
Building Efficient Fully Collusion-Resilient Traitor Tracing and
Revocation Schemes

Sanjam Garg1, Abishek Kumarasubramanian1, Amit Sahai1, and Brent Waters2

1 Department of Computer Science, UCLA, USA
{sanjamg,abishekk,sahai}@cs.ucla.edu

2 Department of Computer Science, UT Austin, USA
bwaters@cs.utexas.edu

Abstract. In [8, 9] Boneh et al. presented the first fully collusion-resistant traitor tracing and trace
& revoke schemes. These schemes are based on composite order bilinear groups and their security
depends on the hardness of the subgroup decision assumption. In this paper we present new, efficient
trace & revoke schemes which are based on prime order bilinear groups, and whose security depend on
the hardness of the Decisional Linear Assumption or the External Diffie-Hellman (XDH) assumption.
This allows our schemes to be flexible and thus much more efficient than existing schemes in terms a
variety of parameters including ciphertext size, encryption time, and decryption time. For example, if
encryption time was the major parameter of concern, then for the same level of practical security as [8]
our scheme encrypts 6 times faster. Decryption is 10 times faster. The ciphertext size in our scheme is
50% less when compared to [8].
We provide the first implementations of efficient fully collusion-resilient traitor tracing and trace &
revoke schemes. The ideas used in this paper can be used to make other cryptographic schemes based
on composite order bilinear groups efficient as well.

1 Introduction

Consider a scenario in which a content distributor, like a cable/radio broadcaster, wants to broadcast content
while making sure that only those users who have paid for the service have access to the content. In such
a system, each user will need a decoder with a secret key in order to decrypt the content. A näıve solution
to achieve this would be to use an encryption system such that the corresponding secret key is known to
all legitimate users. The broadcasting authority can then encrypt the content and broadcast the ciphertext.
All legitimate users with the secret key will be able to decrypt the content. But if a dishonest user sells
his key, then an attacker could build pirate decoders which it could then distribute, allowing unauthorized
users to decrypt all future broadcast content without ever having to communicate with the attacker again.
A malicious user could also use his own key to build pirate decoders. The problem is that in this system,
there is no way to identify rogue users. A traitor tracing or trace & revoke system is designed to solve
this problem. The purpose of a trace & revoke system, introduced by Chor et al. [11], is to help content
distributors identify rogue users and revoke their secret keys. If revocation is not desired, one can have just
traitor tracing schemes, which helps the distributor identify the keys used in a pirate decoder. The content
distributor can then hold the corresponding rogue user responsible for the loss incurred.

It should be observed that a traitor tracing system is not designed to help to protect any particular
content. The problem of traitor tracing is distinct from what is commonly referred to as “Digital Rights
Management” (DRM). DRM systems have traditionally been concerned with protecting the widespread
distribution of content that is already in the hands of the (perceived) attacker. Clearly, there are fundamental
obstacles to achieving this goal, since the attacker can simply record what he sees and then retransmit this.
In a trace & revoke system, an authority can use the tracing mechanisms to identify all of the key material
(actively) used in a pirate box and then disable these keys from being used to access future broadcasts.
The use of trace & revoke systems best fits application such as satellite radio or other active broadcast
services where users are interested in having a device that can access the current broadcast, without having
to be in constant communication with a dishonest party.1 Given a pirate decoder, the challenge in a trace &
1 Traitor tracing systems are not appropriate for systems where “protecting” released content is considered the

highest priority.

1



revoke system is to identify at least one of the users whose key must have been used to construct the pirate
decoder and then revoke that key from the system. As such, traitor tracing can be seen as providing a type
of cryptographic method for digital forensics – once a decoding box is discovered in the wild, the associated
cryptographic tracing algorithm allows one to (provably) associate a particular user’s secret key with the
box.

A näıve solution to the problem just described (in a system of N users) would be to have N instances
of an off-the-shelf encryption system such that the ith secret key is known to the ith user. The broadcasting
authority could encrypt the content under each public key and broadcast all the ciphertexts2. Each legitimate
user will then be able to decrypt the part of ciphertext corresponding to its private key. Given a pirate
decoder, it is also possible for this system to identify at least one of the rogue users whose key was used
to build it. We could then revoke this key by simply not encrypting under it in future broadcasts. But this
system is very inefficient. For this system, the ciphertext size is linear in the number of users. We provide an
efficient implementation of this näıve solution using a fast Elgamal encryption scheme and compare it with
the performance of our scheme in Section 7.2.
Previous Work. To overcome this limitation of inefficiency, many results with different levels of security
have been proposed. A weak security property that has been the subject of the greatest amount of previous
work is the t-collusion-resistant traitor tracing. A t-collusion-resistant tracing [3,10,12,17,18,20,22,25] system
will work as long as the pirate uses fewer than t user keys in building the pirate box. Prior to [8], all such
schemes required a ciphertext size blow-up at least linear in this parameter t.

A system that allows for traitor tracing regardless of how many users’ keys are captured by the attacker
is called fully collusion-resistant. Boneh, Sahai, and Waters [8] presented the first fully collusion-resistant
traitor tracing system with O(

√
N) size ciphertexts and public keys. A fully-collusion-resistant traitor tracing

system with constant size ciphertexts [7] has also been constructed, but at the cost of enormous private key
sizes (quadratic in the number of users).

Another issue of concern in traitor tracing systems is the need for a tracing authority, e.g [7, 8] which
use a secret tracing key to identify rogue users. [10, 16, 23, 24, 26] allow for a public tracing algorithm that
does not require any secret inputs. Other systems such as the one in [4, 9] provide security only against a
static adversary and achieve O(1) size ciphertext and private key, but need O(N) size public key (which is
used in the decryption algorithm).

When considering only broadcast encryption, [9] acheive adaptive security with O(1) size ciphertext
and private key (O(N) size public key) and also provide a system with O(

√
N) ciphertext and public key.

[15] obtain adaptively secure broadcast encryption with O(1) cipher-text, O(N) private and public key. The
recent work of [27] obtains identical parameters and also provides identity based encryption.

Building on [8], Boneh and Waters [9] presented a fully collusion resistant, publicly traceable trace
& revoke scheme, representing the “state-of-the-art” prior to this work. However, [9] crucially makes use of
composite order bilinear groups, which lead to significant losses in efficiency that make the scheme impractical
in many settings. The goal of the present work is to build new techniques to achieve order-of-magnitude
improvements in efficiency without sacrificing any security.
Our Contribution. We present a new traitor tracing system that achieves the same strong security proper-
ties as [8], but avoids the use of composite order bilinear groups. Instead, using new techniques, our scheme
is based on prime order bilinear groups, and its security depends on the hardness of the widely believed
decisional linear assumption. This allows for shorter group elements and much more efficient schemes (see
Section 7). We also extend this to build publicly traceable trace & revoke schemes, improving similarly in
efficiency over [9].

Hardness assumptions in composite order bilinear groups are limited by known attacks on factoring
their modulii. Because of sub-exponential attacks against factoring, for appropriate security, large composite
order groups must be used. When compared with prime order bilinear groups, for the same level of practical
security (see Section 7 for details), a simple exponentiation in composite order bilinear groups is about 25
times slower than one in prime order groups. Also, one pairing operation in these larger composite order
groups is approximately 30 times costlier than a pairing in prime order groups. The main contribution of this
research is to present traitor tracing schemes based on prime order bilinear groups making them practical.

2 Note that here, the content itself would be a secret key for a private-key encryption scheme (such as AES), which
would then be used to encrypt the actual content.

2



We also implement our protocol using the PBC library [19] (see Section 7). We compare the efficiency
our traitor tracing scheme with an implementation of [8]. We obtain encryption times up to 6 times better
than [8] and ciphertexts that are 50% smaller. Decryption is 10 times faster.

We note that the techniques we use are general and can be used to convert other cryptosystems based
on composite order groups to ones based on prime order bilinear groups. In this respect, our work is similar
to generic methods described in a very recent concurrent and independent work by Freeman [13]. However,
our schemes are different from the work of [13]. His work focuses on generality and while our work is on
optimizing and implementing efficient traitor tracing systems. He provides a traitor tracing scheme using
asymmetric bilinear groups while we provide schemes based on both symmetric and asymmetric groups.
Also, our asymmetric construction is more efficient than his construction, which does not have any known
implementation.

2 Preliminary Definitions

2.1 Traitor Tracing

A traitor tracing system provides protection for a broadcast encrypter. It consists of four algorithms: Setup,
Encrypt, Decrypt and Trace. The Setup algorithm generates the secret keys for all the users in the system
and the public parameters for the system. By using these public parameters and the algorithm Encrypt, any
user can encrypt a message to all the users in the system. A recipient can use his secret key and the Decrypt
algorithm to decrypt a ciphertext.

In case an authority discovers a pirate decoder, it can then use the Trace algorithm to identify at least
one of the users whose private key must have been used in the construction of the pirate decoder. A publicly
traceable scheme is one where the Trace algorithm has no secret inputs, i.e there are no tracing secret keys.

The desired security properties of a traitor tracing system are the following:

– Semantic Security: An adversary that does not have access to the secret key of any user should not
be able to distinguish between encryptions of two messages of its choice.

– Traceability Against Arbitrary Collusion: Consider a case where an adversary has access to an
arbitrary number of keys of its choice and generates a pirate decoder. Then the tracing algorithm should
be able to use the pirate decoder and detect at least one of the users whose key must have been used to
construct the pirate decoder.

2.2 Trace & Revoke

A Trace & Revoke system is a traitor tracing system that provides an additional property of user revocation.
Once a set of rogue users are identified, the system allows for all honest parties to encrypt to the rest of
the honest users securely. The system consists of four algorithms Setup, Encrypt, Decrypt and Trace. The
Setup algorithm generates the secret keys for all the users in the system and the public parameters for the
system. The Encrypt algorithm can be used to encrypt a message to any subset of users of the system.
Decrypt is used to decrypt a valid ciphertext. In a secure Trace & Revoke system, the Decrypt algorithm
of a user succeeds if and only if the encryption was intended for him (he belongs to the set of users that the
message was encrypted to). The Trace algorithm is used to identify the key used inside a pirate decoder.

Boneh et al. [8] introduce a new primitive, Private Linear Broadcast Encryption (PLBE) and showed that
a PLBE is sufficient for implementing a fully collusion-resistant traitor tracing scheme. In this paper, we give
an informal treatment (see [8] for details) of traitor tracing systems and their relation to PLBE and present
an improved PLBE scheme. However, we recall details on PLBE definitions and its security properties.

Boneh and Waters [9] introduce a new primitive, Augmented Broadcast Encryption (AugBE) and use an
AugBE scheme (based on composite order bilinear groups) to implement a fully collusion-resistant trace &
revoke scheme, secure against adaptive adversaries. We present an improved AugBE scheme based only on
prime order groups.

3



2.3 PLBE

A Private Linear Broadcast Encryption (PLBE) system consists of four algorithms: SetupPLBE , EncryptPLBE ,
DecryptPLBE , TrEncryptPLBE . The algorithms described below are similar to the BSW PLBE system [8]
except that our system does not need a tracing key.

– (PK, K1, K2 . . .KN ) $←− SetupPLBE(λ): SetupPLBE algorithm takes as input the security parameter λ
and sets up the public parameters PK for the system along with generating the secret keys (K1, K2 . . .KN )
for all the users in the system. N is the number of users in the system.

– C
$←− EncryptPLBE(PK,M): Any user can encrypt a message M using just the public key PK, and any

user that possess one of the secret keys can decrypt the ciphertext.
– M ← DecryptPLBE(C, Ki, i): Any user i having access to the private key Ki can decrypt a ciphertext

C and obtain the corresponding message M .
– C

$←− TrEncryptPLBE(PK, i, M): The TrEncryptPLBE algorithm takes in a message M and encrypts
it to ciphertext C such that only users {i . . . N} with secret keys (Ki,Ki+1 . . . KN ) can decrypt the
message. This algorithm is used only for tracing.

Desired Security Properties. A PLBE system is considered secure if no adversary has significant advan-
tage in the following games:

– Indistinguishability: This property requires that the ciphertexts generated by EncryptPLBE(PK, M)
and TrEncryptPLBE(PK, 1,M) are indistinguishable. The game between the adversary and the chal-
lenger proceeds as follows.
• Setup: The challenger runs the SetupPLBE algorithm and sends the generated public key PK and

the secret keys K1,K2 . . . KN to the adversary.
• Challenge: The adversary sends a message M to the challenger. The challenger flips an unbiased coin

and obtains a random β ∈ {0, 1}. If β = 0, it then sets the ciphertext as C
$←− EncryptPLBE(PK, M),

and as C
$←− TrEncryptPLBE(PK, 1,M) otherwise. It sends C to the adversary.

• Guess: The adversary returns a guess β′ ∈ {0, 1} of β.
The advantage of the adversary is AdvID = |Pr[β′ = β]− 1

2 |.
– Index Hiding: This property prevents an adversary from distinguishing between TrEncryptPLBE(PK, i,M)

and TrEncryptPLBE(PK, i + 1,M) when the adversary knows all the secret keys except the ith secret
key. The game between the adversary and the challenger proceeds as follows. The game takes the index
i as input which is given as input to both the challenger and the adversary.
• Setup: The challenger runs the SetupPLBE algorithm and sends the generated public key PK and

the secret keys K1,K2 . . . Ki−1,Ki+1 . . .KN to the adversary. The adversary does not know Ki.
• Challenge: The adversary sends a message M to the challenger. The challenger flips an unbiased

coin and obtains a random β ∈ {0, 1}. It sets the ciphertext as C
$←− TrEncryptPLBE(PK, i+β,M)

and sends it to the adversary.
• Guess: The adversary returns a guess β′ ∈ {0, 1} of β.

The advantage of the adversary is AdvIH [i] = |Pr[β′ = β]− 1
2 |.

– Message Hiding: This property requires that an adversary can not break semantic security when
encryption is performed on input i = N + 1. The game between the adversary and the challenger
proceeds as follows.
• Setup: The challenger runs the SetupPLBE algorithm and sends the generated public key PK and

the secret keys K1,K2 . . . KN to the adversary.
• Challenge: The adversary sends messages M0,M1 to the challenger. The challenger flips an unbiased

coin and obtains a random β ∈ {0, 1}. It sets the ciphertext as C
$←− TrEncryptPLBE(PK,N+1,Mβ)

and sends it to the adversary.
• Guess: The adversary returns a guess β′ ∈ {0, 1} of β.

The advantage of the adversary is AdvMH = |Pr[β′ = β]− 1
2 |.

Definition 1. An N-user PLBE system is considered secure if for all polynomial time adversaries AdvID,
AdvIH [i] for all i ∈ {1 . . . N} and AdvMH are negligible in the security parameter λ.

4



2.4 AugBE

An Augmented Broadcast Encryption (AugBE) [9] system consists of three algorithms: SetupAugBE , EncryptAugBE ,
DecryptAugBE .

– (PK, K1, K2 . . .KN ) $←− SetupAugBE(λ): SetupAugBE

algorithm takes as input the security parameter λ and sets up the public parameters PK for the system
along with generating the secret keys (K1,K2 . . . KN ) for all the users in the system. N is the number
of users in the system.

– C
$←− EncryptAugBE(S, PK, i, M): This algorithm takes as input a subset S ⊆ {1, . . . , N} of users, the

public key PK, and an index 1 ≤ i ≤ N + 1, and a message M. The algorithms outputs a ciphertext
which can be decrypted by any user belonging to the set S ∩ {i, . . . , N}. the ciphertext.

– M ← DecryptAugBE(S, j, Kj , C, PK): A user j having access to the private key Kj can decrypt a
ciphertext C and obtain the corresponding message M . If he is not able to decrypt he outputs ⊥.

AugBE and PLBE system consists of similar algorithms. The only difference between the AugBE and
PLBE systems is that PLBE algorithms do not take set S as input. The set of all users is implied each time
set S is referred to. We refer the reader to [8] for further details.

Desired Security Properties. We now describe the security properties required of an AugBE system.
The security properties required of a PLBE system are implied by the ones for an AugBE system under the
condition that the set S is the set of all users. An AugBE system is considered secure if no adversary has
significant advantage in the following games:

– Index Hiding: This property prevents an adversary from distinguishing between EncryptAugBE(S, PK, i, M)
and EncryptAugBE(S, i + 1, PK, M) when the adversary knows all the secret keys except the ith secret
key. Also when i /∈ S, an adversary with access to all the private keys in the system, should not be able
to tell if the encryption has been done to index i or i + 1. The game between the adversary and the
challenger proceeds as follows. The game takes the index i as input which is given as input to both the
challenger and the adversary.
• Setup: The challenger runs the SetupAugBE algorithm and sends the generated public key PK and

the secret keys K1,K2 . . . Ki−1,Ki+1 . . .KN to the adversary. The adversary does not know Ki.
• Query: The adversary outputs a bit s′ ∈ {0, 1}. If s′ = 1, the challenger sends the adversary Ki,

else he does nothing.
• Challenge: The adversary sends a message M and a set S ⊆ {1, . . . , N} to the challenger. The

only restriction is if s′ = 1 then i /∈ S. The challenger flips an unbiased coin and obtains a random
β ∈ {0, 1}. It sets the ciphertext as C

$←− EncryptAugBE(S, PK, i + β, M) and sends it to the
adversary.

• Guess: The adversary returns a guess β′ ∈ {0, 1} of β.
The advantage of the adversary is AdvIH [i] = |Pr[β′ = β]− 1

2 |.
– Message Hiding: This property requires that an adversary can not break semantic security when

encryption is performed on input i = N + 1. The game between the adversary and the challenger
proceeds as follows.
• Setup: The challenger runs the SetupAugBE algorithm and sends the generated public key PK and

the secret keys K1,K2 . . . KN to the adversary.
• Challenge: The adversary sends messages M0,M1 and a set S ⊂ {1, . . . , N} to the challenger.

The challenger flips an unbiased coin and obtains a random β ∈ {0, 1}. It sets the ciphertext as

C
$←− EncryptAugBE(S, PK, N + 1,Mβ) and sends it to the adversary.

• Guess: The adversary returns a guess β′ ∈ {0, 1} of β.
The advantage of the adversary is AdvMH = |Pr[β′ = β]− 1

2 |.

Definition 2. An N-user AugBE system is considered secure if for all polynomial time adversaries AdvID,
AdvIH [i] for all i ∈ {1 . . . N} and AdvMH are negligible in the security parameter λ.

5



2.5 Equivalence of Traitor Tracing and PLBE

We have presented an intuition behind the argument. A more formal argument appears in [8]. The tracing al-
gorithm will be given a pirate decoder that is able to decrypt messages encrypted using TrEncrypt(PK, 1,M)
with significant probability. The probability of success of this pirate decoder, when encryption is done to
user N + 1, should be negligible because of the message hiding game. The tracing algorithm of the traitor
tracing scheme estimates the probability of success of the adversary when the ciphertext is generated using
TrEncrypt(PK, i, M) for every i ∈ {1 . . . N + 1}. Since the probability is being reduced from significant
to negligible between encryptions to TrEncrypt(PK, 1, M) and TrEncrypt(PK, N + 1,M), the probability
must fall significantly for some i ∈ {1 . . . N +1}. We argue that the given pirate decoder could not have done
this without the knowledge of the ith key. If it didn’t know the ith key, then we could use this pirate decoder
as an adversary in the Index Hiding game with parameter i and distinguish between TrEncrypt(PK, i, M)
and TrEncrypt(PK, i + 1, M) with significant probability. But this can not be true for a secure PLBE.
Hence, we can use a secure PLBE to construct a traitor tracing scheme.

3 Background on Bilinear Maps

3.1 Bilinear Groups

Symmetric and Asymmetric Bilinear Groups of Prime Order. Consider three multiplicative cyclic
groups G1,G2,GT of prime orders (possibly different). Let g1 be a generator of G1 and g2 a generator of
G2. Let r be the order of G1, the smaller of the two groups. We define an efficiently computable bilinear
map e : G1 × G2 → GT with the properties: (1) e is non-degenerate: e(g1, g2) should not evaluate to
the identity element of GT . (2) The map is bilinear: ∀u ∈ G1, ∀v ∈ G2 and a, b ∈ Zr we should have
e(ua, vb) = e(u, v)ab. Such groups are refereed to as Asymmetric Bilinear Groups of Prime Order. Bilinear
groups in which G1 = G2 ≡ G are called Symmetric Bilinear Groups of Prime Order. It can be seen that for
such groups the bilinear map is symmetric since e(ga, gb) = e(g, g)ab = e(gb, ga).

Bilinear Groups of Composite Order. Bilinear groups of composite order are similar to the ones of
prime order. The key difference is that the order of the groups G and GT is composite. Lets say the order is
n, where n = pq, p and q are large primes depending on the security parameter. We will use Gp and Gq to
denote the order p and q subgroups of G, respectively.

3.2 Complexity Assumptions

Let G be an algorithm that takes the security parameter λ as input and generates the tuple (r,G,GT , e).
Decision 3-party Diffie Hellman. This assumption is popular and has been used previously in

a number of schemes including the PLBE scheme [8]. A challenger generates a bilinear group G using

(r,G,GT , e) $←− G(λ). It generates a random generator g for the group G. It chooses a, b, c
$←− Zr.

An algorithmA, solving the Decision 3-party Diffie Hellman problem is given Z = (r,G,GT , e, g, ga, gb, gc).
The challenger flips an unbiased coin and obtains a random β ∈ {0, 1}. If β = 0, it then sets T = gabc and

T = R otherwise, where R
$←− G. It then sends T to A. The adversary returns a guess β′ ∈ {0, 1} of β. The

advantage of A in this game is AdvD3DH = |Pr[β = β′]− 1
2 |. The Decision 3-party Diffie Hellman assumption

states that this advantage is negligible in the security parameter.
Decisional Linear Assumption. This is a simple extension of the Decisional Diffie Hellman (DDH)

Assumption introduced in [1] for bilinear groups in which the DDH assumption is actually easy. A challenger

generates a bilinear group G using (r,G,GT , e) $←− G(λ). It generates a random generator g for the group G.

It chooses a, b, c, x, y
$←− Zr.

An algorithmA, solving the Decisional Linear Assumption problem is given Z = (r,G,GT , e, g, ga, gb, gc, gax, gby).
The challenger flips an unbiased coin and obtains a random β ∈ {0, 1}. If β = 0, it then sets T = gc(x+y)

and T = R otherwise, where R
$←− G. It then sends T to A. The adversary returns a guess β′ ∈ {0, 1} of β.

The advantage of A in this game is AdvDLN = |Pr[β = β′]− 1
2 |. Decisional Linear Assumption states that

this advantage is negligible in the security parameter.

6



External Diffie Hellman Assumption. The External Diffie Hellman (XDH) assumption states that
the Decisional Diffie Hellman (DDH) assumption is hard in the group G1. (Not necessarily hard in G2). This
assumption is believed to be true in asymmetric pairings generated using special MNT curves [2, 21].

Subgroup Decision Assumption. This problem was introduced by Boneh et al. [5] and states that
for a bilinear group G of composite order n = pq, any algorithm A, given a random element g ∈ G and a
random element gq ∈ Gq, can not distinguish between a random element in G and a random element in Gq.
This assumption is for composite order groups. We do not use this assumption in this work.

4 Key Ideas

We now present the intuition behind the working of [8] for composite order bilinear groups and provide a
generic construction to achieve the same properties using prime order bilinear groups. Consider a composite
order bilinear group Gn of order n, where n = pq and p, q are primes. Let us denote elements belonging to the
p-order subgroup (called Gp) and the q-order subgroup (called Gq) of Gn by subscripts p and q, respectively.
The BSW scheme [8] (and most other composite order bilinear group based schemes) relies on the fact that
if gp ∈ Gp and gq ∈ Gq, then e(gp, gq) = 1. The same effect can be obtained in a prime order group by
using vector spaces. For a group G of prime order r, with generator g, consider tuples of elements (ga, gb)
(analogous to gq) and (g−b, ga) (analogous to gp) belonging to the vector space V = G2 (analogous to Gn),
where a, b are random in Zr. Define vectors v1 = (a, b) and v2 = (−b, a). Note that they are orthogonal
vectors. The subspace Vp (analogous to Gp) corresponds to the set of elements (gap̃, gbp̃) such that p̃ ∈ Zr;
and similarly subspace, Vq (analogous to Gq) corresponds to the set of elements (g−bq̃, gaq̃) such that q̃ ∈ Zr.
It is easy to see that pairing an element of Vp with an element of Vq computed3 as e(ga, g−b) · e(gb, ga) yields
the identity element (analogous to e(gp, gq) = 1).

Now we need to build on an analog of the subgroup decision assumption (SDH). SDH informally states
that given an element of G and an element of Gq, it is hard to distinguish a random element in Gq from a
random element in G. But this assumption does not hold with Vp and Vq. Given an element (u, v) ∈ Vq, we
can construct (v−1, u) ∈ Vp. Using these two elements, it is trivial to distinguish an element in Vq from an
element in V .

To fix this problem we consider a 3-dimensional vector space, V = G3. Consider v1 = (a, 0, c), v2 =
(0, b, c) and v3 = v1 × v2, where a, b, c are random elements in Zr. Now let us define the subspace Vq

by all elements (gaq̃, gbq̃′ , gc(q̃+q̃′)) such that q̃, q̃′ ∈ Zr, and let the subspace Vp be defined by elements
(g−bcp̃, g−acp̃, gabp̃) such that p̃ ∈ Zr. For this system, also pairing an element of Vq with an element of
Vp yields the identity element. This system also has an analog of the subgroup decision assumption. Given
(ga, gb, gc), we want it to be hard to distinguish a random element (gaq̃, gbq̃′ , gc(q̃+q̃′)) ∈ Vq from an element
(gx1 , gx2 , gx3) ∈ V , where x1, x2, x3 are random. This follows directly from the decisional linear assump-
tion [1].

The main difference between the subspaces defined using composite order bilinear groups and subspaces
defined using prime order bilinear groups is the flexibility in the way elements from the sub-spaces can
be manipulated. In the case of composite order bilinear groups, it is easy to randomize elements from the
sub-space Vq; but on the other hand, for prime order groups similar randomization is hard. This prevents
the transformation from being applicable in general.

A direct compilation of the BSW traitor tracing scheme with the new ideas presented earlier doesn’t
work because of the reasons mentioned in the previous paragraph. But this can be fixed by allowing the
encrypter to define the subspaces at the time of encryption. This was not possible in the BSW traitor tracing
scheme [8] because the construction was dependent on the primes p, q. More generally, this trick allows, and
in fact, necessitates a late binding of the parameters that define the subspaces. Other schemes satisfying this
property should also be easy to simplify using our trick. Another crucial difference between our scheme and
the BSW scheme is that our scheme does not have subspaces in the target group. Even some of the elements
in the base group are not moved to the vector space.

3 e((gx, gy), (gx′ , gy′)) is evaluated as e(gx, gx′) · e(gy, gy′).

7



5 Our Construction

In this paper we present two new traitor tracing schemes and corresponding trace & revoke systems. As
already pointed out in section 3 a PLBE scheme is sufficient to construct a traitor tracing system and an
AugBE scheme is sufficient to construct a trace & revoke system. In this section we present our PLBE and
AugBE improving on the previous schemes [8, 9]. The schemes in the symmetric and the asymmetric prime
order bilinear groups are fundamentally different. It should be noted that all our schemes allow for public
traceability. The PLBE schemes can be obtained by dropping certain terms from the AugBE scheme which
we describe towards the end of the section.

The number of users in the system, N , is assumed to be equal to m2 for some m. If the number of
users is not a perfect square, then we add some dummy users to pad N to the next perfect square. These
dummy users do not take part in the system in any way. We arrange the users in an m × m matrix. The
user u : 1 ≤ u ≤ N in the system is identified by the (x, y) entry of the matrix, where 1 ≤ x, y ≤ m and
u = (x− 1) ·m + y.

The ciphertext generated by EncryptAugBE consists of a ciphertext component for every row and a
component for every column. For each row x the ciphertext consists of (Ax, Bx, Rx, R̃x) and for every
column y the ciphertext consists of (Cy, C̃y).

Fully collusion resistant traitor tracing (or trace & revoke) is hard because we need to garble parts of the
ciphertext making sure that it only impacts a certain subset of the users. This is made possible by having
a ciphertext term have components along different subspaces. For the purposes of this paper, we use the
notation V to represent the space of ciphertext elements. The elements in this space can have orthogonal
components along Vq and Vp. The information about the sub-space Vq is public while the information for Vp

is private.
An encryption to position (i, j) means that only users (x, y) with x > i or x = i & y ≥ j can decrypt

the message. An encryption to position (i, j) is obtained in the following way. (It is further illustrated in
Figure 1.)

– Column Ciphertext Components: Column ciphertext components for columns y ≥ j are well formed
in both subspaces Vp and Vq, while for columns y < j are well formed in Vq but are random in Vp.

– Row Ciphertext Components: Row ciphertext components for rows x < i are completely random,
and these recipients can not obtain the message information theoretically. For row x = i, the row
ciphertext is well formed in both Vp and Vq. And for rows x > i they are well formed in Vq and have no
component in Vp.
A user in row i will be able to decrypt if the column ciphertext is also well formed in both Vp and Vq.
However a user in rows x > i, will always be able to decrypt because the row ciphertexts for x > i do
not have any component in Vp, and the component of column ciphertexts in Vp will simply cancel out
with the row ciphertexts.

In the AugBE scheme in addition to the above properties there is a set S that specifies the set of users
to which encryption is done. In other words only users in that set can decrypt.

5.1 AugBE using Symmetric Bilinear Groups

We introduce some notation before we go further and describe the scheme. For a given vector v = (v1, . . . vi),
by gv we mean the vector (gv1 . . . gvi). A pairing e on two vectors R and C is defined by multiplication after
the componentwise pairing operation, i.e. e(R,C) =

∏i
k=1 e(Rk, Ck), where e is the pairing operation on the

underlying group elements. Given a set S of users to which encryption is to be done let Sx = {y : (x, y) ∈ S}.
The AugBE scheme consists of the algorithms: SetupAugBE , EncryptAugBE , DecryptAugBE .

– (PK, K(1,1), · · ·K(1,m),K(2,1) · · ·K(m,m)) ← SetupAugBE (1λ, N = m2)
The SetupAugBE algorithm takes as input the security parameter λ and the number of users N in the
system. The algorithm generates a prime order groups G with a pairing e : G × G → GT. It outputs, g
the generator of G and let r (depends on the security parameter) denote the size of G. It then chooses

8



︸ ︷︷ ︸
Well formed in both Vp, Vq

︷ ︸︸ ︷
Well formed only in Vq

?

Column
j

-Row i
} ← ♣





← ♥





← ♠

Fig. 1. ♥ stands for “Random,” ♣ stands for “Well formed in Vp and Vq,” and ♠ stands for “Well formed in Vq.”

random r1, r2, r3, . . . rm, c1, c2 . . . cm, α1, α2 . . . αm ∈ Zr. The public key PK of the AugBE system (along
with the group description) is set to:

g,E1 = gr1 , E2 = gr2 , . . . , Em = grm ,

G1 = e(g, g)α1 , G2 = e(g, g)α2 , . . . , Gm = e(g, g)αm ,

g,H1 = gc1 ,H2 = gc2 , . . . , Hm = gcm

u1, u2, . . . , um ∈ G.

The secret key of each user (x, y) is K(x,y) = {gαx · grxcy · uσx,y
y , gσx,y , ∀i, (i 6= y), uσx,y

y }.
– C ← EncryptAugBE(PK,S, (i, j),M)

This algorithm allows the tracing party to encrypt a message to the recipients who have row value greater
than i or those who have row value equal to i and column value greater than or equal to j and belonging
to the set S. The algorithm chooses random t, η, s1, s2 . . . sm ∈ Zr. It also chooses random a, b, c ∈ Zr

and sets v1 = (a, 0, c), v2 = (0, b, c) and v3 = v1 × v2. All elements gv when v is a linear combination
of v1 and v2 define the Vq space. These elements define the space Vp when the vector v is parallel to v3.
Choose w1,w2, . . . , wm, vc ∈ Z3

r. Let v′
c = vc + vcr · v3 be another vector, with vcr randomly chosen

from Zr.
For each row, 1 ≤ x < i, choose random zx ∈ Z3

r and ax, bx ∈ Zr . The row cipher text components are,

Rx = gzx R̃x = gηzx

Ax = gax Bx = Gbx
x

Tx = (
∏

k∈Sx

uk)ax

For row, x = i, pick random vi randomly ∈ Z3
r. Note that vi · v′

c 6= vi · vc. This prevents parties (i, y),
with y < j from decrypting the message.

9



The row cipher text component for x = i is,

Ri = grisivi R̃i = gηrisivi

Ai = gsit(vi·vc) Bi = M ·Gsit(vi·vc)
i

Ti = (
∏

k∈Si

uk)sit(vi·vc)

For rows, x > i, pick random vx = q̃xv1 + q̃′xv2 where q̃x, q̃′x are random ∈ Zr. Note that vx ·v′
c = vx ·vc.

This allows all parties (x, y) to decrypt the message, if x > i.
The row cipher text components for all x > i are,

Rx = grxsxvx R̃x = gηrxsxvx

Ax = gsxt(vx·vc) Bx = M ·Gsxt(vx·vc)
x

Tx = (
∏

k∈Sx

uk)sxt(vx·vc)

And for every column y < j, the column ciphertext components are,

Cy = gcytv′
c · gηwy C̃y = gwy

And for every column y ≥ j, the column ciphertext components are,

Cy = gcytvc · gηwy C̃y = gwy

– M ← DecryptAugBE(C, S,K(x,y), (x, y))
Let K ′

(x,y) = gαxgrxcy
∏

k∈Sx
u

σx,y

k be the key used by recipient (x, y). Note that user (x, y) can always
compute the product when y ∈ Sx and cannot compute this product otherwise.

M =
Bx

e(K′
(x,y),Ax)

e(Tx,gσx,y )

· e(Rx,Cy)

e(R̃x, C̃y)

The broadcast encryption procedure is to obtained by encrypting using EncryptAugBE(PK, 0,M). This
illustrates the public traceability of our system.The correctness of decryption follows by inspection.

5.2 AugBE using Asymmetric Bilinear Groups

The AugBE scheme consists of the algorithms: SetupAugBE , EncryptAugBE , DecryptAugBE .

– (PK, K(1,1), · · ·K(1,m),K(2,1) · · ·K(m,m)) ← SetupAugBE (1λ, N = m2)
The SetupAugBE algorithm takes as input the security parameter λ and the number of users N in the
system. The algorithm generates two prime order groups G1,G2 with a pairing e : G1 × G2 → GT. It
outputs, g1 and g2, generators of G1 and G2 and let r (depends on the security parameter) denote the
size of G1. It then chooses random r1, r2, r3, . . . rm, c1, c2 . . . cm, α1, α2 . . . αm ∈ Zr. The public key PK
of the AugBE system (along with the group description) is set to:

g1, E1 = gr1
1 , E2 = gr2

1 , . . . , Em = grm
1 ,

G1 = e(g1, g2)
α1 , G2 = e(g1, g2)

α2 , . . . , Gm = e(g1, g2)
αm ,

g2,H1 = gc1
2 ,H2 = gc2

2 , . . . , Hm = gcm
2

u1, u2, . . . , um ∈ G2.

The secret key of each user (x, y) is K(x,y) = {gαx
2 · grxcy

2 · uσx,y
y , g

σx,y

2 , ∀i, (i 6= y), uσx,y
y }.

10



– C ← EncryptAugBE(PK,S, (i, j),M)
The algorithm chooses random t, η, s1, s2 . . . sm ∈ Zr and w1, w2, . . . , wm, v1, vc ∈ Z2

r. Let v2 be a
random vector ∈ Z2

r such that v1 · v2 = 0. Let v′
c = vc + vcr · v2 be another vector, with vcr randomly

chosen from Zr. Note that, v′
c · v1 = vc · v1, a key property we will use in the correctness of our scheme.

All elements gv when v is a along v1 define the Vq space. These elements belong to the space Vp when
the vector v is parallel to v2. Based on the XDH assumption the details about the Vp space are private.
For each row, 1 ≤ x < i, pick random zx ∈ Z2

r and ax, bx ∈ Zr . The row cipher text components are,

Rx = gzx
1 R̃x = gηzx

1

Ax = gax
1 Bx = Gbx

x

Tx = (
∏

k∈Sx

uk)ax

For row, x = i, pick random vector vi ∈ Z2
r. Note that vi · v′

c 6= vi · vc. This is prevent parties (i, y),
with y < j from decrypting the message.
The row cipher text component for x = i is,

Ri = grisivi
1 R̃i = gηrisivi

1

Ai = g
sit(vi·vc)
2 Bi = M ·Gsit(vi·vc)

i

Ti = (
∏

k∈Si

uk)sit(vi·vc)

For rows, x > i, pick random v′x ∈ Zr, let vx = v′x · v1. Note that vx ·v′
c = vx ·vc. This allows all parties

(x, y), for all values of y to decrypt the message, if x > i.
The row cipher text components for all x > i are,

Rx = grxsxvx
1 R̃x = gηrxsxvx

1

Ax = g
sxt(vx·vc)
2 Bx = M ·Gsxt(vx·vc)

x

Tx = (
∏

k∈Sx

uk)sxt(vx·vc)

And for every column y < j, the column ciphertext components are,

Cy = g
cytv′

c
2 · gηwy

2 C̃y = g
wy

2

And for every column y ≥ j, the column ciphertext components are,

Cy = g
cytvc

2 · gηwy

2 C̃y = g
wy

2

– M ← DecryptPLBE(C, S, K(x,y), (x, y))
Let K ′

(x,y) = gαx
2 g

rxcy

2

∏
k∈Sx

u
σx,y

k be the key used by recipient (x, y). Note that user (x, y) can always
compute the product when y ∈ Sx and cannot compute this product otherwise.

M =
Bx

e(Ax,K′
(x,y))

e(Tx,g
σx,y
2 )

· e(Rx,Cy)

e(R̃x, C̃y)

The normal encryption procedure is to just encrypt to
EncryptAugBE(PK, 0,M). This illustrates the public traceability of our system. The correctness of decryp-
tion follows by inspection.

5.3 PLBE

The two AugBE schemes based on symmetric and asymmetric prime order groups respectively can be
converted to the corresponding PLBE schemes by removing the u terms from the public key. We will also
need to get rid of the u and σ terms in the secret key. Row ciphertexts will not include Tx terms and
decryption will not require a pairing corresponding to the term Tx. Rest of the parts of the scheme remain
the same. Details can be found in an earlier version [14] of this paper.

11



6 Security Proof

Here we only give the proof for the AugBE scheme using symmetric prime order bilinear groups. The proof
for the AugBE scheme based on asymmetric prime order bilinear groups is also similar. The only difference is
that security depends on the XDH assumption. The security of the PLBE schemes is implied by the security
of the AugBE schemes.

6.1 Index Hiding

Theorem 1. If the Decision 3-party Diffie Hellman assumption and the decisional linear assumption hold,
then no probabilistic polynomial time adversary can distinguish between an encryption to two adjacent recip-
ients in the index hiding game for any (i, j) where 1 ≤ i, j ≤ m with non-negligible probability.

Proof. We consider two possible cases. First, when the adversary tries to distinguish between ciphertexts
encrypted to (i, j) and (i, j + 1) when 1 ≤ j < m. Second, when the adversary tries to distinguish between
ciphertexts encrypted to (i,m) and (i + 1, 1) when 1 ≤ i < m. The first case follows by Lemma 1 and the
second case follows by Lemma 2.

Lemma 1. If the Decision 3-party Diffie Hellman assumption holds, then no probabilistic polynomial time
adversary can distinguish between an encryption to recipient (i, j) and (i, j +1) in the index hiding game for
any (i, j) where j < m with non-negligible probability.

Proof. This proof is similar to proof of Lemma 5.2 of [8]. Consider an adversary A that succeeds in the index
hiding game with a probability greater than ε. The adversary is considered successful if it can distinguish
between encryptions made to positions (i, j) and (i, j + 1). We build a reduction R that uses A to solve
the Decision 3-party Diffie Hellman problem. The reduction receives the Decision 3-party Diffie Hellman
challenge as:

G, g, A = ga, B = gb, C = gc, T

and it is expected to guess if T is gabc or if it is random.
In this system two cases arise. The simulator guesses the challenge value s′ and generates the public

parameters correctly. In case the value of the s′ does not match the value later provided by the adversary
then the simulator aborts. Since the simulator will successfully guess the right value of s′ with probability
at least 1/2 the simulation will work with probability at least 1/2.

Case 1: s′ = 0: In the Setup phase the reduction based on the input (i, j) (the row and column
the adversary will attack) sets up the public and the private parameters. The reduction chooses random
r1, r2, . . . rm, c1, c2 . . . cm, α1, α2 . . . αm, δ1, δ2 . . . δm ∈ Zr. It also chooses σx,y ∈ Zr for every x, y ∈ {1 . . .m}.
It sets up the public parameters as:

g, E1 = gr1 , E2 = gr2 , . . . Ei = Bri . . . , Em = grm ,

G1 = e(g, g)α1 , G2 = e(g, g)α2 , . . . , Gm = e(g, g)αm ,

H1 = gc1 ,H2 = gc2 , . . .Hj = Ccj . . . , Hm = gcm

u1 = gδ1 , u2 = gδ2 . . . um = gδm

And the private key K(x,y) of user (x,y) is:

K(x,y) = {gαx ·Brx·cy · uσx,y
y } : x = i, y 6= j

K(x,y) = {gαx · Crx·cy · uσx,y
y } : x 6= i, y = j

K(x,y) = {gαx · grx·cy · uσx,y
y } : x 6= i, y 6= j

The private keys also contain {gσx,y , ∀i, (i 6= y), uσx,y
y } for each user (x, y). Note that the distribution of

the public and private parameters matches the distribution of parameters in the real scheme.
In the challenge phase the adversary sends the message M ∈ GT to the reduction. The reduction then

chooses random t, w1,k, w2,k, . . . wm,k, s1, s2 . . . sm ∈ Zr where k = {1, 2, 3}. It also chooses random a, b, c ∈ Zr

and sets v1 = (a, 0, c), v2 = (0, b, c) and v3 = (−bc,−ac, ab).

12



Set gη = B.
It then sets vc = (vc,1, vc,2, vc,3) where vc,1, vc,2, vc,3 are chosen randomly in Zr. Let vq denote the

projection of v along the plane formed by v1 and v2. And let vp be the component along v3.
It also chooses random z1,x,k, z2,x, z3,x ∈ Zr where 1 ≤ x < i and k ∈ {1, 2, 3} and sets up the ciphertext

as follows.

x < i : Rx,k = gz1,x,k : k = {1, 2, 3}
R̃x,k = gz1,x,kη : k = {1, 2, 3}
Ax = gz2,x

Bx = e(g, g)z3,x

Tx = Ax

∑
k∈Sx

δk

(1)

It sets vi = q̃i · v3 + q̃′i · v3 + p̃i · v3 where q̃i, q̃
′
i, p̃i are random in Zr.

x = i : Ri,k = grivi,ksi : k = {1, 2, 3}
R̃i,k = Brivi,ksi : k = {1, 2, 3}
Ai = Asit(v

p
i ·vp

c ) · gsit(v
q
i ·vq

c )

Bi = M · e(g, Ai)αi

Ti = Ai

∑
k∈Si

δk

For each x ∈ {i + 1 · · ·m}, it picks vx = vq
x = q̃x · v1 + q̃′x · v2 where q̃x, q̃′x are random in Zr.

x > i : Rx,k = grxvq
x,ksx : k = {1, 2, 3}

R̃x,k = Brxvq
x,ksx : k = {1, 2, 3}

Ax = Bsxt(vq
x·vc)

Bx = M · e(g, B)αxsxt(vq
x·vc)

Tx = Ax

∑
k∈Sx

δk

Choose a random z ∈ Zr and for k = {1, 2, 3}.

y < j : Cy,k = gzvp
c,k ·Bwy,k

C̃y,k = g−cytvq
c,k · gwy,k

y = j : Cy,k = T cytvp
c,k ·Bwy,k

C̃y,k = C−cyvq
c,kt · gwy,k

y > j : Cy,k = Bwy,k

C̃y,k = A−cyvp
c,kt · g−cytvq

c,k · gwy,k

If T corresponds to gabc, then the ciphertext corresponding to (i, j) is well formed; and if T is randomly
chosen, then the encryption corresponds to (i, j + 1). The reduction will receive the guess γ from A and it
passes on the same value to the Decision 3-party Diffie Hellman challenger. The advantage of the reduction
is exactly equal to the advantage of the adversary A.

Case 2: s′ = 1: In the Setup phase the reduction based on the input (i, j) (the row and column
the adversary will attack) sets up the public and the private parameters. The reduction chooses random
r1, r2, . . . rm, c1, c2 . . . cm, α1, α2 . . . αm, δ1, δ2 . . . δ′j . . . δm ∈ Zr. It also chooses σx,y ∈ Zr for every x, y ∈

13



{1 . . .m}&y 6= j. It also chooses σ′(x,j) ∈ Zr for every x ∈ {1 . . . m}. It sets up the public parameters as:

g, E1 = gr1 , E2 = gr2 , . . . Ei = Bri . . . , Em = grm ,

G1 = e(g, g)α1 , G2 = e(g, g)α2 , . . . , Gm = e(g, g)αm ,

H1 = gc1 ,H2 = gc2 , . . .Hj = Ccj . . . , Hm = gcm

u1 = gδ1 , u2 = gδ2 . . . uj = Cδ′j . . . um = gδm

(2)

In our system δj = c · δ′j . Set σ(i,j) = − brxcy

δ′j
+

σ′(i,j)

δ′j
. And the private key K(x,y) of user (x,y) is:

K(x,y) = {gαx ·Brx·cy · uσx,y
y , gσx,y} : x = i, y 6= j

K(x,y) = {gαx · Crx·cy · uσx,y
y , Bσx,y} : x 6= i, y = j

K(i,j) = {gαx · Cσ′i,j , gσi,j} : x = i, y = j

K(i,j) = {gαx · grx·cy · uσx,y
y , Bσx,y} : x 6= i, y 6= j

The secret key also contain ∀i, (i 6= y), uσx,y
y for each user (x, y). Note that the distribution of the public and

private parameters matches the distribution of parameters in the real scheme.
In the challenge phase the adversary sends the message M ∈ GT to the reduction. The reduction then

chooses random t, w1,k, w2,k, . . . wm,k, s1, s2 . . . sm ∈ Zr where k = {1, 2, 3}. It also chooses random a, b, c ∈ Zr

and sets v1 = (a, 0, c), v2 = (0, b, c) and v3 = (−bc,−ac, ab).
Set gη = B.
It then sets vc = (vc,1, vc,2, vc,3) where vc,1, vc,2, vc,3 are chosen randomly in Zr. Let vq denote the

projection of v along the plane formed by v1 and v2. And let vp be the component along v3.
It also chooses random z1,x,k, z2,x, z3,x ∈ Zr where 1 ≤ x < i and k ∈ {1, 2, 3} and sets up the ciphertext

as follows.

x < i : Rx,k = gz1,x,k : k = {1, 2, 3}
R̃x,k = gz1,x,kη : k = {1, 2, 3}
Ax = gz2,x

Bx = e(g, g)z3,x

Tx = Ax

∑
k∈Sx

δk

(3)

It sets vi = q̃i · v3 + q̃′i · v3 + p̃i · v3 where q̃i, q̃
′
i, p̃i are random in Zr. The ciphertext for row i can be easily

generated because we do not need to use δj .

x = i : Ri,k = grivi,ksi : k = {1, 2, 3}
R̃i,k = Brivi,ksi : k = {1, 2, 3}
Ai = Asit(v

p
i ·vp

c ) · gsit(v
q
i ·vq

c )

Bi = M · e(g, Ai)αi

Ti = Ai

∑
k∈Si

δk

For each x ∈ {i + 1 · · ·m}, it picks vx = vq
x = q̃x · v1 + q̃′x · v2 where q̃x, q̃′x are random in Zr. The terms

with δj can be separated and evaluated as all values σ(x,y) for x > i are known.

x > i : Rx,k = grxvq
x,ksx : k = {1, 2, 3}

R̃x,k = Brxvq
x,ksx : k = {1, 2, 3}

Ax = Bsxt(vq
x·vc)

Bx = M · e(g, B)αxsxt(vq
x·vc)

Tx = (
∏

k∈Sx

uk)
sxt(vq

x·vc)

14



Choose a random z ∈ Zr.

y < j : Cy,k = gzvp
c,k ·Bwy,k : k = {1, 2, 3}

C̃y,k = g−cytvq
c,k · gwy,k : k = {1, 2, 3}

y = j : Cy,k = T cytvp
c,k ·Bwy,k : k = {1, 2, 3}

C̃y,k = C−cyvq
c,kt · gwy,k : k = {1, 2, 3}

y > j : Cy,k = Bwy,k : k = {1, 2, 3}
C̃y,k = A−cyvp

c,kt · g−cytvq
c,k · gwy,k : k = {1, 2, 3}

If T corresponds to gabc, then the ciphertext corresponding to (i, j) is well formed; and if T is randomly
chosen, then the encryption corresponds to (i, j + 1). The reduction will receive the guess γ from A and it
passes on the same value to the Decision 3-party Diffie Hellman challenger. The advantage of the reduction
is exactly equal to the advantage of the adversary A.

Lemma 2. If the Decision 3-party Diffie Hellman assumption and the decisional linear assumption hold,
then no probabilistic polynomial time adversary can distinguish between an encryption to recipient (i,m) and
(i + 1, 1) in the index hiding game for any 1 ≤ i < m with non-negligible probability.

Proof. The proof of this lemma follows from a series of lemmas that establish the indistinguishability of the
following games.

– H1 Encrypt to column4 m, row i is the target row,5 row i + 1 is the greater-than row.6

– H2 Encrypt to column m + 1, row i is the target row, row i + 1 is the greater-than row.
– H3 Encrypt to column m + 1, row i is the less-than row, row i + 1 is the greater-than row (no target

row).
– H4 Encrypt to column 1, row i is the less-than row, row i + 1 is the greater-than row (no target row).
– H5 Encrypt to column 1, row i is the less-than row, row i + 1 is the target row.

It can be observed that game H1 corresponds to the encryption being done to (i,m) and game H5 corresponds
to encryption to (i+1, 1). The indistinguishability of the games H1 and H5, which follows from Lemmas 3, 4, 5,
and 6, implies the lemma.

Lemma 3. If the Decision 3-party Diffie Hellman assumption holds, then no probabilistic polynomial time
adversary can distinguish between games H1 and H2 with non-negligible probability.

Proof. This lemma can be proved by applying the result of Lemma 1.

Lemma 4. If the Decision 3-party Diffie Hellman assumption holds, then no probabilistic polynomial time
adversary can distinguish between games H2 and H3 with non-negligible probability.

Proof. The basic intuition behind the proof is to embed the problem in the vp
c part of vc. Since all columns

have a random component in Vp, we don’t need to actually generate this part. Consider an adversary A that
can distinguish between H2 and H3 with a probability greater than ε. We build a reduction R that uses
A to solve the Decision 3-party Diffie Hellman problem. The reduction receives the Decision 3-party Diffie
Hellman challenge as:

G, g, A = ga, B = gb, C = gc, T

and it is expected to guess if T is gabc or if it is random.
Next, in the setup phase the reduction based on the input i (the row the adversary wants to attack) sets up

the public and the private parameters. The reduction chooses random r1, r2, . . . ri−1, ri+1 . . . rm, c1, c2 . . . cm,
α1, α2 . . . αi−1, αi+1 . . . αm, δ1, δ2 . . . δm ∈ Zr. It also chooses σx,y ∈ Zr for every x, y ∈ {1 . . .m}. It sets

4 Columns greater than or equal to m are well formed, both in Vp and Vq.
5 The row for which the row component of the ciphertext has well formed components, both in Vp and Vq.
6 The first row with the row component of ciphertexts only in Vq.

15



gαx = ga·b and grx = B. It doesn’t know gab but can generate Gi = e(A,B) and Kx,y = gabg((cy−a)b) = Bcy .
It sets up the public parameters as:

g, E1 = gr1 . . . Ei = B . . . Em = grm ,

G1 = e(g, g)α1 , . . . Gi = e(A,B), . . . , Gm = e(g, g)αm ,

H1 = gc1 ·A−1,H2 = gc2 ·A−1 . . .Hm = gcm ·A−1

u1 = gδ1 , u2 = gδ2 . . . um = gδm

(4)

And the private key K(x,y) of user (x,y) is:

K(x,y) = {gαx · (gcy ·A−1)
rx · uσx,y

y , gσx,y , ∀i, (i 6= y), uσx,y
y }

: x 6= i

K(x,y) = {Bcy · uσx,y
y , gσx,y , ∀i, (i 6= y), uσx,y

y } : x = i

Note that the distribution of the public and private parameters matches the distribution of parameters in
the real scheme.

In the challenge phase the adversary sends the message M ∈ GT to the reduction. The reduction then
chooses random t, η, w1,k, w2,k, . . . wm,k, s1, s2 . . . sm ∈ Zq where k = {1, 2, 3}. It also chooses random
a, b, c ∈ Zr and sets v1 = (a, 0, c), v2 = (0, b, c) and v3 = (−bc,−ac, ab). It then sets uc = (uc,1, uc,2, uc,3)
where uc,1, uc,2, uc,3 are chosen randomly in Zr. Let uq denote the projection of u along the plane formed
by v1 and v2 and up denote the projection of u along v3. Let gvp

c,k = Cup
c,k . Note that by using this value

of vp
c,k, we will not be able to generate a column ciphertext that has the right component in Vp; but since

all columns are random in Vp, we do not need to generate this term. Let gv′pc,k = gz·up
c,k , where z is random

in Zr. It also sets , vi = q̃i · v1 + q̃′i · v2 + p̃i · v3 where q̃i, q̃
′
i, p̃i are random in Zr. It also chooses random

z1,x,k, z2,x, z3,x ∈ Zq where 1 ≤ x < i and k ∈ {1, 2, 3}.
Then it creates the ciphertext as:

x < i : Rx,k = gz1,x,k : k = {1, 2, 3}
R̃x,k = gz1,x,kη : k = {1, 2, 3}
Ax = gz2,x

Bx = e(g, g)33,x

Tx = Ax

∑
k∈Sx

δk

x = i : Ri,k = Bvi,ksi : k = {1, 2, 3}
R̃i,k = Bvi,ksiη : k = {1, 2, 3}
Ai = gsit(v

q
i ·vq

c ) · Csit(v
p
i ·up

c )

Bi = M · e(A,B)sit(v
q
i ·vq

c )
e(g, T )tsi(v

p
i ·up

c )

Ti = Ai

∑
k∈Si

δk

For each x ∈ {i + 1 · · ·m}, it picks vx = vq
x = q̃x · v1 + q̃′x · v2 where q̃x, q̃′x are random in Zr.

x > i : Rx,k = grxvq
x,ksx : k = {1, 2, 3}

R̃x,k = grxvq
x,ksxη : k = {1, 2, 3}

Ax = gsxt(vq
x·vq

c )

Bx = M · e(g, g)αxsxt(vq
x·vq

c )

Tx = Ax

∑
k∈Sx

δk

Cy,k =
(
gcy ·A−1

)t(vq
c,k+v′pc,k) · gwy,kη : k = {1, 2, 3}

C̃y,k = gwy,k : k = {1, 2, 3}

16



If T corresponds to gabc, then the ciphertext corresponding to row i corresponds to the target row; and if
T is randomly chosen, then the encryption corresponds to game H3. The reduction will receive the guess γ
from A, and it passes on the same value to the Decision 3-party Diffie Hellman challenger. The advantage
of the reduction is exactly equal to the advantage of the adversary A.

Lemma 5. If the Decision 3-party Diffie Hellman assumption holds, then no probabilistic polynomial time
adversary can distinguish between games H3 and H4 with non-negligible probability.

Proof. H3 to H4 can be expressed as a series of games H3,m+1, H3,m · · · H3,1. In the game H3,j , all column
ciphertexts (Cy, C̃y) are well formed for all y such that j ≤ y ≤ m. It can be seen that H3,1 is the same as
H4, and H3,m is the same as H3. We prove the indistinguishability of games H3,j and H3,j+1 for all j where
1 ≤ j ≤ m. The proof for this is similar to that of Lemma 1. Consider an adversary A that solves the index
hiding game with a probability greater than ε. The adversary is considered successful if it can distinguish
between games H3,j and H3,j+1. We build a reduction R that uses A to solve the Decision 3-party Diffie
Hellman problem. The reduction receives the Decision 3-party Diffie Hellman challenge as:

G, g, A = ga, B = gb, C = gc, T

and it is expected to guess if T is gabc or if it is random.
Next, in the Setup phase the reduction based on the input (i, j) (the row and column the adversary

will attack) sets up the public and the private parameters. The reduction chooses random r1, r2, . . . rm,
c1, c2 . . . cm, α1, α2 . . . αmδ1, δ2 . . . δm ∈ Zr. It also chooses σx,y ∈ Zr for every x, y ∈ {1 . . . m}. It sets up the
public parameters as:

g, E1 = gr1 , E2 = gr2 , . . . Em = grm ,

G1 = e(g, g)α1 , G2 = e(g, g)α2 , . . . , Gm = e(g, g)αm ,

H1 = gc1 ,H2 = gc2 , . . .Hj = Ccj . . . , Hm = gcm

u1 = gδ1 , u2 = gδ2 . . . um = gδm

(5)

And the private key K(x,y) of user (x,y) is:

K(x,y) = {gαx · grx·cy · uσx,y
y , gσx,y ,∀i, (i 6= y), uσx,y

y } : y 6= j

K(x,y) = {gαx · Crx·cy · uσx,y
y , gσx,y ,∀i, (i 6= y), uσx,y

y } : y = j

Note that the distribution of the public and private parameters matches the distribution of parameters
in the real scheme.

In the challenge phase the adversary sends the message M ∈ GT to the reduction. The reduction then
chooses random t, w1,k, w2,k, . . . wm,k, s1, s2 . . . sm ∈ Zr where k = {1, 2, 3}. It also chooses random a, b, c ∈ Zr

and sets v1 = (a, 0, c), v2 = (0, b, c) and v3 = (−bc,−ac, ab).
Set gη = B.
It then sets vc = (vc,1, vc,2, vc,3) where vc,1, vc,2, vc,3 are chosen randomly in Zr. Let vq denote the

projection of v along the plane formed by v1 and v2. And vp be the component along v3.
It chooses random z1,x,k, z2,x, z3,x ∈ Zr where 1 ≤ x < i and k ∈ {1, 2, 3} and sets up the ciphertext as

follows.

x ≤ i : Rx,k = gz1,x,k : k = {1, 2, 3}
R̃x,k = gz1,x,kη : k = {1, 2, 3}
Ax = gz2,x

Bx = e(g, g)z3,x

Tx = Ax

∑
k∈Sx

δk

(6)

17



For each x ∈ {i + 1 · · ·m}, it picks vx = vq
x = q̃x · v1 + q̃′x · v2 where q̃x, q̃′x are random in Zr.

x > i : Rx,k = grxvq
x,ksx : k = {1, 2, 3}

R̃x,k = Brxvq
x,ksx : k = {1, 2, 3}

Ax = Bsxt(vq
x·vc)

Bx = M · e(g, B)αxsxt(vq
x·vc)

Tx = Ax

∑
k∈Sx

δk

Choose a random z ∈ Zr.

y < j : Cy,k = gzvp
c,k ·Bwy,k : k = {1, 2, 3}

C̃y,k = g−cytvq
c,k · gwy,k : k = {1, 2, 3}

y = j : Cy,k = T cytvp
c,k ·Bwy,k : k = {1, 2, 3}

C̃y,k = C−cyvq
c,kt · gwy,k : k = {1, 2, 3}

y > j : Cy,k = Bwy,k : k = {1, 2, 3}
C̃y,k = A−cyvp

c,kt · g−cytvq
c,k · gwy,k : k = {1, 2, 3}

If T corresponds to gabc, then we are in game H3,j ; and if T is randomly chosen, then the encryption
corresponds to the game H3,j+1. The reduction will receive the guess γ from A, and it passes on the same
value to the Decision 3-party Diffie Hellman challenger. The advantage of the reduction is exactly equal to
the advantage of the adversary A.

Lemma 6. If the decisional linear assumption holds, then no probabilistic polynomial time adversary can
distinguish between games H4 and H5 with non-negligible probability.

Proof. Consider an adversary A that can distinguish between games H4 and H5 with a probability greater
than ε. We build a reduction R that uses A to solve the decisional linear problem. The reduction receives
the decisional linear challenge as:

G, g, ga, gb, gc, gax, gby, T

and it is expected to guess if T is gc(x+y) or if it is random.
Next, in the Setup phase the reduction based on the input i (the row the adversary will attack) sets up the

public and the private parameters. The reduction chooses random r1, r2, . . . rm, c1, c2 . . . cm, α1, α2 . . . αmδ1, δ2 . . . δm ∈
Zr. It also chooses σx,y ∈ Zr for every x, y ∈ {1 . . .m}. It sets up the public parameters as:

g, E1 = gr1 , E2 = gr2 , . . . Em = grm ,

G1 = e(g, g)α1 , G2 = e(g, g)α2 , . . . Gm = e(g, g)αm ,

H1 = gc1 ,H2 = gc2 , . . . Hm = gcm

u1 = gδ1 , u2 = gδ2 . . . um = gδm

(7)

And the private key K(x,y) of user (x,y) is:

K(x,y) = {gαx · grx·cy · uσx,y
y , g

σx,y

2 ,∀i, (i 6= y), uσx,y
y } : ∀x, y

Note that the distribution of the public and private parameters matches the distribution of parameters in
the real scheme.

It sets gv1,1 = ga, gv1,2 = g0, gv1,3 = gc, gv2,1 = g0, gv2,2 = gb and gv2,3 = gc. A valid decisional linear
tuple will lie in the subspace formed by vectors v1 and v2. A decisional linear problem tuple will be used for
setting row ciphertext for row i + 1. A valid tuple leads to encryption as in game H4, and a random tuple
will cause the encryption to be as in game H5.

18



In the challenge phase the adversary sends the message M ∈ GT to the reduction. The reduction
then chooses random t, η, w1,k, w2,k, . . . wm,k, s1, s2 . . . sm ∈ Zr where k = {1, 2, 3}. It then sets vc =
(vc,1, vc,2, vc,3) where vc,1, vc,2, vc,3 are chosen randomly in Zr.

g(vx·vc) =
3∏

k=1

[gvx,k ]vc,k

It also chooses random z1,x,k, z2,x, z3,x ∈ Zr where 1 ≤ x ≤ i and k ∈ {1, 2, 3}. Then it creates the
ciphertext as follows.

x ≤ i : Rx,k = gzq,x,k : k = {1, 2, 3}
R̃x,k = gz1,x,kη : k = {1, 2, 3}
Ax = gz2,x

Bx = e(g, g)z3,x

Tx = Ax

∑
k∈Sx

δk

It sets gvi+1,1 = gax, gvi+1,2 = gby and gvi+1,3 = T . For each x ∈ {i+2 · · ·m}, it picks gvx,1 = gaq̃x , gvx,2 = gbq̃′x

and gvx,3 = gc(q̃x+q̃′x) where q̃x, q̃′x are random in Zr.

x > i : Rx,k = grxvx,ksx : k = {1, 2, 3}
R̃x,k = grxvx,ksxη : k = {1, 2, 3}
Ax = gsxt(vx·vc)

Bx = M · e(g, g)αxsxt(vx·vc)

Tx = Ax

∑
k∈Sx

δk

Cy,k = gcytvc,k · gwy,kη C̃y,k = gwy,k : k = {1, 2, 3}
If T corresponds to gc(x+y), then the ciphertext corresponds to game H4; and if T is randomly chosen, then
it corresponds to game H5. The reduction will receive the guess γ from A, and it passes on the same value
to the decisional linear challenger. The advantage of the reduction is exactly equal to the advantage of the
adversary A.

6.2 Message Hiding

Theorem 2. No adversary can distinguish between two ciphertexts when the encryption is done to the
(m + 1, 1).

Proof. This means that all rows will be completely random and independent of the message. Hence, infor-
mation theoretically the adversary has no way of identifying which message has been encrypted.

7 Implementation

We provide the first implementation of fully collusion resistant traitor tracing and trace & revoke schemes.
We use only prime order bilinear groups in this implementation. We implement all of our schemes using
the Pairing Based Crypto (PBC) library [19]. For schemes that use asymmetric bilinear groups, we generate
them using MNT curves [21]. The group size is 170 bits long, the group representations are 512 bits long,
and the security is equivalent to 1024 bits of discrete log. It is also believed that the XDH assumption
holds on these curves (Section 8.1 [6]). For symmetric bilinear groups, we use super singular curves (with
fastest pairing times but bad group element size). We use 512 bit group representations and have 1024 bits
of discrete log security. One can choose other alternative symmetric groups that have smaller group size

19



Fig. 2. Encryption Time (in secs) of traitor tracing schemes

with faster exponentiation but slower pairing operations. This kind of tradeoff was not possible in previous
systems [8, 9].

We contrast our schemes’ efficiency with an implementation of [8]. [8] only provides traitor tracing
functionality. We compare our traitor tracing scheme with [8] in Tables 1,2 and Figure 4. We also provide
additional data on our trace & revoke implementation (Table 3)). Currently, the only known way to generate
composite order groups is by using symmetric bilinear groups. Also, their subgroup decision assumption
mandates that the order of the composite group be at least 1024 bits (to avoid sub-exponential factoring
based attacks). We compare the encryption time, decryption time and ciphertext sizes as the number of users
grow for all these schemes.

A real implementation of broadcast encryption will use a symmetric key cipher under some key K
[8]. But this key K still needs to be distributed and one can use our schemes for key distribution. By
converting our encryption system to a Key Encapsulation Mechanism we can save on computation. Under
this optimization, we do not need to evaluate Bx or include it in the ciphertext. A user (x, y) can extract the

key Kx = e(K(x,y), Ax)

3∏

i=1

e(R̃x, C̃y)

3∏

i=1

e(Rx, Cy)

. The ciphertext would now have to contain an encryption of K under

each of the Kx. The user can then derive K from an encryption of it under Kx.
In Table 1 and 2 we provide a comparison of our PLBE scheme for the case of symmetric and asymmetric

prime order groups with that of [8] (which uses composite order groups). The implementation was done on
an Intel i3 2.9GHz quad core desktop PC with 2GB RAM. The groups were chosen to guarantee 1024 bits
of discrete log security for encryption time and ciphertext size.

7.1 Encryption Time

The encryption time (Table 1, Figure 2) is heavily dependent on a large number of exponentiation operations,
one for each row of ciphertext. It depends on the number of users as O(

√
N), explaining the parabolic

nature of the graph(s). The cost of exponentiation operations in elliptic curves depend both on group
representation size and the actual order of the group. The order of symmetric groups that we have chosen
for this implementation are constructed to be of the form 2a ± 2b ± 1, for some integers a, b. This makes
exponentiation in them very efficient. The asymmetric order groups are efficient because of their smaller
group size. The composite order groups perform significantly worse by a factor of 6.

20



Table 1. Encryption Time of traitor tracing schemes

Users Boneh et al. Symmetric PLBE Asymmetric PLBE Skewed Asymm.

25 1.977s 0.749s 0.494s 0.3611s

100 3.971s 1.503s 1s 0.694s

225 6.069s 2.183s 1.512s 1.081s

400 8.2s 2.922s 3.187s 1.424s

1225 13.898s 5.1885s 3.495s 2.523s

2500 21.046s 7.227s 5.104s 3.583s

5625 29.681s 10.797s 8.069s 6.056s

10000 40.189s 14.552s 10.099s 8.074s

22500 - 21.769s 16.028s 10.577s

Fig. 3. Ciphertext Size (in bytes) of traitor tracing schemes

Fig. 4. Decryption time of traitor tracing schemes

21



Table 2. CipherText Size (in bytes) of traitor tracing schemes

Users Boneh et.al Symmetric PLBE Asymmetric PLBE Skewed Asymm.

25 7800 8960 4400 3840

100 15600 17920 8800 7680

225 23400 26880 13200 11840

400 31200 35840 17600 15680

1225 54600 62720 30800 27360

2500 78000 89600 44000 39200

5625 117000 134400 66000 58720

10000 156000 179200 88000 78400

22500 - 268800 132000 117440

7.2 Ciphertext Size

The ciphertext size (Table 2, Figure 3) is dependent on the representation size of the elliptic curve and the
number of group elements used. Our construction, although using a larger number of group elements, has
smaller total ciphertext size (in the asymmetric case) because the group sizes are significantly smaller. The
asymmetric groups, by their nature allows us to optimize ciphertext size by increasing the number of rows
and decreasing the columns in (Fig. 1). We call this the Skewed Asymmetric group version. Note that by
design, most of the group elements in the ciphertext are placed in the smaller group G1. Skewing has no
effect on security proofs and allows us to optimize on ciphertext size.

Calculations show that using 25 × 16(= 400) rectangle for generating ciphertexts produces only 15680
bytes which gives us a 50% improvement compared to the scheme of [8]

Table 3. Encryption Time and CipherText size (in bytes) for Trace & Revoke in prime order groups

Users Symm. Enc.
Time

Asymm. Enc. Time Symm. Ciphertext
Size

Asymm. Cipher-
text Size

25 0.611s 0.540s 9600B 4600B

100 1.179s 1.027s 19200B 9200B

225 1.695s 1.550s 28800B 13800B

400 2.213s 2.059s 38400B 18400B

1225 3.765s 3.594s 67200B 32200B

2500 5.272s 5.248s 96000B 46000B

5625 8.104s 7.759s 144000B 69000B

We provide and implement efficient broadcast, trace & revoke system. Table 3 provides encryption times
and ciphertext size (in bytes) for up to 5625 users. The security guaranteed on the elliptic curves used are
1024 bit discrete log security.

7.3 Decryption Time

The decryption time for the various scenarios (Figure 4) above are relatively constant and independent of
the number of users for each scheme. This is because decryption time is dominated by the cost of pairing
operations on the elliptic curves. The composite order schemes decrypt at 0.296s per ciphertext and the
primer order symmetric and asymmetric groups decrypt at 0.051s and 0.032s respectively. Thus we see the
prime order groups are relative similar w.r.t decryption times and are 10 times faster due to faster pairing
operations in these groups.

7.4 Comparison with the ElGamal Encryption

We compare the efficiency of our scheme with an implementation of a näıve (but optimized) ElGamal based
traitor tracing scheme. The advantage of using an ElGamal based scheme is that the group that it works

22



Fig. 5. Ciphertext Size

on could support very efficient arithmentic operations (we choose the multiplicative group Z∗p for a 1024
bit prime p) making encryption very fast. The disadvantage is that for N users ElGamal based systems use
O(N) steps whereas our scheme uses O(

√
N) steps. We observe that the ElGamal implementation has a huge

ciphertext size overload compared to our scheme (Figure 5). We also observe that asymptotic improvements
in the encryption time begin to show up for as few as 2500 users (Figure 6).

Fig. 6. Encryption Time

8 Conclusion

Boneh et al. [8,9] provide traitor tracing and trace & revoke systems using composite order bilinear groups.
These groups have large exponentiation and pairing times making them impractical. We provide the first
implementation of a traitor tracing and trace & revoke systems, using symmetric and asymmetric prime
order bilinear groups. Our implementation and comparisons with [8] show that we achieve about 10 times
faster decryption, 6 times faster encryption and 50% reduction in ciphertext size. The ideas presented in this
work are general and can be applied to convert other composite order cryptosystems to efficient prime order
based cryptosystems.

23



References

1. D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In Proceedings of CRYPTO .04, LNCS series,
pages 41–55. Springer-Verlag, 2004.

2. D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In M. K. Franklin, editor, CRYPTO, volume
3152 of Lecture Notes in Computer Science, pages 41–55. Springer, 2004.

3. D. Boneh and M. K. Franklin. An efficient public key traitor tracing scheme. In CRYPTO ’99: Proceedings of
the 19th Annual International Cryptology Conference on Advances in Cryptology, pages 338–353, London, UK,
1999. Springer-Verlag.

4. D. Boneh, C. Gentry, and B. Waters. Collusion resistant broadcast encryption with short ciphertexts and private
keys. In CRYPTO, pages 258–275, 2005.

5. D. Boneh, E.-J. Goh, and K. Nissim. Evaluating 2-DNF formulas on ciphertexts. In Second Theory of Cryptog-
raphy Conference, TCC, volume 3378 of LNCS, pages 325–341, 2005.

6. D. Boneh, B. Lynn, and H. Shacham. Short signatures from the weil pairing. In ASIACRYPT ’01: Proceedings of
the 7th International Conference on the Theory and Application of Cryptology and Information Security, pages
514–532, London, UK, 2001. Springer-Verlag.

7. D. Boneh and M. Naor. Traitor tracing with constant size ciphertext. In ACM Conference on Computer and
Communications Security, pages 501–510, 2008.

8. D. Boneh, A. Sahai, and B. Waters. Fully collusion resistant traitor tracing with short ciphertexts and private
keys. In EUROCRYPT 2006, volume 4004 of LNCS, pages 573–592. Springer-Verlag, 2006.

9. D. Boneh and B. Waters. A fully collusion resistant broadcast, trace, and revoke system. In CCS ’06: Proceedings
of the 13th ACM conference on Computer and communications security, pages 211–220, New York, NY, USA,
2006. ACM.

10. H. Chabanne, D. H. Phan, and D. Pointcheval. Public traceability in traitor tracing schemes. In EUROCRYPT,
pages 542–558, 2005.

11. B. Chor, A. Fiat, and M. Naor. Tracing traitors. In CRYPTO ’94: Proceedings of the 14th Annual International
Cryptology Conference on Advances in Cryptology, pages 257–270, London, UK, 1994. Springer-Verlag.

12. Y. Dodis and N. Fazio. Public key trace and revoke scheme secure against adaptive chosen ciphertext attack. In
Public Key Cryptography, pages 100–115, 2003.

13. D. M. Freeman. Converting pairing-based cryptosystems from composite-order groups to prime-order groups. In
Preprint, 2009.

14. S. Garg, A. Sahai and B. Waters. Efficient Fully Collusion-Resilient Traitor Tracing Scheme. Cryptology ePrint
Archive, Report 2009/532, 2009.

15. C. Gentry and B. Waters. Adaptive security in broadcast encryption systems (with short ciphertexts). In
EUROCRYPT, pages 171–188, 2009.

16. A. Kiayias and M. Yung. Breaking and repairing asymmetric public-key traitor tracing. In Digital Rights
Management Workshop, pages 32–50, 2002.

17. A. Kiayias and M. Yung. Traitor tracing with constant transmission rate. In EUROCRYPT, pages 450–465,
2002.

18. K. Kurosawa and Y. Desmedt. Optimum traitor tracing and asymmetric schemes. In EUROCRYPT, pages
145–157, 1998.

19. B. Lynn. The pairing-based cryptography library.
20. S. Mitsunari, R. Sakai, and M. Kasahara. A new traitor tracing. In IEICE Trans. Fundamentals, pages E85–

A(2):481484, 2002.
21. A. Miyaji, M. Nakabayashi, and S. Takano. Characterization of elliptic curve traces under fr-reduction. In ICISC,

pages 90–108, 2000.
22. M. Naor and B. Pinkas. Efficient trace and revoke schemes. In Financial Cryptography, pages 1–20, 2000.
23. B. Pfitzmann. Trials of traced traitors. In Information Hiding, pages 49–64, 1996.
24. B. Pfitzmann and M. Waidner. Asymmetric fingerprinting for larger collusions. In ACM Conference on Computer

and Communications Security, pages 151–160, 1997.
25. V. D. Tô, R. Safavi-Naini, and F. Zhang. New traitor tracing schemes using bilinear map. In DRM ’03: Proceedings

of the 3rd ACM workshop on Digital rights management, pages 67–76, New York, NY, USA, 2003. ACM.
26. Y. Watanabe, G. Hanaoka, and H. Imai. Efficient asymmetric public-key traitor tracing without trusted agents.

In CT-RSA, pages 392–407, 2001.
27. B. Waters. Dual system encryption: Realizing fully secure ibe and hibe under simple assumptions. In CRYPTO,

pages 619–636, 2009.

24


