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Abstract. We study a new generic trapdoor for public key multivariate cryp-
tosystems, called IFS for Intermediate Field Systems, which can be seen as
dual to HFE. This new trapdoor relies on the possibility to invert a system
of quadratic multivariate equations with few (logarithmic with respect to the
security parameter) unknowns on an intermediate field thanks to Gröbner
bases algorithms. We provide a comprehensive study of the security of this
trapdoor and show that it is equivalent to the security provided by HFE.
Therefore, while insecure in its basic form, this trapdoor may reveal quite
attractive when used with, e.g., the minus modifier.
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1. Introduction

Multivariate cryptography dates back to the Matsumoto-Imai scheme [14] pro-
posed in 1985 and has been evolving fast during the past two decades. Many new
trapdoors (HFE [15], UOV [13], . . . ) have been introduced, along with modifiers
(+, −, internal perturbation [16, 2], . . . ) to enhance the security of the schemes
(see [18] for an overview). Though many of these multivariate public key schemes
have recently been broken [9, 12, 6, 5] and some cryptographers are beginning to
question the possibility of asymmetric multivariate cryptography, there seems to
remain some potential interest in studying new schemes of this type. There are at
least two reasons for this: the underlying hard problem MQ is NP-complete and
appears to be hard for any practical instance (which is not the case for most of
the currently used public key schemes), and the multivariate schemes obtained are
often very efficient.

Among the multivariate schemes still thwarting the significant cryptanalytic
efforts of the cryptographic community are UOV and HFE− (that is, HFE when
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some public equations are removed). In this paper, we study a new trapdoor which
carries much similarity with HFE.

2. Hidden Field Equations

We first briefly recall the structure of the HFE trapdoor proposed by Patarin [15].
Let F = GF(q) be some finite field and let E be an extension of degree n over F.
HFE uses as its secret internal transformation, a mapping F : E −→ E of the
following form:

F : X 7−→ F (X) =
∑

0≤i<j≤n
qi+qj≤D

ai,jX
qi+qj

+
∑

0≤k≤n

qk≤D

bkX
qk

+ c , (1)

where the coefficients ai,j , bk, and c are randomly drawn from E. The overall degree
of the polynomial F (X) is upper bounded by some reasonable value (logarithmic
in the security parameter) so that the owner of the secret key can efficiently invert
this polynomial. The structure of this transformation is then hidden thanks to a
pair of one-to-one affine mappings S and T from E to E. Now recall that E ' Fn

so that S and T can be expressed as n×n matrices over F; Further, using the fact
that X 7→ Xql

is F-linear for any integer l, the composition: G = T ◦F◦S, can be
expressed as a set of n quadratic multivariate polynomials in n unknowns defined
over F. This mapping G constitutes the public mapping.

Faugère and Joux showed in [9] that HFE cryptosystems are susceptible
to Gröbner basis attacks. A theoretical investigation of this fact was later given
by Granboulan et al. in [12]: the public set of equations arising from HFE has
a lower degree of regularity (which determines the complexity of computing a
Gröbner basis) than what is expected from a generic (randomly chosen) system.
More precisely, if D is the upper bound of the degree of the HFE polynomial,
then the degree of regularity is ∆ = O(D). Since the complexity of a Gröbner
basis computation for a system with n equations and n unknowns is given by
nO(∆), and since D was chosen so that D = O(log n) in order to enable efficient
decryption, the complexity of a Gröbner basis attack is sub-exponential.

3. Intermediate Field Systems

In the previous section we have reviewed the basic properties of the HFE cryp-
tosystem. The best attack currently known against HFE [1, 9, 12] uses the fact
that the univariate equation in the extension field has a total degree that is much
lower than for a randomly chosen equation. Therefore, a natural thing to ask is:
Are there multivariate cryptosystems that are similar to HFE and for which the
total degree of the univariate representation in the highest extension field E can
be as large as |E| − 1? We now describe such a cryptosystem.
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3.1. IFS: General Construction

This section exposes a new type of multivariate cryptosystems that we call Interme-
diate Field Systems. It is based on the very natural idea of using intermediate fields,
as was already suggested in [17, 4] for instance. However, as the attacks [3, 11]
against these two previous schemes suggest, it is fundamental for the security of
the cryptosystem that no strong structure exists. Therefore, we strive to consider
as generic cryptosystems as possible.

To describe the construction, let us consider some base finite field F = GF(q)
and some extension field K ' Fd of degree d over F. We also consider a non-zero
integer N and let n = Nd. Eventually, we let E denote some finite field of degree N
over K.

As usual with asymmetric multivariate cryptosystems, the public map G is
given as a set of n multivariate quadratic polynomials (g1, . . . , gn) in n unknowns
defined over F. This public map results from the composition of a secret internal
transformation F and two secret linear one-to-one mappings S and T that are used
to hide the actual value of F:

G = T ◦ F ◦ S . (2)

The secret internal transformation F is given by a set of N multivariate
polynomials (f1, . . . , fN ) in N unknowns defined over K, and is of the following
specific form:

fk(Z1, . . . , ZN ) =
∑

1≤i≤j≤N

∑
0≤u,v≤d−1
qu+qv≤D

a
(k)
ijuvZ

qu

i Zqv

j

+
∑

1≤i≤N

∑
0≤u≤d−1

qu≤D

b
(k)
iu Z

qu

i + c(k) (3)

for some fixed parameter D, and where the coefficients are randomly chosen in K.
Though there might be some interest in letting the degree D of the secret

polynomials being greater than 2, we will focus on simpler secret transformations
for which u and v have been set to zero, in which case we will write:

fk(Z1, . . . , ZN ) =
∑

1≤i≤j≤N

a
(k)
ij ZiZj +

∑
1≤i≤N

b
(k)
i Zi + c(k) . (4)

Note that in this case, the secret transformation takes the following special form
when expressed in the extension field E ' KN :

F (X) =
∑

1≤i≤j≤N−1

αijX
qd·i+qd·j

+
∑

1≤i≤N−1

βiX
qd·i

+ γ . (5)

One might wonder why upper bound the degree D of the polynomials of the secret
transformation from (3); It is simply because if D were not bounded, the resulting
public set of polynomials would be as generic as possible, and therefore nobody
could efficiently invert it, not even the owner of the secret key. However, note that,
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Figure 1. Decryption times for IFS with N ∈ {6, 7, 8}.

contrary to HFE, even when D = 2 the degree of the univariate representation
over E given in (5) is not upper bounded.

A typical set of parameters could be q = 2, d = 16, and N = 8 so that the
public set of polynomials has n = 128 unknowns defined over GF(2).

3.2. Complexity of Decryption

We analyse in this section what are the conditions on the parameters d and N for
the cryptosystem to allow efficient decryption. As inverting a randomly chosen set
of polynomials in n unknowns has complexity 2O(n), it makes sense to use n as the
security parameter. The heavy computation during decryption obviously consists
of inverting the secret set of polynomials. This is done through the computation
of a Gröbner basis. Since this again has a complexity 2O(N), we must choose
N = O(log n) in order to be able to decrypt efficiently. Sample timings for IFS
with N ∈ {6, 7, 8} variables defined over various base fields Fbn/Nc so that the
public set of polynomials defined over F = GF(2) has a number of unknowns n
ranging from 16 to 160 are given in Figure 1.

Anticipating the security discussion, we can tell from Fig. 2 and 3 that HFE
and IFS provide a similar level of security for carefully chosen parameters.

4. Security Analysis

4.1. Susceptibility to Gröbner basis attacks

It is possible to carry out the analysis of the degree of regularity of the public
system arising from an IFS trapdoor in a similar way as was done for HFE [12]
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Figure 2. Comparison between the decryption times for IFS
with N ∈ {7, 8} and HFE with D = 96.

and to show that the degree of regularity of such a system is ∆ = O(N). Since the
number of variables in the intermediate field must verify N = O(log n) to allow
efficient decryption, it turns out that the complexity of a Gröbner basis computa-
tion is sub-exponential just like for HFE cryptosystems. A detailed analysis will
be given in the full version of the paper.

We carried out some timing experiments using MAGMA 2.13 in order to
assess the difficulty of computing a Gröbner basis for a public system arising from
an IFS cryptosystem. The results are depicted in Figure 3. Timing experiments
for HFE are also given for comparison.

4.2. Differential properties

Differential analysis has arisen as a fundamental tool for studying multivariate
schemes. It was successively used to cryptanalyse PMI [10], IPHFE [8], and recently
SFLASH [5]. The main observation is that the distribution of the rank of the
differentials of the public key of a multivariate scheme is not random.

Given an F-quadratic map G over Fn, its differential at point a ∈ Fn is the
linear map defined by

DGa(x) = G(a + x)−G(x)−G(a) + G(0) .

It can be checked that when G = T ◦ F ◦ S, the differential of G is

DGa = T ◦DFS(a) ◦ S .

Hence the distribution of the rank of the differentials of the secret map F and the
public map G are the same.
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Figure 3. Timings for Gröbner basis computation on public sets
of polynomials for IFS cryptosytems as a function of n = N · d.
Experiments were conducted with algorithm F4 of MAGMA 2.13.

For HFE, the fact that the degree of the secret polynomial is upper bounded
by D implies that DFa is a polynomial of degree less than D as well, hence has
less than D roots. This implies that DFa has rank at least n− dlogq(D)e. As the
differential of a random quadratic map has a non-negligible probability of having
a smaller rank, this leads to an efficient distinguisher for HFE [7]. It also enabled
to cryptanalyse HFE with internal perturbation, IPHFE [8].

It can be shown that for IFS, similar distinguishing properties will arise.
Namely, the number of roots of the polynomial DF must necessarily be a multiple
of qd. This can be seen from Eq. (5): let x ∈ E be a root of DF ; then for any
α ∈ K, it can be verified that DF (αx) = 0 since αqd

= 1. A detailed analysis of
the consequences of this observation will be given in the full paper.

5. Conclusion

We presented a new trapdoor for multivariate public key schemes based on the
possibility to efficiently invert a set of quadratic multivariate polynomials with few
unknowns on an intermediate field with Gröbner basis algorithms. We initiated the
security analysis of such schemes and found that in its basic form, it is equivalent to
the security of HFE with respect to known attacks. While this new trapdoor may
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reveal an interesting companion to HFE, its interaction with classical modifiers
remains to be studied. We hope that the investigation of this new trapdoor will
enhance the understanding of multivariate public key schemes in general.
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