
How to Construct Cryptosystems and Hash Functions in
Weakened Random Oracle Models

Yusuke Naito1, Lei Wang2, and Kazuo Ohta2

1 Mitsubishi Electric Corporation
2 The University of Electro-Communications

Abstract. In this paper, we discuss how to construct secure cryptosystems and secure hash func-
tions in weakened random oracle models.

The weakened random oracle model (WROM), which was introduced by Numayama et al. at
PKC 2008, is a random oracle with several weaknesses. Though the security of cryptosystems in
the random oracle model, ROM, has been discussed sufficiently, the same is not true for WROM.
A few cryptosystems have been proven secure in WROM. In this paper, we will propose a new
conversion that can convert any cryptosystem secure in ROM to a new cryptosystem that is secure
in the first preimage tractable random oracle model FPT-ROM without re-proof. FPT-ROM is ROM
without preimage resistance and so is the weakest of the WROM models. Since there are many
secure cryptosystems in ROM, our conversion can yield many cryptosystems secure in FPT-ROM.

The fixed input length weakened random oracle model, FIL-WROM, introduced by Liskov at SAC
2006, reflects the known weakness of compression functions. We will propose new hash functions
that are indifferentiable from RO when the underlying compression function is modeled by a two-
way partially-specified preimage-tractable fixed input length random oracle model (TFILROM).
TFILROM is FIL-ROM without two types of preimage resistance and is the weakest of the FIL-WROM
models. The proposed hash functions are more efficient than the existing hash functions which are
indifferentiable from RO when the underlying compression function is modeled by TFILROM.

Keywords: Random oracle model, variable input length weakened random oracle model, fixed
input length weakened random oracle model, hash functions, indifferentiability.

1 Introduction

Most cryptographic schemes are designed by using ideal primitives such as a random oracle RO and an
ideal cipher. For example, OAEP [3], PSS [4] and so on are secure in the RO model and PGV compression
functions [16] are provably collision resistant compression functions in the ideal cipher model [5].

Recently, several weakened ideal models were considered [10, 15] and several cryptographic schemes
were proposed that are secure in a weakened model. Liskov [10] first proposed weakened random oracle
models for compression functions: fixed input length weakened random oracle model (FIL-WROM). In the
models, adversaries are given sub-oracles in addition to RO. The sub-oracles return collisions, preimages
and so on. He proposed the Zipper hash function which behaves like RO (indifferentiable from RO)
even when an underlying compression function is modeled by FIL-WROM. Note that Hoch and Shamir
[9] revised this model and proved that the Double pipe hash function and the parallel hash function
are indifferentiable from RO even when an underlying compression function is modeled by FIL-WROM.
Numayama et al. [15] extended this model from compression functions to hash functions creating the
concept weakened random oracle model (WROM). They proposed several signature schemes secure in the
WROM that are variants of FDH [2].

In this paper, we reconsider two models. For WROM, though the previous results [15] only considered
variants of FDH, we propose a conversion that yields secure cryptosystems even if the underlying hash
function is weakened. For FIL-WROM, we propose two hash functions that are indifferentiable from RO
even if the underlying compression function is modeled FIL-WRO. Our schemes are more efficient than
previous schemes.

1.1 Tools

Weakened Random Oracle Models: Let FIL-RO : {0, 1}n×{0, 1}m → {0, 1}n be a fixed input length
random oracle. Oracles in FIL-WROM are as follows:

– Fixed input length collision tractable oracle (FILCTO): On invoking the oracle with no input, the or-
acle returns values (x, x′, y, y′, z) uniformly chosen from a set of values {(x, x′, y, y′, z)|FIL-RO(x, y) =
z = FIL-RO(x′, y′) ∧ (x, y) 6= (x′, y′)}.

– Fixed input length second preimage tractable oracle (FILSPTO): On query (x, y), it returns pair
(x′, y′) uniformly chosen from a set {(x′, y′)|FIL-RO(x, y) = FIL-RO(x′, y′) ∧ (x, y) 6= (x′, y′)}.

– Fixed input length preimage tractable oracle (FILPTO): On query z, it returns pair (x, y) uniformly
chosen from a set {(x, y)|FIL-RO(x, y) = z}. If no such pair exists, it returns ⊥.

– Bridge oracle (BrO): On query (x, z), it returns y chosen uniformly from a set {y|FIL-RO(x, y) = z}.
If no such pair exists, it returns ⊥.

– Backward oracle (BO): On query (y, z), it returns x chosen uniformly from a set {x|FIL-RO(x, y) = z}.
If no such pair exists, it returns ⊥.

The weakest model among WROMs is so-called two-way partially-specified preimage-tractable fixed input
length random oracle model (TFILROM), which is that an attacker is given FIL-RO, BrO and BO. Because
FILCTO, FILSPTO and FILPTO can be constructed from either BrO or BO and the relation among
BrO and BO is independent.

Oracles in WROM are as follows:

– Collision tractable oracle (CO): On invoking the oracle with no input, it returns pair (M,M ′) chosen
uniformly from a set {(M,M ′)|RO(M) = RO(M ′) ∧ M 6= M ′}.

– Second-preimage tractable oracle (SPO): On query (M, z), it returns M ′ chosen uniformly from a set
{M ′|RO(M) = z = RO(M ′) ∧ M 6= M ′}. If no such value exists, it returns ⊥.

– First-preimage tractable oracle (FPO): On query z, it returns M from a set {M |RO(M) = z}. If no
such value exists, it returns ⊥.

Note that the model wherein an attacker is given both RO and FPO is the weakest model among above
models (first-preimage tractable random oracle model (FPT-ROM)).

Indifferentiability: The indifferentiability framework generalizes the fundamental concept of the indis-
tinguishability of two cryptosystems C(U) and C(V) where C(U) is the cryptosystem C that invokes the
underlying primitive U and C(V) is the cryptosystem C that invokes the underlying primitive V. U and V
have two interfaces: public and private interfaces. Adversaries can access only the public interfaces and
honest parties (e.g. the cryptosystem C) can access only the private interface.

We denote the private interface of system W by Wpriv and the public interface of system W by Wpub.
The definition of indifferentiability is as follows.

Definition 1. V is (tD, tS, q, ε) indifferentiable from U , denote V @ U , if for any distinguisher D with
binary output (0 or 1) there is a simulator S such that |Pr[DVpriv,Vpub ⇒ 1] − Pr[DUpriv,S(Upub) ⇒ 1]| < ε.
Simulator S has oracle access to Upub and runs in time at most tS. Distinguisher D runs in time at most
tD and makes at most q queries. ε is negligible in the security parameter k.

This definition will allow us to use construction V instead of U in any cryptosystem while retaining the
same level of provable security (taken from the indifferentiability theory of Maurer et al. [12]). We denote
the same level of provable security by C(V) Â C(U). Namely, we denote C(V) Â C(U) for the case that if
C(U) is secure, then C(V) is secure. More strictly, V @ U ⇔ C(V) Â C(U) holds.

At Crypto 2005, Coron et al. applied this framework to hash functions [6]. Hoch and Shamir extended
the framework of [6] to FIL-WROM. Generalization of these frameworks are as follows.

Definition 2. Let X be a model wherein any party is given FIL-RO and sub-oracles O1, ..., Oi. Hf is
(tD, tS, q, ε) indifferentiable from RO when underlying compression function f is modeled by X, denote
Hf @

X
RO, if for any distinguisher D with binary output (0 or 1) there is a simulator S such that

|Pr[DHf ,f,O1,...,Oi ⇒ 1]−Pr[DRO,S(RO) ⇒ 1]| < ε. Simulator S has oracle access to RO and runs in time
at most tS. Distinguisher D runs in time at most tD and makes at most q queries. ε is negligible in the
security parameter k.

2

“f is modeled by X” means that f is FIL-RO and all parties are given oracles f,O1, ..., and Oi. S simulates
f,O1, ..., Oi by using RO. When X is TFILRO, i = 2, O1 is BO and O2 is BrO. If Hf @

X
RO, then any

cryptosystem secure in RO is also secure under Hf . Namely, hash functions that satisfy this property
behave like RO. This property considers the structures of hash functions. Therefore, this property bridges
RO and hash functions. Coron et al. showed that the Merkle-Damg̊ard (MD) construction [7, 13] does
not satisfy this property when the underlying primitive is a fixed input length random oracle (FIL-RO).
Several constructions that in FIL-ROM is indifferentiable from RO have been proposed. For example,
Prefix-free Merkle-Damg̊ard (PMD) [6], Enveloped MD (EMD) [1], MD with permutation (MDP) [8] and
so on are indifferentiable from RO when the underlying compression function is FIL-RO.

1.2 Our Goal

Again, this paper proposes both a conversion of cryptosystems and constructions of hash functions from
the most-weakened random oracle models as follows.

1. We propose new conversion conv that converts any cryptosystem secure in ROM to a new cryptosystem
that is secure in FPT-ROM.

2. We propose two hash constructions that are indifferentiable from RO when the underlying compression
function is modeled by TFILROM.

1.3 First Goal: Constructing Secure Cryptosystems in FPT-ROM

Previous Results and Problem: Numayama et al. succeeded in constructing secure signature schemes
in WROM by modifying RSA-FDH. First, they considered the attack on RSA-FDH in the model where
RO and CO are available; they recognized RSA-PFDH as the patch against this attack. RSA-FDH is
existentially forgeable against adaptive chosen message attack in this model as follows. (1) The forger
obtains collision messages m and m′ from CO. (2) He poses query m to the signing oracle and get the
signature σ = RSA−1(RO(m)). Since the signatures of collision messages m and m′ are same, signature
σ is also the signature of m′. Therefore, they considered a variant of RSA-FDH that resists this attack.
They picked up RSA-PFDH. Signature σ of message m for RSA-PFDH is RSA−1(RO(m||r)) where r is a
random value chosen by the signer. When the above attack is applied to RSA-PFDH, CO seems to be not
helpful for attacking RSA-PFDH. The reason is that the probability that r = r1 holds is negligible, since
collision messages m||r1 and m′||r′1 given by CO are chosen before making the signature. They proved
that RSA-PFDH is secure in this model. They also considered variants of RSA-FDH that are secure in
other models of WROMs by similar discussions. However their modifications depend on RSA-FDH. It is
not known if their modification techniques can be applied to other cryptosystems generally.

Our Conversion: In this paper, we propose the new conversion conv; it can convert any cryptosystem
secure in ROM to a new cryptosystem that is secure in FPT-ROM. The advantage of the new conversion is
that it is unnecessary to reprove the security of the converted cryptosystem. Let C(RO(·)) be a cryptosys-
tem. Modified cryptosystem conv(C) is C(RO(·||c)) such that c is an s bit constant value such that 1

2s is
negligible. Roughly speaking, since the outputs of FPO are randomly chosen, the probability that the last
s bits of some output of FPO are equal to c is 1

2s . Since 1
2s is negligible, the outputs of FPO are useless for

attacking the converted cryptosystem. We propose conversion conv by using the indifferentiability with
condition that was proposed by Naito et al [14].

Indifferentiability with Condition [14]: Since cryptosystems access RO while adversaries access RO,
RO has public and private interfaces. Since adversaries access FPO, FPO has only the public interface.
The indifferentiability with condition [14] is the extended indifferentiability framework wherein restricting
the queries of D on the private interface ROpriv by the following condition.

Definition 3 (Indifferentiability with Condition). FPT-RO is (tD, tS, q, ε) indifferentiable from RO
with condition α, denote FPT-RO @α RO, if for any distinguisher D with binary output (0 or 1) such that
all queries to ROpriv are restricted by condition α there is a simulator S such that |Pr[DROpriv,ROpub,FPOpub ⇒

3

1] − Pr[DROpriv,S(ROpub) ⇒ 1]| < ε. Simulator S has oracle access to ROpub and runs in time at most tS.
Distinguisher D runs in time at most tD and makes at most q queries. ε is negligible in the security
parameter k.

Note that S simulates public interfaces ROpub and FPOpub such that no D can distinguish (RO, S) from
FPT-RO. This definition will allow us to use construction FPT-RO instead of RO in any cryptosystem
Cα such that the interface between Cα and ROpriv is restricted by condition α while retaining the same
level of provable security. More exactly, FPT-RO @α RO ⇔ Cα(FPT-ROpriv) Â Cα(ROpriv) holds. Note that
procedures of ROpriv and ROpub are the same as RO itself and the procedures of FPOpub are the same as
FPO itself.

How to Use Indifferentiability with Condition: Our proposal, conversion conv, is defined by the
following procedure.

1. Select condition α such that FPT-RO @α RO holds.
2. Check that, for any cryptosystem C, Cα(ROpriv) Â C(ROpriv) holds where Cα is such that C is restricted

by condition α with regard to accessing the private interface.

The above procedure yields condition α such that no D can distinguish (RO, S) from FPT-RO. If we
can find condition α that passes procedure 1, for any system Cα, Cα(FPT-ROpriv) Â Cα(ROpriv) holds. If
condition α passes procedure 2, we can automatically get the result that Cα(FPT-ROpriv) Â C(ROpriv)
holds. We regard the approach of adding a condition to a cryptosystem as conversion.

How to Select Condition α: Since no S can see the input-output list of RO, the probability that S
returns a response on the list is negligible. Therefore, D can distinguish (RO, S) from FPT-RO by the
following procedure: (1) D poses query z to FPOpub/S and receives M . (2) D poses query M to ROpriv

and receives z′. (3) If z = z′, D outputs 1, otherwise 0. When D interacts with FPT-RO, D outputs
1 with probability of 1. On the other hand, when D interacts with (ROpriv, S), D explicitly outputs 0
with overwhelming probability. Therefore, distinguisher D can distinguish RO from FPT-RO. We select
condition α such that the above attack does not work. Namely, condition α is such that in procedure 2
no D can poses query M obtained from procedure 1. Since the outputs of FPO are randomly chosen, the
probability that the last s bits of some output are equal to s bit constant value c is 1

2s . Therefore, we select
condition α wherein the last s bits of the inputs to ROpriv are constant value c such that 1

2s is negligible. We
will prove FPT-RO @α RO as well as Cα(ROpriv) Â C(ROpriv). Therefore, conv(C)(FPT-ROpriv) Â C(ROpriv)
holds.

1.4 Second Goal: Constructing Secure Hash Functions from TFILRO

Previous Results and Problems: Liskov proposed the Zipper hash function ZHFg,h that is indiffer-
entiable from RO, when the underlying compression function is modeled by TFILRO. However, there is a
problem in the FIL-WROM defined in [10]. The probability that BO returns ⊥ is 1

e . However, the author
of [10] ignored the case that BO returns ⊥. Accordingly, we revisit the indifferentiable security of the
Zipper hash function in TFILROM. We show that ZHFg,h 6@

TFILROM
RO holds. This distinguishing attack

uses the fact that BO returns ⊥ with probability of 1
e .

The double pipe hash function DPHFf was proposed by Lucks [11] and Hoch and Shamir [9] proved
that DPHFf @

TFILROM
RO holds. A compression function is called two times per message block in Double

pipe hash function. Usually a compression function is called just one time (e.g. MD, EMD, and so on) which
means that DPHF is not efficient 3. In [9], parallel hash function PHFg,h is proposed where PHFg,h @

TFILROM

RO holds. Since two types of compression functions are called for one block message, this compression
function is not efficient.
3 Note that DPHF was proposed for a different motivation. The grace of DPHF is that DPHF resists several types

of brute force attack. Our schemes do not target these attacks, rather our goal is to propose constructions that
are indifferentiable from RO when the underlying compression function is modeled by TFILROM.

4

fIV1

m1||const1

f

mi||const1

f

0m-n

IV2

||

Fig. 1. EMD+f

fIV1

m1||<1>

f

mi||<i>

f

0m-n

IV2

||f

sum||<0>

++

Fig. 2. EMD×f

Our Goal: We propose two new constructions that are more efficient than DPHFf and PHFg,h, and that
are indifferentiable from RO when the underlying compression function is modeled by TFILRO. Namely,
we propose constructions such that a compression function is called one time per block message and only
one type of compression function is used.

Toward Our Goal: In order to realize our constructions, we need to overcome following three obstacles:
the distinguishing attack using FIL-RO (length extension attack), the distinguishing attack using BO, and
the distinguishing attack using BrO.

First, we search for candidates that resist the distinguishing attack using FIL-RO. Existing construc-
tions such as PMD, EMD and so on resist the distinguishing attack using FIL-RO. We select these con-
structions as the first candidates.

Second, we choose a second round candidate from these constructions such that the distinguishing
attack using BO is resisted. Before selecting a candidate, we analyze the reason why DPHFf resists the
distinguishing attack using BO. The reason for this is that this hash function has a HMAC-like structure
(enveloped structure). The structure that has a HMAC-like structure among the first round candidates
is the EMD construction. Therefore, we choose the EMD construction.

As a remaining work, we modify the EMD construction to resist the distinguishing attack using BrO.

First Scheme (Fig.1): In order to resist the distinguishing attack using BrO, we use the idea of the above
conversion conv for the first scheme EMD+f . We define EMD+f wherein the d bit constant value is input
in each block of EMDf . Since outputs of BrO are randomly chosen, the probability that a random value
is equal to the d bit constant value is O(1

2d). We select the constant value such that O(1
2d) is negligible,

so EMD+ resists the distinguishing attack that uses BrO. We will prove that EMD+f @
TFILROM

RO holds.

Second Scheme (Fig.2): In the second scheme, we use two techniques: the check sum operation and
the block index input operation. The check sum operation is the input of value sum = m1 ⊕ · · · ⊕ mi

to a compression function where m1, ...,mi are input messages to the compression functions. The block
index input operation inputs an index of a compression function to each compression function. Since the
outputs of BrO are randomly chosen, the probability that messages satisfying sum = m1 ⊕ · · · ⊕ mi are
found by using BrO is negligible and the probability that an output of BrO includes required index value is
negligible. Therefore, the new construction EMD×f , the result of combining EMD, the check sum operation
and the block index input operation, resists the three attacks. We will prove that EMD×f @

TFILROM
RO

holds.

2 Preliminaries

2.1 Notation

Let r
$←− R represent that element r is selected from set R with uniform distribution. Let a||b be the

concatenated value of a and b. ⊕ is the bitwise exclusive-or operation, lsba(b): the least significant a
bits of b, msba(b): the most significant a bits of b, 0i is i bit value wherein each bit is 0. FPT-RO is
First-preimage tractable random oracle. TFILRO is Two-way partially-specified preimage-tractable fixed
input length random oracle.

5

2.2 Realization of FPT-RO

By using the technique of [9], we can realize FPT-RO as follows. Let L be a list of RO that is initially
empty. Let M be a finite set and Z = {0, 1}n. Let RO be a random oracle that maps from M to Z. In
this paper, we assume that |M| À |Z|, namely the probability that FPO returns ⊥ is negligible.

– RO(M) : If ∃(M, z) ∈ L, return z. Otherwise, z
$←− Z, L ← (M, z), and return z.

– FPO(z) : M
$←− M, L ← (M, z), and return M .

Since cryptosystems (honest parties) access RO and any adversary can access RO, RO has public and
private interfaces. Since any adversary can access FPO, FPO has the public interface. Note that we can
also realize FPT-RO by using the technique of [15]. However, since the technique of [9] is simpler than
that of [15], we use the former.

2.3 Realization of TFILRO [9]

TFILRO can be realized by using the technique of Hoch and Shamir [9]. In the following discussions, we
assume m ≥ 2n such that the probability that BrO returns ⊥ is less than O(1

2n). This means that a query
to BrO triggers an overwhelming number of responses. However, there are far fewer responses to query
(y, z) due to the description of FIL-RO. Therefore, we realize TFILRO by considering this fact. Hoch and
Shamir solve this problem by using a Poisson distribution. The number of responses of BO is defined
by using a Poisson distribution and a response of BO is selected from candidates whose the number is
defined by a Poison distribution. Please see Section 3.1 of [9] for more details. TFILRO can be realized as
follows. Let Lf and Tf be initially empty lists.

– FIL-RO : On query (x, y),
1. If ∃(x, y, z) ∈ Lf , return z.

2. Generate an integer j with Poisson distribution conditioned on being non-zero, z
$←− {0, 1}n,

Tf ← (j, y, z), Lf ← (x, y, z), and Return z.
– BrO : On query (x, z),

1. y
$←− {0, 1}m.

2. Generate an integer j with Poisson distribution conditioned on being non-zero, Tf ← (j, y, z),
Lf ← (x, y, z), and Return y.

– BO : On query (y, z),
1. If ∃(a, y, z) ∈ Tf , j ← a. Else, generate an integer j with Poisson distribution and Tf ← (j, y, z).
2. If j = 0, x ←⊥. Else choose x uniformly from the j possible answers (some may not be defined

yet).

3. If x is not defined, x
$←− {0, 1}n and Lf ← (x, y, z).

4. Return x.

2.4 Zipper Hash Function [10]

The description of Zipper hash function ZHFg,h is as follows [10]. Let g : {0, 1}n × {0, 1}m → {0, 1}n

and h : {0, 1}n × {0, 1}m → {0, 1}n be compression functions. On input M , the following procedure is
executed.

1. Let x1, ..., xi be m-bit strings such that x1||...||xi = M .
2. H1 is computed as g(x1, IV), and H2, ...,Hi are computed iteratively as Hj = g(xj ,Hj−1).
3. H ′

1 is computed as h(xi,Hi), and H ′
2, ...,H

′
i are computed iteratively as Hj = h(xi−j+1, H

′
j−1).

4. Output H ′
i.

Liskov claimed that the Zipper hash function is indifferentiable from RO when underlying compression
functions g and h are modeled by TFILROM as defined in [10].

6

2.5 Double Pipe Hash Function [11]

Double pipe hash function DPHFf was proposed by Lucks [11]. Hoch and Shamir [9] proved that
DPHFf @

TFILROM
RO. The description of Double pipe hash function is as follows.

1. For input message M , split M into i blocks each of size m − n bits, x1, ..., xi.
2. Set r0 = IV1, s0 = IV2 where IV1 and IV2 are the initialization vectors.
3. For each message block xj compute rj = f(rj−1, sj−1||xj) and sj = f(sj−1, rj−1||xj) where f :

{0, 1}n × {0, 1}m → {0, 1}n is a compression function.
4. Output f(IV3, ri||si||0m−2n) where IV3 is the initialization vector.

Note that the above description omits the message padding operation.

2.6 The Parallel Hash Function [9]

The indifferentiability of parallel hash function PHFg,h was discussed by Hoch and Shamir [9]. They
proved that PHFg,h @

TFILROM
RO. The description of PHFg,h is as follows.

1. For input message M , split message M into i blocks each of size m bits, x1, ..., xi.
2. Set r0 = IV1, s0 = IV2 where IV1 and IV2 are the initialization vectors.
3. For each message block xj compute rj = g(rj−1, xj) and sj = h(sj−1, xj) where g : {0, 1}n×{0, 1}m →

{0, 1}n and h : {0, 1}n × {0, 1}m → {0, 1}n are compression functions.
4. Output ri ⊕ si.

Note that the above description omits the message padding operation.

2.7 EMD Construction [1]

The EMDf construction was proposed by Bellare and Ristenpart [1]. They showed that EMDf @
FIL-ROM

RO

holds. The EMDf construction is as follows.

1. For input message M , split M into i− 1 blocks each of size m bits x1, ..., xi−1 and a m−n bit block,
xi.

2. Set c0 = IV1 where IV1 is the initialization vector.
3. For each message block xj compute cj = f(cj−1, xj) where f : {0, 1}n × {0, 1}m → {0, 1}n is a

compression function.
4. Output f(IV2, ci−1||xi).

Note that the above description omits the message padding operation.

3 New Conversion for First Pre-image Tractable Random Oracle Model

In this section, by using indifferentiability with condition, we propose conversion conv that can convert
any cryptosystem secure in ROM to one that is secure in FPT-ROM.

3.1 Conversion

Our proposal can make a cryptosystem secure in FPT-ROM simply by modifying the hash function inputs.
In following discussion, we assume that M = {0, 1}∗. Note that the same discussion can be applied to
the case of M = {0, 1}i for some i (input length of RO is fixed.).

7

New Conversion: We define condition α wherein last s bits of the input to ROpriv is the constant value.
Therefore, new conversion conv is as follows. Let C be any cryptosystem.

– For any value x that is sent from cryptosystem C to a hash function, in modified cryptosystem conv(C)
x||c is sent to a hash function instead of x where c is the s bit constant value.

The following theorem holds.

Theorem 1. FPT-RO @α RO where α is such that query m to ROpriv is equal to x||c where x is any
value, for any tD, with tS = O(q) and ε = O(q

2s).

Note that s must be selected such that if we want to select the constant value to ensure that the advantage
of D is less than O(q

2a), s ≥ a must hold, and if we want to select the constant value to ensure that the
probability that BrO returns ⊥ is less than O(1

2b), l + s−n ≥ b must hold where l is the maximum input
length of the hash functions except for c (namely l + s is maximum input length).

Proof (Theorem 1). In the following proof, first we introduce a simulator that simulates the public
interfaces of FPO. Let SROpub be the simulator that simulates the public interface of RO and SFPOpub be
the simulator that simulates FPOpub. Second, we show that no D can distinguish FPT-RO from RO and
the simulator.

S has initially empty list LS .

– SROpub : On query M ,
1. If ∃(M, z) ∈ LS , return z.
2. Else poses query M to RO, receives z, LS ← (M, z), and returns z.

– SFPOpub : On query z,

1. M
$←− M, LS ← (M, z) and returns M .

When D poses all queries to the simulator, running time of the above simulator is maximum. Therefore,
tS = O(q).

First we show that no D can distinguish FPO from (ROpriv, S) as follows. For query M to SROpub , the
simulator simply returns the output of RO(M). Therefore, SROpub can simulate ROpub.

Second we show that SFPOpub simulates the public interface of FPO. Procedures of SFPOpub are the
same as those of FPO. Therefore, SROpub can simulate ROpub in the case that consistency between several
interfaces.

Finally, we show consistency between ROpriv and SFPOpub and consistency between SROpub and SFPOpub .

Consistency between ROpriv and SFPOpub : Above simulator SROpub has the same construction as FPO.
Therefore, when D poses query z to SROpub where z is a response of ROpriv, no D can distinguish SROpub

from FPO.
Since all responses of SFPOpub are randomly chosen from M, the probability that the last s bits of

some response of SFPOpub are equal to c is O(1
2s). Therefore, no D can make a query that is the response

of SFPOpub to ROpriv without incurring the probability of O(q
2s).

From above discussions, since D can make queries at most q times, D can distinguish RO from FPT-RO
with probability less than O(q

2s). Therefore, the probability that D can distinguish RO from FPT-RO by
using the relation between ROpriv and SFPOpub is at most O(q

2s).

Consistency between SROpub and SFPOpub : Since SROpub and SFPOpub has same list LS , SROpub is explicitly
consistent with SFPOpub .

From the above discussions, ε = O(q
2s). ut

From Theorem 1, the following corollary is obtained.

Corollary 1. For any cryptosystem C, conv(C)(FPT-ROpriv) Â conv(C)(ROpriv) holds.

Next we show the following theorem.

8

Theorem 2. ROc @ RO where ROc is an entity such that for any query x to ROc, it responds with
RO(x||c).

Proof. Since for new query x to ROc the response is randomly chosen and for repeated queries the response
is selected from L, the above theorem explicitly holds. ut

Therefore, for any cryptosystem C, C(ROpriv
c) Â C(ROpriv) holds from the indifferentiability framework.

Since C(ROpriv
c) is the same as conv(C)(ROpriv), the following corollary holds.

Corollary 2. For any cryptosystem C, conv(C)(ROpriv) Â C(ROpriv).

From corollary 1 and 2, the following corollary is obtained

Corollary 3. For any cryptosystem C, conv(C)(FPT-ROpriv) Â C(ROpriv).

Remark 1. There are conditions other than the above conditions. For example, an interface of an input of
a hash function satisfies one of the following conditions c||x, x||msbs(x), x||lsbs(x), msbs(x)||x, lsbs(x)||x
and so on.

4 Several Constructions from Fixed Input Length Weakened Random
Oracle

We show that ZHFg,h 6@
TFILROM

RO holds. We propose two constructions, EMD+ and EMD×, such that

EMD+f @
TFILROM

RO and EMD×f @
TFILROM

RO hold. Our constructions are based on the EMD construction.

These constructions are more efficient than the existing constructions (double pipe hash function and
parallel hash function).

4.1 Distinguishing Attack for Zipper Hash Function

We show ZHFg,h 6@
TFILROM

RO. The attack procedure of the Zipper hash function in TFILROM is as follows.

Let q be the maximum number of queries made by D. Let SBO be the simulator of BO of h and BOh be
BO of h. Let H be the Zipper hash function.

1. a ← 0.
2. While the number of queries is less than q, execute the following procedure.

(a) b
$←− {0, 1}.

(b) m1
$←− {0, 1}m

(c) If b = 0, pose query m1 to ZHFg,h/RO, receive z, pose query z to BOh/SBO, and receive x. If
x =⊥, output 1 and stop.

(d) Else (b = 1), z
$←− {0, 1}n, pose query z to BOh/SBO, and receive x. If x =⊥, a ← a + 1.

3. If a = 0, output 1. Else, output 0.

When D interacts with (ZHFg,h, TFILRO), in step 2-c x 6=⊥ holds with probability of 1 due to the Zipper
hash function. Therefore, the above distinguisher does not output 1 in step 2-d. On random query to
BOh, BOh returns ⊥ with probability 1

e where e is Napier’s constant. So D receives ⊥ with probability 1
e

in step 2-c. The probability that a 6= 0 holds in step 3 is 1− (1
e)qd ≈ 0 where qd is the number of invoking

steps 2-d. Therefore, D outputs 0 with probability of almost 1.
When D interacts with (RO, S), since z is randomly chosen in both step 2-c and step 2-d, no S can

know the step in which z is defined. Thus S cannot correctly decide value x. Therefore, D outputs 1 with
non-negligible probability when D interacts with (RO,S). Therefore, ZHFg,h 6@

TFILROM
RO holds.

9

4.2 New Construction EMD+

From the above attack, ZHFg,h 6@
TFILROM

RO holds. So the hash function with TFILRO that is indifferentiable

from RO is only the Double pipe hash function and the Parallel hash function. However, the Double pipe
hash function and the Parallel hash function are not efficient. In this section, we propose new construction
EMD+ based on EMD. In order to propose EMD+ such that EMD+ @

TFILROM
RO holds, we must overcome

three obstacles: the distinguishing attack using FIL-WRO, the distinguishing attack using BO (the attack
in subsection 4.1), and the distinguishing attack using BrO. EMD resists the distinguishing attack using
FIL-WRO due to [1]. Since the EMD construction has a HMAC-like structure and the Double pipe hash
function resists the distinguishing attack using BO (the attack in subsection 4.1) due to its HMAC-like
structure , EMD resists the distinguishing attack using BO. Therefore, we modify EMD such that modified
construction EMD+ resists the distinguishing attack using BrO. Let f : {0, 1}n × {0, 1}m → {0, 1}n be a
compression function.

The distinguishing attack using BrO: First we confirm the distinguishing attack using BrO for
EMD. The following distinguisher can distinguish EMDf from RO when underlying compression function
f is modeled by FIL-WRO. Let SBrO be a simulator of BrO.

1. c
$←− {0, 1}n.

2. Make query (IV2, 0m−n||c) to BrO/SBrO and receive z.
3. Make query (IV1, c) to BrO/SBrO and receive y.
4. Make query y to EMDf/RO and receive z′.
5. If z = z′, output 0. Else output 1.

In the above procedure, D explicitly outputs 0 when D interacts with (EMDf , TFILRO). When D interacts
with (RO, S), D outputs 1 with non-negligible probability because no S can predict z′ in the above step
2. Therefore, the probability that z 6= z′ is non-negligible and EMDf 6@

TFILROM
RO.

EMD+: We apply the conversion of section 3.1 to all compression functions in order to avoid the above
attack. We define EMD+f as follows.

1. For input message M , compute M ′ = pad(M) where pad is a padding function that returns a string
whose length is an integer multiple of m − n.

2. For message M ′, split M ′ into i blocks each of size m − n bits, y1, ..., yi.
3. Set c0 = IV1 where IV1 is the initialization vector.
4. For each message block yj such that j ∈ {1, ..., i} compute cj = f(cj−1, yj ||const1) where const1 is

the n bit constant value.
5. Output f(IV2, 0m−n||ci) where IV2 (6= IV1) is the n bit constant value.

Usually a padding function that returns a string appended with the 64-bit encoding of the input length
is used. Since in the above attack y is randomly chosen and the probability that lsbn(y) = const1 holds
is negligible, the above attack cannot be applied to EMD+. More detail is as follows.

Theorem 3. EMD+f @
TFILROM

RO, for any tD with tS = O(lq) and ε = O(l2q2

2n) where l is maximum block

length of the query made by D.

For more detail, please see proof of Theorem 3 in the Appendix A.

4.3 Efficient Construction EMD×

EMD+ is more efficient than the double-pipe hash function. However, EMD+ needs to input a n-bit
constant value to each compression function. This additional input degrades the efficiency of the hash
function compared to EMD. Our solution is EMD× which is a more efficient construction than EMD+.

We apply the check sum operation and the block index input operation to the EMD construction. The
description of EMD× is as follows.

10

1. For input message M , compute M ′ = pad(M) where pad is a padding function that returns a string
whose length is an integer multiple of m − s.

2. For message M ′, split M ′ into i blocks each of size m − s bits, y1, ..., yi.
3. Set c0 = IV1 where IV1 is the initialization vector.
4. For each message block yj compute cj = f(cj−1, yj ||〈j〉) where 〈j〉 is the s-bit binary representation

of the index of the compression function.
5. Compute c = f(ci, sum||〈0〉) where sum = y1 ⊕ · · · ⊕ yi.
6. Output f(IV2, 0m−n||c).

Usually we use a padding function that returns a string appended with the 64-bit encoding of the length.
Note that s ≥ log2 l should hold where l is the maximum number of compression function calls in
EMD×, and s ≥ log2 q should hold when the maximum total number of query of D is q. The security of
indifferentiability is as follows.

Theorem 4. EMD×f @
TFILROM

RO, for any tD with tS = O(lq) and ε = O(l2q2

2n) where l is the maximum

block length of a query made by D.

EMD× can resist the third attack thanks to the check sum operation and the block index input operation.
Roughly speaking, the reason for this is as follows. Since a block index is input in each compression
function and the output of BrO is randomly chosen, the probability that the right most s bits of an
output of BrO equal the target value is negligible. Moreover, since the output of BrO is randomly chosen,
the probability that some message satisfying sum = y1 ⊕ · · · ⊕ yi is found by using BrO is negligible.
Therefore, the probability that chain messages y1||〈1〉, ..., yi||〈i〉, sum||〈0〉 are obtained by using BrO is
negligible. Therefore, EMD× can resist the third attack due to the check sum operation and the block
index input operation. This proof is similar to the proof of theorem 3.

4.4 Comparison

We compare our schemes to the Double pipe hash function. In the following discussions, we consider the
case that n = 256 and m = 512.
[EMD+ v.s. DPHF]: Length of one block message of DPHF and EMD+ is 256 bits. However, a compression
function is called two times per one block message in DPHF. On the other hand, a compression function
is called one time in EMD+. Therefore, EMD+ is more efficient than the Double pipe hash function.
[EMD+ v.s. PHF]: Two types of compression functions are called per one block message in PHF. EMD+
uses only one type of compression function. Therefore, EMD+ is more efficient than PHF.
[EMD× v.s. DPHF]: Usually, since the maximum input length of a hash function is less than 264, the
maximum number of compression function calls in EMD× is less than 264. Therefore, length s of a block
index is less than 64 bits. When s = 64, length of one block message of EMD× is 448 bits. A compression
function is called two times per one block message in DPHF while a compression function is called one
time in EMD×. Therefore, EMD× is more efficient than the Double pipe hash function.
[EMD× v.s. PHF]: Two types of compression functions are called per one block message in PHF while
EMD× uses only one type of compression function. Therefore, EMD× is more efficient than PHF.
[EMD× v.s. EMD+]: One block length of EMD× is more than 448 bits. On the other hand, that of
EMD+ is 256 bits. However, in EMD×, sum is input in the second last compression function. Therefore,
when the input length is less than 512 bits, EMD+ is more efficient than EMD×. On the other hand,
when the input length is more than 512 bits, EMD× is more efficient than EMD+.

4.5 Remarks

We propose hash constructions EMD+ and EMD× based on the EMD construction. When we apply
the technique of either EMD+ or EMD× to other constructions such as PMD and MDP, the resulting
constructions are indifferentiable from RO when the underlying compression function is modeled by
FIL-RO and BrO. However, these constructions are not indifferentiable from RO when the underlying
compression function is modeled by TFILRO.

11

References

1. Mihir Bellare and Thomas Ristenpart. Multi-Property-Preserving Hash Domain Extension and the EMD
Transform. In ASIACRYPT, pages 299–314, 2006.

2. Mihir Bellare and Phillip Rogaway. Random Oracles are Practical: A Paradigm for Designing Efficient
Protocols. In ACM Conference on Computer and Communications Security, pages 62–73, 1993.

3. Mihir Bellare and Phillip Rogaway. Optimal Asymmetric Encryption. In EUROCRYPT, volume 950 of
Lecture Notes in Computer Science, pages 92–111. Springer, 1994.

4. Mihir Bellare and Phillip Rogaway. The Exact Security of Digital Signatures - How to Sign with RSA and
Rabin. In EUROCRYPT, volume 1070 of Lecture Notes in Computer Science, pages 399–416. Springer, 1996.

5. John Black, Phillip Rogaway, and Thomas Shrimpton. Black-Box Analysis of the Block-Cipher-Based Hash-
Functions Constructions from PGV. In CRYPTO, volume 2442 of Lecture Notes in Computer Science, pages
103–118. Springer, 2002.

6. Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant Puniya. Merkle-Damg̊ard Revisited:
How to Construct a Hash Function. In CRYPTO, volume 3621 of Lecture Notes in Computer Science, pages
430–448. Springer, 2005.

7. Ivan Damg̊ard. A Design Principle for Hash Functions. In CRYPTO, volume 435 of Lecture Notes in Computer
Science, pages 416–427. Springer, 1989.

8. Shoichi Hirose, Je Hong Park, and Aaram Yun. A Simple Variant of the Merkle-Damg̊ard Scheme with a
Permutation. In ASIACRYPT, volume 4833 of Lecture Notes in Computer Science, pages 113–129. Springer,
2007.

9. Jonathan J. Hoch and Adi Shamir. On the Strength of the Concatenated Hash Combiner When All the Hash
Functions Are Weak. In ICALP, Lecture Notes in Computer Science, pages 616–630. Springer, 2008.

10. Moses Liskov. Constructing an Ideal Hash Function from Weak Ideal Compression Functions. In Selected
Areas in Cryptography, Lecture Notes in Computer Science, pages 358–375. Springer, 2006.

11. Stefan Lucks. A Failure-Friendly Design Principle for Hash Functions. In ASIACRYPT, volume 3788 of
Lecture Notes in Computer Science, pages 474–494. Springer, 2005.

12. Ueli M. Maurer, Renato Renner, and Clemens Holenstein. Indifferentiability, Impossibility Results on Re-
ductions, and Applications to the Random Oracle Methodology. In TCC, volume 2951 of Lecture Notes in
Computer Science, pages 21–39. Springer, 2004.

13. Ralph C. Merkle. One Way Hash Functions and DES. In CRYPTO, volume 435 of Lecture Notes in Computer
Science, pages 428–446. Springer, 1989.

14. Yusuke Naito, Kazuki Yoneyama, Lei Wang, and Kazuo Ohta. How to Confirm Cryptosystems Security: the
Original Merkle-Damg̊ard is Still Alive! In ASIACRYPT, volume 5912 of Lecture Notes in Computer Science.
Springer, 2009.

15. Akira Numayama, Toshiyuki Isshiki, and Keisuke Tanaka. Security of Digital Signature Schemes in Weakened
Random Oracle Models. In Public Key Cryptography, Lecture Notes in Computer Science, pages 268–287.
Springer, 2008.

16. Bart Preneel, René Govaerts, and Joos Vandewalle. Hash Functions Based on Block Ciphers: A Synthetic
Approach. In CRYPTO, volume 773 of Lecture Notes in Computer Science, pages 368–378. Springer, 1993.

A Proof of Theorem 3

In the following proof, we ignore the message padding operation so the length of any input to a hash
function is a integer multiple of m−n, since EMD+ with the message padding operation is just a special
case of EMD+ without the message padding operation. First ,we define simulator S as follows. S has
initially empty lists LS and T . Let f be FIL-RO. Let Sf be a simulator that simulates f , SBO a simulator
that simulates BO, and SBrO a simulator that simulates BrO. We define terms “chain triples” and “semi-
chain triples” as follows.

Definition 4 (Chain Triples of EMD+). (x1, y1, z1), ..., (xi, yi, zi) are chain triples of EMD+ if these
pairs satisfy the following: x1 = IV1, xt = zt−1 (t = 2, ..., i − 1), lsbn(yt) = const1 (t = 1, ..., i − 1),
lsbn(yi) = zi−1, msbm−n(yi) = 0m−n and xi = IV2.

Chain triples of EMD+ are input-output triples of the compression function in EMD+.

Definition 5 (Semi-chain Triples of EMD+). (x1, y1, z1), ..., (xi, yi, zi) are semi-chain triples of EMD+
if these pairs satisfy the following: x1 = IV1, xt = zt−1 (t = 2, ..., i), lsbn(yt) = const1 (t = 1, ..., i).

12

RO S

D

RO

S

D

R1

RO

S0

D

R1

RO

S0

D

R2 S1

D

R2 TFILRO

D

EMD+

Game1 Game2 Game3 Game4 Game5 Game6

Fig. 3. Games

Semi-chain triples of EMD+ are input-output triples of a compression function in EMD+ except for the
last compression function.

Simulator S.

– Sf : On query (x, y)
1. If ∃(x, y, z) ∈ LS , return z.
2. Generate integers a with Poisson distribution conditioned on being non-zero.
3. z

$←− {0, 1}n.
4. T ← (a, y, z).
5. LS ← (x, y, z).
6. If ∃(x1, y1, z1), ..., (xi, yi, zi) ∈ LS such that (x1, y1, z1), ..., (xi, yi, zi), (x, y, z) are semi-chain triples,

(a) z′ ← RO(msbm−n(y1)||...||msbm−n(yi))||msbm−n(y)).
(b) Generate integers b with Poisson distribution conditioned on being non-zero.
(c) T ← (b, 0m−n||z, z′),
(d) LS ← (IV2, 0mn ||z, z′).

7. Return z.
– SBO: On query (y, z)

1. If ∃(j, y, z) ∈ T , a ← j. Else generate an integer a with Poisson distribution and T ← (a, y, z).
2. Choose x uniformly from the a possible answers (some may not be defined yet).
3. If the chosen answer x is not defined, x

$←− {0, 1}n and LS ← (x, y, z).
4. If a = 0, x ←⊥.
5. Return x.

– SBrO: On query (x, z)
1. y

$←− {0, 1}m.
2. Generate an integer a with Poisson distribution conditioned on being non-zero.
3. T ← (a, y, z).
4. Return y.

In above simulator, though we omit the description of how to store pairs in LS , we can construct an
efficient simulator by using the technique of [9] for storing pairs in LS .

In the worst case of the simulator’s running time, Sf executes step 4 for every query and this requires
at most O(ql) time where q is the maximum number of queries of D and l is maximum number of message
blocks in the hash queries.

We call a query to f/Sf “forward query”, a query to BO/SBO “backward query”, and a query to
BrO/SBrO “bridge query”.

The proof involves a hybrid argument starting in the RO scenario, and ending in the TFILRO scenario
through a sequence of mutually indistinguishable hybrid games. Fig. 3 is the figure of each game.

Game 1: This is the random oracle model, where D has oracle access to RO and S. Let G1 denote the
event that D outputs 1 after interacting with RO and S. Thus Pr[G1] = Pr[DRO,S(RO) ⇒ 1].

Game 2: In this game, we give the distinguisher oracle access to a dummy relay algorithm R1 instead
of direct oracle access to RO. R1 is given oracle access to RO. On query M to R1, it queries M to RO
and returns RO(M). Let G2 denote the event that D outputs 1 in Game 2. Since the view of D remains
unchanged in this game, Pr[G2] = Pr[G1].

13

Game 3: In this game, we modify the simulator S. In particular, we restrict the responses of the
simulator. If a response of the simulator satisfies one of following conditions, it fails explicitly instead of
sending this response.

Let S0 be the new simulator that avoids following conditions. In response to forward query (x, y), new
simulator S0

f chooses response z ∈ {0, 1}n similar to S and it checks for the following conditions:

– FC1: the case that z = IV1.
– FC2: triple (x′, y′, z′) exists in LS , with (x′, y′) 6= (x, y), such that z′ = z.
– FC3: triple (x′, y′, z′) exists in LS , with (x′, y′) 6= (x, y), such that x′ = z.
– FC4: triple (x′, y′, z′) exists in LS , such that lsbn(y′) = z.

If response z is chosen by S0 then S0 checks for these conditions and explicitly fails if any of them holds.
In step 6 of S0

f , if value z′ is defined in step 6 then S0 checks for conditions FC1 − 4 and explicitly
fails if any of them holds.

If backward query (y, z) is made to simulator S0, then it chooses response x ∈ {0, 1}n to this query
similar to the original simulator S and checks for the following failure conditions:

– BaC1: the case that x = IV1.
– BaC2: the case that x = IV2.
– BaC3: triple (x′, y′, z′) exists in LS , with (y′, z′) 6= (y, z), such that z′ = x.

In the case of backward queries, if response x is chosen by simulator S0 then S0 checks for these conditions
and explicitly fails if any of them holds.

If bridge query (x, z) is made to simulator S0
BO, it chooses a response y ∈ {0, 1}m to this query similar

to the original simulator SBO and checks for the following failure conditions:

– BrC1: the case that lsbn(y) = const1.
– BrC2: triple (x′, y′, z′) exists in LS such that z′ = lsbn(y).
– BrC3: triple (x′, y′, z′) exists in LS , with (x′, z′) 6= (x, z), such that y′ = y.

In the case of bridge queries, if response y is chosen by simulator S0
BrO then S0 checks for these conditions

and explicitly fails if any of them holds.
If S0 does not fail, Game 3 is identical to Game 2. We examine the probability that S0 fails as follows.

Lemma 1. The probability that simulator S0 fails is at most O(q2
1

2n) where q1 is maximum number of
times the simulator is invoked.

Proof. We will examine each of the twelve conditions and bound their probability.

– FC1: These conditions are that a random value is equal to some fixed value. Therefore, the probability
that S0 fails due to FC1 is at most O(q1

2n).
– FC2: This condition is that a collision occurs between two random outputs of S0

f . Therefore, the

probability that FC2 occurs is at most O(q2
1

2n).
– FC3: Since z is randomly chosen, the probability that z collides with some value x′ in LS is at most

1 − (1 − 1
2n)(1 − 2

2n)...(1 − q1−1
2n) = q2

1
2n = O(q2

1
2n). Therefore, the probability that S0 fails due to FC3

is at most O(q2
1

2n).
– FC4: Since the output of S0

f is randomly chosen, the probability that S0 fails due to FC4is at most

O(q2
1

2n).
– BaC1 and BaC2: Since output of S0

BO for a backward query is randomly chosen, the probability that
S0

BO fails due to BaC1 or BaC2 is at most O(q1
2n).

– BaC3: Since response x of a backward query is randomly chosen, the probability that x collides some
value z′ in LS is at most O(q2

1
2n). Therefore, the probability that S0

BO fails due to BaC3 is at most

O(q2
1

2n).
– BrC1: Since the output of S0

BO for a bridge query is randomly chosen, the probability that S0 fails
due to BrC1 is at most O(q2

1
2n).

14

– BrC2: Since the output of S0
BrO for a bridge query is randomly chosen, the probability that S0 fails

due to BrC2 is at most O(q2
1

2n).
– BrC3: since the output of S0

BrO for a bridge query is randomly chosen, the probability that two random
values collide is at most O(q2

1
2m). Therefore, the probability that S0 fails due to BrC3 is at most O(q2

1
2m).

Therefore, the probability that S0 fails is bounded by O(q2
1

2n). ut

Let qh be the total number of queries to S0 made by D. Let G3 denote the event that distinguisher D

outputs 1 in Game 3. From Lemma 1, |Pr[G3] − Pr[G2]| = O(q2
h

2n).

Game 4: In this game, we modify the relay algorithm as follows. The underlying idea is to make the
responses of the relay algorithm directly dependent on the simulator. Thus, R2 is essentially the same as
EMD+S0

f .
We will show that Game 4 is identical to Game 3 unless S0 fails. The same simulator S0 is used in Game

3 and Game 4. However, the relay algorithm in Game 4 is different from that in Game 3. Accordingly,
we demonstrate the following three facts:

1. Unless S0 fails when interacting with (R1, S
0), the answers given by S0 are consistent with those given

by R1.
2. Unless S0 fails when interacting with (R2, S

0), the answers given by S0 are consistent with those given
by R2.

3. Unless S0 fails when interacting with either with (R1, S
0) or with (R2, S

0), the answers given by R1

are exactly the same as those given by R2.

Before demonstrating these facts, we present two useful properties as follows.

Lemma 2. Any chain triples of EMD+ (x1, y1, z1), ..., (xi, yi, zi) in LS are stored by the ordered sequences
of forward queries (x1, y1), ..., (xi−1, yi−1) unless S0 fails.

Proof. To check the contrary, assume that there is some chain triples of EMD+ (x1, y1, z1), ..., (xi, yi, zi)
in LS such that

1. (xt, yt, zt) (t ∈ {1, ..., i− 1}) is stored in LS by a forward query when there is (xt+1, yt+1, zt+1) in LS ,
2. (xt, yt, zt) (t ∈ {1, ..., i}) is stored by a backward query or a bridge query, or
3. (xi, yi, zi) is stored in LS by forward query (xi, yi).

Given the first assumption, when t 6= i − 1 is stored by a forward query, since zt = xt+1, S0 fails due to
FC3. When (xt, yt, zt) such that t = i− 1 is stored by a forward query, since zi−1 = lsbn(yi), S0 fails due
to FC4.

Given the second assumption, let j be a minimum value such that j ∈ {1, ..., i} and (xj , yj , zj) is
stored by a bridge query or a backward query. When j = 1,

– in the case that (xj , yj , zj) is stored by a backward query, since xj = IV1, S0 fails due to BaC1, or
– in the case that (xj , yj , zj) is stored by a bridge query, since msbm−n(yj) = const1, S0 fails due to

BrC1.

When j 6= 1 and j 6= i,

– in the case that (xj , yj , zj) is stored by a backward query when (xj−1, yj−1, zj−1) is in LS , since
zj−1 = xj holds, S0 fails due to BaC3,

– in the case that (xj , yj , zj) is stored by a backward query when (xj−1, yj−1, zj−1) is not in LS , since
(xj−1, yj−1, zj−1) is stored by a forward query, S0 fails due to FC3, or

– in the case of (xt, yt, zt) stored by a bridge query, since msbm−n(yj) = const1, S0 fails due to BrC1.

When j = i,

– in the case that (xi, yi, zi) is stored by a backward query, since xi = IV2, S0 fails due to BaC2,

15

– in the case that (xi, yi, zi) is stored by a bridge query when (xi−1, yi−1, zi−1) is in LS , S0 fails due to
BrC2, or

– in the case that (xi, yi, zi) is stored by a bridge query when (xi−1, yi−1, zi−1) is not in LS , S0 fails
due to FC4.

Given the third assumption, since (xi, yi, zi) is stored in LS by forward query (xi, yi)), the following
case should occur from the definition of S0

f (step 6): (xi, yi, zi) is stored in LS before storing (xt, yt, zt) for
some t such that t ≤ i−1. When t 6= i−1, this case is the same as that of the first or second assumption.
Therefore, in this case S0 fails. When t = i − 1 and (xt, yt, zt) is stored by a forward query, namely
(xi−1, yi−1, zi−1) is stored after storing (xi, yi, zi), S0 fails due to FC4. When t = i − 1 and (xt, yt, zt) is
stored by a bridge query or a backward query, this case is the same as the case of assumption 2. Therefore,
S0 fails.

Therefore, this lemma is valid. ut

Lemma 3. For any chain triples of EMD+ (x1, y1, z1), ..., (xi, yi, zi) in LS,
zi = RO(msbm−n(y1)||...||msbm−n(yi−1)) holds unless S0 fails.

Proof. From Lemma 2, (x1, y1, z1), ..., (xi, yi, zi) were stored by the ordered sequences of forward queries
(x1, y1), ..., (xi−1, yi−1) unless S0 fails. Therefore, zi is defined by step 6 of S0 from the definition of S0

f .
zi = RO(msbm−n(y1)||...||msbm−n(yi−1)) holds unless one of following cases occurs.

– t exists in {1, ..., i − 2} such that zt = IV1, or
– (xt, yt, zt) (t exists in {1, ..., i − 1}) and (x′

1, y
′
1, z

′
1), ..., (x

′
j , y

′
j , z

′
j) ∈ LS such that x′

1 = IV , z′k =
x′

k+1 (k = 1, ..., i − 1), and z′j = zt.

The first case is identical to FC1. The second case is identical to condition FC2.
Therefore, zi = RO(msbm−n(y1)||...||msbm−n(yi−1)) unless S0 fails. ut

We prove the first point by Lemma 4: we demonstrate that, when interacting with (R1, S
0), any chain

triples of EMD+ obtained by S0 are consistent with an output of R1 unless S0 fails.

Lemma 4. For any chain triples of EMD+ (x1, y1, z1), ..., (xi, yi, zi) in LS,
zi = R1(msbm−n(y1)||...||msbm−n(yi−1)) holds unless S0 fails.

Proof. Since for any M R1(M) = RO(M) holds, this lemma is explicitly valid due to Lemma 3. ut

Second, we prove the first point by Lemma 5: we demonstrate that, when interacting with (R1,S
0),

any chain triples of EMD+ obtained by S0 are consistent with an output of R1 unless S0 fails.

Lemma 5. For any chain triples of EMD+ (x1, y1, z1), ..., (xi, yi, zi) in LS,
zi = R2(msbm−n(y1)||...||msbm−n(yi−1)) holds unless S0 fails.

Proof. Since R2 is the same as EMD+S0
f and (x1, y1, z1), ..., (xi, yi, zi) are explicitly inner input-output

triples of EMD+S0
f (msbm−n(y1)||...||msbm−n(yi−1)), zi = R2(msbm−n(y1)||...||msbm−n(yi−1)) explicitly holds

unless S0 fails. ut

Third, we prove the first point by Lemma 6: we demonstrate that the answers given by R1 are exactly
the same as those given by R2 unless S0 fails.

Lemma 6. For any input M , R2(M) = RO(M) holds unless S0 fails.

Proof. This lemma is explicitly valid due to Lemma 3. ut

Since R1(M) = RO(M) holds for any M , answers given by R1 are exactly the same as those given by R2.
From Lemma 4, 5, and 6, no D can distinguish Game 3 from Game 4 unless S0 fails. Let qF be total

number of queries to the relay algorithm made by D. From 1, the probability that S0 fails is bounded by
O((lqF +qh)2

2n) = O((lq)2

2n). Let G4 denote the event that distinguisher D outputs 1 in Game 4. Therefore,

|Pr[G4] − Pr[G3]| = O((ql)2

2n).

16

Game 5: In this game, we modify simulator S0
f . In new simulator S1 RO is removed as follows.

– S1
f (x, y):
1. If ∃(x, y, z) ∈ LS , return z.
2. Generate integers a with Poisson distribution conditioned on being non-zero.
3. z

$←− {0, 1}n.
4. T ← (a, y, z),
5. LS ← (x, y, z).
6. return z.

Step 6 of S0
f is removed in S1

f . Note that S1
BO and S1

BrO are same as S0
BO and S0

BrO. Since no D can see the
values defined in step 6 of S0

f , RO outputs a random value and RO is called by just S0
f , the view of D for

S1
f is the same as that for S0

f . Therefore, Game 5 is identical to Game 4 unless S0 fails. Let G5 denote the

event that distinguisher D outputs 1 in Game 5. Since the probability that S0 fails is at most O((lq)2

2n),

|Pr[G5] − Pr[G4]| = O((lq)2

2n).

Game 6. This is the final game of our argument. Here we finally replace S1 with TFILRO. Since S1

is the same as TFILRO, this game is identical to Game 5. Let G6 denote the event that distinguisher D
outputs 1 in Game 6. Obviously we can deduce that Pr[G6] = Pr[G5].

Now we can complete the proof of the theorem by combining Games 1 to 6, and observing that game
1 is the same as the RO model while Game 6 is the same as the TFILRO model. Hence we can deduce
that the advantage of D is at most O((lq)2

2n). ut

17

