
Making Collusion-Secure Codes (More) Robust against Bit Erasure

Koji Nuida

Research Center for Information Security (RCIS), National Institute of Advanced Industrial Science and

Technology (AIST), Akihabara-Daibiru Room 1003, 1-18-13 Sotokanda, Chiyoda-ku, Tokyo 101-0021,

Japan

E-mail: k.nuida@aist.go.jp

Abstract

A collusion-secure code is called robust if it is secure against erasure of a limited number of unde-

tectable bits, in addition to collusion attacks under Marking Assumption. In this article, we propose

the first general conversion method of (non-robust) c-secure codes to robust c-secure codes. Also, the

same method amplifies robustness of given robust c-secure codes. By applying our conversion to c-secure

codes given by Nuida et al. (AAECC 2007), we present robust c-secure codes with code length of order

Θ(c2 log2 c) with respect to c. This code length improves preceding results by Sirvent (WCC 2007) and by

Boneh and Naor (ACM CCS 2008) and is close to the one by Billet and Phan (ICITS 2008), although our

construction is based on a weaker assumption than those preceding results. As an application, applying

our resulting code to construction by Boneh and Naor also improves their traitor tracing scheme against

imperfect decoders in efficiency of both key sizes and pirate tracing procedure.

Keywords: Collusion-secure code, bit erasure tolerance, general conversion, digital fingerprinting,

traitor tracing scheme

1 Introduction

1.1 Background

Recently, digital content distribution services have been widespread by virtue of progress of information

technology. Digitization of content distribution has improved convenience for ordinary people. However,

the digitization also enables malicious persons to perform stronger attacks, therefore the number of illegal

content redistribution is increasing very rapidly. Hence technical countermeasures for such illegal activities

are strongly desired.

Digital fingerprinting is a possible solution for such problems. Among several possible approaches, in this

article we focus on code-based digital fingerprinting schemes. Namely, we suppose that a content provider

1

first encodes each user’s identification data and then embeds each codeword as a fingerprint into a copied

content that will be sent to the corresponding user. Such a scheme aims at tracing, when unauthorized

copies of the content are distributed, the adversarial user (called pirate) from the fingerprint word embedded

in the pirated content (called pirated word). However, it is known that a coalition of two or more pirates

would be able to perform a strong attack to the fingerprint word, called collusion attack [5]. Hence any

fingerprint code should be equipped with traceability of pirates (with overwhelming probability) against

collusion attacks.

For traceability evaluation of fingerprint codes, the security assumption that is most standard so far is the

one proposed by Boneh and Shaw [5], called Marking Assumption. The motivation of the assumption is as

follows. Suppose that in embedding process of fingerprints, first each content is divided into several segments,

and then each bit of a fingerprint codeword is embedded into one of the segments (without overlapping).

Suppose further that the choices of segments are common to all users’ contents. In the situation, pirates can

compare their copies of the content with each other to find differences. If their contents contain different

bits at some position, then some difference will be detected there, which tells the pirates that the segment

contains a bit of the fingerprint (such a position is referred to as detectable). On the other hand, if their

contents contain the same bit at some position, then no differences will be detected there and pirates will

obtain no information on this bit of the fingerprint word (such a position is referred to as undetectable).

Now the Marking Assumption states that any bit in an undetectable position will be left unchanged in the

pirated word, while any bit in a detectable position can be freely selected or even erased. A fingerprint code

is called c-secure [5] if at least one of the pirates is traceable under Marking Assumption with overwhelming

probability provided the number of pirates does not exceed a given constant c. See Section 2 for precise

definitions. The first concrete instance of c-secure codes was given by Boneh and Shaw themselves [5], and

several construction of c-secure codes have been proposed so far, such as [3, 7, 8, 11, 15, 16, 17].

However, one may feel that the Marking Assumption is somewhat impractical, as the requirement of

perfect protection of undetectable positions would be far beyond the ability of state-of-the-art fingerprint

embedding schemes. Thus various relaxation of Marking Assumption to allow some attacks to undetectable

positions have been introduced, and several c-secure codes under those assumptions, called robust c-secure

codes, have been proposed, for example, in [9, 12, 13]. Recently, such robust c-secure codes are also studied

in connection with traitor tracing schemes against pirates with powerful decoders [14] or imperfect decoders

[4]. Hence robust c-secure codes are important in both theoretical and practical viewpoints.

In general, the existing constructions and security proofs of robust c-secure codes tend to require further

intricate and scheme-specific arguments, even if the construction is based on some preceding (non-robust)

c-secure codes. This tendency seems stronger for c-secure codes with combinatorial construction (such as

[7, 8, 17]) or with a flavor of “joint decoding” [1] (such as [3, 11]). Hence novel ideas of reducing such

2

difficulty in studies of robust c-secure codes are desired.

1.2 Our Contribution and Some Relevant Remarks

In this article, we present the first general conversion method of any c-secure code to a robust c-secure

code. The same method can also amplify robustness of a given robust c-secure code. Our conversion is very

simple and is applicable to c-secure q-ary codes (such as [13, 15]) as well as binary ones. Our conversion is a

“black-box” algorithm, in the sense that our conversion requires no knowledge of specific properties for the

target c-secure code, except a relation between code length and error probability.

The essential idea of our conversion method is explained as follows. Here we focus on binary codes for

simplicity. First, our relaxation of Marking Assumption says that at most a limited number (that is δ-fraction

of the total code length, where δ is a parameter) of undetectable bits may be erased. The case δ = 0 coincides

with the original Marking Assumption. For simplicity, here we assume that the target c-secure code C is

not robust. To resist erasure of some undetectable bits, our conversion method first expands each bit in C

to a block of b identical bits, and then appends L common dummy bits to every codeword. Moreover, the

distribution of the “undetectable blocks” (that is, blocks originated from undetectable bits in C) is concealed

from the pirates by using a (common and secret) random permutation and (common and secret) random

bit flippings. In the situation, when a pirated word for the expanded code is given, even if a part of an

undetectable block was erased, the original undetectable bit can be still recovered provided at least one bit

in the block survives. Moreover, by choosing sufficiently large block size b and number L of dummy bits, it

becomes unlikely that all bits in an undetectable block are erased. Thus a valid pirated word for the original

code is obtained with overwhelming probability, therefore the resulting code is equipped with the desired

robustness (see Theorem 1 for details).

We also investigate appropriate parameters b and L (see Theorem 2). By using the result, we describe the

asymptotic behavior of code lengths of the resulting robust c-secure codes in terms of those of the original

c-secure codes. Moreover, by adopting the (less) robust c-secure codes proposed by Nuida et al. [12] as the

target code, we obtain robust c-secure binary codes (for arbitrary parameters 0 < δ < 1) with code lengths

m satisfying

m ∼ 21.41244
(

c log c

1 − δ

)2

log(N/ε) , (1)

where N is the number of users, ε is the error probability and log denotes the natural logarithm (see Theorem

3). Comparing with the tight lower bound Ω(c2 log(N/ε)) of code lengths of c-secure codes given by Tardos

[16], it seems that our code length is of “nearly optimal” order. The constant factor ≈ 21.4 is also not huge;

for example, the factor is 100 for Tardos codes [16].

We give a remark on “efficiency” of our conversion. For example, for a certain choice of parameters, the

original robust 2-secure code with parameter δ = 0.005 has about 400-bit length, while the robust 2-secure

3

code with δ = 0.5 generated by our conversion has about 177, 000-bit length, which is about 440 times as

long as the original (see Section 5 for details). However, when we implement those codes by embedding

them into a digital content, embedding one bit with bit erasure rate (in undetectable positions) 0.5% is very

likely to need much more redundancy than embedding one bit with the bit erasure rate 50%. Comparison of

efficiency of two robust c-secure codes with different robustness parameters δ in implementation would be a

challenging research topic, which is beyond the scope of this article.

To be honest, there remain some rooms for improving the results of this work. First, our conversion

method can be thought of as concatenating the target c-secure code with a repetition code (together with

some dummy digits); hence it is likely that the use of more sophisticated erasure codes can improve the

efficiency, and that the use of better error-correcting codes can extend our method to a further relaxed

situation (discussed in, for example, [12]) where some bit flipping (as well as bit erasure) may occur in

undetectable positions. Secondly, the security evaluation in this article is not fully optimized, therefore a

more detailed analysis would be able to improve the choice of parameters (such as the code length). However,

this article aims at pioneering, by exhibiting simple but concrete ideas, the study of general conversion

methods from c-secure codes to (more) robust ones. Therefore, we leave the above-mentioned issues as open

problems, which would need further complicated arguments.

1.3 Related Works

As mentioned in Section 1.1, there have been proposed various relaxation of the Marking Assumption. Guth

and Pfitzmann [9] considered the situation that each undetectable bit is erased independently with a certain

probability, and they extended Boneh-Shaw codes [5] to their assumption. (Safavi-Naini and Wang [13]

considered the same assumption for q-ary codes.) Though there seems no overall implication from one

of our assumption and theirs to the other, our assumption would look weaker due to the lack of bitwise

independence condition in their assumption.

Recently, Sirvent [14], Billet and Phan [2], and Boneh and Naor [4] considered another assumption that

is more relevant to ours. Their assumption does not require the bitwise independence of erasure as well as

ours, but their assumption restricts the number of erasure in arbitrary positions (see, for example, Section

4.1 of [4]), not only the number in undetectable positions as our assumption does. Hence our assumption is

readily weaker than theirs. In [4, 14], they extended Boneh-Shaw codes to their assumption, with resulting

code lengths m = Θ(c4 log(N/ε) log(c2 log(N/ε)/ε)) in [14] (where its dependence on parameter δ seems not

clarified) and m = Θ((N3/(1 − δ)2) log(2N/ε)) in [4] for the full-collusion case c = N . On the other hand,

in [2], they extended Tardos codes [16] to their assumption, with resulting code lengths m = Θ((c2/(1 −

δ)) log(N/ε)). Despite that our assumption is weaker than their assumption, our code length in (1) (with

c = N when comparing with [4]) is significantly more efficient than [4, 14] and is even close to [2]. Hence

4

by replacing the extended Boneh-Shaw code used in the traitor tracing scheme in [4] with our code, their

scheme is improved in efficiency of both key size and pirate tracing procedure.

On the other hand, Nuida et al. [12] considered another relaxation of Marking Assumption, which bounds

the number of undetectable bits that are either erased or flipped by δ fraction of the total code length. Their

assumption is thus weaker than ours, and their δ-robust c-secure codes have code lengths m = Θ(c2 log(N/ε))

that are shorter than (1). However, in their scheme the parameter δ is restricted to be far from 1, namely

δ = O(c−2) (see Section 6.1 of [12]), while in our scheme δ can be arbitrarily close to 1. To extend our

conversion method to their weaker assumption would be an interesting future research topic.

1.4 Notations and Terminology

Here we clarify some notations and terminology. In this article, log denotes the natural logarithm. The

expression “x → x0” means “x converges to x0” (or “x diverges to x0”, when x0 = ±∞). For i, j ∈ Z, the

lower factorial (i)j is defined by (i)j = i(i − 1) · · · (i − j + 1). The symbols ⌊x⌋ and ⌈x⌉ denote the largest

M ∈ Z with M ≤ x and the smallest M ∈ Z with M ≥ x, respectively. Moreover, Σq = {s0, s1, . . . , sq−1}

denotes a q-ary alphabet (where Σ2 = {0, 1}), and for s ∈ Σq and j ∈ Z, the expression “rotate s by j”

means to convert s = sh ∈ Σq into si ∈ Σq, where i ≡ h + j (mod q). We put [n] = {1, 2, . . . , n} for an

integer n, and define 2[n] and
(
[n]
k

)
to be the sets of all subsets of [n] and of all k-element subsets of [n],

respectively.

1.5 Organization of the Article

This article is organized as follows. Section 2 summarizes the notion of fingerprint codes and our relaxed

Marking Assumption, called δ-Marking Assumption. Section 3 presents the main theorems of this article.

Section 4 gives the proofs of main theorems, where some intricate part will be postponed until the appendix.

Finally, Section 5 shows some numerical examples of our results.

2 Robust Fingerprint Codes

In this section, we summarize formal definitions regarding fingerprint codes, including security assumptions.

One may feel that our formulation looks different from the conventional one due to the slight generality,

however the conversion between the two is easy.

We start with the following definition:

Definition 1. Given the q-ary alphabet Σq, integer parameters 1 ≤ c ≤ N , and an “evaluation function”

ev : 2[N] ×
∪c

ℓ=1

(
[N]
ℓ

)
→ {0, 1} (see Section 1.4 for notations), we define the following game, which we refer

5

to as pirate tracing game. The players of the game is a provider and pirates, and the game is proceeded as

follows:

1. Provider generates an N × m q-ary matrix W = (wi,j)1≤i≤N,1≤j≤m and an element st called state

information.

2. Pirates generate C ⊂ [N], 1 ≤ |C| ≤ c, without knowing W and st.

3. Pirates receive the codewords wi = (wi,1, . . . , wi,m), i ∈ C.

4. Pirates generate a word y = (y1, . . . , ym) on Σq ∪ {?} under a restriction specified below, and send y

to provider.

5. Provider generates Acc ⊂ [N] from y, W , and st (without knowing C).

6. Then pirates win if ev(Acc, C) = 1, and provider wins if ev(Acc, C) = 0.

In the above formulation, the symbol ‘?’ signify erasure of a digit in the word y. Let Gen, Reg, ρ, and

Tr denote the algorithms used in the steps 1, 2, 4, and 5 in the above game, respectively. We call the

algorithms Gen, Reg, ρ, and Tr codeword generation algorithm, registration algorithm, pirate strategy, and

tracing algorithm, respectively. An intuitive meaning of the function ev is that ev returns 0 if the tracing of

the provider “succeeded” and it returns 1 if the tracing “failed”. In the usual setting, ev should be defined

to return 0 if and only if ∅ ≠ Acc ⊂ C. However, the above formulation enables us to consider more general

situations as well. For example, in some preceding schemes [10, 16] false accusation of innocent users does

not occur even under a very weak assumption. In our formulation, we can deal with such false accusation

alone by defining ev to return 0 if and only if Acc ⊂ C. On the other hand, an example of state information

st in our formulation is the collection of bias parameters pi in Tardos codes [16]. The pair C = (Gen,Tr) of

two algorithms Gen and Tr is called a fingerprint code, and the following quantity

Pr[(W, st) ← Gen(); C ← Reg(); y ← ρ(C, (wi)i∈C); Acc ← Tr(y,W, st) : ev(Acc, C) = 1]

is called error probability of C.

To specify the restriction mentioned in the step 4 above, we introduce some terminology. We call the

word y output by ρ a pirated word. For 1 ≤ j ≤ m, j-th column in a codeword is called undetectable if the

j-th digits wi,j of codewords wi coincide for all i ∈ C; and called detectable otherwise. Now we introduce

the following two variants of the assumption on the pirate strategy ρ, where 0 ≤ δ < 1 is a parameter (the

classification is according to [15]):

Definition 2. In the above setting, the δ-Marking Assumption (in unreadable digit model) states the fol-

lowing: We have yj ∈ {wi,j | i ∈ C} ∪ {?} for every column, and the number of undetectable columns with

yj = ? is not larger than δm.

6

Definition 3. In the above setting, the δ-Marking Assumption (in general digit model) states the following:

We have yj ∈ Σq ∪ {?} for every detectable column, while we have yj ∈ {wi,j | i ∈ C} ∪ {?} for every

undetectable column; and the number of undetectable columns with yj = ? is not larger than δm.

Our following argument is based on either of the above two assumptions, where which of the two as-

sumptions is adopted is fixed throughout the argument. Note that these two assumptions are identical for

binary (q = 2) case. Note also that any of the two assumptions with parameter δ = 0 coincides with the

conventional Marking Assumption [5]. We say that a fingerprint code C is δ-robust c-secure (with ε-error)

if, for any registration algorithm Reg and any pirate strategy ρ satisfying δ-Marking Assumption, the error

probability of C is lower than or equal to ε. When δ = 0, such a C is called c-secure (with ε-error) [5]. The

aim of this article is to propose the first general conversion method from given δ0-robust c-secure codes to

δ-robust c-secure codes, where 0 ≤ δ0 < δ < 1.

3 Main Results

This section summarizes the main results of this article. In Section 3.1, we describe our general conversion

method and state its validity. In Section 3.2, we propose an appropriate choice of code lengths and relevant

parameters for our conversion, and describe the asymptotic behavior of the resulting δ-robust c-secure codes.

Proofs of the results will be given in Section 4.

3.1 The Conversion Method

Let C = (Gen, Tr) be an arbitrary δ0-robust c-secure q-ary code with ε0-error, where 0 ≤ δ0 < 1 and

0 ≤ ε0 < 1. Let m0 be the code length of C. We show construction (from C) of a δ-robust c-secure q-ary code

C = (Gen,Tr) with ε-error, where δ0 < δ < 1 and ε0 < ε < 1. The value ε − ε0 signifies the loss of security

through our conversion. The resulting code C has code length m = bm0 + L, where b ≥ 1 and L ≥ 0 are

integer parameters. First, the new codeword generation algorithm Gen proceeds in the following manner:

1. Perform Gen and obtain the outputs W = (wi,j)i,j and st.

2. For every digit wi,j in W , replace it with a block of b digits each of which is identical with wi,j .

3. Append L identical digits s0 ∈ Σq, called dummy digits, to the tail of every word obtained by the

previous step. Hence the resulting word has length m = bm0 + L.

4. Choose a secret word fl = (fl1, . . . , flm), where flj ∈ {0, 1, . . . , q − 1}, uniformly at random. Then for

every word obtained by the previous step and for every 1 ≤ j ≤ m, rotate j-th digit of the word by flj

(see Section 1.4 for the terminology).

7

5. Choose a secret permutation perm of m letters 1, . . . ,m uniformly at random, and permute the digits

of every word obtained by the previous step according to perm (i.e., j-th digit of the word becomes

perm(j)-th digit of the resulting word).

6. Output the matrix W = (wi,j)1≤i≤N,1≤j≤m and the corresponding state information st = (st, fl, perm),

where wi = (wi,1, . . . , wi,m) is the word obtained from wi by the steps 2–5.

Intuitively, the steps 2–3 supply sufficient redundancy to the codewords, while the steps 4–5 conceal the

internal structure of codewords from the pirates. On the other hand, the new tracing algorithm Tr proceeds

in the following manner, where it takes as inputs a pirated word y of length m, an N × m q-ary matrix W ,

and a triple st = (st, fl, perm):

1. Permute the digits in y according to the inverse of perm, and for every 1 ≤ j ≤ m, rotate j-th digit of

the resulting word by −flj if and only if the digit is not ‘?’. Let y(1) denote the resulting word.

2. Generate a word y = (y1, . . . , ym0) in the following way: For each 1 ≤ j ≤ m0, put

• yj = x ∈ Σq, if j-th block of y(1) (that is, from the ((j − 1)b + 1)-th to the (jb)-th digits) contains

at least one digit x and no digits different from both x and ‘?’.

• yj = ?, otherwise.

3. For every 1 ≤ i ≤ N , permute the digits in wi according to the inverse of perm; remove the last L

digits (i.e., the dummy digits) of the resulting word; rotate j-th digit of the resulting word by −flj

for every 1 ≤ j ≤ bm0; and replace the j-th block of the resulting word with its first digit for every

1 ≤ j ≤ m0. Let wi = (wi,1, . . . , wi,m0) denote the resulting word.

4. Perform Tr, with y, W = (wi,j)1≤i≤N,1≤j≤m0 and st as inputs, and output what the Tr outputs.

Intuitively, the algorithm Tr first converts the given codewords and pirated word for C to those for C by

reversing the conversion process in Gen and then perform the tracing algorithm for C. If suitable parameters

are chosen, the obtained pirated word y for C will be valid except a sufficiently small probability, hence the

overall error probability of C will be bounded by the specified value ε.

In order to prove the security of our conversion, we assume that the parameters satisfy the following

condition:

L ≥ ν1 and
(

a

ν2

)(
ba+L−bν2

ν1−bν2

)(
ba+L

ν1

) ≤ ε − ε0 for every integer 0 ≤ a ≤ m0 ,

where ν1 = ⌊δ(bm0 + L)⌋ and ν2 = ⌊δ0m0⌋ + 1 .

(2)

Some concrete parameters satisfying this condition will be proposed in Section 3.2. Then we have the

following result, which will be proven in Section 4.1:

8

Theorem 1. In the above situation, the resulting fingerprint code C = (Gen, Tr) is δ-robust c-secure with

ε-error.

3.2 Code Lengths and Parameters

In this subsection, first we propose an appropriate choice of parameters that satisfy the condition (2). Here

we assume for simplicity that

ε0 = ε/2

for bounds of error probabilities. Now we set

b =
⌈

log(m0/ν2) + 1 + ν−1
2 log(1/ε0)

log(1/δ)

⌉
, (3)

L = max

{⌈
bν2

1 − (1 − ν2/m0)
1/b

⌉
− bm0 + b − 1,

⌈
δbm0

1 − δ

⌉}
, (4)

where ν1 = ⌊δ(bm0 + L)⌋ and ν2 = ⌊δ0m0⌋ + 1 as specified in (2). Moreover, in fact when the value of ν2

is small, some part of our analysis below can be made sharper, therefore the choice of parameters can be

improved. More precisely, in the case ν2 = 1, which means that δ0 = 0 (i.e., the original c-secure code C is

not robust), we can define the parameter b by

b =
⌈

log(m0/ε0)
log(1/δ)

⌉
(when δ0 = 0) , (5)

which is smaller than the parameter in (3) for the case ν2 = 1. Now we have the following result, which will

be proven in Section 4.2:

Theorem 2. In the above situation, the parameters b and L satisfy the condition (2) for Theorem 1.

Hence by Theorem 1, the resulting fingerprint code C of length m = bm0 +L, with the above parameters,

obtained by our conversion method indeed becomes δ-robust c-secure with ε-error.

For the above choice of parameters, we study the asymptotic behavior of the code length m of C. In

what follows, we consider (even implicitly) sequences of δ0-robust c-secure codes C with ε0-error and of the

corresponding δ-robust c-secure codes C with ε-error (with various parameters), rather than an individual

instance of them. We consider the asymptotic behavior in the limit case c → ∞, N/ε → ∞, and δ → 1.

We may assume without loss of generality that the parameter δ0 converges to a constant d with 0 ≤ d ≤ 1,

by applying Bolzano-Weierstrass Theorem (which implies that any infinite sequence of real numbers in a

finite interval has a convergent subsequence) to the sequence of the parameter δ0, 0 ≤ δ0 < 1. Moreover,

we assume further that d < 1 to simplify our argument. Note that m0 = Ω(c2 log(N/ε0)) by the celebrated

lower bound of code lengths of c-secure codes given by Tardos [16]. Now we have the following result, which

will be proven in Section 4.3:

9

Theorem 3. In the above situation, we have the followings:

1. We have m = Θ(b2m0) for arbitrary δ0-robust c-secure codes C.

2. If δ0 = Ω(c−2) and m0 = Θ(c2 log(N/ε0)), then the lengths m of the corresponding δ-robust c-secure

codes C satisfy

m = Θ

((
c log(1/δ0)

1 − δ

)2

log(N/ε)

)
.

More precisely, if m0 ∼ Kc2 log(N/ε0) for a constant K > 0, and

(a) if δ0 = Θ(g(c)−1) for an eventually positive function g(c) such that g(c) = O(c2) and g(c) = ω(1),

then we have

m ∼ K

(
c log g(c)

1 − δ

)2

log(N/ε) ;

(b) if 0 < d < 1, then we have

m ∼ DK

(
c

1 − δ

)2

log(N/ε) ,

where

D = max
{
−d(1 − log d)2

log(1 − d)
, 1 − log d

}
< ∞ .

3. There exist δ-robust c-secure binary codes C with ε-error of length

m = Θ

((
c log c

1 − δ

)2

log(N/ε)

)
.

Moreover, the constant factor for the above asymptotic expression can be approximately 21.41244; i.e.,

we have

m ∼ K

(
c log c

1 − δ

)2

log(N/ε) , K / 21.41244 .

The third part of Theorem 3 will be proven by applying the part 2(a) to the robust c-secure codes given

in [12]. The part 2(b) says that to obtain δ-robust c-secure codes for arbitrary 0 < δ < 1 with code lengths of

quadratic order with respect to c, which is theoretically the lowest, it suffices to find such codes for constant

0 < δ < 1.

4 Proofs of Main Theorems

In this section, we prove the three main theorems presented in Section 3. Sections 4.1, 4.2, and 4.3 deal with

the proofs of Theorems 1, 2, and 3, respectively. Some parts of the proofs will be supplied in the appendix.

10

4.1 Proof of Theorem 1

To prove Theorem 1, let ρ be an arbitrary pirate strategy satisfying δ-Marking Assumption for the fingerprint

code C obtained by our conversion. By using this ρ, we construct a pirate strategy ρ for the original δ0-robust

c-secure code C in the following manner. The algorithm ρ takes as input a subset C ⊂ [N] and a collection

WC of codewords wi for C with i ∈ C. Then ρ proceeds as follows:

1. Choose a sequence fl and a permutation perm as in the definition of Gen uniformly at random, and

convert WC to a collection ŴC of codewords for C in the same way as the steps 2–5 in the definition

of Gen by using those fl and perm.

2. Execute ρ with inputs C and ŴC , and obtain the output word ŷ (of length m).

3. Convert ŷ to a word ŷ(1) of length m0 in the same way as the steps 1–2 in the definition of the algorithm

Tr by using the same fl and perm as the first step above.

4. If the number of undetectable columns in ŷ(1) (with respect to WC) marked with ‘?’ is larger than

δ0m0, then replace the ‘?’ in every such column with the common digit of the same column in WC .

Otherwise, leave ŷ(1) unchanged. Then output the resulting word ŷ(2).

By definition, the pirate strategy ρ satisfies δ0-Marking Assumption with respect to C. An Intuitive idea

of the proof is to show that the distributions of ŷ(2) and of the word y constructed in the step 2 of Tr are

sufficiently close to each other, therefore the security of C implies the security of C.

To give a formal security proof, we may assume without loss of generality that the registration algorithm

Reg outputs an arbitrary fixed subset C ⊂ [N]. In the proof, we use the following notations:

• (W, st): The output of the algorithm Gen

• (W, st): The output of the algorithm Gen performed in the step 1 of Gen

• ŷ(1): The word of length m0 generated by the step 3 of the above pirate strategy ρ, with inputs being

C and the collection WC of codewords of pirates in W

• ŷ(2): The word of length m0 generated from ŷ(1) in the step 4 of ρ, with the same inputs as above

• y: The word of length m output by the pirate strategy ρ for C, with inputs being C and the collection

WC of codewords of pirates in W

• y(1): The word of length m generated by the step 1 of the algorithm Tr, with inputs y, W , and st

• y: The word of length m0 generated from y(1) in the step 2 of Tr

• W (1): The collection of words w
(1)
i = wi generated by the step 3 of Tr

11

Then the following property holds, which will be proven in Appendix A:

Lemma 1. Let E denote the event that more than δ0m0 undetectable blocks in y(1) (with respect to C, W

and perm) are entirely marked with ‘?’. Then we have Pr[E] ≤ ε − ε0.

Let X be the set of all triples (y′,W ′, st′) of a word y′ of length m0 over Σq ∪{?}, an N ×m0 q-ary matrix

W ′, and state information st′ for C. Let XMA be the subset of X of all (y′,W ′, st′) ∈ X such that y′ satisfies

δ0-Marking Assumption with respect to C and W ′, and put X¬MA = X r XMA. By virtue of Lemma 1, the

definition of Tr implies that

Pr[(y,W (1), st) ∈ X¬MA] = Pr[E] ≤ ε − ε0 . (6)

On the other hand, the definition of ρ implies that

Pr[(ŷ(1),W, st) = Ξ] = Pr[(y,W (1), st) = Ξ] for any Ξ ∈ X . (7)

In what follows, we write Ξ(1) = (ŷ(1),W, st) and Ξ(2) = (ŷ(2),W, st). Then by (7) and the definition of Tr,

the error probability of C against ρ is∑
Ξ∈X

Pr[(y,W (1), st) = Ξ]Pr[ev(Tr(Ξ), C) = 1] =
∑
Ξ∈X

Pr[Ξ(1) = Ξ]Pr[ev(Tr(Ξ), C) = 1] .

On the other hand, by the definition of ρ, the error probability of C against ρ is∑
Ξ∈XMA

Pr[Ξ(2) = Ξ]Pr[ev(Tr(Ξ), C) = 1]

=
∑

Ξ∈XMA

∑
Ξ′∈X

Pr[Ξ(1) = Ξ′]Pr[Ξ(2) = Ξ | Ξ(1) = Ξ′]Pr[ev(Tr(Ξ), C) = 1]

(note that ρ satisfies δ0-Marking Assumption as mentioned above). Moreover, by the definition of ρ, we have

Ξ(2) = Ξ(1) if and only if Ξ(1) ∈ XMA. This implies that the error probability of C against ρ is∑
Ξ∈XMA

Pr[Ξ(1) = Ξ]Pr[ev(Tr(Ξ), C) = 1]

+
∑

Ξ∈XMA

∑
Ξ′∈X¬MA

Pr[Ξ(1) = Ξ′]Pr[Ξ(2) = Ξ | Ξ(1) = Ξ′]Pr[ev(Tr(Ξ), C) = 1] .

Hence the difference of the error probability of C against ρ from the error probability of C against ρ is∑
Ξ∈X¬MA

Pr[Ξ(1) = Ξ]Pr[ev(Tr(Ξ), C) = 1]

−
∑

Ξ∈XMA

∑
Ξ′∈X¬MA

Pr[Ξ(1) = Ξ′]Pr[Ξ(2) = Ξ | Ξ(1) = Ξ′]Pr[ev(Tr(Ξ), C) = 1]

≤
∑

Ξ∈X¬MA

Pr[Ξ(1) = Ξ]Pr[ev(Tr(Ξ), C) = 1] ≤
∑

Ξ∈X¬MA

Pr[Ξ(1) = Ξ] = Pr[Ξ(1) ∈ X¬MA] ≤ ε − ε0

(we used the properties (6) and (7) in the last inequality). As C is δ0-robust c-secure with ε0-error and ρ

satisfies δ0-Marking Assumption, the error probability of C against ρ is bounded by ε0 + (ε− ε0) = ε. Hence

C is δ-robust c-secure with ε-error, concluding the proof of Theorem 1.

12

4.2 Proof of Theorem 2

To prove Theorem 2, we suppose that the parameter L satisfies (4) and the parameter b satisfies (3). However,

in the case ν2 = 1, we suppose instead that b satisfies (5) which is better than (3). Our goal is to show the

property (2). First, it follows from (4) that L ≥ δbm0/(1 − δ), therefore L ≥ δ(bm0 + L) and L ≥ ν1 by the

definition of ν1. The main part of the claim is thus the second inequality in (2).

For the purpose, we may assume that ν1 ≥ bν2, as otherwise the desired inequality is obvious. First note

that for any integer 0 ≤ a ≤ m0, we have(
ba+L−bν2

ν1−bν2

)(
ba+L

ν1

) =
(ba + L − bν2)!ν1!(ba + L − ν1)!

(ν1 − bν2)!(ba + L − ν1)!(ba + L)!
=

(ba + L − bν2)!ν1!
(ν1 − bν2)!(ba + L)!

=
(ν1)bν2

(ba + L)bν2

(see Section 1.4 for the notation). Now we present the following lemma, which will be proven in Appendix

B:

Lemma 2. In the above setting,
(

a
ν2

)
(ν1)bν2/(ba + L)bν2 is increasing for integer 0 ≤ a ≤ m0.

By virtue of Lemma 2, it suffices to prove that
(
m0
ν2

)
(ν1)bν2/(bm0 + L)bν2 ≤ ε− ε0. To prove this, we use

the following two inequalities:

Lemma 3 (cf., [6]). For integers 0 ≤ k ≤ n, we have
(
n
k

)
≤ (ne/k)k.

Proof. First, we have
(
n
k

)
= (n)k/k! ≤ nk/k!, therefore it suffices to show that 1/k! ≤ (e/k)k, or equivalently

k! ≥ (k/e)k. As log x is an increasing function, we have

log(k!) =
k∑

j=1

log j ≥
∫ k

0

log x dx = lim
ξ→+0

(x log x − x)|x=k − (x log x − x)|x=ξ = k log k − k ,

therefore k! ≥ ek log k−k = kk/ek. Hence Lemma 3 holds.

Lemma 4. For integers h ≥ i ≥ j ≥ 1, we have (i)j/(h)j ≤ (i/h)j.

Proof. Apply the inequality (i − x)/(h − x) ≤ i/h for every 0 ≤ x ≤ j.

First we consider the case that b satisfies (3). By Lemma 3 and Lemma 4, we have(
m0

ν2

)
(ν1)bν2

(bm0 + L)bν2

≤
(

m0e

ν2

)ν2
(

ν1

bm0 + L

)bν2

=

(
m0e

ν2

(
ν1

bm0 + L

)b
)ν2

≤
(

m0e

ν2
δb

)ν2

, (8)

where we used the fact ν1 ≤ δ(bm0 + L) (that follows from the definition of ν1) in the last inequality. By

the condition (3), we have

bν2 log(1/δ) ≥ ν2 log(m0/ν2) + ν2 + log(1/ε0) ,

therefore we have δ−bν2 ≥ (m0e/ν2)ν2ε−1
0 . This implies that the right-hand side of (8) is not larger than

ε0 = ε − ε0 (note that now ε0 = ε/2), therefore the claim holds in this case.

13

Secondly, we consider the case that ν2 = 1, therefore b satisfies (5) instead of (3). In this case, we use

the precise value m0 of the binomial coefficient
(
m0
ν2

)
instead of the bound given in Lemma 3 to sharpen the

analysis. Now we have (
m0

ν2

)
(ν1)bν2

(bm0 + L)bν2

≤ m0

(
ν1

bm0 + L

)b

≤ m0δ
b , (9)

where we used the fact ν1 ≤ δ(bm0 + L) in the last inequality. By the condition (5), we have b log(1/δ) ≥

log(m0/ε0), therefore the right-hand side of (9) is not larger than ε0 = ε− ε0. Hence the claim also holds in

this case, concluding the proof of Theorem 2.

4.3 Proof of Theorem 3

We give proofs of the first part, the second part, and the third part of Theorem 3 in Sections 4.3.1, 4.3.2,

and 4.3.3, respectively.

4.3.1 Proof of the First Part

To prove the first part of Theorem 3, put

L1 =

⌈
bν2

1 − (1 − ν2/m0)
1/b

⌉
− bm0 + b − 1 , L2 =

⌈
δbm0

1 − δ

⌉
,

therefore we have L = max{L1, L2} (see (4)). First we present the following lemma, which will be proven in

Appendix C:

Lemma 5. In the above setting, we have

1 −
(

1 − ν2

m0

)1/b

∼

ν2

m0b
if d = 0 ,

−ν2 log(1 − d)
m0bd

if 0 < d < 1 .

By virtue of Lemma 5, we have

bm0 + L1 ∼

b2m0 if d = 0 ,

−d

log(1 − d)
b2m0 if 0 < d < 1

(10)

(note that m0 = ω(1), as we are assuming that c → ∞, N/ε → ∞, and ε0 = ε/2). On the other hand, we

give the following lemma to analyze L2:

Lemma 6. We have log(1/δ) ∼ 1 − δ when δ → 1.

Proof. Apply l’Hôpital’s Rule to derive limδ→1 log(1/δ)/(1 − δ) = 1.

14

We put

B =

log(m0/ν2) + 1 + ν−1
2 log(1/ε0) if b is defined by (3),

log(m0/ε0) if b is defined by (5),
(11)

therefore b = ⌈B/ log(1/δ)⌉. As B = Ω(1) and log(1/δ) → 0 (note that now δ → 1), we have B/ log(1/δ) =

ω(1) and b ∼ B/ log(1/δ) ∼ B/(1 − δ) (see Lemma 6), therefore (1 − δ)−1 ∼ b/B = O(b). Hence we have

L2 = O(b2m0) and bm0 + L2 = O(b2m0). This implies that bm0 + L1 is eventually dominant over bm0 + L2,

therefore we have m = max{bm0 + L1, bm0 + L2} = Θ(b2m0). Hence the first part of Theorem 3 holds.

4.3.2 Proof of the Second Part

To prove the second part of Theorem 2, we use the following lemma, which will be proven in Appendix D:

Lemma 7. Let x1 and x2 be eventually positive functions. If either x1 = Θ(x2) and x2 = ω(1), or x1 ∼ x2

and log x2 = Ω(1), then we have log x1 ∼ log x2.

In the following proof, we define the parameter b by (3). We use the value B given in (11). Then we

have b ∼ B/(1 − δ) as mentioned in Section 4.3.1. On the other hand, as ε0 = ε/2 and N/ε → ∞, we have

log(N/ε0) = log 2 + log(N/ε) and log(N/ε0) ∼ log(N/ε).

First, we have δ0m0 = Ω(log(N/ε0)) = Ω(log(N/ε)) by the properties of m0 and δ0 specified in the

statement. Secondly, as ν2 = ⌊δ0m0⌋ + 1, we have ν−1
2 log(1/ε0) ≤ (δ0m0)−1 log(1/ε0) = O(1). Thirdly, we

have ν2 ∼ δ0m0 as δ0m0 = Ω(log(N/ε)) = ω(1) (note that N/ε → ∞), hence m0/ν2 ∼ 1/δ0. Moreover, we

have log(1/δ0) = Ω(1) as we assumed that δ0 → d < 1. Now we have log(m0/ν2) ∼ log(1/δ0) by the last two

properties and the second part of Lemma 7. By these results, we have b ∼ B/(1 − δ) ∼ (1 − δ)−1 log(1/δ0),

therefore

m = Θ

((
c log(1/δ0)

1 − δ

)2

log(N/ε)

)
by the first part of Theorem 3.

From now, we prove claims (a) and (b). First we consider the claim (a). In this case, we have d = 0 as

δ0 = Θ(g(c)−1) and g(c) = ω(1), therefore bm0 +L1 ∼ b2m0 by (10). Moreover, we have log(1/δ0) ∼ log g(c)

by the first part of Lemma 7. Now b ∼ (1 − δ)−1 log(1/δ0) as shown above, therefore b ∼ (1 − δ)−1 log g(c).

Hence we have

bm0 + L1 ∼
(

log g(c)
1 − δ

)2

m0

and

bm0 + L2 ∼ bm0 +
δbm0

1 − δ
=

bm0

1 − δ
∼ log g(c)

(1 − δ)2
m0 .

As log g(c) = ω(1), this implies that we have eventually m = bm0 + L1. Hence the claim (a) follows, as

m0 ∼ Kc2 log(N/ε0) and log(N/ε0) ∼ log(N/ε).

15

Secondly, we consider the claim (b). Recall from the second last paragraph that log(m0/ν2) ∼ log(1/δ0),

ν−1
2 log(1/ε0) ≤ (δ0m0)−1 log(1/ε0), and b ∼ B/(1 − δ). On the other hand, as δ0 → d > 0, we have

log(1/δ0) ∼ − log d and

log(1/ε0)
ν2

≤ log(1/ε0)
δ0m0

= Θ
(

log(1/ε0)
δ0c2 log(N/ε0)

)
= o(1) ,

therefore B ∼ 1 − log d. Thus we have b ∼ (1 − log d)/(1 − δ), and the property (10) implies that

bm0 + L1 ∼ −db2m0

log(1 − d)
∼ −d(1 − log d)2

(1 − δ)2 log(1 − d)
m0

and

bm0 + L2 ∼ bm0 +
δbm0

1 − δ
=

bm0

1 − δ
∼ 1 − log d

(1 − δ)2
m0 .

Hence we have m = max{bm0 + L1, bm0 + L2} ∼ Dm0/(1 − δ)2, therefore the claim (b) holds as m0 ∼

Kc2 log(N/ε0) ∼ Kc2 log(N/ε), concluding the proof of the second part of Theorem 3.

4.3.3 Proof of the Third Part

To prove the third part of Theorem 3, we apply the part 2(a) of the theorem to the δ0-robust c-secure binary

codes C given by Nuida et al. in [12]. It follows immediately from the argument in Section 6.1 of [12] that

their δ0-robust c-secure codes with ε0-error have code lengths m0 satisfying that m0 ∼ Kc2 log(N/ε0), where

K = (j2
1(A0 log A0 − A0 + 1))−1, j1 = 2.40482 · · · (see Section 4 of [12] for the precise definition of j1), and

A0 = 1+2(π−1−∆0)/j1 for a certain parameter ∆0, provided 0 ≤ ∆0 ≤ (2π)−1 and 2c2δ0/j1 ∼ ∆0. As K is

a continuous function of ∆0, and we have K / 5.35311 when ∆0 = 0 (see Theorem 2 of [12]), it follows that

there exists a constant 0 < ∆0 < (2π)−1 such that K / 5.35311. Now by putting δ0 = j1∆0c
−2/2 = Θ(c−2)

to satisfy the above requirement, the part 2(a) of Theorem 3 implies that m ∼ 4K(c log c/(1− δ))2 log(N/ε)

with 4K / 21.41244. Hence the third part of Theorem 3 holds, concluding the proof of Theorem 3.

5 Examples

We have seen in Theorem 3 the asymptotic behavior of code lengths of δ-robust c-secure codes obtained by

our conversion method. In this section, we give some numerical examples for the case of smaller c. Here we

use the δ0-robust c-secure binary codes C with ε0-error given in [12] as the target of our conversion method.

We choose c as c ∈ {2, 3, 4, 6, 8}, and we consider the following three choices of parameters N and ε0:

• Case 1: N = 100c and ε0 = 10−11;

• Case 2: N = 109 and ε0 = 10−6;

• Case 3: N = 106 and ε0 = 10−3.

16

Let Ck (k ∈ {1, 2, 3}) denote the above δ0-robust c-secure code C with various parameter δ0 listed in Table

1. Namely, the first instance C1 is not robust at all. The second instance C2 is a slightly robust one, which

is the one appeared in Section 5 of [12]. The third instance C3 is the most robust one, in the sense that

the values δ0 for C3 are maximal subject to the conditions for δ0 specified in [12]. The code lengths m0 for

these three families are shown in Tables 2 and 3. For the tables, the lengths of C1 and C2 are quoted from

Tables 4 and 5 in [12]. On the other hand, for C3, we chose the parameters β appeared in the formula of

error probability (see Theorem 1 in [12]) as in Table 4, which are optimized by numerical calculation.

Table 1: Parameter δ0 for the original codes C = Ck in [12]

c C1 C2 C3

2 0 0.005 0.0625

3 0 2.58556 × 10−3 1.76067 × 10−2

4 0 2.58556 × 10−3 1.32044 × 10−2

6 0 1.78017 × 10−3 5.61077 × 10−3

8 0 1.36437 × 10−3 3.09638 × 10−3

Then we apply our conversion method to these codes Ck, k ∈ {1, 2, 3}, obtaining δ-robust c-secure codes

Ck with ε-error. Here we set ε = 2ε0 (as in Section 3) and δ = 0.5 for the parameters, hence the resulting

codes Ck are much more robust than the original codes Ck. The code lengths m = bm0 + L for Ck are also

shown in Tables 2 and 3, where we determined the parameters L by (4) and we determined the parameters

b for C1 by (5) and for C2 and C3 by (3), respectively. The values of b are also included in Tables 2 and 3.

Tables 2 and 3 show that both C2 and C3 are always more efficient than C1 under our choices of parameters.

This suggests that the (even slight) robustness of the original c-secure codes is significant to improve efficiency

of (more) robust c-secure codes obtained by our conversion method. On the other hand, these two tables also

show that there does not exist overall superiority or inferiority of any of C2 and C3 to the other, hence it is not

always a good strategy to apply our conversion to more robust c-secure codes. An intuitive explanation of

the phenomenon would be possible, as follows. If the original code for our conversion becomes more robust,

then the efficiency of our conversion itself is improved (indeed, in Tables 2 and 3, the ratio m/m0 of code

lengths for the pair (C3, C3) is always better than the ratio for the pair (C2, C2)), while the code length m0

of the original code increases, which makes the efficiency of the resulting code worse. Hence there exists a

trade-off between those two effects both caused by increase of robustness of the original code. A study of

the optimal point for the trade-off would be an interesting future research topic.

17

Table 2: Code lengths for c-secure codes, with parameter δ = 0.5, c ∈ {2, 3, 4}
Case 1 Case 2 Case 3

c code length b length b length b

C1 373 — 410 — 253 —

C2 403 — 444 — 273 —

2 C3 1, 429 — 1, 572 — 969 —

C1 788, 278 46 344, 432 29 81, 836 18

C2 177, 113 21 113, 319 16 53, 339 14

C3 50, 082 6 55, 094 6 33, 963 6

C1 1, 309 — 1, 423 — 877 —

C2 1, 514 — 1, 646 — 1, 014 —

3 C3 4, 973 — 5, 404 — 3, 330 —

C1 2, 890, 548 47 1, 367, 068 31 350, 630 20

C2 604, 859 20 322, 174 14 198, 484 14

C3 315, 807 8 343, 166 8 211, 470 8

C1 2, 190 — 2, 360 — 1, 454 —

C2 2, 671 — 2, 879 — 1, 774 —

4 C3 8, 420 — 9, 074 — 5, 591 —

C1 5, 044, 682 48 2, 416, 177 32 641, 024 21

C2 682, 951 16 485, 939 13 255, 137 12

C3 677, 987 9 577, 375 8 355, 754 8

18

Table 3: Code lengths for c-secure codes, with parameter δ = 0.5, c ∈ {6, 8}
Case 1 Case 2 Case 3

c code length b length b length b

C1 5, 546 — 5, 909 — 3, 640 —

C2 7, 738 — 8, 244 — 5, 079 —

6 C3 21, 300 — 22, 691 — 13, 980 —

C1 13, 314, 843 49 6, 434, 407 33 1, 761, 551 22

C2 1, 515, 387 14 1, 186, 157 12 730, 727 12

C3 2, 124, 604 10 2, 263, 344 10 1, 394, 451 10

C1 10, 469 — 11, 062 — 6, 815 —

C2 16, 920 — 17, 879 — 11, 015 —

8 C3 40, 185 — 42, 463 — 26, 161 —

C1 26, 171, 387 50 12, 787, 166 34 3, 604, 908 23

C2 2, 857, 620 13 2, 572, 937 12 1, 585, 115 12

C3 4, 855, 517 11 4, 240, 366 10 2, 612, 417 10

Table 4: Parameter β for error probability formula of C3

c 2 3 4 6 8

β 0.093099 0.032980 0.019780 0.0085396 0.0047522

6 Conclusion

In this article, we proposed the first general conversion method of non-robust c-secure fingerprint codes to

robust c-secure codes, and of less robust c-secure codes to more robust ones. Our conversion deals with

the original c-secure code as a black-box, namely we need no knowledge of properties of the original code

except code length and error probability. We estimated appropriate values of parameters for our conversion

theoretically, deriving a closed-form formula of the resulting code length. By using the formula, we described

the asymptotic behavior of the resulting code length. Moreover, by applying our conversion to some existing

(less robust) c-secure codes, we obtained robust c-secure codes with code lengths of order (c log c)2 with

respect to c, which improves some preceding construction based on a stronger assumption than ours.

Acknowledgments

A preliminary version of this article is to be presented at The 4th International Conference on Information

Theoretic Security (ICITS 2009), Shizuoka, Japan, December 3–6, 2009. The author would like to thank

19

Hideki Imai and the anonymous referees of ICITS 2009 for their precious comments.

A Proof of Lemma 1

Recall the condition (2) for the parameters. To prove Lemma 1, it suffices to consider the worst case that

pirates always mark as many undetectable columns in the pirated word y with ‘?’ as δ-Marking Assumption

allows, i.e., they mark ⌊δm⌋ = ν1 undetectable columns with ‘?’ in total (note that there are indeed at least

ν1 undetectable columns in y by the condition L ≥ ν1; see (2)). For an integer a and each J ∈
(
[a]
ν2

)
, where

ν2 = ⌊δ0m0⌋+ 1 as defined in (2), let E′(a, J) denote the event that the number au of undetectable columns

in W (or equivalently, the number of undetectable blocks in W) with respect to C is a and that for every

j ∈ J , the j-th undetectable block in y(1) is entirely marked with ‘?’. (Note that
(
[a]
ν2

)
= ∅ when a < ν2.)

Then, whenever the event E specified in the statement of Lemma 1 occurs, some of the events E′(a, J) with

0 ≤ a ≤ m0 and J ∈
(
[a]
ν2

)
also occurs. This implies that

Pr[E] ≤
m0∑
a=0

Pr[au = a]
∑

J∈([a]
ν2

)
Pr[E′(a, J) | au = a] . (12)

As the undetectable digits in codewords of pirates are completely shuffled by the steps 4–5 in Gen, it

follows that every ν1-element subset of the bau + L undetectable columns in y(1) is chosen by pirates with

equal probability to be marked with ‘?’. Hence for each a, the probabilities Pr[E′(a, J) | au = a] for J ∈
(
[a]
ν2

)
coincide with each other. As |

(
[a]
ν2

)
| =

(
a
ν2

)
, it follows from (12) that

Pr[E] ≤
m0∑
a=0

Pr[au = a]
(

a

ν2

)
Pr[E′(a, [ν2]) | au = a] . (13)

Now suppose that au = a and the first ν2 undetectable blocks in y(1) (containing bν2 digits in total) are

entirely marked with ‘?’. Then there are
(
ba+L−bν2

ν1−bν2

)
choices of the remaining ν1 − bν2 digits out of the

remaining ba + L − bν2 undetectable columns to be marked with ‘?’. On the other hand, there are in total(
ba+L

ν1

)
choices of the ν1 undetectable columns to be marked with ‘?’. This implies that Pr[E′(a, [ν2]) | au =

a] =
(
ba+L−bν2

ν1−bν2

)
/
(
ba+L

ν1

)
, therefore it follows from (13) that

Pr[E] ≤
m0∑
a=0

Pr[au = a]
(

a

ν2

)(
ba+L−bν2

ν1−bν2

)(
ba+L

ν1

) ≤
m0∑
a=0

Pr[au = a](ε − ε0) = ε − ε0 ,

where we used the condition (2) in the second inequality. Hence we have Pr[E] ≤ ε− ε0 as desired, therefore

the proof of Lemma 1 is concluded.

20

B Proof of Lemma 2

To prove Lemma 2, it suffices to show that(
a

ν2

)
/(ba + L)bν2 ≤

(
a + 1
ν2

)
/(ba + L + b)bν2

for any integer 0 ≤ a ≤ m0 − 1. As the claim is obvious when a < ν2, we may assume that a ≥ ν2. As(
a
ν2

)
/
(
a+1
ν2

)
= 1 − ν2/(a + 1) and

(ba + L)bν2

(ba + L + b)bν2

=
(ba + L + b − bν2)b

(ba + L + b)b

(note that b ≤ bν2 ∈ Z), the claim is equivalent to that

1 − ν2

a + 1
≤ (ba + L + b − bν2)b

(ba + L + b)b
for any integer ν2 ≤ a ≤ m0 − 1 . (14)

To prove this, we use the following inequality:

Lemma 8. For integers h ≥ i ≥ j ≥ 1, we have

(i)j

(h)j
≥

(
i − j + 1
h − j + 1

)j

.

Proof. Apply the inequality (i − j + x)/(h − j + x) ≥ (i − j + 1)/(h − j + 1) for every 1 ≤ x ≤ j.

By this lemma, the right-hand side of (14) is larger than or equal to(
ba + L + 1 − bν2

ba + L + 1

)b

=
(

1 − bν2

ba + L + 1

)b

,

therefore it suffices to show that

1 − ν2

a + 1
≤

(
1 − bν2

ba + L + 1

)b

for any ν2 ≤ a ≤ m0 − 1 ,

or equivalently,
bν2

ba + L + 1
≤ 1 −

(
1 − ν2

a + 1

)1/b

for any ν2 ≤ a ≤ m0 − 1

(note that 0 < ν2/(a + 1) < 1). This is also equivalent to L ≥ f(a), where

f(a) =
bν2

1 −
(
1 − ν2

a+1

)1/b
− ba − 1 for ν2 ≤ a ≤ m0 − 1 .

Now we present a lemma, which will be proven below:

Lemma 9. The function f(a) is increasing for ν2 ≤ a ≤ m0 − 1.

21

This lemma implies that f(a) ≤ f(m0 − 1), while L ≥ f(m0 − 1) by the condition (4) for L, therefore we

have L ≥ f(a) provided Lemma 9 holds.

Finally, we prove Lemma 9. The claim is obvious if b = 1, therefore we assume that b ≥ 2. Put

x = (1−ν2/(a+1))1/b. Then x is an increasing function of a, and 0 < x < 1. Now we have a+1 = ν2/(1−xb),

therefore d
dxa = bν2x

b−1(1 − xb)−2. As f(a) = bν2/(1 − x) − ba − 1, this implies that

d

dx
f(a) =

bν2

(1 − x)2
− b2ν2x

b−1

(1 − xb)2
=

bν2

(1 − x)2(1 − xb)2
f1(x) ,

where f1(x) = (1 − xb)2 − bxb−1(1 − x)2. As x is an increasing function of a, it suffices for our purpose

to prove that d
dxf(a) > 0, or equivalently f1(x) > 0. As 0 < x < 1, we have f1(x) > 0 if and only if

1 − xb >
√

bx(b−1)/2(1 − x). Put f2(x) = 1 − xb −
√

bx(b−1)/2(1 − x), therefore our goal is to show that

f2(x) > 0. Now we have

d

dx
f2(x) = −bxb−1 −

√
b

b − 1
2

x(b−3)/2 +
√

b
b + 1

2
x(b−1)/2 =

√
bx(b−3)/2f3(x) ,

where f3(x) = −
√

bx(b+1)/2 − (b − 1)/2 + (b + 1)x/2. Moreover, we have

d

dx
f3(x) =

b + 1
2

(1 −
√

bx(b−1)/2) .

This implies that the function f3(x) for 0 < x < 1 is maximized at x = x0 = b−(b−1)−1
. We have

f3(x0) = −
√

bx0 · x(b−1)/2
0 − b − 1

2
+

b + 1
2

x0 = −x0 −
b − 1

2
+

b + 1
2

x0 =
b − 1

2
(x0 − 1) < 0 ,

therefore f3(x) < 0 for 0 < x < 1. This implies that d
dxf2(x) < 0 for 0 < x < 1, therefore f2(x) > f2(1) = 0

for 0 < x < 1, as desired. Hence Lemma 9 holds, concluding the proof of Lemma 2.

C Proof of Lemma 5

To prove Lemma 5, first we give the following lemma:

Lemma 10. In the current situation, we have ν2/m0 → d.

Proof. First, note that ν2 = ⌊δ0m0⌋ + 1 ≤ δ0m0 + 1, therefore ν2/m0 ≤ δ0 + 1/m0. As we are assuming

that c → ∞, N/ε → ∞, and ε0 = ε/2, it follows that m0 = ω(1). Hence we have ν2/m0 → 0 if δ0 → 0, or

equivalently, if d = 0. On the other hand, if d > 0, then we have δ0m0 = ω(1), therefore ν2 = ⌊δ0m0⌋ + 1 =

ω(1) and ν2 ∼ δ0m0 ∼ dm0. This implies that we have ν2/m0 → d in any case.

By Lemma 10, we have (1 − ν2/m0)m0/ν2 → A, where we put A = e−1 if d = 0 and A = (1 − d)1/d if

0 < d < 1. Note that 0 < A < 1 in any case. Put ξ = ν2/(bm0). Now for any 0 < η < min{A, 1 − A}, we

have eventually

0 < A − η < (1 − ν2/m0)m0/ν2 < A + η < 1 ,

22

therefore we have eventually 0 < (A − η)ξ < (1 − bξ)1/b < (A + η)ξ < 1 and

1 − (A + η)ξ

ξ
<

1 − (1 − bξ)1/b

ξ
<

1 − (A − η)ξ

ξ
. (15)

Note that b = ω(1) by the definition of b (note that δ → 1), therefore we have ξ → 0. Now by l’Hôpital’s Rule,

the left-hand side and the right-hand side of (15) converge to − log(A + η) and − log(A − η), respectively.

Hence we have

− log(A + η) ≤ lim inf
1 − (1 − bξ)1/b

ξ
≤ lim sup

1 − (1 − bξ)1/b

ξ
≤ − log(A − η) .

As η > 0 can be arbitrarily small, by taking the limit η → 0 we have

lim inf
1 − (1 − bξ)1/b

ξ
= lim sup

1 − (1 − bξ)1/b

ξ
= − log A ,

therefore (1− (1− bξ)1/b)/ξ → − log A. As − log A = 1 if d = 0 and − log A = −d−1 log(1− d) if 0 < d < 1,

the proof of Lemma 5 is concluded.

D Proof of Lemma 7

To prove Lemma 7, first we consider the case that x1 = Θ(x2) and x2 = ω(1). Then the first condition

implies that there exist an M0 > 0 and an M1 < ∞ such that we have eventually M0 < x1/x2 < M1. Hence

it holds eventually that log M0 < log x1 − log x2 < log M1, or equivalently

log M0

log x2
<

log x1

log x2
− 1 <

log M1

log x2

(note that by the condition x2 = ω(1), log x2 is eventually positive). As x2 = ω(1), both the left-hand side

and the right-hand side converge to 0, therefore log x1/ log x2 → 1. Hence log x1 ∼ log x2 in this case.

Secondly, we consider the other case that x1 ∼ x2 and log x2 = Ω(1). Then the first condition implies

that x1/x2 → 1, therefore log x1 − log x2 → 0. As log x2 = Ω(1), it follows that log x1/ log x2 − 1 → 0,

therefore we have log x1 ∼ log x2 in this case. Hence the proof of Lemma 7 is concluded.

References

[1] E. Amiri and G. Tardos, “High rate fingerprinting codes and the fingerprinting capacity,” in Proc.

SODA 2009, 2009, pp. 336–345.

[2] O. Billet and D. H. Phan, “Efficient traitor tracing from collusion secure codes,” in Proc. ICITS 2008,

2008, pp. 171–182.

[3] G. R. Blakley and G. Kabatiansky, “Random coding technique for digital fingerprinting codes,” in Proc.

IEEE ISIT 2004, 2004, p. 202.

23

[4] D. Boneh and M. Naor, “Traitor tracing with constant size ciphertext,” in Proc. ACM CCS 2008, 2008,

pp. 501–510.

[5] D. Boneh and J. Shaw, “Collusion-secure fingerprinting for digital data,” IEEE Trans. Information

Theory, vol. 44, pp. 1897–1905, 1998.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to Algorithms, 2nd ed., MIT

Press, 2001.

[7] J. Cotrina-Navau, M. Fernandez and M. Soriano, “A family of collusion 2-secure codes,” in Proc. IH

2005, 2005, pp. 387–397.

[8] M. Fernandez and M. Soriano, “Fingerprinting concatenated codes with efficient identification,” in Proc.

ISC 2002, 2002, pp. 459–470.

[9] H.-J. Guth and B. Pfitzmann, “Error- and collusion-secure fingerprinting for digital data,” in Proc. IH

1999, 2000, pp. 134–145.

[10] K. Nuida, “An improvement of short 2-secure fingerprint codes strongly avoiding false-positive,” in

Proc. IH 2009, 2009, pp. 161–175.

[11] K. Nuida, S. Fujitsu, M. Hagiwara, H. Imai, T. Kitagawa, K. Ogawa and H. Watanabe, “An efficient

2-secure and short random fingerprint code and its security evaluation,” IEICE Trans. Fundamentals,

vol. E92-A, pp. 197–206, 2009.

[12] K. Nuida, S. Fujitsu, M. Hagiwara, T. Kitagawa, H. Watanabe, K. Ogawa and H. Imai, “An improvement

of discrete Tardos fingerprinting codes,” Des. Codes Cryptogr., vol. 52, pp. 339–362, 2009.

[13] R. Safavi-Naini and Y. Wang, “Collusion secure q-ary fingerprinting for perceptual content,” in Proc.

DRM 2001, 2002, pp. 57–75.

[14] T. Sirvent, “Traitor tracing scheme with constant ciphertext rate against powerful pirates,” in Proc.

WCC 2007, 2007, pp. 379–388.

[15] B. S̆korić, S. Katzenbeisser and M. U. Celik, “Symmetric Tardos fingerprinting codes for arbitrary

alphabet sizes,” Des. Codes Cryptogr., vol. 46, pp. 137–166, 2008.

[16] G. Tardos, “Optimal probabilistic fingerprint codes,” J. ACM, vol. 55, pp. 1–24, 2008.

[17] V. D. Tô, R. Safavi-Naini and Y. Wang, “A 2-secure code with efficient tracing algorithm,” in Proc.

INDOCRYPT 2002, 2002, pp. 149–163.

24

