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Abstract. We adapt the Cramer, Franklin, Schoenmaker and Yung internet voting proto-
col[12] to the booth setting. In this protocol, expressions of the form g
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are used to define an unconditionally hiding commitment scheme. Because of their homo-
morphic properties, they are particularly suited for voting protocols with unconditional pri-
vacy. In fact, a survey shows that almost all these protocols use, or could benefit from,
these commitments. Though not novel cryptographically speaking, the protocol presented is
interesting from a voting perspective, because it is simple enough to be understood by non-
cryptographers, yet has many desirable properties, such as unconditional privacy, correctness
under the discrete log assumption, individual and universal verifiability, and (optionally) bal-
lot casting assurance. In addition, we discuss interesting relations to and/or simplifications,
of several other protocols, such as the booth voting protocol of Moran and Naor[15], Split-
Ballot[16], MarkPledge[2] and Scratch & Vote[3].

1 Introduction

1.1 Computacional versus unconditional privacy in voting

Voting protocols seem to come in two settings: either the protocol achieves computational privacy
of the ballot and unconditional correctness of the vote count, or the reverse: unconditional privacy
and computational correctness. Just as with bit commitment, achieving both unconditional privacy
and unconditional correctness seems to be impossible, but this question is not fully settled yet (see
[7]).

The overwhelming majority of voting protocols is based on homomorphic encryption and/or on
encryption mixes, so all these protocolos have in common that they provide only computational
privacy, This is somewhat surprising. Already a decade ago it has been argued in the context of
credential mechanism [8] that privacy should be unconditional, since individuals cannot be expected
to assess the strength of cryptographic mechanisms.

In addition, since storage is becoming cheaper every day, we must assume that the data on the
bulletin board will be stored forever. This means that the moment the cryptographic assumption
on which the privacy of the ballots was based is broken, it will be possible to derive who voted
for whom. In other words, with computational privacy we can almost be sure that 30 or 300 years
from now we can know who voter for who. This could raise the possibility for some nasty scenarios,
for instance a dictator who has come to power goes after people who have voted against him (or
his father) several decades ago.

In other words, these proposed voting protocols suddenly have a new, potentially dangerous,
property that classical protocols never had. Though voting protocols based on homomorphic en-
cryption and/or on encryption mixes have many interesting properties, including some advantages,
we believe that the quest for finding suitable protocols with unconditional privacy is justified.

1.2 Unconditionally hiding discrete log commitments

Expressions of the form u(r;x1) := gr0g
x1

1 can be used as a bit commitment scheme which pro-
vides unconditional privacy combined with computational bindingness. Though sometimes called
Pedersen commitments, expressions of this form were first presented in [10] (see page 98). These
commitments are computationally binding, provided that the party who commits cannot break the
discrete log in the group G. They play an important role in many of the protocols presented in this
paper.



Note that if the order of G is q, then these expressionas are not just bit commitments, but
values up to q can be committed too. (If the order q were unknown to the committer, as is the case
with RSA moduli, there is no limit to the values that can be committed to, but this possibility is
not explored here. See [6].)

Unconditionally hiding discrete log commitments, or UHDLC s, as we will call them, can be
generalized to contain an arbitrary number of integer valued commitments without increasing its
size. This can be done by extending the number of generators, resulting in h = gr0g
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l . This property is what makes them important for voting. They

have also many other useful properties.

1.3 Contributions of this paper

Given these uhdlcs, we obtain a straightforward protocol for booth voting. Note that in this setting
we may suppose that the authorities control the hardware and software of the Voting Machine.
This leads to a considerable simplification compared to the protocol proposed by Cramer, Franklin,
Schoenmaker and Yung[12], because in an internet setting one must verify for each incoming vote
whether it has the proper format. A significant part of the CFSY paper is dedicated to solving this
problem.

We can state the contributions as follows:

– The protocol is uncondionally private. As in CFSY, this is a consequence of commitment scheme
used.

– The correctness of the vote count is guaranteed, unless the authorities can break the discrete
log problem in G before the election ends. As in CFSY, this is a consequence of commitment
scheme used.

– The protocol offers Individual Voter Verifiability, meaning that each voter can verify that his
vote is included in the tally.

– Universal Verifiability: Any observer can verify that the tally was calculated correctly.
– Ballot Casting Assurance: Our protocols can be easily extended with the techniques of Mark-

Pledge [17][1]
– The protocol is easy to explain to non-experts, and may suffice for very small elections.
– Some existing election system, such as the Brazilian one, could be enhanced using this protocol,

without a need to modify the existing system.
– The protocol shows interesting relations to and/or simplifications, of several other protocols,

such as the booth voting protocol of Moran and Naor [15], SplitBallot [16], MarkPledge [2] and
Scratch & Vote[3].

1.4 Comparison to other work

To the best of our knowledge, the first voting protocol that provides unconditional privacy was
presented by Bos [5], [4]. His voting protocol only allows Yes/No (encoded as 1 and 0, respectively)
and votes are encoded as simple uhdlcs, i.e. l = 1. The votes and decommitment values are added
using Dining Cryptographer nets modulo suitably chosen moduli, see §5.4. The DC nets used
assume that all voters are online simultaneously, which for a large-scale election is not realistic.

Bos’ work has often gone unnoticed, and a few years later Cramer, Franklin, Schoenmakers
and Yung (CFSY) presented another protocol with unconditional privacy[12]. Their basic version
also uses l = 1 but it encodes a masked vote of two options as {−1, 1}. It uses Pedersen secret
sharing[18] to split the masked vote among the authorities, who add the votes and decrypt the
result in a distributed fashion. CFSY briefly mention Multiway Elections: an extension of their
protocol for elections with more than two options, but provide little detail. Also, CSFY consider
internet voting, which is subtly different from booth voting in several security aspects; see 2.2.

For almost a decade, no progress was made on voting protocols with unconditional privacy.
Then suddenly three different approaches appeared almost simultaneously and independently.

In [20], a non-interactive version of the Dining Cryptographers protocol is presented, in an
attempt to resolve the main disadvantage of the Bos protocol. Unfortunately, to catch a disrupter



large amounts of bit commitments with linear properties are needed. (Using uhdlcs these can
be optimized enormously; in fact this was the original motivation of the search for efficient, un-
conditionally hiding commitment schemes with homomorphic properties.) But though the NIDC
protocol presented there appears sound, its application to voting is still fraught with seemingly
unsurmountable problems (see the final section of that paper for discussion).

At about the same time, Chaum invented PunchScan (www.punchscan.com; for a technical
description see [19, 14]) An important theoretical contribution of PunchScan is that it showed
how to build an election protocol from bit commitment only, though the original papers used
conventional symmetric encryption as a commitment scheme, yielding computational privacy only.
Its successor, Scantegrity[11] is also based on bit commitment.

In [21], the author proposes a merge between Prêt-à-Voter and PunchScan, using the former’s
ballot layout, and the latter’s bit commitment scheme plus auditing process. If used in combination
with an uncondionally hiding bit commitment scheme, an extremely simple voting protocol with
unconditional privacy is obtained.

Moran and Naor have published two different protocols on voting with unconditional privacy.
The protocol presented in [15] uses a voting machine, and is based on a generic commitment scheme.
An optimized version uses uhdlcs, but for a slightly different purpose. The protocol we discuss in
this paper can be thought of as a simplification of theirs, but it should be stressed that the authors
had several other goals, whereas here we strive for simplicity. See Section 6.3 for more discussion.

The protocol presented in the second paper[16] is strongly based on PunchScan, but with a
very interesting extra twist. The voter must vote by splitting his choice over two ballot halves,
which are sent to two different authorities. These two authorities can compute the tally, but they
cannot reconstruct an individual vote without conspiring. So there is no single point of failure with
respect to privacy. See Section 5.5.

1.5 Paper outline

After a short section with some preliminary notions, we describe the protocol in Section 3. In
the next Section, 4, we list the assumptions and then the properties of the protocol. In Section
5 we discuss several mechanism communication mechanisms between the Voting Machine and the
Tallying Authority, exhibiting relationships to existing voting protocols that are uncondionally
private. In Section 6 we list several other interesting observation; such how to add Ballot Casting
Assurance, and how to modify protocols such as Scratch&Vote and MarkPledge.

2 Preliminaries

2.1 Voting terminology

We distinguish the following entities:

– Voters: cast a vote.

– VM=Voting Machine (VM): equipment responsible for recording the voter’s vote, and pass it
to the TA.

– Tallying Authority (TA): responsible for ensuring that votes are counted and anonymity main-
tained beyond the Voting Machine.

– Bulletin Board: mechanism used by the TA to publish data related to the election. An web site
to which information is only appended (never erased) would be sufficient.

– Auditor: certifies that the election results are correct and have been determined by following
the correct procedures.

– Scrutineers: interested third parties that verify whether the election results are correct. The
main difference between them and the Auditor is that the latter chooses the random challenges
to the TA.



2.2 Booth voting versus internet voting

Booth voting is subtly different from internet voting. The difference is that in booth voting the
election authorities have complete control over the hardware and software creates the vote, while
the voter has no a-priori reason to trust it. In internet voting this is the opposite. There we assume
that the voter controls the hardware and software. This means that special checks are needed in
which the authorities verify the format of each incoming vote, This is not an issue in booth voting:
we will simply assume that the election authorities control the hardware and software, and it
therefore trust blindly that the format of the incoming votes is correct. If a machine were defective,
it would simply be replaced.

3 Description of the protocol

In this section we discuss in detail the Multiway Election variation of the protocol presented by
Cramer, Franklin, Schoenmaker and Yung. For simplicity of exposition we first consider only one
Tallying Authority who has total control over the Voting Machine; this will be discussed further
in Section 5. Recall that we consider booth voting, not internet voting.

3.1 Encoding of the vote

We represent the vote for candidate v as a vector (x1, ..., xl) which is 0 everywhere, except in the vth
position, where it equals 1. We apply this vector representation to uhdlcs, obtaining the following
encoding of a vote (cast ballot): h = u(r;x1, · · · , xl) = gr0g

x1

1 · · · gxl

l . Because of the homomorphic
property of UHDLCs, the multiplication of the h’s corresponds to addition of the votes.

3.2 Protocol 1

This suggests the following protocol. Note that parentheses are used to refer to values pertaining
to a particular voter.

Phase 1: System initialization

1. In some public cerimony the system’s parameters G, g0, · · · gl are computed. ◭

Phase 2: The voter’s perspective

1. Voter i presses the candidate of his choice. After a confirmation, the Voting Machine computes
h(i) = u(r(i);x1(i), · · · , xl(i)), which it prints on a receipt, which is given to the voter. We will
discuss its exact format below.

2. The voter steps out of the booth and lends his receipt to a poll worker, who scans it. The
receipt’s image is then processed using Optical Character Recognition or similar techniques,
the result is printed and shown to the voter. The voter confirms the OCR interpretation of the
system, and at this point the voter name and/or id number is associated to the receipt image.
This confirmation corresponds to the casting of the vote. The voter receives an undeniable
proof of this transaction. The poll worker then returns the receipt to the voter, who leaves the
precinct.

3. (Optional) The voter shows his receipt to other voters or to helper organizations, who also scan
and OCR it.

4. After the election is over, the voter goes to the election web site, types his name or voter id, and
verifies that the image of the scanned receipt corresponds with the printed version he received.
If they don’t match, the voter has a proof that the TA is cheating. ◭



Phase 3: Tallying and publishing the votes Let there be V voters, and let i below be an
index ranging over {1, . . . , V }.

1. For each i the voting machine communicates the l + 2 values 〈h(i), r(i) and x1(i), ....xl(i)〉
privately to the tallying authority. Observation: there exist several possible implementations

of the private communication channel between the voting machine and the tallying authority,

which are discussed in Section 5. For now we leave this unspecified.

2. The TA computes the following values:

h∗ :=
∏

h(i) (mod q)
r∗ :=

∑
r(i) (mod q − 1)

x∗

1 :=
∑

x1(i) (mod q − 1)
...
x∗

l :=
∑

xl(i) (mod q − 1)

These values are published on the bulletin board. ◭

Obviously, now the x∗

1, ..., x
∗

l contain the final tally, while r∗ is the decommitment value of h∗.

Since each vote casting record, containing the name of the voter, the receipt image and the
(OCRed) h(i), is published on the bulletin board after the election, any person or entity with
sufficient resources can check the correctness of the tally, as follows:

Phase 4: Verification of the tally

1. Compute h′ :=
∏

h(i) and check whether h′
?
= h∗

2. Check whether r∗ is indeed the decommitment value of h∗ with respect to the tally published

by the TA, i.e. whether h∗
?
= u(r∗;x∗

1, · · · , x
∗

l ) (mod q). ◭

3.3 Suggested layouts for the receipt

In Step 2.2, the voter must confirm the OCR interpretation of the system, meaning she must
compare a bit string on her receipt with the one produced by the system. Clever ballot layouts are
necessary to make this process efficient.

Depending on the group G used for the UHDLC scheme, the value h will be about 200 bits for
elliptic curves, or 1024 bits for the multiplicative group Z∗

p . Having a voter verify the correctness
of many bits in a fast way is possible with some creativity.

One possibility is to use something like base 64 encoding, meaning that the sequence is cut in
6-bit chunks, each of which mapped to the caracters [0-9a-zA-Z+/]. In case of a 210 bit string,
these leads to exactly 35 symbols. Suppose that these symbols are printed on the receipt using a
fairly large point size, such that each symbol is at least one centimeter in height. The procedure is
now as follows: the system scans and OCRs the receipt, and prints the recognized symbols using
exactly the same layout and dimensions as used by the VM. If we assume that either the receipt
or the printout is printed on transparent paper, the voter can easily check equality by putting one
on top of the other; any difference will show clearly.

Even better results can be obtained using the techniques from [9], by representing the bits in

a matrix in which a 0 is represented as and 1 as . Then if the two sheets are put on top
of each other, two different bits will clearly show a square (or as a hole, if one sheet choses the
bit complement representation). And by adding redundancy through the use of error-correcting
codes, the authorities are either forced to cheat on many bits, or to create bit patterns that are
inconsistent with the code.

Note that having the voter confirm the OCR result has the advantage that scrutineers do not
have to OCR from the scanned image, and that no posterior dispute can arise about possible
interpretation errors.



4 Properties of the protocol

We make the following assumptions:

(A) The election authorities cannot break the discrete log problem for the parameters chosen before

the elections ends.

(B) There exists a private channel between the voting machine and the Tallying Authority. We will
return to this point in Section 5

(C) No information about the vote, other than what is sent through the private channel in previous

item, leaves the voting booth.

(D) The voting machine always produces a correctly formatted uhdlc. This assumption was dis-
cussed in Section 2.2.

(E) The decommitment values of all unopened uhdlcs are properly and permanently destroyed

after Phase 4 of the protocol is completed.

Then the protocol has the following properties:

Unconditional privacy For each voter i, the public view, including all receipts and all other data

published on the bulletin board, reveals no information about the voter’s choice. As argued in
CFSY, this is a straightforward forward consequence of the fact that the commitment scheme
used is unconditionally hiding.

Correctness vote count The voting machine and TA cannot change the tally. As argued in
CFSY, the only way the authorities can change the tally is if they can come up with different
decommitment values 〈r′(i) and x′

1(i), ....x
′

l(i)〉 for h∗, but this is equivalent to breaking the
discrete log problem in G, contradicting Assumption A.

Individual Voter Verifiability Each voter can verify that his vote is included in the tally. This
follows from the fact that the value h(i) printed on the receipt is also published on the bulletin
board and is verifiably used in the tally process. CFSY does not have this property since in
their setting there is no booth or receipt.

Universal Verifiability Any observer can verify that the tally was calculated correctly. This fol-
lows from Phase 3 and the homomorphic property of UHDLCs.

Ballot Casting Assurance As described, the voter has no guarantee that the UHDLC given to
him by the VM is indeed a faithful encoding of his choice v. However, our protocol can be
easily extended with the techniques of MarkPledge [17][1]

The TA knows the ballot Any entity that knows the decommitment values can figure out the
vote. This is inherent to the use of an unconditionally hiding commitment scheme. We will
mitigate this property in Section 5.5 considering various TAs.

The Voting Machine knows the ballot A general problem of using a voting machine is that
the hardware knows which button was pressed, so it knows the voter’s choice. We discuss this
in Section 6.2.

5 How to communicate the decommitment values and add them

As is clear from the Figure 1, the voting machine must send the values 〈h(i), r(i);x1(i), . . . , xl(i)〉
to the TA. As already mentioned, it is paramount that the individual values for r(i), x1(i), . . . , xl(i)
remain private. Subsequently, the TA must count the votes as explained in Step 3.2. There exist
various cryptographic techniques to implement this, each with its own characteristics.

5.1 Voting machine and tallying authority located on the same server

Observe that even though we described the TA and VM as two different entities, one can envision
an implementation in which they reside on the same machine. For very small elections this might
suffice.



Fig. 1. Private channels between the VM and the TAs. The thin dashed arrows denote a private communi-
cation channel, the thin arrow denotes a public communication channel, the thick arrows denotes physical,
public channel.

5.2 One-Time Pad

If the VM and the TA are located at different locations, they need a private channel to communicate.
It is very tempting to use conventional techniques, such as symmetric encryption or public key
encryption to encipher the communication between VM and TA. But these techniques do not
provide unconditional privacy and therefore cannot be used.

Instead, the simplest solution is the One-Time Pad. This is easy: we may certainly suppose
that the TA puts a sufficiently long random string in the VM which can be used as an encryption
key.

5.3 Homomorphic encryption

Observe that there is no need for the TA to know the values 〈r(i);x1(i), ....xl(i)〉 of individual
voters. It is sufficient if the TA can add them in order to find the tally. Homomorphic encryption,
like the Paillier system, provides exactly this property: if c1 := E(m1) and c2 := E(m2) are the
encryptions of two messages, then c1 ∗ c2 = E(m1 +m2 (mod M)).

So the VM can send the values encrypted homomorphically to the TA through a private channel.
The TA can add the values while they are encrypted, and only the results will be decrypted using
a private key which is secret-shared among various election officials or authorities.

5.4 Using a Dining Cryptographer’s net

This is the solution proposed by Bos in his thesis. He assumes the existence of a DC net which
operates modulo q − 1. In the context of his thesis this DC net is implemented in an interactive
way, so assuming that all voters are simultaneously online.



As already mentioned in Section 1.4 in [20] another implementation is suggested in which, after
some initialization phase, each voter simply submits a long string, together with a proof that the
format of this string satisfies all he restrictions. As the original DC protocol, this protocol comes
in two flavors: one without any authority and in which each pair of voters exchanges random bits
between them, and another, in which each voter exchanges random bits only with a small number
of authorities.

5.5 Using a Verifiable Secret Sharing Scheme

This is the solution proposed by CSFY. They suggest to use Pedersen’s VSS[18]. This scheme
has the advantage that the authorities can sum the shares locally. I.e. the authorities can each
separately do the necessary steps to tally the votes locally. Consequently, if a sufficient number of
parties cooperate in reconstructing these values, they can reconstruct the tally and publish it.

6 Other observations

6.1 Ballot Casting Assurance

The protocol presented in Section 3.2 has the disadvantage that the voter must trust that the
voting machine faithfully encodes the voter´s choice in the commitment. In [2], Adida and Neff
present a very nice technique to allow a voter to verify that the voting machine created a correct
ballot with the correct choice. In this technique, the machine commits itself towards the voter by
printing a very cleverly constructed commitment of the voter´s choice. The voter now issues a
random challenge, and the machine responds by printing a proof which has the property that it
convinces the voter who has extra side-information, but does not reveal anything to an outsider.

6.2 Secret channels between the voter and the authorities

A second disadvantage of the protocol is that the machine gets to know the choice made by the
voter, so the voter must trust that the machine does not leak this information. It would therefore
be desirable to have protocols in which a voter can cast her vote without the machine knowing the
choice.

Protocols like Prêt-à-Voter and PunchScan are fully paper-based in their original version and
therefore have this property already. However, as is explained in [21], in Prêt-à-Voter the bottom
layer of the ballot is identical for each voter, implying that the vote capture process can be au-
tomated. But instead of printing the image of screen containing the row marked by the voter, we
encode the row marked as a uhdlc. A ballot, printed on transparent paper, is put on the display
of a voting machine. The voter then puts his mark which is encoded using a uhdlc. in which BCA
techniques can be used to verify that the encoding is faithful. So the voter’s choice is split in two,
as explained in [21]: the offset x, which is encoded in the uhdlc of the Ballot Issuing Authority,
and the mark chosen by the voter, enoded in the uhdlc of the voting machine. As depicted in the
diagram below, besides having a voting machine, we now also need a Ballot Issuing Authority.

However, with this modification it is no longer possible to use the vector encoding of votes and
add them homomorphically, since a vote v is split between an offset x, and a mark y. In order to
count the votes, the authorities must first add the commitments to x and y modulo m. Only after
this step, they can proceed tallying the votes. There does not seem a straightforward way to recode
a value v (mod m) to the vector encoding of Section 3.3 using unconditionally hiding commitments
without an authority getting to know v. The resulting protocol is in spirit equivalent to SplitBallot
[16].

6.3 A protocol based on generic commitments

As explained in [21], by generalizing the techniques of Bennett and Rudich it is possible to obtain
a commitment scheme in which two commitments can be added modulo an arbitrary integer N ,
and which is based on any bit commitment. It is therefore possible to emulate the homomorphic



Fig. 2. Private channels between the Voter and the BIA and VM. The thin dashed arrows denote a private
communication channel, the thin arrow denotes a public communication channel, the thick dashed arrow
denotes a physical, private channel. the thick arrows denotes physical, public channel.

properties of uhdlcs, use the encoding of the vote presented in 3.1, and the protocol. By using an
underlying commitment scheme that is universally composable and extending the proofs presented
in [13], it is possible to prove that the complete voting protocol is UC; this is subject of current
research. The resulting protocol would be similar to the one presented in [15], but is simpler to
understand.

One difference with [15] is the encoding of the vote: they use expressions of the form

gr0g
H(“Alice′′)
1 , where H is a collision-resistant hash function. With this encoding the commitments

can not be used to tally the votes, but it is possible to mask (blind) the votes, put them in a table,
and use a straightforward cut-and-choose protocol (at the expense of an expansion by a factor k)
which allows public verification that the tally of the votes is correct. Note that [15] also use ballot
casting assurance.

6.4 Scratch & Vote and MarkPledge

Observe that the encoding of the vote is the equivalent of homomorphic counters (see for instance
Adida [1]) but offering unconditional privacy, not computational. It therefore seems possible that
the Scratch & Vote protocol of Adida and Rivest[3] can be modified to this setting.

MarkPledge 1 [2] uses the same vector encoding of the vote as we do, but then uses homomorphic
encryption based on ElGamal, which offers computational privacy only. Applying uhdlcs instead,
we get Protocol 1 with ballot casting assurance, unconditional privacy, and a mixing/auditing
process which is much simpler. MarkPledge 2 was motivated by reducing the ballot size, but
uhdlcs are already very compact anyway.



6.5 Applying the protocol to internet voting

A security concern is now that the TA cannot longer trust that the h(i) received over some HTTP
connection (behind which supposedly sits a legitimate voter) are of the right format. In the one-
authority scenario this is not a problem, however, since the TA sees the values h(i), r(i) and
x1(i), ....xl(i) anyway, and he simply rejects these votes and published them on the bulletin board.
Another possibility is to use homomorphic encryption; see below.

The upshot is this: in situations where voters are much more concerned with having their vote
included in the tally and either trust the election organizers sufficiently with the privacy of their
vote or do not really care, this protocol is attractive, especially since the math is extremely simple
and no complicated mixing is involved.

Observe that the length of the proof is proportional to the number of candidates, l. When this
number is large, the receipt might become quite long. Therefore, an alternative strategy is to only
print the pledge strings on the receipt, and a cryptographic hash of the other information. The
VM sends this information to the election website where all proofs are verified. The voter needs to
verify that the hash computed corresponds with the hash printed on his receipt.

7 Conclusion

The author strongly believes that the success of voting protocols depends in part on their simplicity.
Protocols that cannot be explained to colleague during lunch with some scribles on a napkin are
probably doomed. In this respect, voting research is different from cryptographic protocol research.
The protocol presented in this paper is fairly simple to explain and to implement; in addition, it
provides unconditional (that is, eternal) privacy.
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