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Abstract

Vercauteren [27] introduced a notion of optimal pairings. Up to know

the only known optimal pairing is the optimal Ate pairing. In this paper,

we give some properties of optimal pairing and provide an algorithm for

finding an optimal pairing if there exists one which is defined on the

given elliptic curve. Applying the cyclotomic polynomial, we construct

some new optimal pairings and provide a construction method of pairing-

friendly elliptic curves on which the optimal pairing can be defined. Our

algorithm is explicit and works for arbitrary embedding degree k and large

prime subgroup orders r.

Keywords: Pairing-friendly; Optimal pairing; Cyclotomic polynomial; Pairing
lattice

1 Introduction

Pairing based cryptography is a major area of research in public key cryptogra-
phy. There has been a huge interest in developing fast algorithms to compute
bilinear pairing. A bilinear pairing is a map of form

e : G1 ×G2 −→ GT

where G1, G2 and GT are cyclic groups of prime order r.
So far as we known, all the fast algorithms of computing Weil and Tate

pairings are based on Miller’s algorithm [23] on (hyper)elliptic curves. One
line of research focuses on shortening the loop in Millers algorithm, which was
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initiated by Duursma-Lee [9] and extended by Barreto et al. [3] to supersingular
abelian varieties. The ate pairing introduced in [17] for elliptic curves and in
[15] for hyperelliptic curves generalize these pairings to all ordinary curves.
Recently, variants of the ate pairing were introduced thereby reducing the loop
length in Miller’s algorithm, such as the optimized ate pairing [22], and finally
the R-ate pairing [20]. All variants of the ate pairing have a Miller loop of
length at least log2 r

ϕ(k) , with the embedding degree k. Vercauteren [27] introduced
the notion of optimal pairings, which by definition attains this lower bound
and conjectured that any non-degenerate pairing on an elliptic curve without
extra efficiently computable endomorphisms different from Frobenius requires at
least log2 r

ϕ(k) basic Miller operations. Hess [16] proved this conjecture and thereby
justifying the term “optimal pairing” in [27].

One calls an elliptic curve with a small embedding degree and a large prime-
order subgroup pairing-friendly which is introduced by Freeman, Scott and
Teske [11] and defined as follows.

Definition 1 Suppose E is an elliptic curve defined over a finite field Fq. We
say that E is pairing-friendly if the following two conditions hold:

1. there is a prime r ≥ √
q dividing ]E(Fq), and

2. the embedding degree of E with respect to r is less than log2(r)/8.

In this paper, a pairing-friendly elliptic curve is called a pairing-friendly
elliptic curve with optimal pairing if there exists an optimal pairing defined
on such elliptic curve. By the Hess’s result in [16], we notice that pairing-friendly
curves with optimal pairing are quite scarce.

Our main contributions in this paper are as follows:

• An upper bound of the number of Miller iterations that are required to
evaluate a function is obtained and if the pairing defined by the function
is an optimal pairing, an algorithm is proposed to get the coefficients of
the principal divisor of the function.

• Many new optimal pairings are constructed by using cyclotomic polyno-
mial.

• A method for constructing pairing friendly curves is provided. The result-
ing elliptic curves of the method have optimal paring defined on them.

This paper is organized as follows: Section 2 recalls the necessary back-
ground knowledge, including all variants of the ate pairing, pairing lattice and
Miller algorithm. Section 3 describes the properties of the coefficients of a prin-
cipal divisor of which the function define a pairing and gives an algorithm to
find such optimal pairings for a given pairing-friendly elliptic curve. Section 4
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construct some new optimal pairings. Section 5 provides an efficient method
for constructing pairing-friendly curves with optimal pairing. Finally, Section
6, concludes the paper.

2 Preliminaries

2.1 Bilinear pairing

In this paper, we will only consider the ordinary elliptic curve, and the method
can be generalized to supersingular elliptic curve or hyperelliptic curve. Let us
recall the definitions of standard notation and pairing on elliptic curve.

Let Fq be a finite field with q elements and E be a non-singular elliptic curve
over Fq. Let r be a positive divisor of ]E(Fq) and k > 1 be the embedding degree
i.e. k is the smallest integer such that r | qk−1. Then E(Fqk)[r] ∼= Z/rZ×Z/rZ
and there exists a basis P,Q of E(Fqk)[r] satisfying π(P ) = P and π(Q) = qQ,

where π is the q-power Frobenius endomorphism on E. The subgroup of r-th
roots of unity of Fqk is denoted by µr, i.e. µr = {z ∈ F∗qk : zr = 1}. We define
G1 =< P > and G2 =< Q >. Note that G1

⋂
G2 = {O}.

For s ∈ Z and R ∈ E(Fqk), let fs,R ∈ Fqk(E) be the uniquely determined
monic function with divisor (fs,R) = ((sR)− (O))− s((R)− (O)), where (R) is
the divisor corresponding to the point R. The reduced Tate pairing is

t : G2 ×G1 → µr, (Q,P ) 7→ fr,Q(P )qk−1/r.

It is in fact defined on all E(Fqk)[r]× E(Fqk)[r] and is always non-degenerate.
Let s be an integer with s ≡ q mod r. Define N = gcd(sk − 1, qk − 1),

L = sk − 1/N and c =
∑k−1

j=0 sk−1−jqj mod N . The ate pairing with respect to
s is given by

as : G2 ×G1 → µr, (Q,P ) 7→ fs,Q(P )c(qk−1)/N .

The relation with the Tate pairing is as(Q, P ) = t(Q,P )L. It is non-degenerate
if and only if r - L (see [22]).

Consider the following modified ate pairing

as : G2 ×G1 → µr, (Q,P ) 7→ fs,Q(P )(q
k−1)/r.

Since r|N and r - c, as is always bilinear, and using the relation with the
Tate pairing it is not difficult to show that as is non-degenerate if and only if
sk 6= 1 mod r2 (see also [16] Corollary 14 and its proof).

2.2 Pairing lattice

Let s be an integer, for h =
∑d

i=0 hix
i ∈ Z[x] with h(s) ≡ 0 mod r, define

||h||1 =
∑d

i=0 |hi|, and let fs,h,R ∈ Fqk(E) for R ∈ E(Fqk)[r] be the uniquely
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defined monic polynomial satisfying

(fs,h,R) =
d∑

i=0

hi((siR)− (O)).

Fact 1 [16] Assume that s is a primitive k-th root of unity modulo r2. Let
h ∈ Z[x] with h(s) ≡ 0 mod r. Then

as,h : G2 ×G1 → µr, (Q,P ) 7→ fs,h,Q(P )(q
k−1)/r

is a bilinear pairing that is non-degenerate if and only if h(s) 6= 0 mod r2. The
relation with the Tate pairing is as,h(Q,P ) = t(Q,P )h(s)/r.

There exists an efficiently computable h ∈ Z[x] with h(s) ≡ 0 mod r, deg(h) ≤
ϕ(k) − 1 and ||h||1 = O(r1/ϕ(k)) such that as,h is non-degenerate. The O-
constant depends only on k.

Any h ∈ Z[x] with h(s) ≡ 0 mod r such that as,h is a non-degenerate bilinear
pairing satisfies ||h||1 ≥ r1/ϕ(k).

2.3 Miller algorithm

To compute the function fs,P for s > 0, one can use Miller’s algorithm [23],
which is a double-and-add approach based on the following observation

fm+n,P = fm,P fn,P
lmP,nP

v(m+n)P
,

where lmP,nP is the equation of the line through mP and nP (or the tangent
line when mP = nP ) and v(m+n)P the equation of the vertical line through
(m + n)P.

Algorithm 1 Miller’s algorithm for elliptic curves

Input: s ∈ N and P, Q ∈ E[r] with P 6= Q

Output: fs,P (Q)

Write s =
PL

j=0 sj2
j , with sj ∈ {0, 1} and sL = 1.

T ← P, f ← 1.

for j = L− 1 down to 0 do

f ← c2lT,T (Q)/v2T (Q)

T ← 2T

if sj = 1 then

f ← flT,P (Q)/vT+P (Q)

T = T + P

end if

end for

Return f
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For s < 0 it suffices to remark that (fs,P ) = −(f−s,P )−(vsP ). One execution
of the main loop in algorithm 1 will be called a basic Miller iteration, during
which one doubling and at most one addition is computed.

3 Properties of optimal pairing

At first, we recall the definition of optimal pairing in [27].

Definition 2 Let e : G1 ×G2 → GT be a non-degenerate, bilinear pairing with
|G1| = |G2| = |GT | = r, where the field of definition of GT is Fqk . e(·, ·) is called
an optimal pairing if it can be evaluated with about at most (log2 r)/ϕ(k)+ ε(k)
Miller iterations, where ε(k) is less than log2 k.

From Fact 1 and the definition of optimal pairing, we get the following
proposition which gives a simple criterion for determining whether a pairing
as,h is an optimal pairing.

Theorem 1 Assume that s is a primitive k-th root of unity modulo r2. Let
h(x) =

∑ϕ(k)−1
i=0 hix

i be a polynomial in Z[x] of degree less than ϕ(k) − 1 with
h(s) ≡ 0 mod r and h(s) 6= 0 mod r2 and let ω(h) be the Hamming weight of
(h0, · · · , hϕ(k)−1). If ∏

0≤i≤ϕ(k)−1
hi 6=0

|hi| ≤ 2−ω(h)kr1/ϕ(k),

then as,h is an optimal pairing.

Proof The assumption of the proposition and Fact 1 implies that as,h is a
non-degenerate pairing. From Fact 1, as,h(Q, P ) = fs,h,Q(P )qk−1/r, where

(fs,h,Q) =
∑

0≤i≤ϕ(k)−1

hi((siQ)− (O))

and P,Q ∈ E(Fqk)[r]. By the Proposition 3.4 in Silverman [26], one have
hi((siQ) − (O)) ∼ (his

iQ) − (O) i.e. there exists a function fi ∈ Fqk(E) such
that

hi((siQ)− (O))− ((his
iQ)− (O)) = (fi).

The number of the basic Miller iterations to build fi is at most log2 |hi|. By the
above discussion, one can find that there is function g ∈ Fqk(E) such that

(g) =
∑

0≤i≤ϕ(k)−1

((his
iQ)− (O)).
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To compute g, one can only use the add approach in Miller iteration loop, and
the number of the basic Miller iterations g is at most ω(h)−1. It is not difficult
to see that

fa,s,h = cg
∏

0≤i≤ϕ(k)−1

fi,

where c is a nonzero constant. Therefore the number of the basic Miller itera-
tions to compute fa,s,h is at most

∑
0≤i≤ϕ(k)−1

hi 6=0

log2 |hi|+ ω(h)− 1. If

(
∏

0≤i≤ϕ(k)−1
hi 6=0

|hi|) ≤ 2−ω(h)kr1/ϕ(k),

then
log2(

∏
0≤i≤ϕ(k)−1

hi 6=0

|hi|) + ω(h)− 1 ≤ (log2 r)/ϕ(k) + log2 k.

This implies as,h is an optimal pairing.
Corollary 1 Let s, h(x) be defined as Theorem 1 and let

hmax = max{|h0|, · · · , |hϕ(k)−1|}.

If as,h is an optimal pairing, then

(
∏

0≤i≤ϕ(k)−1
hi 6=0

|hi|)/hmax ≤ k2.

Proof Since as,h is a non-degenerate pairing, by Fact 1, one have ‖ h ‖1≥
r1/ϕ(k), this implies hmax ≥ r1/ϕ(k)/k. By the proof of proposition 1, we have
that the number of basic Miller iterations to compute an optimal pairing as,h

is at least
(

∏
0≤i≤ϕ(k)−1

hi 6=0

|hi|) ≤ kr1/ϕ(k)

which completes the proof of the proposition.
In order to describe the method of constructing elliptic curves clearly, we

introduce the following definition.

Definition 3 A polynomial is called an optimal polynomial with respect to [k, s]
modulus r if as,h is a non-degenerate optimal pairing.

Vercauteren [27] apply LLL-algorithm to find an optimal polynomial of fam-
ily elliptic curves. However, the short vector h output by LLL-algorithm satisfy-
ing ‖ h ‖1≤ r1/ϕ(k) may not meet the condition of optimal pairing in proposition
1.
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Applying Proposition 2, for a given elliptic curve, we provide the following
algorithm which can output an optimal polynomial if there exists one. Let

Ak,j = {(h0, · · · , hj−1, hj+1, · · · , hϕ(k)−1)|hi ∈ Z, (
∏
hi 6=0
i6=j

|hi|) ≤ k2}.

Algorithm 2 Algorithm for finding an optimal polynomial

Input: r, s, k ∈ N satisfy that s is a primitive k-th root of unity modulo r2

Output: an optimal polynomial h with respect to s modulus r

1. For j = 0 to ϕ(k)− 1

2. For h′ ∈ Ak,j , c← −
ϕ(k)−1X

i=0
i6=j

his
i mod r

3. Find the absolute smallest integer hj satisfying sjhj ≡ c mod r,

h← (h0, · · · , hj−1, hj , hj+1, · · · , hϕ(k)−1)

4. Endif (

ϕ(k)−1Y
i=0

hi 6=0

|hi|) ≤ kr1/ϕ(k), and

ϕ(k)−1X
i=0

his
i 6= 0 mod r2

5. j ← j + 1

6. Output h(x) =

ϕ(k)−1X
i=0

hix
i

In practice, ]Ak,j is a small number which is dependent on the embedding
degree k, hence all the cases in step 2 can be exhausted search. Applying the
Euclidean algorithm, one can solve the following equation in step 3

sjx ≡ c mod r.

Therefore, algorithm 2 is an efficient way to determine whether there exists an
optimal polynomial with respect to [k, s] modulus r. However, the following
proposition shows that such optimal polynomial is rare which shows that the
optimal pairing is sparse.

Theorem 2 Let r be a prime number and s be a primitive k-root of unity
modulo r2. Let l = ϕ(k). Then the number of polynomials, which have a root
s and its degree are less than l in Fr[x] is rl−1 − 1. The number of optimal
polynomials of degree less than l in Fr[x] with respect to [k, s] modulo r is at
most k2l.

Proof It is easy to see that there are exactly rl − 1 nonzero polynomials of
degree less than l in Fr[x]. By the step 2 and step 3 of algorithm 2, one can see
that if a polynomial has a root s, then any l − 1 coefficients of the polynomial
can take freely in Fr and the l-th coefficient of the polynomial can be determined
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uniquely by the l−1 coefficients. Hence the number of polynomials, which have
a root s and its degree are less than l in Fr[x] is rl−1− 1. By proposition 2, any
coefficient of an optimal polynomials with respect to k, s modulo r is at most
k2. Therefore, the number of optimal polynomials of degree less than l in Fr[x]
with respect to [k, s] modulo r is at most k2l.

Remark. In practice, the embedding degree k is at most 50 and r is at least
2160. Hence the optimal polynomials of degree less than l in Fr[x] with respect
to [k, s] modulo r is sparse.

4 New optimal pairings

In this section, we introduce some new optimal pairings. Given a positive integer
k, let r ∈ R = {Φk(x)|x ∈ Z} be a prime number i.e., there exists an integer
s′ such that r = Φk(s′), where Φk(x) is the kth cyclotomic polynomial. In this
section, we suppose that s′ ≥ 3k. Let

hi(x) = xi − s′xi−1, 1 ≤ i ≤ k.

The main result in this section is the following theorem.

Theorem 3 Let r, s′ and hi(x), 1 ≤ i ≤ k be defined as above, and s be a k-th
primitive root of unity modulus r2 and s ≡ s′ mod r. Then

1. for 1 ≤ i ≤ k, as,hi
are optimal pairings;

2. as,h1 is the general optimal ate pairing.

The main steps in the proof of Theorem 3 are the following results.

Lemma 1 Let Φk(x) be the kth cyclotomic polynomial. Let r be a prime number
and s′ be an integer such that r = Φk(s′). Then

s′l

s′l + l(s′ + 1)l−1
r ≤ s′l ≤ s′l

s′l − l(s′ + 1)l−1
r.

Proof It is well-known that the kth cyclotomic polynomial is as follows

Φk(x) =
∏

ω∈Cprimitive
nthroot of unity

(x− ω) =
∏

1≤a≤k
(a,k)=1

(x− e2πia/k) ∈ Z[x],

hence it can be rewritten as

Φk(x) = xl + cl−1x
l−1 + · · ·+ c1x + 1,

8



where l = ϕ(k), and |ci| ≤
(

l

i

)
. Therefore

s′l −
∑

0≤i≤l−1

(
l

i

)
s′i ≤ Φk(s′) ≤ s′l +

∑
0≤i≤l−1

(
l

i

)
s′i.

Since
(

l

i

)
≤ l

(
l − 1

i

)
, we have

∑
0≤i≤l−1

(
l

i

)
s′i ≤

∑
0≤i≤l−1

l

(
l − 1

i

)
s′i = l(s′ + 1)l−1,

Which implies that

s′l

s′l + l(s′ + 1)l−1
Φk(s′) ≤ s′l ≤ s′l

s′l − l(s′ + 1)l−1
Φk(s′).

Lemma 2 Let r be a prime number and k be an integer satisfying that k|r− 1.
Then the number of solutions in the equation xk ≡ 1(modr) is k. If sk ≡
1(modr2), then s can be written as s = x0 + y0r mod r2, where

xk
0 ≡ 1 mod r, y0 ≡ (kr)−1(x1−k

0 − x0) mod r.

Proof Since r is a prime number, there exists an generator element g in Z∗
r , i.e.,

for any α ∈ Z∗
r there is an unique integer 1 ≤ a ≤ r−1 such that α ≡ ga mod r.

By the assumption of k|r − 1, it is easy to see that

αk ≡ 1 mod r ⇐⇒ r − 1
k

|a.

This proves the first part of the lemma.
If sk ≡ 1(modr2), then sk ≡ 1(modr) holds. Assume that sk ≡ 1(modr2),

then s can be written as s ≡ x0 + y0r mod r2, where xk
0 ≡ 1 mod r. Therefore

we have
sk ≡ (x0 + y0r)k mod r2

≡ xk
0 + kxk−1

0 y0r mod r2

≡ 1 mod r2,

which completes the proof of the second part of the lemma.

Lemma 3 Let r, s′ be defined as above, and s be a k-th primitive root of unity
modulus r2 and s ≡ s′ mod r. Then, for all 1 ≤ i ≤ k, we have hi(s) ≡ 0 mod r

and hi(s) 6= 0 mod r2.

Proof By the assumption of the lemma, it is not difficult to see that s′ 6=
s mod r2. Since s ≡ s′ mod r, and by the definition of hi(x), we have

hi(s) ≡ 0 mod r.
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Suppose hi(s) ≡ 0 mod r2, then we have

si ≡ ss′i−1 mod r2.

Since gcd(s, r) = 1, this gives s′ ≡ s mod r2, which contradicts to s′ 6= s mod r2,

and the proof is complete.
Proof of Theorem 3 By the assumption of Theorem 3 and from Lemmas

2 and 3, there exists s satisfying s ≡ s′ mod r and

hi(s) ≡ 0 mod r, hi(s) 6= 0 mod r2, 1 ≤ i ≤ k.

Hence, by fact 1, for all 1 ≤ i ≤ k, as,hi are non-degenerate bilinear pairings.
Collected the results in Lemma 1 and Theorem 1 and by the definition of

hi(x), it is easy to see that the number of basic Miller iterations to compute
as,hi

is at most

log s′ + ω(hi)− 1 ≤ (log2

s′l

s′l − l(s′ + 1)l−1
r)/ϕ(k) + 1 ≤ (log2 r)/ϕ(k) + 2,

where we have used s′ ≥ 3k. By the definition of optimal pairing, one can see
that as,hi

are optimal pairings.
Since s′ ≡ s mod r and Q ∈ E(Fq)[r], we can obtain

(fs,h1,Q) = (sQ)− s′(Q) + (s′ − 1)(O) = (sQ)− s′(Q) + (s′ − 1)(O),

so as,h1(Q,P ) = fs,h1,Q(P )qk−1/r is an optimal ate pairing.

5 Constructing pairing-friendly elliptic curves

with optimal pairing

In this section, we introduce an explicit algorithms to construct pairing-friendly
elliptic curve on which the optimal pairings as,hi

can be defined.

5.1 Construction methods

The following well-known observation[11] is crucial for the construction of prime-
order curves with embedding degree k.

Lemma 4 Let k be a positive integer, E/Fq an elliptic curve with ]E(Fq) = hr

where r is prime, and let t be the trace of E/Fq. Assume that r - k. Then E/Fq

has embedding degree k with respect to r if and only if Φk(q) ≡ 0(modr), or,
equivalently, if and only if Φk(t− 1) ≡ 0(modr).
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The following algorithm gives a procedure for constructing pairing-friendly
curve with an optimal pairing. Modifying the Cocks-Pinch method, we get
the following construction method in which the discriminant D can be chosen
arbitrarily. The idea of the following algorithm can be found in some papers for
constructing of family pairing friendly curve, as an example see [14]. Here, we
apply this idea to construct a pairing friendly elliptic curve explicitly.

Algorithm 3 Algorithm for finding an elliptic curve with optimal pairings

Input: Fix a positive integer k and a positive square-free integer D

Output: q, r, t

1. Find a prime number r = Φk(s′) in the sequence

R = {Φk(x)|x ∈ Z}
satisfying (−D

r
) = 1

2. Let t = s′ + 1, and y0 = (t− 2)/
√
−D mod r

3. Let y be the unique lift of y0 to (0, r] and q = (t2 + Dy2)/4

4. Output q, r, t

If q is an integer and prime, then there exists an elliptic curve E over Fq

with a subgroup of order r and embedding degree k. If D < 1010 then E can
be constructed via the CM method.

We observe that there is no reason to believe that y is much smaller than
r, and thus in general q ≈ r2. We conclude that the curves produced by this
method tend to have ρ-value around 2. In this algorithm the CM discriminant
D is chosen arbitrarily.

5.2 Analysis of the construction methods

In this section, we analyse the efficiency of our construction methods.
Step 1 of algorithm 3 is motivated by the fact: if f(x) ∈ Z[x], then a famous

conjecture of Buniakowski and Schinzel (see [19], p. 323) says that a nonconstant
f(x) takes an infinite number of prime values if and only if f has positive leading
coefficient, f is irreducible, and gcd({f(x) : x ∈ Z}) = 1. Cyclotomic polynomial
Φk(x) of which the leading coefficient is 1, is irreducible, and Φk(0) = 1, i.e.
Φk(x) satisfies the conditions of the conjecture. In practice, one can often find
a prime number in the sequence R = {Φk(x)|x ∈ Z}.

There exists polynomial time algorithm to compute the square root of−D mod
r, specially when r ≡ 3 mod 4,

√
−D ≡ (−D)(r+1)/4 mod r. Hence step 2 of

algorithm 3 is efficient.
Collecting the above discussion, for a given integer k, we can apply algorithm

3 to construct an elliptic curve with embedding degree k on which the optimal
pairings as,hi can be defined.
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5.3 Numberical examples

All of the following curves have an optimal pairing defined on it.
Example 1 Let k = 5 and s = 57094839957. We set

r = 34640261313259689881477449669870445086380042674049111402594043543
t = 57094839958
q = 39998256795030531155925764809375559214522321368785033329436687191

1235566665757621323922415237933595159427663709576524209752799124

Then the optimal pairing polynomial with respect to k, s modulo r are

xi − 57094839957xi−1, 1 ≤ i ≤ 5.

Example 2 Let k = 9 and s = 261570885. We set

r = 320284860597467165903904990581461251942458624919751
t = 261570886
q = 341941306426463241768623925118459711481212713770919

55556863115913051154953507224288225124964680813076

Then the optimal pairing polynomial with respect to k, s modulo r are

xi − 261570885xi−1, 1 ≤ i ≤ 9.

Example 3 Let k = 23 and s = 1023. We set

r = 1688745922001227204893597172987980758499206435101929708497973419192320
t = 1024
q = 1659125238645708800159333988894131400894764435807424484608104673532319

669194786771008601182809331447396172665876895208843254029702370960387

Then the optimal pairing polynomial with respect to k, s modulo r are

xi − 1023xi−1, 1 ≤ i ≤ 23.

6 Conclusion

In this paper, we consider the optimal pairing which was introduced by Ver-
cautern and give some properties of optimal pairing. Our result shows that the
optimal pairing is rare. However, we can construct many optimal pairings by us-
ing cyclotomic polynomial and provide an explicit method to construct pairing
friendly curves with optimal pairing. Our algorithm works for arbitrary embed-
ding degree k and large prime subgroups order r. In this paper, we provide an
algorithm for finding an optimal pairing if there exists one which is defined on
the given elliptic curve.
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