
Cryptanalysis of a key exchange scheme based on block matrices

Maŕıa Isabel González Vasco∗, Angel L. Pérez del Pozo∗†and Pedro Taborda Duarte‡

Dpto. de Matemática Aplicada, Universidad Rey Juan Carlos
C/ Tulipán s/n. 28933, Móstoles, Madrid, Spain

{mariaisabel.vasco, angel.perez, pedro.duarte}@urjc.es

November 11, 2009

Abstract

In this paper we describe a cryptanalysis of a key exchange scheme recently proposed by
Álvarez, Tortosa, Vicent and Zamora. The scheme is based on exponentiation of block matrices
over a finite field of prime order. We present an efficient reduction of the problem of disclosing
the shared key to the discrete logarithm problem (DLP) in an extension of the base field.

Keywords: key exchange scheme, cryptanalysis, finite field, block matrix, discrete logarithm prob-
lem

1 Introduction

The very well known Diffie-Hellman key exchange scheme [5] was the first published public key
cryptographic protocol, allowing two users communicating over a public insecure channel to agree
on a common shared secret key. One of the most common platform groups candidates to im-
plement this protocol is the multiplicative group of a finite field. In this case, the problem of
obtaining the shared key from the exchanged data is trivially solved if one can solve the discrete
logarithm problem (DLP) in the finite field, but this is considered to be a computationally hard
problem for appropriately chosen parameters. Some other groups have been proposed as platform
groups for Diffie-Hellman-like protocols, such as the group of non-singular matrices over a finite
field [12] or the group of points of an elliptic curve [7] and [11].

Recently, Álvarez, Tortosa, Vicent and Zamora [1, 2] proposed a key exchange protocol where
the platform group is the 2× 2 block upper triangular invertible matrices over a finite field. Es-
sentially, two high order public matrices M1 and M2 are generated in this group ( the authors
in [1, 2] suggest using companion matrices of primitive polynomials in blocks (1, 1) and (2, 2) to
maximize the order). Then the two users choose secret exponents (r, s) and (v, w) respectively,
and exchange the matrices M r

1M s
2 and Mu

1 Mv
2 . The shared key is the (1, 2) block of the matrix

M r+v
1 M s+w

2 . This is done mainly in order to avoid a reduction from the DLP in the matrix group
to the DLP in the base field (see the Related work paragraph). The computational problem of
recovering the private keys from the public information can thus be stated as (2EXP problem
in 4.2): from the exchanged data M r

1M s
2 and Mv

1 Mw
2 , compute the secret exponents r, s (or v, w).

∗ partially supported by research project CCG08-UCM/ESP-4394
† contact author
‡ with support from Fundação para a Ciência e Tecnologia, Portugal ref: SFRH/BD/37869/2007

1



This immediately allows one to recover the shared matrix M r+v
1 M s+w

2 .

Our contribution. The main result in this paper is an efficient reduction from the 2EXP prob-
lem to the DLP in a finite extension of the base field in case companion matrices of primitive
polynomials are used. This is done in three steps: first, we show how the 2EXP problem can be
solved separately in the (1, 1) and (2, 2) blocks to obtain a solution for the whole problem. Second,
we study the 2EXP problem when the matrices are arbitrary invertible matrices. In this case we
reduce the 2EXP problem to a computational problem (2EXP* in 4.2.1) in an extension of the
base field. Third, we focus on the case where the involved matrices are generated using companion
matrices of primitive polynomials, as proposed in [1, 2]. In this situation we are able to reduce the
2EXP problem to solving the DLP in a finite extension of the base field. Thus we conclude that
the use of this scheme offers no advantage over the original Diffie-Hellman key exchange scheme.
We also provide an observation about the public parameters generation (specifically, the matrices
M1 and M2 must be chosen in a way that they do not commute) and some remarks about the
order of these matrices.

Related work. As far as we now, the first attempt to using matrices over a finite field in
a key exchange scheme was made by Odoni, Varadharajan and Sanders in 1984 [12]. They
use an invertible matrix as a group generator and then proceed as in the usual Diffie-Hellman
key exchange protocol. In order to get a high enough order for the generating matrix, they
define a block diagonal matrix, where the blocks are similar to companion matrices of primitive
polynomials (in fact, as pointed out in [9], the authors incorrectly use irreducible polynomials
instead of primitive polynomials).

After that, Menezes and Vanstone proved in 1992 [9] that the DLP in the cyclic group gen-
erated by one of these block matrices can be efficiently reduced to the DLP in an extension of
the base field, thus showing that this kind of groups offers no advantage over finite fields. In a
subsequent paper of 1997, Menezes and Yi-Hong Wu [10] extended this reduction to the general
case, that is, they showed that the DLP in the general linear group GLn(ZZp) can be efficiently
reduced to the DLP in certain “small” extension of the base field.

In order to avoid the Menezes and Yi-Hong Wu reduction, Climent, Ferrández, Vicent and
Zamora [3] proposed in 2006 another matrix based key exchange protocol (CFVZ protocol). They
use 2 × 2 block upper triangular matrices, where the diagonal blocks have integer entries while
the (1,2) block has entries in the set of rational points of an elliptic curve. In this case the two
parties of the protocol interchange the (1,2) block of a randomly chosen power of one of these
matrices. The shared key is the (1,2) block of another matrix which they can compute with their
secret data.

In 2007, Climent, Gorla and Rosenthal [4] published a cryptanalysis of this last protocol.
They showed how the problem of computing the shared key can be efficiently reduced to solv-
ing several DLP’s in the group associated to the elliptic curve. They also proved how solving
simultaneously these DLP’s problems is essentially as hard as solving one single DLP. Therefore
they conclude that the CFVZ protocol offers no advantage over working in the elliptic curve group.

Paper outline. In Section 2 we introduce the subgroup of the general linear group GLn(ZZp)
which is used in the proposed key exchange scheme. We recall how the public data is generated by
using companion matrices of primitive polynomials and provide some remarks about the orders
of these matrices. In Section 3 the key exchange protocol is described. Section 4 is devoted to
the cryptanalysis of the scheme. First we study the general case, when the public matrices are
arbitrary and then we focus on the case when they are generated by using companion matrices

2



of primitive polynomials. In the former we reduce the problem of disclosing the secret keys to
a computational problem in an extension of the base field, while in the later we show that this
problem can be solved by computing discrete logarithms in that extension. Finally we summarize
our conclusions in Section 5. The proofs of the claims in Section 2 are included in the Appendix.

2 Preliminaries

The following is a description of the underlying group structure. We describe some properties
and simple consequences of the definitions, and recall the method proposed in [1, 2] for generating
high order elements.

2.1 Underlying group structure

Given a prime number p and n, l ∈ IN, define the subgroup of GLn+l(ZZp) under matrix multipli-
cation by

Θ(p, n, l) =
{(

A X
0 B

)
: A ∈ GLn(ZZp), B ∈ GLl(ZZp), X ∈ Matn×l(ZZp)

}

We simply write Θ when p, n and l are fixed. The following are some simple consequences of the
definition:

1. If M ∈ Θ and h ≥ 0 then Mh =
(

Ah X(h)

0 Bh

)
with

X(h) =
{

0 if h = 0∑h
i=1 Ah−iXBi−1 if h ≥ 1

2. If a, b ≥ 0 then X(a+b) = AaX(b) + X(a)Bb

3. If M =
(

A X
0 B

)
∈ Θ then the characteristic polynomials pM , pA and pB of M, A and

B respectively, are related by pM (λ) = pA(λ) · pB(λ). Hence, λ is an eigenvalue of M if and
only if it is an eigenvalue of A or B and moreover, since A and B are invertible λ is always
non zero.

2.2 High order elements M from Θ:

As described in section 3, the key exchange protocol presented in [1, 2] is based on products
of certain powers (the private keys) of elements M1,M2 ∈ Θ. Therefore, it is important that
these elements achieve a high order so that exhaustive search attacks are prevented. In [1, 2] the
following method is proposed:

Let f(x) = a0 +a1x+ . . .+anxn−1 +xn and g(x) = b0 + b1x+ . . .+ bl−1x
l−1 +xl be two primitive

polynomials in ZZp [x] and Af , Bg the corresponding companion matrices i.e.

Af =




0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 0 1 0
0 0 0 0 0 1
−a0 −a1 −a2 · · · −an−2 −an−1




3



Bg =




0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 0 1 0
0 0 0 0 0 1
−b0 −b1 −b2 · · · −bl−2 −bl−1




Then, let P ∈ GLn(ZZp) and Q ∈ GLl(ZZp) and set

A = PAfP−1 ∈ GLn(ZZp)

and
B = QBgQ

−1 ∈ GLl(ZZp)

Choose X ∈ Matn×l(ZZp) and set M =
(

A X
0 B

)
.

As described, in this construction any “X-matrix” is valid, so that we assume that X may be
chosen at random.

In the original papers [1, 2], it is claimed that, with this construction, the order of M is such
that ord(M) = lcm(pn − 1, pl − 1) and if n and l are chosen to be relatively prime then ord(M)
is maximum. Next we provide a couple of remarks about these claims:

Remark 2.1. Note that it is not true that ord(M) = lcm(ord(A), ord(B)) for an arbitrary matrix
M ∈ Θ, as the following example shows:

In ZZ5 set A =
(

1 3
0 3

)
, B =




4 0 2
0 2 1
1 2 2


 and X =

(
0 0 3
1 3 1

)
. It can be computed that

ord(A) = 4, ord(B) = 12. Then lcm(ord(A), ord(B)) = 12 but ord(M) = 60.

However, if M is chosen as in 2.2 then it is true that ord(M) = lcm(ord(A), ord(B)) =
lcm(pn − 1, pl − 1). We have not been able to find a demonstration of this fact in the literature
therefore we include a proof of the following lemma in the Appendix.

Lemma 2.1. Take M as in 2.2. Let a = ord(A), b = ord(B) and k = lcm(a, b). Then

1. a = pn − 1 and b = p l − 1

2. X(k) = 0

3. ord(M) = k

Remark 2.2. Suppose that the overall dimension m of M is fixed, and consider n and l such
that n + l = m. It is true, as stated by the authors, that if n and l are relatively prime, then the
number of common divisors of pn−1 and pl−1 is diminished (in fact gcd(pn−1, pl−1) = p−1).
However, one may wonder how to choose n and l among the possible options such that n + l = m
and the order of M is maximized. The behavior of the function lcm(px− 1, pm−x− 1) for coprime

4



x and m−x depends only on the product (px−1)(pm−x−1), a function which is symmetric around
m/2 and increasing from 1 to m/2. To find the maximum of lcm(px − 1, pm−x − 1) when x and
m − x are coprime, one only has to find the x0 closest to m/2 such that gcd(x0,m − x0) = 1.
Therefore, by choosing n and l coprime such that n + l = m, ord(M) varies from pm−1 − 1 to
lcm(px0 − 1, pm−x0 − 1) and the maximum order for M is attained when n = x0 and l = m− x0.
All the details and proofs can be found in the Appendix.

3 The key exchange protocol

Next we describe the key exchange protocol as proposed in [1, 2].

1. Alice and Bob agree on a prime p and on n, l. Then they choose M1,M2 ∈ Θ(p, n, l) of

high order. Let | < M1 > | = m1 and | < M2 > | = m2 and write M1 =
(

A1 X1

0 B1

)
and

M2 =
(

A2 X2

0 B2

)

2. Alice generates random r, s ∈ IN such that

1 ≤ r ≤ m1 − 1 and 1 ≤ s ≤ m2 − 1

3. Alice computes C = M r
1M s

2 =
(

AC XC

0 BC

)
and sends C to Bob

4. Bob generates random v, w ∈ IN such that

1 ≤ v ≤ m1 − 1 and 1 ≤ w ≤ m2 − 1

5. Bob computes D = Mv
1 Mw

2 =
(

AD XD

0 BD

)
and sends D to Alice

6. Alice computes Ka = Ar
1ADX

(s)
2 + Ar

1XDBs
2 + X

(r)
1 BDBs

2.

7. Bob computes Kb = Av
1ACX

(w)
2 + Av

1XCBw
2 + X

(v)
1 BCBw

2 .

8. According to the next lemma, the shared key K is K = Ka = Kb.

Proposition 3.1 (Shared key). Following the protocol, Ka = Kb and moreover Ka (and Kb) is
the (1, 2) entry of M r+v

1 M s+w
2 .

Proof. It is easy to see that

M r
1DM s

2 =
(

Ar+v
1 As+w

2 Ka

0 Br+v
1 Bs+w

2

)

and

Mv
1 CMw

2 =
(

Ar+v
1 As+w

2 Kb

0 Br+v
1 Bs+w

2

)

and also
M r

1DM s
2 = M r+v

1 M s+w
2 = Mv

1 CMw
2

Therefore Ka = Kb ut

5



1. The public data:

? p prime

? n, l

? M1, M2 ∈ Θ(p, n, l)

2. The private data:

? Alice: (r, s)

? Bob: (v, w)

3. Data exchanged:

? C = M r
1M s

2

? D = Mv
1 Mw

2

The shared key is the entry (1, 2) of M r+v
1 M s+w

2

Figure 1: Public and private data of the protocol

Alice Bob

1 ≤ r ≤ m1 − 1 and 1 ≤ s ≤ m2 − 1 −→ C = M r
1M s

2

D = Mv
1 Mw

2 ←− 1 ≤ v ≤ m1 − 1 and 1 ≤ w ≤ m2 − 1

Ka = (M r
1DM s

2 )(1,2) Kb = (Mv
1 CMw

2 )(1,2)

K = Ka = Kb

Figure 2: Key exchange protocol

4 Security Analysis

In this section we present the security analysis and an attack on the scheme of section 3. The
first subsection consists on a remark on the key generation procedure. The second subsection
provides a reduction of the cryptographic problem to a related problem in an extension of the
base field. The third section presents an attack on the protocol in case the entries are generated
using companion matrices of primitive polynomials as is suggested by the authors of [1, 2]. We
show that in this case it is possible to reduce the problem to that of computing discrete logarithms
in an extension of the base field. This shows that the protocol does not offer an advantage over
computation in ZZp, since the computational cost of operations in GLn(ZZp) is higher than in ZZp.

4.1 Key generation

If M1 and M2 commute then the shared key can be computed by

K = M r+v
1 M s+w

2 = M r
1Mv

1 M s
2Mw

2 = M r
1M s

2Mv
1 Mw

2 = CD

6



Although the probability that this happens (at least for u.a.r chosen matrices) is very small, it is
obvious that the protocol should not accept this kind of keys.

M1 ∈ Θ and M2 ∈ Θ should be such that M1M2 6= M2M1

4.2 Reduction to the DLP in a finite field

We will show here that, with the proposed key generation, it is possible to reduce the problem
of finding the secret keys r and s, to solving a certain problem in an extension of the base field.
The problem of recovering the secret key in the proposed key exchange protocol can be stated in
the following way:

2EXP problem: Suppose M1,M2 ∈ Θ(p, n, l) have orders m1 and m2 respectively. Let
also 1 ≤ r ≤ m1 − 1 and 1 ≤ s ≤ m2 − 1. Given M1,M2 and C = M r

1M s
2 , find r, s.

Proposition 4.1. Recovering the private keys in the proposed key exchange protocol can be reduced
to solving the 2EXP problem for matrices in GLn(ZZp) and in GLl(ZZp).

Proof. Suppose that the orders of the matrices Ai, Bi and Mi are ai, bi and mi = lcm(ai, bi)
respectively. An adversary A able to get the matrix C = M r

1M s
2 can easily compute Ar

1A
s
2

and Br
1B

s
2. Then, by solving the 2EXP problem in GLn(ZZp) and in GLl(ZZp), A gets the

values r mod a1, s mod a2, r mod b1 and s mod b2. From these values, A can easily compute
r (mod m1), s (mod m2) and the private keys are disclosed. A priori it is necessary to solve both
instances of the 2EXP problem, for Ar

1A
s
2 and Br

1B
s
2. ut

Therefore it is enough to solve the 2EXP problem for each of the pairs (A1, A2) and (B1, B2)
given M1 and M2. The next sections will first describe the general case and then proceed to the
case when these pairs of matrices are generated as in section 2.2. Note that in this case each
matrix from each pair is generated using primitive polynomials of the same degree. In this last
case we are able to further reduce the 2EXP problem in GLn(ZZp) to the DLP problem in the
extension field IFpn .

4.2.1 The general case

We consider the Jordan normal form of A1, A2 ∈ GLn(ZZp). More precisely, suppose the character-
istic polynomial of A1 is given by p1 = fe1

1 · · · fek
k where the fi are distinct irreducible polynomials

of degree di in ZZp[x]. Then the smallest extension field containing all the eigenvalues of A1 is
the field E1 = IFp d̄1

with d̄1 = lcm(d1, d2, . . . , dk). Similarly for A2, the smallest extension field
containing all the eigenvalues of A2 is the field E2 = IFp d̄2

with a similar d̄2.

Let E = IFp lcm(d̄1, d̄2) . Then it is well known that there exist P1 ∈ GLn(E1) and P2 ∈ GLn(E2)

7



such that A1 = P−1
1 JP1 and A2 = P−1

2 HP2 where J and H are the Jordan matrices of each i.e.

J =




Jk1(λ1) 0 · · · 0

0 Jk2(λ2) · · · 0
...

...
. . .

...

0 0 · · · Jkt(λt)




and

H =




Hl1(α1) 0 · · · 0

0 Hl2(α2) · · · 0
...

...
. . .

...

0 0 · · · Hlu(αu)




The Jki
(λi), i = 1, . . . , t (resp. Hli(αi), i = 1, . . . , u) are the Jordan blocks of A1 of size ki

associated to the eigenvalue λi (resp. Jordan blocks of A2 of size li associated to the eigenvalue
αi) such that

∑t
i=1 ki =

∑u
i=1 li = n. i.e. they are the ki × ki size matrices

Jki(λi) =




λi 1 0 · · · 0 0

0 λi 1 · · · 0 0

0 0 λi · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · λi 1

0 0 0 · · · 0 λi




and the li × li size matrices

Hli(αi) =




αi 1 0 · · · 0 0

0 αi 1 · · · 0 0

0 0 αi · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · αi 1

0 0 0 · · · 0 αi




Note that λ1, . . . , λt (resp. α1, . . . , αu) need not be necessarily distinct. In [10] the authors
describe an algorithm for computing the Jordan canonical form in GLn(ZZp) that runs in expected
polynomial time.

Then C = Ar
1A

s
2 = P−1

1 J rP1 · P−1
2 HsP2 which means Jr(P1P

−1
2 )Hs = P1CP−1

2 i.e.

JrZHs = W (4.2.1)

with known Z = P1P
−1
2 = [zij ] and W = P1CP−1

2 = [wij ]. This equation is in the field E.

8



Since J r =
⊕t

i=1(Jki
(λi))r and Hs =

⊕u
i=1(Hli(αi))s, and it can be shown that entries (a, b)

are given by

((Jki(λi))r)ab =
(

r

b− a

)
λr−b+a

i , 1 ≤ a ≤ b ≤ ki (4.2.2)

((Hli(αi))s)ab =
(

s

b− a

)
αs−b+a

i , 1 ≤ a ≤ b ≤ li (4.2.3)

we get (J rZHs)ab =
∑n

i,j=1(J
r)aj · zji · (Hs)ib.

So for example, for 1 ≤ a ≤ k1 and l1 + 1 ≤ b ≤ l1 + l2 (i.e. “choosing” Jk1(λ1) and Hl2(α2)), we
get

(J rZHs)ab =
l1+l2∑

i=l1+1

k1∑

j=1

((Jk1(λ1))r)aj · zji · ((Hl2(α2))s)ib

=
l1+l2∑

i=l1+1

k1∑

j=1

(
r

j − a

)(
s

b− i

)
zji λ

r−j+a
1 αs−b+i

2

Choosing a = k1 and b = l1 +1, equations 4.2.2 and 4.2.3 imply that j = k1 and i = l1 +1 so that

(J rZHs)k1 (l1+1) = zk1 (l1+1) · λr
1α

s
2

In general, for a(j1) =
∑j1+1

i=1 ki and b(j2) = 1+
∑j2

i=1 li with j1 = 0, . . . , t−1 and j2 = 0, . . . , u−1
we have

(J rZHs)a(j1) b(j2) = za(j1)b(j2) · λr
j1+1α

s
j2+1

Equation 4.2.1 then becomes

za(j1)b(j2) · λr
j1+1α

s
j2+1 = wa(j1)b(j2) j1 = 0, . . . , t− 1 and j2 = 0, . . . , u− 1 (4.2.4)

Note that in equation 4.2.4, appear all the possible products of eigenvalues of A1 by those of A2.
This shows that, if we can solve for at least one pair (j1, j2), the problem of given λr

j1+1α
s
j2+1

computing r, s, we can also break the protocol. Therefore we reduced the original 2EXP problem
to the following 2EXP* problem:

2EXP* problem: Suppose A1, A2 ∈ GLn(ZZp) have orders a1 and a2 respectively, and
let (λk1) and (αk2) (1 ≤ k1, k2 ≤ n) denote the eigenvalues of A1 and A2 respectively.
Let also 1 ≤ r ≤ a1 − 1 and 1 ≤ s ≤ a2 − 1.
Given a set of elements {uij = λr

jα
s
j} (in a certain extension field of ZZp) of size less or

equal to n2, find r, s.

Thus we have reduced the key recovering problem to a computational problem in a finite field.
Moreover, if the next two conditions (I) and (II) hold, we are able to reduce the 2EXP* problem
to the DLP problem. Observing equation 4.2.4 we conclude that:

9



I. If A1 and A2 share a common eigenvalue γ = λj1+1 = αj2+1 6= 1 and za(j1)b(j2) 6= 0 then
γr+s = wa(j1)b(j2) · z−1

a(j1)b(j2)

II. If αk2 = 1 ∧ λk1 6= 1 and za(k1)b(k2) 6= 0 then λr
k1

= wa(k1)b(k2) · z−1
a(k1)b(k2)

We have thus reduced the problem of retrieving the private keys to solving the DLP in a finite
field if the following happens to be true: A1 and A2 share a common eigenvalue, and A1 (or A2)
has eigenvalue 1. In general, both conditions are necessary to retrieve the private keys r, s by
solving the DLP’s (I) and (II). Therefore matrices satisfying (I) and (II) simultaneously should
be avoided in the parameter generation procedure.

4.2.2 A1 and A2 chosen as in section 2.2

Note that now we have ord(A1) = ord(A2) = pn−1. Suppose that A1 and A2 are matrices similar
to companion matrices of some primitive polynomials f1 and f2 of degree n. Then

Lemma 4.1.

1. f1 = pA1 and f2 = pA2

2. The eigenvalues of A1 are s.t. {λ1, . . . , λn} ⊆ F1 ' IFpn and ∀i λi generates F ∗
1

3. The eigenvalues of A2 are s.t. {α1, . . . , αn} ⊆ F2 ' IFpn and ∀i αi generates F ∗
2

4. A1 and A2 are diagonalizable in the extensions F1 and F2.

Proof. See for example [6]. ut

In particular this means that 1 is not an eigenvalue of neither A1 nor of A2 and therefore the
method for solving for r, s described at the end of section 4.2.1 may not necessarily apply since
condition (I) is also necessary in general for solving equation 4.2.4. We will see in the following
that nevertheless, in this case, retrieving the private keys r, s is no harder than solving a discrete
logarithm in IFpn .

Since the Jordan matrices of A1 and A2 are diagonal, equation 4.2.4 becomes

zijλ
r
i α

s
j = wij ∀i,j (4.2.5)

Write λ = λi and α = αj . At this we have the following situation:

1. We are considering extension fields of IFp for each root λ and α of f1 and f2. Therefore,
λr ∈ IFp(λ) and αs ∈ IFp(α). Moreover, IFp(λ) ' IFp(α) ' IFpn .

2. If zij 6= 0 then uij = z−1
ij wij = λrαs belongs to a finite extension of IFp by adjoining the

roots λ and α i.e uij ∈ IFp(λ)(α).

By the subfield criterion (see [8] pag. 49 for example) there exists exactly one subfield of
IFp(λ)(α) with pn elements. Therefore IFp(λ) = IFp(α) and hence

IFp(λ)(α) = IFp(λ) = IFp(α) ' IFpn

10



We then conclude that if zij 6= 0 then {αj , uij} ⊆ IFp(λi)∗, and therefore, by 2 of lemma 4.1 there
exists 0 ≤ xj ≤ pn − 1 such that

αj = λ
xj

i

Equation 4.2.5 then becomes
λ

r+xjs
i = uij

in IFpn .

Generating a new equation 4.2.5 with the same i but a different k such that f2(αk) = 0 and
zik 6= 0 (i.e. by considering a different eigenvalue of A2) we also have αk = λxk

i for 0 ≤ xk ≤ pn−1.
Note that Z = P1P

−1
2 must have many entries different from 0. Therefore, solving the DLP system

in IFpn for xj and xk, gives us another system of DLP’s in IFpn :




λ
r+xjs
i = uij

λr+xks
i = uik

(4.2.6)

We now need to solve this system to retrieve the private keys r and s.

4.2.3 Solving system 4.2.6

We suppose we were able to compute xj and xk. Suppose also without loss of generality that
i = j = 1 and k = 2 (i.e. we are considering λ1, α1, α2) and that u11 = λy1

1 and u12 = λy2
1 . Then

we are looking for (one of) the solutions of the system





r̄ + x1s̄ = y1 mod (pn − 1)

r̄ + x2s̄ = y2 mod (pn − 1)
(4.2.7)

Applying reduction, we find that (x2−x1)s̄ = y2− y1 mod (pn−1), and since the original s is
a solution, we conclude that d = gcd(x2−x1, p

n−1) divides (y2−y1). There are therefore exactly
d solutions to system 4.2.7. If (x̄, ȳ) is such that d = (x2 − x1)x̄ + (pn − 1)ȳ then the solutions to
system 4.2.7 are given by

si = x̄(y2 − y1)/d + i(pn − 1)/d mod (pn − 1)
ri = y1 − x1si mod (pn − 1)

where i = 0, . . . , d− 1. Of these d pairs (ri, si), one will be the original (r, s).

Depending on the chosen λ1, α1 and α2, the number of solutions can be high, so it is clear
that this choice is important for solving the system. We will show that it is always possible to
choose “well” i.e. choosing λ1, α1 and α2 such that d = gcd(x2 − x1, p

n − 1) is small.

Choose one root λ1 of f1 and one root α1 of f2. Because f2 is primitive, there exists j such
that αj = αp

1 (in fact all the other roots of f2 are of the form αpj

1 , j = 1, . . . , n−1) and moreover,
if α1 = λx1

1 and αj = λx2
1 then

λp x1
1 = αp

1 = αj = λx2
1

11



Therefore x2 = p x1 mod (pn − 1) and consequently

d = gcd(x2 − x1, p
n − 1) = gcd(x1(p− 1), pn − 1)

Now, if d|x1(p − 1) then it must be that d = d1d2, with d1|x1 and d2|(p − 1). On the other
hand d |(pn− 1) implies that d1|(pn− 1) and d2|(pn− 1). Since all roots are primitive x1 must be
invertible mod(pn − 1) (by 3 of lemma 4.1 λ1 = αy1

1 for some 1 ≤ y1 < pn − 1, which means that
x1 y1 = 1 mod (pn − 1)). Hence gcd(x1, p

n − 1) = 1 and therefore d1 = 1 (since d1 is a common
divisor of x1 and pn−1) i.e. d must be the greatest common divisor of p−1 and pn−1. Therefore
d = p− 1. If z11 = 0 or z1j = 0 we choose other roots.

We have thus shown that, by choosing a root λ1 of A1 and two “successive” roots α1 and
αj = αp

1 of A2, such that the corresponding z11 and z1j are non zero, then the number of solutions
of the system 4.2.7 is p− 1. Of these, one solution is the original (r, s).

5 Conclusions

We have presented a cryptanalysis and an attack on the key exchange scheme proposed in [1, 2].
More precisely, we have shown that breaking the scheme can be reduced to solving a computational
problem in an extension of the base field. Moreover, if the parameters M1 and M2 are generated
using companion matrices of primitive polynomials, then this computational problem can be
further reduced to a small set of discrete logarithm problems in an extension of the base field. We
have also commented on the need for the protocol to make sure the parameters do not commute.
We thus conclude that the scheme offers no advantage over working in the base field.

References

[1] R. Álvarez, L. Tortosa, J. Vicent, and A. Zamora, Analysis and design of a secure
key exchange scheme, Information Sciences, 179 (2009), pp. 2014–2021.

[2] , A non-abelian group based on block upper triangular matrices with cryptographic ap-
plications, in AAECC-18 ’09: Proceedings of the 18th International Symposium on Ap-
plied Algebra, Algebraic Algorithms and Error-Correcting Codes, Berlin, Heidelberg, 2009,
Springer-Verlag, pp. 117–126.

[3] J. Climent, F. Ferrández, J. Vicent, and A. Zamora, A nonlinear elliptic curve cryp-
tosystem based on matrices, Applied Mathematics and Computation, 174 (2006), pp. 150–164.

[4] J. Climent, E. Gorla, and J. Rosenthal, Cryptanalysis of the cfvz cryptosystem, Ad-
vances in Mathematics of Communications, 1 (2007), pp. 1–11.

[5] W. Diffie and M. Hellman, New directions in cryptography, IEEE Trans. Inf. Theory, 22
(1976), pp. 644–654.

[6] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, 1990.

[7] N. Koblitz, Elliptic curve cryptosystems, Math. Comput., 48 (1987), pp. 203–209.

[8] R. Lidl and H. Niederreiter, Finite Fields (Encyclopedia of Mathematics and its Appli-
cations), Cambridge University Press, October 1996.

12



[9] A. Menezes and S. Vanstone, A note on cyclic groups, finite fields, and the discrete
logarithm problem, Applicable Algebra in Engineering, Communication and Computing, 3
(1992), pp. 67–74.

[10] A. Menezes and Y.-H. Wu, The discrete logarithm problem in gl(n, q), Ars Comb., 47
(1997).

[11] V. Miller, Uses of elliptic curves in cryptography, in Advances in Cryptology - Proceedings
of Crypto’85. Lecture Notes in Computes Science, vol. 218, Berlin, Heidelberg, 1986, Springer-
Verlag, pp. 417–426.

[12] R. Odoni, V. Varadharajan, and P. Sanders, Public key distribution in matrix rings,
Electronic Letters, 20 (1984), pp. 386–387.

A Appendix

We first include here the proof of lemma 2.1:

Lemma A.1. Take M as in 2.2. Let a = ord(A), b = ord(B) and k = lcm(a, b). Then

1. a = pn − 1 and b = p l − 1

2. X(k) = 0

3. ord(M) = k

Proof.

1. See, for example, [9].

2. Suppose that b < a with a = qb+r and 1 ≤ r ≤ b−1 (note that b - a since gcd(a, b) = p−1)
and suppose also that k = q1a = q2b. Then I = Bbq2 = Baq1 = Brq1 and the following
holds:

X(k) =
k∑

i=1

Ak−iXBi−1

=
k∑

i=1

A−iXBi−1

=
q1∑

i=1

ia∑

j=(i−1)a+1

A−jXBj−1

=
q1∑

i=1

a∑

j=1

A−jXBj+(i−1)a−1

=
a∑

i=1

A−iXBi ·
q1∑

j=1

B(j−1)a−1

= X(a)B ·
q1∑

j=1

B(j−1)a−1

13



= X(a)
q1∑

j=1

B(j−1)a

= X(a)
q1∑

j=1

B(j−1)r

Now note that 0 = Bq1r − I =
(∑q1

j=1 B(j−1)r
)

(Br − I). Because 1 is not an eigenvalue of
B ( see discussion following lemma 4.1 in 4.2.2 ) it follows that 1 is also not an eigenvalue of
Br ( because the eigenvalues of B are roots of f2 and therefore have order b ) and therefore
Br − I is invertible. Hence

∑q1
j=1 B(j−1)r = 0 from which it follows that X(k) = 0.

3. Mk1 = I if and only if a|k1 and b|k1 and X(k1) = 0. Obviously k = lcm(a, b) is the least
positive integer satisfying these conditions and hence

ord(M) = lcm(a, b)
ut

The next results justify all the claims made in Remark 2.2:

Lemma A.2. gcd(a, b) = 1 if and only if gcd(p a − 1, p b − 1) = p− 1

Proof. Suppose a > b and gcd(a, b) = 1. Then

gcd(pb − 1, pa − 1) = gcd(p b − 1, p a − p b)
= gcd(p b − 1, pb(p a−b − 1))
= gcd(p b − 1, p b)gcd(p b − 1, p a−b − 1)
= gcd(p b − 1, p a−b − 1)

because gcd(p b − 1, p b) = gcd(pb, p a−b − 1) = 1. Iterating this process one concludes that

gcd(pb − 1, pa − 1) = gcd(p b − 1, p a−b − 1) = gcd(p b − 1, p a−k·b − 1)

where k = max{i : a−kb ≥ 0} ≡ ba/bc and the remainder r1 = a−k ·b is such that 0 ≤ r1 ≤ b−1.
Therefore

gcd(pb − 1, pa − 1) = gcd(pb − 1, pr1 − 1)

Consider the following:

If gcd(a, b) = 1 then r1 6= 0. If r1 ≥ 2 then one computes the division of b and r1 and obtains

gcd(pb − 1, pr1 − 1) = gcd(pr1 − 1, pb − 1) = gcd(pr1 − 1, pb−bb/r1cr1 − 1) = gcd(pr1 − 1, pr2 − 1)

with r2 the remainder b = bb/r1c · r1 + r2 and 0 ≤ r2 ≤ r1 − 1. Again, if gcd(a, b) = 1 then
gcd(b, r1) = 1 and therefore r2 6= 0.

We can repeat this process until the first remainder ri = 1, which we know will happen if
gcd(a, b) = 1. We then get

gcd(pb − 1, pa − 1) = gcd(pri−1 − 1, p− 1) = p− 1

On the other hand, if d > 1 is a common divisor of a and b then pd − 1 > p− 1 is a common
divisor of p a − 1 and p b − 1. ut

14



In the following, we suppose that the overall dimension m of M is fixed and set

N = {x ∈ {1, . . . , m− 1} : gcd(x,m− x) = 1}
Corollary A.2.1.
∀x ∈ N gcd(px − 1, pm−x − 1) = p− 1 and lcm(px − 1, pm−x − 1) = (px − 1)(pm−x − 1)/(p− 1)

Next lemma is easy to prove:

Lemma A.3. Let ~(x) = lcm(px − 1, pm−x − 1). Then

1. If m even and m/2 even then maximum of ~ in N is attained at x0 = m/2− 1

2. If m even and m/2 odd then maximum of ~ in N is attained at x0 = m/2− 2

3. If m odd then maximum of ~ in N is attained at x0 = bm/2c
Proposition A.1.

1. Minx∈N lcm(px − 1, pm−x − 1) = pm−1 − 1

2. Let 1 ≤ y ≤ m− 1 such that y /∈ N . Then

lcm(p y − 1, pm−y − 1) ≤ Minx∈N lcm(px − 1, pm−x − 1)

3. Maxx∈N lcm(px − 1, pm−x − 1) =




(pm/2−1 − 1)(1 + p + . . . + pm/2) , m even and m/2 even

(pm/2−2 − 1)(1 + p + . . . + pm/2+1) , m even and m/2 odd

(pbm/2c − 1)(1 + p + . . . + pbm/2c) ,m odd

Proof.

1. As observed, the minimum is attained at x0 = 1 (1 is always in N). The result follows.

2. It is enough to consider the case y ≤ bm/2c such that d = gcd(y, m − y) ≥ 2. Let dy =
gcd(py− 1, pm−y− 1) and suppose that y = k1d and m− y = k2d. Then p d− 1 is a common
divisor of py − 1 and pm−y − 1, from which it follows that dy ≥ pd − 1 and hence

lcm(py − 1, pm−y − 1) ≤ (py − 1)(pm−y − 1)/(pd − 1)

= (pm−y − 1)
k1−1∑

i=0

pid

=
k1−1∑

i=0

pid+m−y −
k1−1∑

i=0

pid

≤
m−d∑

i=0

pi

≤ pm−d+1 − 1

≤ pm−1 − 1

15



3. lcm(px − 1, pm−x − 1) = (px − 1)(pm−x − 1)/(p − 1) for x ∈ N by corollary A.2.1, and
lemma A.3 provides the maximizing points x0. The result follows by computing

lcm(px0 − 1, pm−x0 − 1) = (px0 − 1)(pm−x0 − 1)/(p− 1)
ut

16


