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Abstract. Boolean bent functions were introduced by Rothaus (1976)
as combinatorial objects related to difference sets, and have since en-
joyed a great popularity in symmetric cryptography and low correlation
sequence design. In this paper direct links between Boolean bent func-
tions, generalized Boolean bent functions (Schmidt, 2006) and quater-
nary bent functions (Kumar, Scholtz, Welch, 1985) are explored. We also
study Gray images of bent functions and notions of generalized nonlin-
earity for functions that are relevant to generalized linear cryptanalysis.
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1 Introduction

Boolean bent functions were introduced by Rothaus [17] as combinatorial objects
related to difference sets, and have since enjoyed a great popularity in symmet-
ric cryptography and sequence design. They are, in particular, maps from Zn

2

to Z2 with some special spectral properties. Their importance in symmetric
cryptography stems from linear cryptanalysis of stream ciphers [12–14]. In that
context bent functions are the ones which are the worst approximated by affine
functions, or, equivalently have the worst possible nonlinearity. Recently sev-
eral researchers [15, 16, 3, 6] have explored extensions of linear cryptanalysis to
groups other than the usual elementary abelian 2-groups. In this paper we study
a notion of nonlinearity that seems consistent with their notions. We discuss
the connection between two notions of Z4-bentness introduced from a sequence
design viewpoint and the classical notion of bent function.

The first approach is to consider functions from Zn
q to Zq, q is any integer,

see the paper [10] of Kumar, Scholtz and Welch. We call them q-ary functions.
Another, more recent approach, which is more natural from the viewpoint of
cyclic codes over rings is to consider functions from Zn

2 to Zq. This is the approach
of Schmidt in [18]. We shall call these latter functions generalized Boolean



functions. In this paper we focus on the quaternary case (q = 4), and explore
the interplay between the three types of definitions for bentness.

Let us note that there exist other ways to generalize the concept of bent
function. For example, to study bent functions on a finite abelian group [9,
20] (later these results were rediscovered in [4]), etc. See a survey of distinct
generalizations in [21].

The material is organized as follows. Necessary definitions are given in section
2. In section 3 we show how Boolean bent functions, generalized Boolean bent
functions (q = 4) and quaternary bent functions can be transformed each to
other. In section 4.1 we show that quaternary generalized Boolean bent functions
in n variables yield Boolean bent functions by Gray map, or semi bent functions,
depending on the parity of n. In Section 4.2 we show that the Gray image of
a quaternary bent function is a binary Boolean semi bent function. Section
5 characterizes bent functions by their nonlinearity. Section 6 illustrates our
results by a survey of the known constructions of generalized and quaternary
bent functions and their Gray images.

2 Definitions and Notation

Let n, q be integers, q > 2. We consider the following mappings:

1) f : Zn
2 → Z2 — Boolean function in n variables. Its sign function is

F := (−1)f . The Walsh Hadamard transform (WHT) of f is

F̂ (x) :=
∑

y∈Z
n
2

(−1)f(y)+x.y =
∑

y∈Z
n
2

Fy(−1)x.y. (1)

Here x.y is a usual inner product of vectors. A Boolean function f is said to be
bent, iff |F̂ (x)| = 2n/2 for all x ∈ Zn

2 . It is semi bent iff F̂ (x) ∈ {0,±2(n+1)/2}
(sometimes such functions are called near bent). This is a partial case of plateaued
functions [22]. Note that Boolean bent (resp. semi bent) functions exist only if
the number of variables, n, is even (resp. odd).

2) f : Zn
2 → Zq — generalized Boolean function in n variables. Its sign

function is F := ωf , with ω a primitive complex root of unity of order q, i. e.
ω = e2πi/q. When q = 4, we write ω = i. Its WHT is given as

F̂ (x) :=
∑

y∈Z
n
2

ωf(y)(−1)x.y =
∑

y∈Z
n
2

Fy(−1)x.y. (2)

As above, a generalized Boolean function f is bent, iff |F̂ (x)| = 2n/2 for all
x ∈ Zn

2 . In comparison to the previous case it does not follow that n should be
even if f is bent. Such functions for q = 4 were studied by K.-U. Schmidt (2006)
in his paper [18]. Here we consider only this partial case q = 4.

3) f : Zn
q → Zq — q-ary function in n variables. Its sign function is given

by F := ωf as in the previous case. Its WHT is defined by

F̂ (x) :=
∑

y∈Zn
q

ωf(y)+x.y =
∑

y∈Zn
q

Fyωx.y. (3)



Note that the matrix of this transform is no longer a Sylvester type Hadamard
matrix as in the previous case, but a generalized (complex) Hadamard matrix. A

q-ary function f is called bent, iff |F̂ (x)| = qn/2 for all x ∈ Zn
q . Notice that again

it does not follow from the definition that q-ary bent functions do not exist if
n is odd. P. V. Kumar, R. A. Scholtz and L. R. Welch [10] have studied q-ary
bent functions in 1985. They proved that such functions exist for any even n

and q 6= 2(mod 4). Later S. V. Agievich [1] proposed an approach to describe
regular q-ary bent functions in terms of bent rectangles. If q = 4 we call f a
quaternary function. Here we study such functions only.

3 Connections between bent functions

Let f : Z2n
2 → Z4 be any generalized Boolean function. Represent it as f(x, y) =

a(x, y)+2b(x, y), for any x, y ∈ Zn
2 where a, b : Z2n

2 → Z2 are Boolean functions.
Define a quaternary function g : Zn

4 → Z4 as g(x + 2y) = f(x, y). In this section
we establish connections between properties of bentness for such functions.

The following lemmas are instrumental in what follows.

Lemma 31 Between Walsh—Hadamard transforms of f , a + b, b there is the
relation

|F̂ (x, y)|2 =
1

2

(
B̂2(x, y) + Â + B

2
(x, y)

)
. (4)

Proof. Study the Walsh Hadamard Transform of f . According to (2) we have

F̂ (x, y) =
∑

x′,y′

(−1)x.x′+y.y′+b(x′,y′) i a(x′,y′).

Applying the formula is = 1+(−1)s

2 + 1−(−1)s

2 i for s = a(x′, y′) we get

F̂ (x, y) =
1

2

(
B̂(x, y) + Â + B(x, y)

)
+

i

2

(
B̂(x, y) − Â + B(x, y)

)
.

From this we directly get what we need. �

Note that Lemma 31 holds for any (not only even) number of variables of
the function f .

Theorem 32 The following statements are equivalent:
(i) the generalized Boolean function f is bent in 2n variables;
(ii) the Boolean functions of 2n variables b and a + b are both bent.

Proof. By Lemma 31 we have |F̂ (x, y)|2 = 1
2

(
B̂2(x, y) + Â + B

2
(x, y)

)
. If a+ b

and b are bent functions then |F̂ (x, y)|2 = 1
2 (22n + 22n) = 22n and f is a bent

function. Conversely, if f is bent, then it holds B̂2(x, y)+ Â + B
2
(x, y) = 22n+1.

Since WHT coefficients of a Boolean function are integer, this equality has the

unique solution B̂2(x, y) = Â + B
2
(x, y) = 22n (see [8] for detail). So, functions

a + b and b are bent. �



Lemma 33 Between WHT coefficients of g, a + b, b there is the relation

Ĝ(x + 2y) =
1

2

(
B̂(x + y, x) + Â + B(y, x)

)
+

i

2

(
B̂(y, x) − Â + B(x + y, x)

)
.

Proof. Study the Walsh Hadamard Transform of g. As far as for any x, x′, y, y′ ∈
Zn

2 it holds (x + 2y).(x′ + 2y′) = x.x′ + 2x.y′ + 2y.x′ modulo 4, then by (3) it is
true

Ĝ(x + 2y) =
∑

x′,y′

(−1)x.y′+y.x′+b(x′,y′) i a(x′,y′)+x.x′

.

Here we use the standard maps β, γ : Z4 → Z2 defined as

β : 0, 1 → 0 and β : 2, 3 → 1;

γ : 0, 2 → 0 and γ : 1, 3 → 1.

We see that for any s ∈ Z4 it holds

is = (−1)β(s)

(
1 + (−1)γ(s)

2
+

1 − (−1)γ(s)

2
i

)

Using this formula for s = x.x′ + a(x′, y′) we obtain

Ĝ(x + 2y) =
1

2
(S1 + S2) +

i

2
(S1 − S2) ,

where

S1 =
∑

x′,y′

(−1)x.y′+y.x′+b(x′,y′)+β(x.x′+a(x′,y′)),

S2 =
∑

x′,y′

(−1)x.y′+y.x′+x.x′+b(x′,y′)+a(x′,y′)+β(x.x′+a(x′,y′)).

Here we used also that γ(x.x′ + a(x′, y′)) = x.x′ + a(x′, y′), where + is modulo
4 in brackets and modulo 2 on the right side of the equality. One can check it
easily.

Now let Zn
2 = M0 ∪ M1, where Mδ = { x′ |x.x′ = δ } for δ ∈ Z2. Note that

for x′ from M0 or M1 the value of β(x.x′ + a(x′, y′)) is equal to 0 or a(x′, y′)
respectively. Then we divide every sum S1, S2 into two sums of types

∑
x′∈M0,y′

and
∑

x′∈M1,y′

. Grouping items we get

S1 + S2 = B̂(x + y, x) + Â + B(y, x),

S1 − S2 = B̂(y, x) − Â + B(x + y, x).

This completes the proof. �



We say that two Boolean functions c and d in 2n variables are bent correlated
(with respect to dividing variables into two halves) if for any x, y ∈ Zn

2 , it holds

1) Ĉ2(x, y) + Ĉ2(x + y, y) + D̂2(x, y) + D̂2(x + y, y) = 4n+1;

2) Ĉ(x, y) = D̂(x + y, y) = ±2n ⇐⇒ Ĉ(x + y, y) = D̂(x, y) = ±2n.

Theorem 34 The following statements are equivalent:
(i) the quaternary function g is bent in n variables;
(ii) the Boolean functions b and a + b are bent correlated in 2n variables.

Proof. Rewrite the bent correlation property for b and a + b in the form

B̂2(y, x) + B̂2(x + y, x) + Â + B
2
(y, x) + Â + B

2
(x + y, x) = 4n+1, (5)

B̂(y, x) = Â + B(x + y, x) = ±2n ⇐⇒ B̂(x + y, x) = Â + B(y, x) = ±2n. (6)

Applying Lemma 33 we get 4|Ĝ(x + 2y)|2 = s2 + r2, where

s = B̂(x + y, x) + Â + B(y, x),

r = B̂(y, x) − Â + B(x + y, x).

(ii)⇒(i) Let b and a+b be bent correlated functions. According to the Jacobi
Theorem of 1834, see for instance [8], equation (5) has exactly 24 decisions in
integer numbers (WHT coefficients). It is easy to obtain all of them. There are
16 decisions, say, of the first type, (±2n,±2n,±2n,±2n). And 8 decisions of the
second type (±2n+1, 0, 0, 0). Hence integers s and r belong to the set {0,±2n+1}
for any x, y. We see that s2 + r2 can take the values 0, 4n+1 or 2 · 4n+1. Let us
fix vectors x, y and study these cases.

If s2+r2 = 0 then B̂(x+y, x) = −Â + B(y, x) and B̂(y, x) = Â + B(x+y, x).
According to (5) all these WHT coefficients should be ±2n (decision of the first
type), but then we get a contradiction to (6).

Suppose that s2 +r2 = 2 ·4n+1. Then B̂(x+y, x)+ Â + B(y, x) = ±2n+1 and

B̂(y, x)− Â + B(x+ y, x) = ±2n+1. Again from (5) it follows that B̂(x+ y, x) =

Â + B(y, x) = ±2n and B̂(y, x) = −Â + B(x + y, x) = ±2n (decision of the first
type). Irrespective of the signs it again contradicts to (6).

Thus, the case s2 + r2 = 4n+1 is only possible. Hence |Ĝ(x + 2y)|2 = 4n for
any x, y and g is a bent function.

(i)⇒(ii) Let g be a bent function. For fixed x, y we have 4n+1 = s2 + r2. This
equality has the following possible decisions: (±2n+1, 0) and (0,±2n+1). Let us
study them.

Case 1 for (s, r). If s = ±2n+1, r = 0 then we have B̂(y′, x) + Â + B(x +

y′, x) = ±2n+1 and B̂(x + y′, x) = Â + B(y′, x), where y′ = x + y. Denote by

s′ and r′ the respecting numbers for the vectors x, y′, i. e. 4|Ĝ(x + 2y′)|2 =
s′2 + r′2 = 4n+1. Study again two distinct cases.



Case 1 for (s′, r′). Since s′ = ±2n+1, r′ = 0 we get B̂(x+y′, x)+Â + B(y′, x) =

±2n+1 and B̂(y′, x) = Â + B(x+y′, x). From the four equations obtained we see

that B̂(x + y, x) = Â + B(y, x) = ±2n and B̂(y, x) = Â + B(x + y, x) = ±2n.
So, in this case conditions (5) and (6) are satisfied for the given x, y.

Case 2 for (s′, r′). It holds s′ = 0 and r′ = ±2n+1. Then we get B̂(x+y′, x) =

−Â + B(y′, x) and B̂(y′, x) − Â + B(x + y′, x) = ±2n+1. From the new four

equations we obtain B̂(y, x) = Â + B(x+y, x) = 0 and B̂(x+y, x), Â + B(y, x) ∈

{0,±2n+1} with the property that B̂(x + y, x) is nonzero iff Â + B(y, x) is zero.
Again for the vectors x, y conditions (5) and (6) are satisfied.

Case 2 for (s, r) is similar to Case 1. We have s = 0, r = ±2n+1 and then

B̂(y′, x) = −Â + B(x + y′, x) and B̂(x + y′, x) − Â + B(y′, x) = ±2n+1 for
y′ = x + y. Analyzing again both cases for (s′, r′) we see that (5) and (6) are
true every time.

We have shown that for any vectors x, y the conditions (5), (6) hold, hence
functions b and a + b are bent correlated. �

Let us analyze the property of bent correlation. If functions c and d are bent
then 1) is always true. Property 2) gives us some conformity between signs of
WH coefficients for c and d. It is easy to note that if c and d are bent correlated
then they are bent or not bent simultaneously.

It is not hard to get that between all 28 quaternary functions g in one variable
there are precisely 24 bent functions. To obtain all of them get function a(x1, x2)
equal to 0, x1 or x1 + 1 and function b being arbitrary bent in two variables (8
possibilities).

We have got that among all 232 quaternary functions g in 2 variables there are
exactly 200 704 = 49×212 bent functions. For 53 248 = 13×212 such quaternary
bent functions we obtained that Boolean functions a + b and b are bent. For the
rest 147 456 = 36 × 212 functions a + b and b are both not bent.

4 Gray images of bent functions

4.1 Generalized Boolean bent functions

Let f be a generalized Boolean function from Zn
2 to Z4. Write f = a + 2b with

a, b Boolean functions in n variables. Its Gray map φ(f) is the Boolean function
in variables (x, z) with x ∈ Zn

2 and z ∈ Z2 defined as a(x)z + b(x). The proof of
the next result is implicit in the proof of [18, Th. 3.5] and is omitted.

Proposition 41 For the WHTs of functions f and φ(f) it holds

Φ̂(f)(u, v) = 2ℜ(i−vF̂ (u)) = B̂(u)+(−1)vÂ + B(u), where u ∈ Zn
2 , v ∈ Z2. (7)

Here ℜ denotes real part of a complex number. As far as the left side of equation
(7) is a WH coefficient of a Boolean function, we easily get



Corollary 42 For any generalized Boolean function f in n variables it holds

max
u∈Z

n
2

,v∈Z2

|ℜ(i−vF̂ (u))| > 2(n−1)/2.

Corollary 43 If f is bent in n variables then φ(f) is either bent (n odd) or
semi bent (n even).

Proof. Write F̂ (u) = X+iY with X,Y integers. We know that 2n = X2+Y 2. We
know that the solution to that diophantine equation in X > 0 and X > Y > 0
is unique, see e.g. [8]. The obvious solutions for n odd are X = Y = 2(n−1)/2

and Y = 0, X = 2n/2 for n even.

Thus, if n is odd it holds Φ̂(f)(u, v) = ±2(n+1)/2 for all u, v, and hence φ(f) is

bent in n+1 variables. If n is even we see that Φ̂(f)(u, v) equals 0 or ±2(n+2)/2,
so φ(f) is semi bent in n + 1 variables. �

There is a partial converse to Corollary 43. The proof is immediate.

Proposition 44 Let n be odd. If φ(f) is a Boolean bent function in n + 1 vari-
ables then f is a generalized Boolean bent function in n variables.

4.2 Quaternary bent functions

For a quaternary function g : Zn
4 → Z4 the Gray map φ(g) may be defined as

the binary Boolean function in 2n+1 variables φ(g)(x, y, z) := a(x, y)z+b(x, y),
where x, y ∈ Zn

2 and z ∈ Z2. In other words this is the Gray map of f (with 2n
variables) in the definition given above. From Proposition 41 we have

Φ̂(g)(x, y, z) = B̂(x, y) + (−1)zÂ + B(x, y), where x, y ∈ Zn
2 , z ∈ Z2. (8)

Proposition 45 If g is quaternary bent in n variables then φ(g) is a binary
Boolean semi bent function in 2n + 1 variables.

Proof. By Theorem 34 we know that b and a+b are bent correlated. In the same
way as in the proof of this theorem we can study possible values for B̂(x, y) and

Â + B(x, y). From the condition 1) of bent correlation property it follows that

B̂(x, y) + (−1)zÂ + B(x, y) can get values 0 and ±2n+1 only. According to (8)
it means that φ(g) is semi bent. �

5 Notions of nonlinearity

It is well-known that bent binary Boolean functions are characterized by their
distance to the first order Reed Muller code. This fact is generalized in this
section to their quaternary analogues.



5.1 Generalized Boolean functions

Let RM(r, k) be the Reed Muller code of length 2k and of order r, see [11].
Define, for 0 6 r 6 m the quaternary code ZRM(r,m) = φ−1(RM(r,m + 1)).
This code is spanned by vectors of values for functions of degree at most r − 1
together with twice functions of degree at most r, see [5] for detail. We introduce
the nonlinearity N(f) of a generalized bent Boolean function f in n variables
as

N(f) := 2n −
1

2
max

u∈Z
n
2

,v∈Z2

|Φ̂(f)(u, v)|. (9)

We denote by dL(·, ·) the Lee distance on ZN
4 . Analogously, let dH(·, ·) be the

Hamming distance on Z2N
2 . According to Corollary 42 we have

Proposition 51 For any generalized Boolean function f in n variables it is true
N(f) 6 2n − 2(n−1)/2.

Proposition 52 With the above notation, for any generalized Boolean function
in n variables f we have

N(f) = dL(f, ZRM(1, n)) = dH(Φ(f), RM(1, n + 1)).

Proof. Let x, y be arbitrary vectors of ZN
4 . Denote by ix the vector (ix1 , . . . , ixN ).

Recall first the well-known identities

d2
E(ix, iy) = 2dL(x, y) = N −ℜ(

N∑

j=1

ixj−yj ),

where dE stands for the Euclidean distance. Observe that ZRM(1, n) is spanned
by the all-one vector, along with twice the binary linear functions, and that
F̂ (u) =

∑
y∈Z

n
2

if(y)+2u.y. The second equality holds by the isometry property of

the Gray map [5]. �

Hence, using Propositions 51 and 52 we can reformulate one partial case from
Corollary 43 and Proposition 44 as follows.

Corollary 53 Let n be odd. A function f is bent if and only if N(f) attains the
maximal possible value 2n − 2(n−1)/2.

The case of even n is again more complicated. We have

Corollary 54 Let n be even. If a function f is bent then N(f) = 2n − 2n/2.

Proof. By Corollary 43 the Boolean function φ(f) is semi bent in n + 1 vari-

ables. Hence the maximum value of |Φ̂(f)(u, v)| is equal to 2(n+2)/2. Then by
Proposition 41 and definition (9) we get N(f) = 2n − 2n/2. �



The converse statement is not right in general as far as from the equality

max
u∈Z

n
2

,v∈Z2

|Φ̂(f)(u, v)| = 2(n+2)/2 it does not follow that |F̂ (u)| = 2n/2 for any

u ∈ Zn
2 . Actually, it is not clear what is the maximum possible value of N(f) if

n is even. To know it one should find the value of covering radius of the code
RM(1, n + 1) when n + 1 is odd. But it is a hard old problem without analogy
to the easy case of even n + 1.

5.2 Quaternary functions

Let g be a quaternary function in n variables. In this case, an immediate reduc-
tion to the preceding subsection (namely, passing from g to f in the notations
of Section 3) yields the definition

N(g) := 22n −
1

2
max

u,v∈Z
n
2

,w∈Z2

|Φ̂(g)(u, v, w)|.

The following analogue of Proposition 52 is immediate.

Proposition 55 For any quaternary function g in n variables we have

N(g) = dL(g, ZRM(1, 2n)) = dH(φ(g), RM(1, 2n + 1)).

In particular if g is bent then N(g) = 22n − 2n. As it was mentioned above the
maximal possible value of N(g) is not determined yet.

6 Examples of Constructions

The degree of a generalized Boolean function g denoted by deg(g) is understood
in the sense of its algebraic normal form (ANF). For computing degrees we
require the following lemma.

Lemma 61 For a generalized Boolean function f the degree of φ(f) is at most
the degree of f .

Proof. Follows by definition of the ZRM(r,m) code by its generators [5]. �

6.1 Generalized bent functions

In [18, Th. 4.3] figures a natural generalization of the classical Maiorana McFar-
land construction.

Proposition 62 (Schmidt, [18]) The generalized Boolean function f in 2n vari-
ables defined for x, y in Zn

2 by

f(x, y) = 2x.π(y) + τ(y),



with τ an arbitrary generalized Boolean function in n variables and π an arbitrary
permutation of Zn

2 is bent.

By Corollary 43 the Gray map of this function is a binary Boolean semi bent
function in 2n + 1 variables. By Lemma 61 its degree is max(2, deg(τ)).

It is well-known that the binary Kerdock code contains bent functions. We
assume the reader has some familiarity with Galois rings as can be gained in,
e.g. [5].

Proposition 63 (Schmidt, [18]) Let n > 3 denote an integer. Let Rn denote
the Galois ring of characteristic 4 and size 4n. Let Rx

n denote Rn \ 2Rn. Let
Tn denote the Teichmuller set of Rn, and Tr the trace function of Rn. The
generalized Boolean function in n variables defined for x ∈ Tn by

f(x) = ǫ + Tr(sx)

for constants ǫ, s ranging in Z4, R
x
n is bent. Its Gray image is either bent (n odd)

or semi bent (n even).

Proof. The first assertion follows by [18, Construction 5.2] upon observing that
ZRM(1, n) is described by functions f(x) = ǫ + 2Tr(sx). The second assertion
follows by Corollary 43. �

A monomial construction of bent generalized Boolean function is in [18,
Th. 5.3]. Intuitively it detects the generalized bent functions in the dual of the
Goethals code.

Proposition 64 (Schmidt, [18]) Keep the notation of Proposition 63. Let µ

denote the ”reduction mod 2” map from Rn to F2n . The generalized Boolean
function in n variables defined for x ∈ Tn by

f(x) = ǫ + Tr(sx + 2tx3)

for constants ǫ, s, t ranging in Z4, Rn, Tn\{0} is bent if µ(s) = 0 and the equation

µ(t)z3 + 1 = 0

has no solutions in F2n , or if µ(s) 6= 0 and the equation

z3 + z +
µ(t)2

µ(t)6
= 0

has no solutions in F2n .

By Corollary 43 the Gray map of this function is a binary Boolean function
in n+1 variables which is semi bent if n is even or bent if n is odd. It is quadratic
by Lemma 61.



6.2 Quaternary bent functions

In [10, Th. 1] figures a natural generalization of the classical Maiorana McFarland
construction. We specialize it to the case q = 4.

Proposition 65 (Kumar, Scholtz, Welch, [10]) Let n = 2m denote an even
integer. The quaternary function g in n variables defined for x, y in Zm

4 by

g(x, y) = x.π(y) + τ(y),

with τ an arbitrary quaternary function in m variables and π an arbitrary per-
mutation of Zm

4 is bent.

By Proposition 45 the Gray map φ(g) of this function is a binary Boolean
semi bent function in 2n + 1 variables. With the notation of Section 3 we see,
by Theorem 34 that both b and a + b are binary bent correlated functions in 2n
variables.

7 Conclusion and open problems

In the present work we have shown how generalizations of the notion of bent
function involving the ring Z4 could produce, by Gray map or by base 2 expan-
sion, bent Boolean functions in the classical sense. The approach of Kumar et
al and that of Schmidt do not seem to be equivalent. In the notation of Sec-
tion 3 the quaternary function g being bent does not seem to imply that the
generalized Boolean function f is bent. It would be very interesting to exhibit
an example of the situation g bent and f not bent for any admissible number
of variables. Both approaches are inspiring. Schmidt’s definition fits better Z4-
cyclic codes constructions and Kumar et al approach allows a nice analogue of
Maiorana McFarland construction. In both cases an analogue of Dillon construc-
tion is lacking. Conversely classical binary bent function (but perhaps not semi
bent functions) can yield generalized bent functions by inverse Gray map. These
results set a motivation to explore further algebraic constructions of generalized
bent functions or of quaternary bent functions. It would be interesting, for in-
stance, to replace the exponent 3 in Proposition 64 by a Gold exponent 2k + 1
along the lines of [7]. More generally, monomial bent functions either quaternary
or in the generalized sense are worthy of our interest.
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