obtain xr−1((2r−1)x+r−
1)−3(r−1) = 0. (The solution x = 0 has been ruled out.) The polynomial xr−1((2r−1)x+r−1)−3(r−1)
has exactly one sign change and by Descartes’ rule of signs has exactly one positive real root. We let δr to
be the value of this root. Combining the two bounds leads to the following result.

Theorem 4.2. Let h be an (n,m) hash function and δr be the positive real root of the polynomial xr−1((2r−
1)x + r − 1) − 3(r − 1). Then

(

1 − 1

r!

)

m
(r−1)

r
µr(h) ≤ E

(r)
h ≤ 2r!rr−1

δr−1
r (3 − (δr + 1)r)

× m
(r−1)

r
µr(h).

For r = 2, δ2 is the positive real root of 3x2 +4x− 2 = 0 and so δ2 = (
√

5− 2)/3. Using this, we obtain

1

2
· mµ2(h)/2 ≤ E

(2)
h ≤ 56 · mµ2(h)/2.

Recall that m−µ2(h) = m−µ(h) − 1/n. This can be used to translate bounds obtained in terms of µ(h)

into bounds in terms of µ2(h). For the sake of comparison, we do this for the bounds on Eh = E
(2)
h obtained

in [BK04].
1

2
·
√

n

n + mµ2(h)
× mµ2(h)/2 ≤ E

(2)
h ≤ 72 ·

√
n

n + mµ2(h)
× mµ2(h)/2.

Clearly, the bound that we obtain is better.

4.2 Case of Possibly Trivial r-Collisions

As before, let h be the hash function under consideration. Consider the scenario in which one picks points
from the domain using uniform random sampling with replacement, applies h to these points and simply
considers the event that r of the image points are equal. In this setting, we do not put the restriction that
the pre-images of the r equal image points are necessarily distinct. So, this event does not necessarily give
us an r-collision. Recall that earlier we had called this event to be a possibly trivial r-collision.

In a different context, this problem was studied much earlier by Klamkin and Newman [KN67]. They
consider the following problem. Suppose m alternatives are equally likely. Consider the experiment of
choosing from these repeatedly with replacement until one of the alternatives has occurred r times. The
problem is to find E(m, r), the expected number of repetitions necessary for this success. They show that,
for large m, E(m, r) is approximately (r!)1/rΓ(1 + 1/r)m(r−1)/r .

The setting of Klamkin and Newman can be considered to be finding possibly trivial r-collisions in the
following manner. Suppose that points from the domain of h are chosen using uniform random sampling
with replacement and h is applied to them. This corresponds to choosing points from the range with
replacement. If h is a regular function, i.e., the probabilities ni/n are all equal, then each of the range
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points is equally likely and the process corresponds to choosing the m range points uniformly and with
replacement.

To tackle an arbitrary hash function, we need to consider the case of non-uniform probabilities. It
turns out that by using a notion similar to r-balance, the analysis of Klamkin and Newman goes through
for unequal probabilities. In the context of concrete hash functions, the asymptotic analysis of Klamkin
and Newman is somewhat less meaningful. Instead, we obtain a lower bound on the expected number of
choices to obtain a possibly trivial collision. We note that the generalisation of Klamkin and Newman’s
result to the setting of arbitrary probability distribution is of some interest in its own right.

Let pi = ni/n and p̃ = (p1, p2, · · · , pm). Let E(m, r, p̃) denote the expected number of points chosen
before obtaining a possibly trivial collision. The approach we use is identical to that of [KN67].

Identify the variables xi with the m alternatives of the experiment so that the terms of the expansion
of (x1 + · · · + xm)q can be thought of as outcomes when the experiment is carried out q times. Let Tr

denote the truncating operation which when applied to a polynomial, or a power series, has the effect of
removing any term which contain some variable xi raised to a power ≥ r. If A and B are polynomials in
the variables x1, . . . , xm, then it is easy to see that Tr(A + B) = Tr(A) + Tr(B). Further, if the sets of
variables on which A and B depend are disjoint, then Tr(AB) = Tr(A)Tr(B).

The expression Tr{(x1 + · · · + xm)q} represents all possible outcomes of q experiments such that no
alternative has appeared r or more times. Thus,

Tr{(x1 + · · · + xm)q}
∣
∣
p1,p2,··· ,pm

is equal to the failure probability after q trials. It is known that the expected number of trails is exactly
equal to the sum of these failure probabilities (refer to [Fel08, pp.265–266]). So

E(m, r, p̃) =

∞∑

q=0

Tr{(x1 + · · · + xm)q}
∣
∣
p1,p2,··· ,pm

Define F (t) =

∞∑

q=0

Tr{(x1 + · · · + xm)q}tq

q!
. We then have

F (t) = Tr







∞∑

q=0

(x1 + · · · + xm)q
tq

q!







= Tr

{

e(x1+x2+···+xm)t
}

= Tr

{
ex1t

}
Tr

{
ex2t

}
· · ·Tr

{
exmt

}

= Sr(x1t)Sr(x2t) · · ·Sr(xmt),

where Sr(x) is the r-th partial sum of ex, i.e., Sr(x) =
∑

j<r
xj

j! . Using the formula 1 =

∫ ∞

0

tq

q!
e−tdt,

∞∑

q=0

Tr{(x1 + · · · + xm)q} =

∫ ∞

0
F (t)e−tdt =

∫ ∞

0
Sr(x1t)Sr(x2t) · · ·Sr(xmt)e−tdt.

Setting xi = pi for all i,

E(m, r, p̃) =

∫ ∞

0
Sr(p1t)Sr(p2t) · · ·Sr(pmt)e−tdt. (45)
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We can write

Sr(p1t)Sr(p2t) · · ·Sr(pmt)e−t = Sr(p1t)Sr(p2t) · · ·Sr(pmt)e−(p1+···+pm)t =
m∏

i=1

Sr(pit)e
−pit.

At this point, we need to analyse the expression Sr(x)e−x. Note that Sr(x) = 1 +
x

1
+

x2

2!
+ · · ·+ xr−1

(r − 1)!
.

ex = 1 +
x

1
+

x2

2!
+ · · · + xr−1

(r − 1)!

+
xr

r!

(

1 +
x

r + 1
+

x2

(r + 2)(r + 1)
+ · · · + xr−1

(2r − 1)r−1

)

+
x2r

(2r)!

(

1 +
x

2r + 1
+

x2

(2r + 2)(2r + 1)
+ · · · + xr−1

(3r − 1)r−1

)

+ · · ·

< Sr(x)

(

1 +
xr

r!
+

x2r

(2r)!
+

x3r

(3r)!
+ · · ·

)

< Sr(x)

(

1 +
xr

r!
+

1

2!

(
xr

(r)!

)2

+
1

3!

(
xr

(r)!

)3

+ · · ·
)

= Sr(x) exp

(
xr

r!

)

.

This shows that Sr(x)e−x > exp(−xr/r!). So,

m∏

i=1

Sr(pit)e
−pit >

m∏

i=1

exp

(

−(pit)
r

r!

)

= exp

(

− 1

r!

m∑

i=1

(pit)
r

)

= exp

(

− tr

r!
ωr

)

where ωr =
∑m

i=1(pi)
r. We define a notion which is similar to r-balance in the following manner:

ηr(h) =
1

r − 1
logm

1
∑m

i=1 pr
i

(46)

so that ωr = m−(r−1)ηr . Now using (45), we have

E(m, r, p̃) =

∫ ∞

0
Sr(p1t)Sr(p2t) · · ·Sr(pmt)e−tdt >

∫ ∞

0
exp

(

− tr

r!
ωr

)

dt.

Let z = trωr/r!. Then

∫ ∞

0
e−trωr/r! =

∫ ∞

0
e−z r!

rω

ω1−1/r

(r!z)1−1/r
dz

=

(
r!

ωr

)1/r 1

r

∫ ∞

0
e−zz

1
r
−1dz

=

(
r!

ωr

)1/r 1

r
Γ

(
1

r

)

= m
r−1

r
ηr (r!)1/r Γ(1 + r).

We summarise this in the following result.
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Theorem 4.3. For a fixed r, E(m, r, p̃) > m
r−1

r
ηr(h) (r!)1/r Γ(1 + r).

From Theorem 4.2, the expected number of steps for finding actual r-collisions is about m((r−1)/r)µr(h)

while from Theorem 4.3, the expected number of steps for finding possibly trivial r-collisions is about
m((r−1)/r)ηr(h). For small r, these two values are not very different. But, as r grows the difference between
them also grows. In the context of finding r-collisions, Theorem 4.2 is more relevant.

5 Conclusion

We have introduced the notion of r-balance of a concrete hash function h. This notion is used to quantify
the resistance of h to generic multi-collision attack. Bounds are obtained on the success probability of
finding r-collisions using q trials. These are then translated into bounds on the number of trials required
for a desired success probability. A similar analysis for uniform random function shows that such functions
offer less resistance compared to regular functions. The work in this paper extended earlier work by Bellare
and Kohno [BK04] for collisions, i.e., for r = 2 to any r ≥ 2. To a certain extent, we complete the work
started by them.

Going beyond the theme set out by Bellare and Kohno, we propose a new design criteria for hash
functions based on the notion of r-balance. Also, using tools from probability theory, we study the nature
of the variation of r-balance over the set of all functions.
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