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Abstract. In this paper, we investigate the difficulty of the Isomorphism of Polynomials (IP) Problem as well as one
of its variant IP1S. The Isomorphism of Polynomials is a well-known problem studied more particularly in multivariate
cryptography as it is related to the hardness of the key recovery of such cryptosystems. The problem is the following:
given two families of multivariate polynomials a and b, find two invertible linear (or affine) mappings S and T such that
b = T ◦ a ◦ S. For IP1S, we suppose that T is the identity. It is known that the difficulty of such problems depends
on the structure of the polynomials (i.e., homogeneous, or not) and the nature of the transformations (affine, or linear).
Here, we analyze the different cases and propose improved algorithms. We precisely describe the situation in terms of
complexity and sufficient conditions to make the algorithms work. The algorithms presented here combine linear algebra
techniques, including the use of differentials, together with Gröbner bases and statistical tools such as the birthday paradox
and a totally new object in the IP-context, the so-called Galton-Watson trees. We show that random instances of IP1S with
quadratic polynomials can be broken in time O

`
n6

´
, where n is the number of variables, independently of the number

of polynomials. For IP1S with cubic polynomials, as well as for IP, we propose new algorithms of complexity O
`
n6

´
if the polynomials of a are inhomogeneous and S, T linear. In all the other cases, we propose an algorithm that requires
O

“
n6 · qn/2

”
computation. Finally, we propose several algorithms for different subcases of the full IP problem, the best of

which has complexity O
“
qn/2

”
. These new tools allow to break the challenges proposed by Patarin in practice, and also

raise some fundamental questions about the general security of multivariate public-key schemes.

1 Introduction

Multivariate cryptography is concerned with the use of multivariate polynomials over finite fields in cryptographic schemes.
The use of polynomial systems in cryptography dates back to the mid eighties with the design of C∗ [40], and many others
proposals appeared afterwards [45,46,47,36,56]. The security of multivariate schemes is in general related to the difficulty of
solving random or structured systems of multivariate polynomials. This problem has been proved to be NP-complete [30],
and it is conjectured [3] that systems of random polynomials are hard to solve in practice. As usual when a trapdoor must be
embedded in a hard problem, easy instances are transformed into random-looking instances using secret transformations. In
multivariate cryptography, it is common to turn an easily-invertible collection of polynomials a into an apparently random one
b. It is then assumed that, being supposedly indistinguishable from random, b should be hard to solve. The structure-hiding
transformation is very often the composition with linear (or affine) invertible mappings S and T : b = T ◦ a ◦S. The matrices
S and T are generally part of the secret-key.

The Isomorphism of Polynomials (IP) is the problem of recovering the secret transformations S and T given a and b.
It is a fundamental problem of multivariate cryptography, since its hardness implies the difficulty of the key-recovery for
various multivariate cryptosystems. With the notable exceptions of the HFE encryption and signature scheme [43] and of the
UOV signature scheme [35], most of the multivariate schemes that were broken fell victim of a key-recovery attack, i.e., of a
customized IP algorithm. Notorious examples include C∗ [40], the traitor tracing scheme proposed by Billet and Gilbert [8],
the SFLASH signature scheme [46], the `-IC signature scheme [17], the square-vinegar signature scheme [2] and the Square
encryption scheme [15]. The hardness of the key-recovery problem for HFE or UOV do not rely on the hardness of IP, since
the easily-invertible mapping a is kept secret. In this paper, we do not target a specific cryptosystem nor use the fact that the
system a is built in a special way so that it is efficient to invert. We in fact consider both a and b to be random collections of
polynomials, which is to some extent a worst-case assumption.

An important special case of IP is the IP problem with one secret (IP1S for short). Patarin suggested in 1996 [43] to con-
struct a zero-knowledge public-key authentication scheme relying on the hardness of IP1S, inspired by the Zero-Knowledge
proof system for Graph Isomorphism of [33]. The proposed parameters lead to relatively small key sizes (for instance to secret
and public keys of 256 bits each and no additional information), as the complexity of the problem was believed to be expo-
nential. These parameters have not been broken so far. The IP1S problem is also interesting from a complexity-theoretic point
of view: it has been proved [49] that IP1S is Graph Isomorphism-hard (GI-hard for short). This lead Patarin et al. to claim



that IP1S (and a fortiori IP) is unlikely to be solvable in polynomial time, because no polynomial algorithm is known for GI
in spite of more than forty years of research. On the other hand, GI is not known to be NP-complete. Forging hard instances
of the GI problem is pretty non-trivial, and there are powerful heuristics as well as expected linear time algorithms for random
graphs [26]. This compromises the use of GI as an authentication mechanism, and was part of the motivation for introducing
IP1S as an alternative.
Related Work. As already explained, IP has been introduced by Patarin in [44,43]. In this section, we summarize existing
results on the IP and IP1S problems. The first algorithm for IP, known as the “To and Fro” technique, is due to Courtois
et al. [49]. In its primitive form, this algorithm assumes the ability to invert the polynomial systems, and has therefore an
exponential complexity. Moreover, the image of S has to be known on at least one point, and is found via exhaustive search if
no other solution applies. An improved, vaguely described and highly heuristic version of this algorithm is claimed to find a
few relations on S in time and space O

(
qn/2

)
. It can be mentionned that the “To and Fro” technique has been adapted in [9]

to solve the Linear/Affine Equivalence problem, a parent of IP for SBoxes.
In [25], Perret and Faugère present a new technique for solving IP when S and T are linear (as opposed to affine) invert-

ible mappings. The idea is to model the problem as an algebraic system of equations and solve it by means of Gröbner bases
[12,16]. In practice, the technique turns out to be efficient for instances of IP where the coefficients of all the monomials of
all degree are randomly chosen in Fq . For random instances of IP, the practical complexity is estimated to be O

(
n9
)
. This

complexity corresponds to the empirical observation that the maximum degree reached during the Gröbner basis computa-
tion [22,23] seems to be bounded from above by 3. Note this result no longer holds as soon as the IP instances are “structured”.
Typically, [25] observed that homogeneous instances of IP (in which the polynomials of a and b are homogeneous) are much
harder to solve in practice, and could be then used for an IP based authentication [44,43].

IP1S is a subcase of IP, thus most of the algorithms presented above could be applied to the one secret variant almost
directly. However, several algorithms were developed to exploit the specificities of IP1S. It was shown in [49] that linear
equations on the coefficients of the secret matrix can be obtained in some cases. Our quadratic IP1S technique is based on
an extension of this observation. To our knowledge, the first algorithm dedicated to IP1S can be found in Geiselmann et
al. [31]. We briefly explain the idea in the linear case. The authors of [31] remarked that each row of a matrix solution of IP1S
verifies an algebraic system of equations. They then used an exhaustive search to find the solutions of such system. Soon after,
this technique has been improved by Levy-dit-Vehel and Perret [18] who replaced this exhaustive search by a Gröbner basis
computation. This still yields exponential algorithms, and the improvement induced by this replacement is mostly significant
for instances defined over a “large” field.

Finally, Perret [50] shows that the affine and linear variants of IP1S are equivalent, i.e., one can without loss of generality
restrict our attention to the linear case. In addition, a new approach for solving IP1S using the Jacobian matrix was proposed.
The algorithm is polynomial when the number u of polynomials in a and b is equal to the number of variables n. However,
when u < n, the complexity of this approach is not well understood. Moreover, when the number of polynomials is very
small, for instance u = 2, this algorithm is totally inefficient. Whilst u = n is the classical setting for IP, it is less interesting
for IP1S, where u is typically much smaller than n.

All in all, the existing literature on the IP problem discussed above can be split in two categories: heuristic algorithms
with (more or less vaguely) “known” complexity and unknown success probability [49], and rigourous algorithms that always
succeeds but with unknown complexity [25,50,18,31]. This situation makes it very difficult, if not plainly impossible to
compare these algorithms based on their theoretical features. The class of instances that can be solved by a given algorithm of
the first type is in general not known. Conversely, the class of instances over which an algorithm of the second type terminates
quickly are often not known as well. This lead the authors of IP algorithms to measure the efficiency of their techniques in
practice, or even not to measure it at all (such as Courtois et al. [49]). Several IP and IP1S challenges were proposed by
Patarin in [43], and can be used to measure the progress accomplished since their introduction. Also, the lack of theoretical
understanding of the previous techniques makes it quite difficult to get a clear picture of the secure and broken ranges of
parameters.
Techniques. The algorithms presented here are mostly deterministic, and rely on the two weapons that have dealt a severe
blow to multivariate cryptography: simple linear algebra and Gröbner bases. However, two algorithms also rely on the birthday
paradox, and thus are probablistic by nature. One of them looks for collisions between unranked, unlabelled trees generated
using a recursive process. Our ideas borrow to the recent differential cryptanalysis of multivariate schemes mentionned above.
The analysis of all our algorithms makes heavy use of known linear algerba results, for instance about the dimension of
the commutant of a matrix, and also on known results about random matrices, most notably the distribution of the rank
and the probability of being cyclic. The two most delicate steps involve lower-bounding the dimension of the kernel of a
homogeneous system of matrix equations, and upper-bounding the degree of polynomials manipulated by a Gröbner-basis
algorithm. Analyzing the birthday-based algorithms additionally makes use of known results on the properties of Galton-
Watson trees, which is to our knowledge a completely new tool to address IP/IP1S problems.
Our Results. We present six new algorithms, which are summarized in Figure 1. On the practical side, these algorithms are
efficient: random quadratic IP1S instances and random inhomogeneous instances of IP or IP1S can all be broken in practical
time for any size of the parameters. In particular, all the quadratic IP1S challenges are now broken in a few seconds. The
biggest cubic IP1S challenge is broken in less than 2 CPU-month. The IP1S authentication scheme is thus broken beyond



repair in the quadratic case. In the case of cubic IP1S, the security parameter have to be seriously reconsidered, which makes
the scheme much less attractive in terms of key size.

Problem Degree Subcase Previous state of the art Our contribution

IP1S

2 or 3 u = n, homogeneous Polynomial [50] O
`
n6

´
, section 3.12 u� n

exhaustive search : O
“
qn2

”
3 u� n, inhomogeneous O

`
n6

´
, section 3.2

u� n, homogeneous O
“
n6 · qn/2

”
, section 3.2

IP 2
u = n, inhomogeneous O

`
n9

´
[25] Heuristic : O

`
n3

´
, section 4.1

Rigorous : O
`
n6

´
, section 4.2

u = n, homogeneous/affine O (n · qn) or allegedly O
“
qn/2

”
[49] O

“
n6 · q2n/3

”
, section 5.1

O
“
n3.5 · qn/2

”
, section 5.2

Fig. 1: Our results, compared with previous work.

We present two algorithms to deal with the “easy cases” of the full IP problem, namely when S and T are linear (as
opposed to affine), and when a and b are random and inhomogeneous. These algorithms deal with the same case where the
Gröbner-based algorithm of [25] was already polynomial

(
in O

(
n9
))

, but they are much faster, with respective complexity
of O

(
n3
)

and O
(
n6
)
.

Lastly, we present two algorithms that deal with the hardest case of the IP problem, when a and b are homogeneous. These
algorithms rely on the birthday paradox to find the image of a vector by S, then fall back on the inhomogeneous case. The first
one, which has complexity O

(
n6 · q 2

3n
)

and is simple to analyze, use the fact that the rank is an invariant of the differential
(and essentially reduces to solve “easy” instances of the MinRank problem [13]). The second one uses a new invariant of the
differential, which allows to associate a branching process (i.e., a Galton-Watson tree) to each point, and to find collisions
between such random trees. Its complexity is O

(
n3.5 · qn/2

)
under a plausible conjecture about Galton-Watson trees.

A rigorous analysis of our algorithms is both necessary and tricky. When generating linear equations, special care has to
be taken to count how many of them are independent. The recent history of algebraic cryptanalysis taught us that failure to do
so may have drastic consequences. Additionally, the complexity of Gröbner bases computation, even though a bit more well-
understood now in the generic case, is still often a delicate matter for structured systems. The algorithms presented in this paper
mostly belongs to “rigorous” type. One exception is the heuristic for linear inhomogeneous IP presented in section 4.1. By
showing a case where this heuristic fails, we highlight even more the need for a rigorous analysis. The probabilistic algorithms
of section 5 cannot, by definition, be “rigorous”. However, we analyzed their success probability on random instances, and
give their running time so that this probability is close to one.

A distinctive feature of our algorithms compared to the previous state of affairs, and one of our main theoretical contribu-
tion, is that we characterize the class of instances that can be solved by each algorithm in polynomial time. We then estimate
as rigorously as possible the probability that a random instance falls in this class. The rigorous analysis of the algorithm of
section 4.2 shows that it solves random linear inhomogeneous instances of IP in time O

(
n6
)

with non-negligible probability,
and gives en route a theoretical justification to the empirical observation of a polynomial behavior for the same subproblem
in [25].

Trying to establish the complexity of our algorithms lead us to revisit the techniques of Courtois et al. [49] with new
theoretical tools. Unfortunately, we found out that some of their claims are unfounded if not plainly wrong. While the idea
presented in section 9 (“Some Easy Cases of IP1S”) of [49] is powerful and constitutes a building block of our algorithm, we
show that it cannot break IP1S by itself, contrary to what is implied in [49]. Additionally, in section 10.3 (“Combined Power
Attack”) of the same paper an algorithm is vaguely described and claimed to break the full IP problem in time O

(
qn/2

)
. It

introduced the idea of using the birthday paradox to find relations on the secret matrix S faster than by exhaustive search. We
show that several heuristic assumptions used to establish the complexity and success probability of the algorithm of [49] are
in fact not true. As a consequence, its complexity is higher than expected, and is in fact unknown.

On the theoretical side again, we clarify the question of the relative complexity of various classes of IP subproblems.
We identify the parameters that make an IP instance easy or hard. Such parameters include the homogeneousness of the
polynomials, their degree, the parity of the characteristic of the field, and the presence of an affine part in the linear masks S
and T . We extend the affine/linear equivalence result of Perret [50] to the full IP problem. A consequence is that the hardest
IP instances are not the affine ones, but the linear homogeneous ones. All the previous algorithms that were dealing with the
affine case [49,31] first guessed the affine component of S or T in order to reduce the affine instance to a linear one; these



algorithms were exponential by nature. Our algorithm for random quadratic IP1S instances is polynomial even in the affine
case.

Cryptographic Implications. The consequences of our results are threefold. Our algorithms directly break the authentication
scheme proposed by Patarin in [44], as well as the Hidden Matrix scheme (HM) [48].

Secondly, these improved IP algorithms can be used as intermediate steps in further cryptanalysis: for instance it has
recently been shown [11] that the “subfield” variant of HFE (where all the secrets coefficients are drawn from a subfield to
reduce the size of the public key) was susceptible to an attack in which an instance of the IP problem has to be solved.

Lastly, we hope our algorithms should affect the way the community thinks about multivariate cryptography. We do not
break any new schemes, because all the schemes whose security relied on the hardness of some instances of the IP problem
were already broken by ad hoc IP algorithms. This includes C∗ [40], but also HM [48], SFLASH [46], or more recently
the `-IC scheme [17], the “Medium Field Encryption” (MFE) [52], the “Tractable Rational Map Signatures” [51], all the
numerous variants of the “Tame Transformation Signatures” (TTS) and the 2009 proposal Square [15]. Our algorithms justify
the weakness of all these schemes a posteriori and show that this weakness is fundamental and unavoidable. To some extent,
this raises some questions about the general security of multivariate public-key schemes (MPKS). Thanks to our results, it is
clear that designs of multivariate schemes relying on the hardness of IP are unsound by nature. We must avoid multivariate
schemes having a fixed secret internal polynomial. Instead, the easily-invertible quadratic mapping should be part of the secret
key, but doing so is very likely to lead to the existence of many equivalent keys [55,54], and the resulting situation should be
considered with a particular attention.

Organisation of the paper. In section 2, we present some basic ingredients that explain the Faugère and Perret algorithm
and our basic strategy to solve the IP problem. Then, in section 3, we present our results concerning the IP1S problem with
quadratic and cubic polynomials. In section 4, we present and analyze our deterministic algorithms to solve the IP problem
with two secrets. Finally, in section 5, we present improved probabilistic algorithms for solving IP which use a birthday
paradox and take advantage of Galton-Watson trees. All the proofs have been moved to appendix A.1.

2 Preliminaries

In this section, we give the definition of the differential of a function and we present a basic fact which is the core of the
Faugère-Perret algorithm [25]. Then, we present our meta-algorithm for the IP problem.

Differentials. We denote by Df : Dom2 → Rng the differential of a function f : Dom→ Rng. Df is defined by:

Df(x,y) = f(x + y)− f(x)− f(y) + f(0)

It is easy to see that Df(x,y) = Df(y,x). If f is a polynomial of total degree d, then Df is a polynomial of total degree d,
but of degree d− 1 in x and y. For a given point c ∈ (Fq)n, we define:

∂f

∂c
= Df(c,x)

When f is quadratic, then Df is a symmetric bilinear function, and therefore ∂f
∂c is a linear mapping. By an abuse of notation,

we also denote by ∂f
∂c the corresponding matrix.

A Structural Observation on IP Problems. Amongst the various parameters that influence the hardness of breaking in-
stances of the IP problem, two play a special, correlated role: whether S and T are linear or affine transforms on the one hand,
and whether the polynomials in a and b are homogeneous or not. Let us assume that T (x) = Tc+T` ·x, and S(x) = Sc+S` ·x,
with S`, T` ∈ GLn (Fq). The following lemma is the fundamental result over which the Gröbner-based algorithm of [25] is
built:

Lemma 1. i) For all k ≥ 1, we have:

b(k) = T` ◦
(

a +
∂a
∂Sc

)(k)

◦ S`.

ii) In particular, if S and T are linear, then for all k we have: b(k) = T ◦ a(k) ◦ S.
iii) In all cases, if d is the degree of a and b, then b(d) = T ◦ a(d) ◦ S.
iv) S transforms the set of common zeroes of a into the set of common zeroes of b.
v) If a and b are quadratic, then for any x, we have: S

(
ker ∂b∂x

)
= ker ∂a

∂S·x .



Point iii) of lemma 1 shows that the solution of an affine instance is also the solution of the linear homogeneous instance
formed by taking only the homogeneous component of higher degree of a and b. Conversely, if the linear component of the
solution of an affine instance is known, retrieving the affine part of the solution is often easy, and it can be accomplished using
the technique shown in [32], which we recall. Lemma 1, point i) shows that

T−1
` ◦ b(1) ◦ S−1

` − a(1) =
(
∂a
∂Sc

)(1)

. (1)

Once S` and T` is known, then the left-hand side of (1) may be computed, and the right-hand side is a function of degree
d − 1 of Sc. In the particular case where d = 2, equation (1) in fact describes a system of linear equation that admits Sc as a
solution.

A conclusion is that when the polynomials are quadratic, the linear homogeneous case is complete, and thus contains the
hardest instances. This is in accordance with the experimental results of [25]: they found that their algorithm was polynomial
on linear inhomogeneous instances, and exponential on linear homogeneous instances. This is also in accordance with the
results presented in this paper: polynomial time algorithms are applicable to the inhomogeneous cases (section 3.2 and 4.1),
but only (sub) exponential algorithms deal with the homogeneous cases (in sections 4.3 and 5).

A Meta-Algorithm For IP Problems. In this section, we present a meta-algorithm that can be applied to a wide variety of
“IP-like” situations. To recover the isomorphism between two vectors of polynomials, we go through the following steps:

1. Find linear equations between the coefficients of S and those of T−1. Denote them by S .
2. If S has rank 2n2 − 1, then both S and T−1 can be retrieved, and we are done.
3. Otherwise, (S, T−1) lives in a vector space of dimension k = dimkerS. Applying the algorithm of [25] yields a system
Squad of un2/2 quadratic equations in k unknown.

4. Solve the system of quadratic equations by computing a Gröbner basis of Squad. This gives the two secrets S and T .

This method yields all the possible solutions of a given instance. Moreover, it succeeds with probability one, and is determin-
istic. At the beginning of stage 3, S and T−1 can be expressed as a linear combinaison of k elements. It is expected that the
cost of the whole procedure is dominated by the last step, the complexity of which is difficult to predict in general. However,
if all the equations of Squad were linearly independent, and k(k − 1)/2 ≤ u · n2/2, then the equations of Squad could be
solved by linearization in time O

(
n6
)

(and actually O
(
n5
)

using more sophisticated sparse algebra subroutines). It most be
noted that bigger values of u actually make the problem easier. In practice, if Squad is that overdetermined, the computation
of the Gröbner basis will also be polynomial (with roughly the same complexity) as reported in [25].

The heart of the meta-algorithm therefore lies in collecting independent linear equations, and the main difficulty in analyz-
ing its complexity is estimating the rank of S. This general strategy will be instantiated twice in this paper: for the quadratic
IP1S problem in section 3.1 and for a particular case of the full IP problem in section 4.2.

3 Isomorphism of Polynomials with One Secret

In this section, we investigate more particularly the IP1S problem; i.e., given two sets of polynomials a and b the task is to
find S such that:

b = a ◦ S. (2)

A consequence of the structural observation of section 2 is that solving the linear homogeneous case is sufficient to solve all the
other ones (this observation was also present in [50]). It was pointed out in [49] that if there is only one quadratic polynomial,
then the problem is easily solved in polynomial time (as quadratic forms admit a canonical representation, see [38]). We will
therefore focus on the case of u ≥ 2 quadratic polynomials, and on the case of one cubic polynomial. These problems being
qualitatively pretty different, we study them separately.

3.1 Quadratic IP1S

The quadratic IP1S problem is a good candidate for the application of the general strategy described in section 2. The important
idea that we will use throughout this paper is that by differentiating equation (2), it will be possible to collect linear equations
between the coefficients of S and those of S−1. Indeed, for all vectors x,y ∈ (Fq)n, we have:

∀x,y ∈ (Fq)n , Db(x,y) = Da (S · x, S · y) .

Using the change of variable y′ = S · y, this equation becomes:

∀x,y′ ∈ (Fq)n , Db(x, S−1 · y′) = Da(S · x,y′). (3)



When a and b are of total degree 2, Da and Db are bilinear (symmetric) mappings. In this case, since equation (3) is valid
for all x and y, then in particular it is valid on a basis of (Fq)n × (Fq)n, and substituting fixed basis vectors for x and y
yields linear equations between the coefficients of S and those of S−1. This idea for obtaining linear equations can also be
described relatively simply using the usual theory of quadratic forms.3 If Fq is a field of odd (resp. even) characteristic, then
the set of homogeneous quadratic polynomials is in one-to-one correspondance with the set of symmetric matrices (resp. with
zero diagonal). Let us assume odd characteristic for now, and let P (ak)

(
resp. P (bk)

)
denote the matrix of the bilinear form

associated with ak (resp bk), which is sometimes called the polar form of ak. Recall that the coefficient of index (i, j) of
P (ak) is Dak (ei, ej) /2, where (ei)1≤i≤n is a basis of (Fq)n. We then have:

S :


S−1 · P (b1) = P (a1) · tS

...
S−1 · P (bu) = P (au) · tS

(4)

It is worth noticing that these u matrix equations also hold in characteristic two, if we remove the division by two in the
definition of the polar form. Each such matrix equation yields n2 linear homogeneous equations between the 2n2 coefficients
of S and those of S−1. These last u · n2 linear equations cannot be linearly independent as they admit a non-trivial solution(
S−1, S

)
. The kernel of S is thus non-trivial, and our hope would be that it describes only one solution. When u is strictly

greater than two, this is empirically always the case. When u = 2, however, the situation is not as nice; Theorem 1 below
shows that the kernel of S is of dimension higher that n. This means that solving the linear equations cannot by itself solve
the problem, because they admit at least qn solutions, out of which only very few are actual solutions of the IP1S instance.
This contradicts the hope expressed in section 9 of [49]. However, the linear equations collected this way can be used in the
context of our meta-algorithm described in section 2. We now report on the efficiency of doing so.
Practical Behavior of the Algorithm. We implemented an instanciation of the meta-algorithm of section 2 that collects the
linear equations described by (4) using the computer algebra system MAGMA [10]. Solving the equations of Squad is achieved
by first computing a Gröbner basis of these equations for the Graded-Reverse Lexicographic order using the F4 algorithm [21],
and then converting it to the Lexicographic order using the FGLM algorithm [20]. This implementation breaks all the proposed
quadratic IP1S challenges in negligible time, less than 30 seconds for the biggest one. To illustrate its effectiveness, we built
and broke a random IP1S instance with q = 2, u = 2 and n = 32 in a matter of seconds (recall that the biggest proposed
quadratic IP1S challenge, and never broken before was q = u = 2 and n = 16). The dominating part in the execution of the
algorithm is in fact the symbolic manipulation of polynomials required to write down the equations of Squad. Actually solving
the resulting quadratic equations turns out to be easier than generating them.
Complexity Analysis. As a foreword, we would like to point out that the algorithm empirically works better than what the
analysis suggests. The reason is that we were only able to get a precise bound on the rank of S under an hypothesis on the
instance: we require one of the two quadratic forms (say, a1) to be non-degenerate, and we discuss below that this happens with
a non-negligible probability in the random case. However, if both quadratic forms are of rank, say, n − 1, then the algorithm
still works pretty well, even though our analysis says nothing about it. Our complexity argument boils down to showing that
the kernel of S is of sufficiently small dimension so that computing a solution of Squad is essentially a linearization. Our result
is expressed in terms of the similarity invariantsP1, . . . , Ps of a matrix M . Their product is the characteristic polynomial of
M , ps is the minimal polynomial of M , and Pi divides Pi+1.

Theorem 1. LetA1, A2, B1, B2 be four given matrices of size n×n with coefficients in Fq . Let us consider the set of all pairs
(X,Y ) of n× n matrices satisfying the following linear equations:

S :
{
B1 = X ·A1 · Y
B2 = X ·A2 · Y

Let us assume that S admits at least one solution (S0, Y0), and that A1 is invertible.

i) There is a vector-space isomorphism between the kernel of S and the commutant of C = A2 ·A−1
1 .

ii) n ≤ dim kerS.
iii) Let P1, . . . , Ps be the similarity invariants of C. Then:

dim kerS =
s∑
j=1

(2s− 2j + 1) · degPj

This theorem (proven in annex A.2) directly apply to our study of the quadratic IP1S problem with Ai = P (ai) and Bi =
P (bi).

3 This highlight the fact that the IP1S problem is a bit different in odd and even characteristic.



Application of Theorem 1 to the Random Case. Theorem 1 holds only if P (a1) or P (a2) is invertible (we may swap them
if we wish). If q is odd, then P (a1) is a random symmetric matrix, and the probability that it has a given rank is given by
Lemma 9 (found in annex B). The probability that P (a1) is invertible is about 0.639 for q = 3, and is a (rapidly) increasing
function of q. The probability that either P (a1) or P (a2) is invertible is about 0.870 for q = 3. If q is even, then P (a1) is
a random symmetric matrix with zeros on the diagonal, and the probability that it has a given rank is provided by Lemma 10
(also found in annex B). The probability that P (a1) is invertible if q = 2 is about 0.419 (again, this probability increase
exponentially with q). The probability that either P (a1) or P (a2) is invertible is about 0.662 for q = 2.

Theorem 1 is then applicable in more than half of the cases. When it is applicable, what guarantee does it exactly offer? We
would need to know something about the invariant factors of C. An easy case would be when the minimal and characteristic
polynomials are the same (then there is only one invariant factor, and it is χC). Then Theorem 1 tells us that the dimension of
kerS is n. The probability of this event is given by lemma 11 (found in annex B): for random matrices over F2, and for n big
enough, the proportion of cyclic matrices approaches 0.746. Unfortunately, in even characteristic, C is never cyclic:

Lemma 2. Let q be even. If n is even, then the characteristic polynomial of C, χC , is a square. If n is odd, then the square-free
part of χC is X .

In characteristic two, the minimal polynomial of C is therefore of degree at most n/2, which means that there are at least
two similarity invariants. Therefore the kernel of S is in fact of dimension at least 2n. What we would need to know is the
probability that it is precisely of dimension 2n.

We could not compute precisely this probability, but we measured experimentally that it is about 0.74 for q = 2 (this value
is strikingly close to the proportion of cyclic random matrices...). In this setting, Theorem 1 guarantees that the dimension
of kerS is exactly 2n. This is not completely sufficient to guarantee that we will be able to solve the equations of Squad

by linearization (because we would have 2n2 linear equations in 4n2 variables). However, it creates a system of quadratic
equations so overdefined that the maximal degree of polynomials reached when computing a Gröbner basis appears to be
always upper-bounded by 2 in practice. The computation of the Gröbner basis therefore terminates in time O

(
n6
)

in most
cases.

3.2 Cubic IP1S

In this section, we focus on the case where a and b are composed of a single cubic polynomial. We assume that a and b are
given explicitly, i.e.:

a =
n∑
i=1

n∑
j=i

n∑
k=j

Ai,j,k · xixjxk, b =
n∑
i=1

n∑
j=i

n∑
k=j

Bi,j,k · xixjxk.

As already explained, we can restrict our attention to the homogenous case. The techniques developed previously for the
quadratic case cannot directly applied in this setting. Indeed, the differential is no longer a bilinear mapping, and then there is
no obvious linear equations between the coefficients of a solution and those of its inverse. However, we can combine the use
of the differential together with the Gröbner basis approach proposed in [25]. We denote by S0 = {s0i,j}1≤i,j≤n a particular
solution of IP1S between a and b, i.e., it holds that b = a ◦ S0. For all vectors x,y ∈ (Fq)n, we have:

Da(S0 · x,y) = Db(x, S−1
0 · y).

a and b being of total degree 3, the coefficients of S0 and S−1
0 appear with degree two in the expression of Da and Db

above. Let R be the ring K[s1,1, . . . , sn,n, u1,1, . . . , un,n]. We consider the algebra As of all n × n matrices over R. Let
S = {si,j} and U = {ui,j} in As be symbolic matrices. We denote by Ia,b the ideal generated by all the coefficients in R of
the equations:

Da(S · x,y)−Db(x, U · y) = 0, U · S − 1n = 0n, S · U − 1n = 0n.

It is easy to see that U = S−1
0 and S = S0 is particular solution of this system, and also a solution of IP1S between b and

a. Our goal is to provide an upper bound on the maximum degree reached during a Gröbner basis computation of Ia,b. This
degree, called degree of regularity, is the key parameter in establishing the complexity of the Gröbner basis computation.
Indeed, the cost of computing a Gröbner basis is polynomial in the degree of regularity Dreg of the system4 considered:
O(Nω·Dreg), with 2 < ω ≤ 3 the linear algebra constant, and N the number of variables of system considered. In our case,
N = n2. The behavior of the degree of regularity is well understood for “random” systems of equations [4,5,6] (i.e., regular
or semi-regular systems). On the other hand, as soon as the system has some kind of structure, which is always the case in
cryptography, this degree is much more difficult to predict. In some particular cases, it is however possible to bound the degree
of regularity (see for HFE [24,34]). We prove here that Dreg = 2 for Ia,b under the hypothesis that we know one row of a

particular solution S0, i.e., we assume then that we know the following ideal J =
〈
s1,j − s(0)1,j | j = 1, . . . , n

〉
.

4 This is true in the zero-dimensional case, i.e., when the number of solutions is finite.



Theorem 2. The degree of regularity of Ia,b +J is 2. Therefore, computing a Gröbner basis of this ideal takes time O
(
n6
)
.

Application to the Linear Inhomogeneous Case. If S can be assumed to be a linear bijective mapping, and if a has a non-
trivial homogeneous component of degree 1, then we are in a situation where theorem 2 is applicable, and S can be determined
though a Gröbner basis computation which terminates in time O

(
n6
)
.

Application to the Other Cases. All the other cases reduce to the linear homogeneous case, as mentionned in section 2. In
this setting, the problem is that we do not have enough knowledge on S to make the Gröbner basis computation efficient. A
simple idea would be to guess a colum of S then compute the Gröbner basis. This approach has complexity O

(
n6 · qn

)
as

explained before. The biggest proposed cubic IP1S challenge has u = 1, n = 16 and q = 2. Given one relation on S, the
computation of the Gröbner basis takes 90 seconds on a 2.8Ghz Xeon computer. Since this has to be repeated 216 times, the
whole process takes about two months.
The worst case complexity can be further improved using an idea of [50]. Indeed, according to the author:

b = a ◦ S =⇒ Jb(x) = ST ◦ Ja(S · x),

Jb(x) denoting the Jacobian matrix of b in x (i.e., whose components are partial derivatives of the polynomials of b), and
Ja(S ·x) the Jacobian matrix of a in S ·x. We have then a particular instance of the general IP-problem addressed in the next
sections. In particular, a probabilistic technique is described in Section 5.2 allowing to find one right pair y = S · x in time
O
(
qn/2

)
, leading to a complexity of O

(
n6 · qn/2

)
for the cubic IP1S algorithm.

Miscellaneous Remarks. We conclude this section with a simple idea that could have lead to an improvement, by efficiently
giving a relation on S`, but which fails surprisingly. Let us denote by Za (resp. Zb) the set of zeroes of a (resp. b). Because
of lemma 1, and since S is linear, we have:

S`

(∑
x∈Za

x

)
=
∑
y∈Zb

y

This yields a relation on S`, which is enough to use theorem 2. a and b may be assumed to have about qn−1 zeroes. Finding
them requires time O (qn). The complexity of the attack could thus be improved to O

(
n6 + qn

)
. Surprisingly, this trick fails

systematically, and this happen to be consequence of the Chevalley-Warning theorem [14,53].

Lemma 3. The sum of the zeroes of a cubic form on 5 variables or more over Fq is always zero.

4 Isomorphisms of Polynomials with Two Secrets

In this section we focus on the full IP problem (with two secret affine or linear mappings S and T ). Recall that finding a
polynomial isomorphism between two vectors of multivariate polynomials a and b means finding two matrices S` and T`, as
well as two vectors Sc and Tc such that:

b (x) = Tc + T` (a (S` · x+ Sc)) . (5)

Similarly to the IP1S problem, the hardness of the unrestricted IP problem depends on the parity of the characteristic of the
field. As opposed to the IP1S problem though, it also depends pretty much on whether u = n, whether the polynomials are
homogeneous and whether S and T are linear or affine. We first present two polynomial algorithms that solve the easiest case,
namely the linear homogeneous IP problem with as many polynomial as variables, for which the Gröbner-based algorithm
of [25] is also polynomial. While the latter runs in time O

(
n9
)
, a new heuristic algorithm runs in time O

(
n3
)
, and a more

rigorous variation runs in time O
(
n6
)
.

4.1 The Linear Inhomogeneous Case

We first present a simple heuristic which combine the structural observation of section 2 and the to-and-fro approach [49]. As
before, we will denote by a(1) the homogeneous component of degree one of a (i.e., the linear terms of a). The application of
lemma 1 immediately yields:

b(1) = T` · a(1) · S` (6)

An important observation is the following: in the linear inhomogeneous case we have a priori knowledge on T`, since
T` ·a(0) = b(0). In some cases this knowledge can be “transferred” to S` using an “obvious trick”: assume that b(0) = b(1) ·x
and a(0) = a(1) · y. Then y = S` · x. Note that because of equation (6) the two necessary condition for the obvious trick to
work are in fact the same. When these conditions are satisfied, we say that the obvious trick succeeds.

If a(1) and b(1) are invertible and if a(0) 6= 0, then the obvious trick always succeeds, and it is possible to use it iteratively,
as shown in figure 2. The complexity of this algorithm is O

(
n3
)
. Inverting both a(1) and b(1) can be done once for all. The



Fig. 2 A variant of the “To-and-Fro” IP algorithm using linear terms to go back
1: x1 ← a(0)
2: y1 ← b(0)
3: for i = 1 to n do // At this point one has yi = T` · xi

4: y′i ←
“
a(1)

”−1

· xi

5: x′i ←
“
b(1)

”−1

· yi

6: // And we obtain y′i = S` · x′i
7: yi+1 ← b (x′i)
8: xi+1 ← a (y′i)
9: end for

10: Reconstruct S` from the pairs (x′i, y
′
i) and T` from the pairs (xi, yi).

matrix-vector products takeO
(
n2
)

and there are n of them. Lastly, reconstructing S` and T` takes onlyO
(
n3
)
, because in the

basis (xi)i≤n, S is made of the yi’s. Changing the basis amounts to performing one matrix inversion and two matrix-matrix
products.

This heuristic works well for random inhomogeneous instances (i.e., instances where all the coefficients of all degrees are
randomly chosen). It is straightforward that the number of n× n invertible matrices over Fq is

∏n−1
i=0

(
qn − qi

)
. This tells us

that the probability that a(1) is invertible is about 0.288 when q = 2 (higher for bigger q) and the probability that a(0) 6= 0 is
1 − 1/qn. Again, q = 2 looks like a worst case. For all realistic sets of parameters, the heuristic either fails or terminates in
less than a second, even for parameters that were taking several minutes to the Gröbner-based algorithm of [25].

To highlight the danger of relying on heuristic assumptions when reasoning about IP algorithms, we point out that it is
quite easy to cook up an instance of the IP problem satisfying the two conditions stated above but on which this algorithms
fails completely, since these conditions are necessary but not sufficient.

Suppose that a = T` ◦ a ◦ S`. Such an example in fact came up naturally when studying a variation of HFE [11]. Our
initial “bootstrapping” relation T` · a(0) = a(0) in fact describes an eigenvector x satisfying the equation T` · x = x. Thanks
to equation (6), this relation is transferred to an eigenvector of S` satisfying the equation S` · y = y (with y = a(1)−1 · x).
Now, using the easy and natural way to produce new relations on T`, we obtain other eigenvectors of T` satisfying the same
eigenvalue equation: T` · a(y) = a(y). The number of independent linear relations that we may accumulate this way is
upper-bounded by the dimension of the eigenspace of T` for the eigenvalue 1. This eigenspace cannot span the whole (Fq)n
(otherwise T` would be the identity matrix). The heuristic thus cannot fully determine T`, as after a given point, all the new
linear relations found at each iteration will be linearly dependent from the previous ones.

4.2 A More Robust Algorithm.

We propose a new, “rigorous” algorithm, which albeit less efficiently, is easy to analyze. It is another instanciation of the
meta-strategy of section 2, and it also collects linear equations by differentiating equation (5). The starting point is the fact
that equation (6) provides n2 linear relations between the coefficients of S` and those of T−1

` . This is not enough to recover
the two matrices by linear algebra, since there are 2n2 unknowns. However, if a pair (x,y) such that y = S` · x were to be
known, it would allow us to differentiate equation (5), and this would yield:

∂b
∂x

= T` ·
∂a
∂y
· S`. (7)

This would provide the n2 new linear equations between the coefficients of S` and T−1
` that were required. The problem

thus comes down to finding such a relation (x,y) on S`. This relation can in fact be readily acquired from the public key if
the obvious trick mentionned above succeeds. Again, analyzing this algorithm reduces to estimate the rank of the following
system of linear equations:

S :
{

b(1) = T` · a(1) · S
∂b
∂x = T` · ∂a∂y · S

(8)

Our main tool is again theorem 1. The matrix b(1) is completely random, thus it is invertible with probability
∏n−1
i=0

(
1− qi−n

)
(greater than 0.288 for q = 2). The following lemma summarizes the result.

Lemma 4. Let p be the probability that dim kerS ≤ n+ 2 conditionned on b(1) being invertible. Then:

p ≥ 1− 1
(q2 − 1) (q − 1)

, and lim
n→∞

p =
q5 − 1

q2(q − 1)(q2 − 1)
·
∞∏
i=1

(
1− 1

qi

)



4.3 The Affine and/or Homogeneous Case

As pointed out in section 2, the affine case reduces to linear homogeneous case. Unfortunately, the two methods discussed in
the previous section cannot be applied in the homogeneous case. It is therefore natural to try to “de-homogenize” the problem.
This requires one known relation on S`: if we know y0 = S` · x0, then we define a′(x) = a(x + y0) and b′(x) = b(x + x0),
and we have b′ = T ◦ a′ ◦ S`. It follows that:

a′(2) = a(2) a′(1) =
∂a
∂y0

A first consequence is that the linear component of the de-homogenized version of the instance is never invertible in even
characteristic. This makes the use of the algorithms of section 4.1 tricky, and no complexity analysis is readily available.
There is also a further difficulty. The rigorous algorithm of section 4.2 requires a relation on S` to differentiate equation (5).
Using the de-homogenization relation for this purpose is not possible, as it would yield y0 = S` · x0, b(1) = ∂b

∂x0
, and the two

equations of (8) would in fact be the same.
The obvious trick could still be used, however a′(1) will never be invertible in characteristic two. There is however a non-

zero probability pOT that the obvious trick can still be applied. If b(1) has rank n − k, then a random vector has probability
q−k to be in the range of b(1). Using lemma 12 we see that in characteristic two, pOT =

∑n
i=1 αn,i · q−i

2
. If q = 2, we find

that pOT = 0.390.5 Therefore, in even characteristic, there is a pretty non-negligible chance that two independent relations
on S` are in fact needed for a complete resolution. The problem is then to acquire the initial relation(s) on S`. Below, and in
the next section, we discuss three techniques for decreasing asymptotic complexity. For the sake of simplicity, our discussion
focuses on the case q = 2, but it is nearly always a worst case.
Finding Common Zeroes. Lemma 1 tells us that S` transforms the zeroes of a into those of b. If there are k of them, then
there are

(
k
2

)
ways to match them to obtain two relations on S. The algorithm of section 4.2 has to be run for each combination.

It is known [29] that a random system of n polynomials in n variables has exactly s ≥ 0 common zeroes with probability
1/(e · s!). Finding the zeroes of a and b thus permits to find at least one relation on S` with probability 0.632, and at least
two with probability 0.264. If only one relation has been found, the obvious trick might still apply, and all in all the success
probability of this method is:

pCZ = 1− 2
e

+
pOT
e

Thus, if q = 2, then about 40% of the random instances can be solved in polynomial time after the zeroes have been found.
Solving quadratic equations is typically exponential, but the interest of the method lies in the fact that the constant factors
in the complexity are small, and that in practice, this may be a realistic method. Depending on the value of q, it will be
faster using Gröbner bases (big q), or via exhaustive search (small q). For q = 2, a GPU-based implementation of exhaustive
search solves 48 equations in 48 variables in 30 minutes on a $500 GPU (an Nvidia GT295). Thus the challenge with q = 2,
u = n = 64 has a 40% chance to be breakable in less than 4 GPU-year with inexpensive hardware.

5 Probabilistic Algorithm for IP with Two Secrets

We consider here a probabilistic approach to solve the homogeneous quadratic IP problem. The main idea of these algorithms
is to find two “right pairs” (x,y) such that y = S` ·x, and then use the previous deterministic algorithms to find the complete
solution. To break the O (qn) bound, a natural idea is to use the birthday paradox, and indeed the two algoithms described
below find these right pairs by finding collisions between two subsets of (Fq)n.

5.1 A Rank-Based Approach

To find the right pairs, we use the fact that if y = S` · x, then the rank of ∂b∂x is equal to the rank of ∂a∂y (this is a consequence
of lemma 1). The idea is to restrict our attentions to the subset of (Fq)n over which the differential has a sufficienlty small
rank. If this subset is small enough, the set of pairs (x,y) can also become sufficiently small to be exhaustively testable.
If f is a quadratic map from (Fq)n to (Fq)n, then let Rk(f) denote the subset of (Fq)n formed of points over which the kernel
of the differential has dimension k. If the pair (a,b) has been chosen randomly, then lemma 12 grants us that when q is even:

E
[
|Rk(f)|

]
= αn,k · qn−k(k−1)

where αn,k ∈ [0.16; 3.58] if q = 2. We may expect |Rk| to be non-empty if k ≤ 1
2 +
√
n+ 3. Our algorithm depends on two

parameters ` and k, and is shown in figure 3.

5 We are aware that there are other means to get a new relation on S from a first one. Let us mention for instance the fact that if ker ∂a
∂y

is
of dimension greater than one, other relations might be found easily.



Fig. 3 Rank/Birthday Based Algorithm
1: La ← ` random vectors from Rk(a).
2: Lb ← ` random vectors from Rk(b).
3: for all (x, y) ∈ La × Lb do
4: (a′,b′)← DEHOMOGENIZE(b = T ◦ a ◦ S, using the assumption that y = S · x).
5: if obvious trick succeeds on (a′,b′) then
6: SOLVE(b = T ◦ a ◦ S) // using the algorithm of section 4.2
7: if solution is found then
8: Abort the loop, report success.
9: end if

10: end if
11: end for
12: Report failure.

We say that a right pair (x, y) in La×Lb is such that y = S` · x. The algorithm succeeds if there is a right pair, and if the
obvious trick succeds in the corresponding iteration. The birthday paradox tells us that there is a right pair with probability
higher than 1/2 if ` =

√
|Rk|. This follows from the fact that if (x, y) is a right pair, then ∂a

∂y and ∂b
∂x have the same rank (this

itself follows from lemma 1). We must make sure to have 1/pOT right pairs, so we choose: ` = 1/pOT · q
n−k(k−1)

2 .
The two costly steps in the algorithm are the generation of the lists, and the `2 · POT calls to SOLVE. To generate the lists,

we randomly sample from (Fq)n until the kernel of the differential is k, and we repeat the process until ` vectors have been
accumulated. Lemma 12 tells us that αn,k · q−k(k−1) random trials are necessary in average to find one element of the lists.
Building the lists thus cost ` · qk(k−1) operations on n×n matrices (neglecting the small αn,k constant). The optimal value of
k is therefore: k = 1/2 +

√
n/3 + 1/4. The complexity of the algorithm is then essentially the cost of 1/pOT · q2n/3 calls to

SOLVE, which makes O
(
n6 · q2n/3

)
.

5.2 A Branching Process/Birthday Approach.

To improve the previous approach, we try to define a more precise criterium to detect right pairs. So far, we used the fact that
if (x, y) is a right pair, then ∂a

∂y and ∂b
∂x have the same rank. It is possible to go one step further, by noticing that the following

multiset equality follows from lemma 1, item v:{{
rank

∂a
∂z

∣∣∣∣∣ z ∈ ker
∂a
∂y

}}
=

{{
rank

∂b
∂z

∣∣∣∣∣ z ∈ ker
∂b
∂x

}}
It is even possible to go down one level with nested multisets:{{{{

rank
∂a
∂t

∣∣∣ t ∈ ker
∂a
∂z

}} ∣∣∣∣∣ z ∈ ker
∂a
∂y

}}
=

{{{{
rank

∂b
∂t

∣∣∣ t ∈ ker
∂b
∂z

}} ∣∣∣∣∣ z ∈ ker
∂b
∂x

}}
It should be clear that is would be possible to go as “deep” as we want by nesting more levels of multisets. In fact, these
multisets contain some redundant information: if z ∈ ker ∂a∂y , then we know that y ∈ ∂a

∂z . To avoid this redundancy, we define:

ROOT(f,x) =
{{

LEAF(f,x, t)
∣∣∣ t ∈ ker

∂f

∂x
− Span(x)

}}
LEAF(f,x, z) =

{{
LEAF(f, z, t)

∣∣∣ t ∈ ker
∂f

∂z
− Span(z,x)

}}
This recursive definition allows us to associate to each point of (Fq)n an unranked, unordered, potentially infinite tree such
that if (x,y) is a right pair, then ROOT(b,x) = ROOT(a,y). Let Hk(f) be the set of points x of (Fq)n on which ROOT(f,x)
had depth at least k. Our last algorithm is shown in figure 4. Its analysis requires that we investigate a bit the properties of the
“trees” associated to each point of (Fq)n. For this purpose, we need an extension of lemma 12.

Lemma 5. Let Fq be a field of characteristic two. Let f : (Fq)n → (Fq)n be a random quadratic map, and x be a non-

zero element of (Fq)n such that there exist y ∈
(
ker ∂f∂x

)
− Span(x). The rank of ∂f

∂y follows the distribution of ranks of

endomorphisms of (Fq)n vanishing at x and y. Therefore, for any t in [2, n] the probability that ∂f∂y has rank n− t is:

pn,t =
λ(n− 2)λ(n)

λ(n− t)λ(t− 2)λ(t)
· q(−t)(t−2)



Fig. 4 Branching Process/Birthday Based Algorithm.
1: La ← ` random vectors from Hk(a).
2: Lb ← ` random vectors from Hk(b).
3: P ←

˘
(x, y) ∈ La × Lb

˛̨
ROOT(a, y) = ROOT(b, x)

¯
4: for all (x, y) ∈ P do
5: (a′,b′)← DEHOMOGENIZE(b = T ◦ a ◦ S, using the assumption that y = S · x).
6: if obvious trick succeeds on (a′,b′) then
7: SOLVE(b = T ◦ a ◦ S) // using the algorithm of section 4.2
8: if solution is found then
9: Abort the loop, report success.

10: end if
11: end if
12: end for
13: Report failure.

If the instance (a,b) is randomly chosen, then thanks to lemma 5, ROOT(a, x) will sample random Galton-Watson trees,
in which the number of descendants of each node (except the root) is qi−q2 with probability pn,i, for 2 ≤ i ≤ n. The expected
number of children µ of each node (except the root) and its variance σ2 are therefore:

µ =
n∑
k=2

(
qk − q2

)
pn,k = 1 +O

(
q−n

)
, σ2 =

n∑
k=2

(
qk − q2 − µ

)2
pn,k = q3 − q2 +O

(
q−n

)
Considering the expression of µ, we will consider that our Galton-Watson process is critical.6 It then follows from [1, chapter
I, part A, section 5, theorem 1] that these trees are finite with probability one. It is worthwhile to note that the probability
that such a random tree has depth greater than k is equivalent to 2/(kσ2) [1, chapter I, part B, section 9, theorem 1], and this
shows that E

[
|Hk|

]
= (2/k) · qn−2/(q− 1). Also, the expected total number of nodes after k generation is k+ 1 [42], so that

computing ROOT takes time about O
(
n4
)

. Note that it is always possible to truncate the trees to a certain depth by replacing
the nodes that are too deep with empty multisets, in order to avoid an explosion in the cost of the computation of the tree.

The complexity of the algorithm depends of course on the number of pairs in P , but this quantity is difficult to control.
If all the trees sampled by ROOT have the same shape, then P will be big. On the contrary, if all the trees sampled by ROOT
have different shapes, then P will be very small. The most common tree returned by ROOT is. . . the tree with only one node,
and lemma 12 tells us that it occurs with probability about 0.578 when q = 2. This sounds like bad news, but if we restrict our
attention to trees of a certain height, then we get more “entropy”.

We observed empirically that by randomly sampling
√
|Hn| vectors from Hn we get nearly all-different trees, and this

is sufficient for our purpose (it suggests to set k = n). However, rigorous results about the number of distinct trees obtained
when sampling N times in Hk, for various N and k, were not readily available in the existing literature, to the best of our
knowledge. This is an interesting subject to explore.

Under the conjecture that we get a “small” (say, polynomial in n) number of pairs in P by choosing k = n, then it seems
reasonable to choose ` = 1/pOT ·

√
qn/n. The complexity of the algorithms mainly lies in the cost of generating the lists,

and is O
(
n3.5 · qn/2

)
.

We implemented this algorithm inside the MAGMA computer algebra system, runnning on one core of a 2.8Ghz Xeon
machine. The implementation was not particularly efficient nor optimized. We tried to break a challenge with q = 2, u =
n = 32 (resp. 40). We chose k = n, and ` =

√
qn/n = 11585 (resp. 165794). Generating the two lists took 61 minutes

(resp. 31h). Computing the trees and matching the two lists took 200s (resp. 2h) and resulted in P containing two pairs (resp.
seven), out of which one was right. The whole procedure required 85 Mbytes of RAM (resp 1256Mb). This allows us to claim
that our unoptimized implementation should outperform in practice the “finding the common zeroes” approach described in
section 4.3 for n ≥ 75 if q = 2. Our implementation of this technique was not optimized, and was written in a very high-level
language, and on the contrary our GPU implementation of exhaustive search to find common zeroes is a pretty optimized
piece of software. There is therefore clearly much room for lowering this thershold with a better implementation.

To conclude this part, it is interesting to compare the techniques presented in this section with previously known approach
approach for IP, namely [25]. Due to the lack of space, we postpone this in appendix D.
Some Notes About an Earlier Algorithm. The algorithm we give for the hardest case has a complexity of order qn/2. In
the extended version of [49], an algorithm is given, and its complexity is claimed to be the same. This algorithm has never
been implemented nor tested, and its practical impact is therefore unknown. It is highly heuristic, and its complexity and
success probability are in fact unknown. In this section, we point out several shortcomings in its description and analysis
which convinced us that further analysis is required to fully understand its complexity and its behavior. More specifically, the
following facts are proved in annex C. i) This algorithm fails systematically over Fq with q = 2m if m > 1. ii) One of the

6 In fact it is subcritical, because µ < 1, but the difference is so small that it is not perceptible



suggested “boosting functions” fails systematically, and iii) The non-failing one succeeds with probability 0.144 (instead of
1/2 as claimed originally). We believe that this is enough to justify that this algorithm deserves a further analysis.

6 Conclusion

In this paper, we present algorithms for the IP problem that solve the IP problem with one secret for random quadratic
equations and one cubic equation and with two secrets. Moreover, we explain the complexity, success probability and give
sufficient conditions so that the algorithms work. The basic idea of our algorithm is simple and some of them have been
proposed for example on the IP with one secret but never formally analyzed. We try to find linear relations on the secrets and
then apply Gröbner basis algorithm to linearize the system. In order to find linear relations we use the idea of Faugère and
Perret and the differential of the systems. To deal with the most difficult cases we combine algebraic and statistical tools. All
the proposed IP challenge can be broken in practice by the technique we describe.
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A Some Proofs

A.1 Proof of lemma 1

Proof.

b(x) = Tc + T` · a(S` · x+ Sc)

= Tc + T` ·
(
Da(S` · x, Sc) + a(S` · x) + a(Sc)− a(0)

)
=
[
Tc + T` ·

(
a (Sc)− a(0)

)]
+
(
T` ◦

∂a
∂Sc
◦ S`

)
(x) + (T` ◦ a ◦ S`) (x)

The first statement follows from the application of [25, lemma 4] to the last equality. The second and third statements are
direct consequences of the first one. ut

http://www.minrank.org/hfe.pdf


A.2 Proof of theorem 1

Proof. Because a solution of S exists, then B1 is invertible. Thanks to this, we can write:

S :
{

Y = A−1
1 ·X−1 ·B1

B2 ·B−1
1 ·X = X ·A2 ·A−1

1

Using the particular solution X0 then gives:

S :

{
Y = A−1

1 ·X−1 ·B1

C ·
(
X−1

0 ·X
)

=
(
X−1

0 ·X
)
· C

From there, it is not difficult to see that the kernel of S is in one-to-one correspondance with the commutant of C, the
isomorphism being (X,Y ) 7→ X−1

0 · X . The second point of the theorem follows from the well-known fact that n lower-
bounds the dimension of the commutant of any endomorphism on a vector space of dimension n (see for instance [7, Fact
2.18.9]). The third point follows from a general result on the dimension of the commutant [27, chapter 6, exercise 32]. ut

A.3 Proof of Lemma 2

Proof. First, if q is even then P (a1) and P (a2) are symmetric matrices with null-diagonal. Since the inverse of a symmetric
matrix with null-diagonal is also a symmetric matrix with null-diagonal, it follows that C is the product of two symmetric
matrices with null-diagonal.

If I and J denote subsets of {1, . . . , n} of the same cardinality, then [M ]I,J denotes the minor of M that correspond to
the rows in I and the columns in J . If I = J , the minor is said to be principal.

Let us write χC =
∑n
i=0 aiX

n−i. We have:

ak =
∑
|I|=k

[C]I,I

And by the well-known extension of the Binet-Cauchy Formula, we have:

ak =
∑
|I|=k

∑
|J|=k

[P (a1)]I,J · [P (a2)]J,I

Let us assume that I and J are of size k in the sequel, to lighten the notational burden. We can write:

ak =

(∑
I

[P (a1)]I,I · [P (a2)]I,I

)
+

∑
I 6=J

[P (a1)]I,J · [P (a2)]J,I


The second term of this sum is in fact zero. To see why it is the case, let us consider all subsets of {1, . . . , n} of cardinality k,
and let us denote then by U1, . . . , Um. We may reorganize the terms of the sum:

∑
I 6=J

[P (a1)]I,J · [P (a2)]J,I =
m∑
i=1

∑
j<i

(
[P (a1)]Ui,Uj · [P (a2)]Uj ,Ui + [P (a1)]Uj ,Ui · [P (a2)]Ui,Uj

)
Then, because P (a1) is symmetric, we have [P (a1)]I,J = [P (a1)]J,I , and thus all the terms of the sum cancel out. So we
are left with:

ak =
∑
I

[P (a1)]I,I · [P (a2)]I,I

We now prove that the determinant of a n× n symmetric matrix with null-diagonal is zero if n is odd, and is a square if n
is even. This will show that ak is zero if k is odd, and is a square if k is even.

This property of ak shows that all the coefficients of χC such that k + n ≡ 1 mod 2 are zero, and the others are squares.
This is sufficient to establish the result. ut



A.4 Proof of theorem 2.

Proof. We use the fact that the degree of regularity of an ideal is generically left invariant by any linear change of the variables
or generators [37]. In particular, we consider the ideal I ′a,b generated by all the coefficients in K[x1, . . . , xn, y1, . . . , yn] of
the equations:

Da(S0(S + In)x,y)−Db(x, (U + In)S−1
0 y) = 0, U · S = 0n, S · U = 0n.

It is clear that I ′a,b is obtained from Ia,b by replacing S (resp. U ) by S0(In + S) (resp. (U + In)S−1
0 ). Thus, the degree of

regularity of I ′a,b and Ia,b are equal. Using the same transformation, the ideal J becomes

J ′ = 〈s1,j | j = 1, . . . , n〉 .

We now estimate the degree of regularity of the ideal I ′a,b +J ′. For a reason which will become clear in the sequel, it is more
convenient to work with I ′a,b +J ′. In what follows, F will denote the generators of I ′a,b +J ′. We will show that many new
linear equations appear when considering equations of degree 2. To formalize this, we introduce some definitions related to the
F4 algorithm [22]. In particular, we will denote by Id,k the linear space generated during the k-th step of F4 when considering
polynomials of degree d.

Definition 1. We have the following recursive definition of Id,k:

Id,0(F ) = VectK (F )
Id,1(F ) = VectK (si,jf | 1 6 i, j 6 n and f ∈ Id,0(F ))

+VectK (ui,jf | 1 6 i, j 6 n and f ∈ Id,0(F ))
Id,k(F ) = VectK (si,jf | 1 6 i, j 6 n and f ∈ Id,k−1(F ) and deg(f) ≤ d− 1)

+VectK (ui,jf | 1 6 i, j 6 n and f ∈ Id,k−1(F ) and deg(f) ≤ d− 1) .

Roughly speaking, the index k is the number of steps in the F4/F5 [23] algorithm to compute an element f ∈ Id,k(F ). We
show that I2,1(F ) contains exactly n2+2n linear equations. This means that we have already many linear equations generated
during the first step of a Gröbner basis computation of F .

Lemma 6. I2,1(F ) contains the following linear equations:

{u1,j | j = 1, . . . , n}. (9)

Proof. From the first row of the following zero matrix S · U we obtain the following equations:

s1,1 u1,1 + s1,2 u2,1 + s1,3 u3,1 + · · ·+ s1,n un,1 = 0,
s1,1 u1,2 + s1,2 u2,2 + s1,3 u3,2 + · · ·+ s1,n un,2 = 0,
s1,1 u1,3 + s1,2 u2,3 + s1,3 u3,3 + · · ·+ s1,n un,3 = 0,
· · ·
s1,1 u1,n + s1,2 u2,n + s1,3 u3,n + · · ·+ s1,n un,n = 0

Using the equations s1,j = 0 from the ideal J ′, we obtain then u1,1 = 0, u1,2 = 0, . . . , u1,n = 0. ut

We can also predict the existence of other linear equations in I2,1(F ).

Lemma 7. For all (i, j) ∈ {1, . . . , n}2 the coefficient of y1yixj in Da(S0(S + In)x,y) − Db(x, (U + In)S−1
0 y) is a non

zero7 linear equation modulo the equations of the ideal J ′ and (9). Among these equations, there are n which depend only of
the variables {sk,` | 1 ≤ k, ` ≤ n}.

Proof. We consider the coefficient of the monomial m = y1yixj in the expression

∆ = ∆a −∆b = Da(S0(S + In)x,y)−Db(x, (U + In)S−1
0 y).

Since the monomial m is linear in xj it is clear that the corresponding coefficient in ∆a = Da(S0(S + In)x,y) is also linear
in the variables si,j ; moreover this coefficient is non zero. We have now to consider the coefficient ofm in∆b. Since Db(x,y)
is the differential of an homogenous polynomial of degree 3 we can always write:

Db(x,y) =
n∑
i=1

n∑
j=i

`i,j(y1, . . . , yn)xixj +
n∑
i=1

qi(y1, . . . , yn)xi (10)

7 more precisely, generically non zero.



where `i,j (resp. qi) is a polynomial of degree 1 (resp. 2). Consequently, the coefficient of m in Db is also the coefficient of
y1yi in qj((U + In)S−1

0 y). That is to say, in qj(y) we have now to replace y = (y1, . . . , yn) by ((U + In)S−1
0 y). Thus,

modulo the equations of the ideal J ′ and (9), we can write the product ((U + In)S−1
0 y) as

=


y1
...
...
yn




1 0 0 0
u2,1 · · · · · · u2,n

... · · · · · ·
...

un,1 · · · · · · un,n


∗ ∗ ∗ ∗∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗



=


y1
...
...
yn




∗ ∗ ∗ ∗
(∗u2,1 + · · ·+ ∗u2,n) · · · · · · (∗u2,1 + · · ·+ ∗u2,n)

... · · · · · ·
...

(∗un,1 + · · ·+ ∗un,n) · · · · · · (∗u2,1 + · · ·+ ∗un,n)



=


∗y1 + (∗u2,1 + · · ·+ ∗u2,n)y2 + · · ·+ (∗un,1 + · · ·+ ∗un,n)yn
∗y1 + (∗u2,1 + · · ·+ ∗u2,n)y2 + · · ·+ (∗un,1 + · · ·+ ∗un,n)yn

...
∗y1 + (∗u2,1 + · · ·+ ∗u2,n)y2 + · · ·+ (∗un,1 + · · ·+ ∗un,n)yn


Hence the coefficient of y1yi in qj((U + In)S−1

0 y) is linear in the variables uk,l when i 6= 1 and the coefficient of y2
1 is a

constant. ut

To summarize:

Lemma 8. I2,1(F ) contains exactly n2 + 2n linear equations.

Proof. In I2,1(F ), we have n linear equations from lemma 7, n linear equations from the very definition of J ′, and n2 linear
equations from lemma 7 ut

As explained before, we obtain n2 +2n linear equations for I2,1(F ). However, we have 2n2 variables. So, we have to consider
I2,2(F ), i.e., the equations generated at degree 2 during the second step. Thanks to lemma 8, we can reduce the original system
to a quadratic system in 2n2 − (2n + n2) = (n − 1)2 variables. W.l.o.g we can assume that we keep only the variable ui,j
where 2 ≤ i, j ≤ n. Let F ′ be the system obtained from F after substituting the 2n+ n2 linear equations of lemma 8. All the
monomials in K[x1, . . . , xn, y1, . . . , yn] of Da(S0(S + In)x,y)−Db(x, (U + In)S−1

0 y) have the following shape:

xiyjyk or yixjxk with 1 ≤ i, j, k ≤ n.

Hence the number of such monomials is 2nn(n+1)
2 = n2(n + 1) ≈ n3, which implies that the number of equations in F ′ is

also n3. Thanks to this remark, we will now prove that we can linearize F ′. Let T (F ′) be the set of all monomials occurring
in F ′. We can assume that T (G′) = [t1 < t2 < · · · < tN ]. It is important to remark that t1 = u2,2 up to t(n−1)2 = un,n are in
fact variables. Now, let M be the matrix representation of G′ w.r.t. T (G′). Since we know precisely the shape of the equations
from the proof of lemma 7, it is possible to establish that:

1. most of the equations are very sparse, namely each equation contains about n2 non-zero terms.
2. all the variables t1, . . . , t(n−1)2 occur in all the equations

After a Gaussian elimination of the matrix M , we obtain the following shape:

M̃ =


1(n−1)2 0 0 0

0 × · · · · · ·

0 ×
. . .

...

0 × · · ·
. . .


Hence, we obtain after a second step of computation in degree 2 the equations u2,2 = · · · = un,n = 0. This means that after
2 steps of computation at degree 2, we obtain (n − 1)2 + 2n + n2 = 2n2 linear equations in 2n2. This explains why the
maximum degree reached during the Gröbner basis computation of I ′a,b + J ′ is bounded by 2, and concludes the proof of
theorem 2. ut



A.5 Proof of Lemma 3

Proof. Let us consider the elements of Za having α as their first coordinate, and let us denote by nα their number. These are
in fact the common zeroes of (a, x1 − α). By the Chevalley-Warning theorem [14,53], if a has at least 5 variables, then the
characteristic of the field divides nα. Therefore, their sum has zero on the first coordinate. Applying this result for all values
of α shows that the sum of zeroes of a has a null first coordinate. We then just consider all coordinates successively. ut

A.6 Proof of Lemma 4

Proof. Fortunately, we can use theorem 1, using the hypothesis that b(1) is invertible. The dimension of the kernel of S will be
exactly n if and only if the minimal and characteristic polynomial of C = ∂b

∂x ·
(
b(1)

)−1
are the same. We already mentioned

that this happens with a noticeable probability for random matrices (see lemma 11). Unfortunately, in characteristic two, ∂b∂x
always vanish on x, and C always has a non-trivial kernel. As a consequence, C is hardly random. However, lemma 12 tells us
that C is in fact randomly distributed amongst the set of linear mappings that vanish at x.

Let en = x, and let us extend this vector to a basis e1, . . . , en of (Fq)n. In this new basis, the last column of C is zero.
Expanding the determinant of C − X · 1n along the last column yields χC = X · χC′ , where C′ is the matrix obtained by
removing the last row and the last column of the matrix representing the same endomorphism as C in the new basis. This
shows that the characteristic polynomial of C is the product of X and of the characteristic polynomial of a random matrix of
dimension (n− 1)× (n− 1). This time, since C′ is random, lemma 11 is applicable and tells us about the probability that the
minimal polynomial of C′ is of degree n− 1. If this event happens, there are therefore two possible situations:

1. Either C has only one invariant factor, and the kernel of S has dimension n.
2. Or C has two invariant factors, X and χC′ , and the kernel of S has dimension n+ 2.

ut

B Probabilities For Random Matrices

If q is odd, then the probability that a random symmetric matrix has a given rank is given by the following result.

Lemma 9 ([39], theorem 2). Let N(n, r) denote the number of symmetric matrices of size n× n over Fq and of rank r.

N(n, 2s) =
s∏
i=1

q2i

q2i − 1
·
2s−1∏
i=1

(
qn−i − 1

)
N(n, 2s+ 1) =

s∏
i=1

q2i

q2i − 1
·

2s∏
i=1

(
qn−i − 1

)

If q is even, then the probability that a random symmetric matrix with zeros on the diagonal, has a given rank is given by
this other result.

Lemma 10 ([39], theorem 3). Let N0(n, r) denote the number of symmetric matrices of size n× n over Fq with zeros on the
diagonal and of rank r.

N0(n, 2s) =
s∏
i=1

q2i−2

q2i − 1
·
2s−1∏
i=1

(
qn−i − 1

)
N0(n, 2s+ 1) = 0

Lemma 11 ([28], theorem 1). Let c(n, q) be the proportion of cyclic n × n matrices (i.e., matrices for which the minimal
polynomial is of degree n). We have:

1
q2(q + 1)

< 1− c(n, q) < 1
(q2 − 1)(q − 1)

And asymptotically, we have:

lim
n→∞

c(n, q) =
q5 − 1

q2(q − 1)(q2 − 1)
·
∞∏
i=1

(
1− 1

qi

)



Lemma 12 ([19], theorem 2). Let Fq be a field of characteristic two. Given a random quadratic map f : (Fq)n → (Fq)n,
then and a non-zero element x of (Fq)n:

i) The derivative ∂f
∂x follows the distribution of endomorphisms of (Fq)n vanishing at x;

ii) For any t in [1, n] the probability that ∂f∂x has rank n− t is:

αn,t · q(−t)(t−1) with αn,t =
λ(n− 1)λ(n)

λ(n− t)λ(t− 1)λ(t)
and λ(k) =

k∏
i=1

(
1− 1

qi

)

C A Birthday Paradox Algorithm?

Complete Failure over F2m , m > 1. This algorithm makes a critical use of so-called “boosting functions”. A boosting
function is in fact a pair of functions Fa and Fb such that S` · x = y implies S` · Fb(x) = Fa(y) with non-negligible
probability. The evaluation of Fa and Fb must be efficient (typically, polynomial in the parameters), and the functions are
not assumed to be deterministic. It is expected that Fb(x) is different from both zero and x with a noticeable probability
(otherwise, they do not help much).

The starting point over which boosting functions are constructed in [49] is the observation that for a given vector z, the
sets Ea = {y|a(S` · z + y) = a(y)} and Eb = {x|b(z + x) = b(x)} are in correspondence via S`: Ea = S`(Eb). This
equality between sets can be collapsed to a single vector equality by summing over all the elements:

S` ·

∑
y∈Eb

y

 =
∑
x∈Ea

x

.
This would naturally lead to the definition of a boosting function:

Fa(z) =
∑

a(y+z)=a(y)

y Fb(z) =
∑

b(x+z)=b(x)

x

Unfortunately, as the authors of [49] pointed out, over fields of characteristic two, we have that if x ∈ Eb, then so does
x + z, and the elements of Eb would always sum to a vector collinear to z (a similar result applies to Ea). In any case, no
new information on S` can be obtained this way. To overcome this issue, they suggested to sum over the elements of Eb, but
excluding x + z if x enters the sum. More precisely, they defined:

Fa(z) =
∑

a(y+z)=a(y)
one only∈{y,y+z}

y Fb(z) =
∑

b(x+z)=b(x)
one only∈{x,x+z}

x

In other terms, they suggested using the algorithm shown in figure 5 to compute the sum. In other terms, Fa(z) =
PartialSum(Ea, z) and Fb(z) = PartialSum(Eb, z). Unfortunately again, this way of doing things does not solve the
problem, as we now establish. For this purpose, we first prove a general result on PartialSum.

Fig. 5 : PartialSum(V, z)
1: Ban← ∅
2: sum← 0
3: while V −Ban 6= ∅ do
4: let x be a random element of (V −Ban)
5: Ban← Ban ∪ {x,x + z}
6: sum← sum+ x
7: end whilereturn sum

Lemma 13. Let V be a vector space such that z ∈ V , and c be a vector in (Fq)n. We denote by c+V the affine space formed
by the vectors c+ x, for all x ∈ V .

i) If q > 2 or dimV > 1, then PartialSum(c+ V, z) ∈ Span(z).
ii) If q = 2 and dimV ≤ 1, then PartialSum(c+ V, z) returns either c or c+ z



Proof. Let us denote by k the dimension of V . As a consequence, we have
∣∣V ∣∣ = qk. The vectors that are added to sum on

line 6 are of the form : c+ v, with v ∈ V , and the “while” loop on line 3 is iterated qk/2 times.
If q = 2 and k = 1, the loop is iterated only once, and since V = {0, z}, either c or c + z will be selected, which proves

the second part of our statement.
The number of iterations of the loop is even as soon as q > 2 or dimV > 1. If either one of these conditions is true, then

c being added an even number of times to sum cancels out, and we have that:

PartialSum(c+ V, z) = PartialSum(V, z)

Next, it is known that z 6= 0 belongs to V . Therefore, we can extend z to a basis of V . More precisely, let us denote
by U = Span (b1, b2, . . . , bk−1) a (k − 1)-dimensional vector space such that V = Span(z)

⊕
U . Let us denote by ρ the

projection from V to U (i.e.,, the mapping that keeps only the last k−1 coordinates). To establish the first part of our statement,
we need to show that ρ(sum) = 0 at the end of the loop.

Now, there are exactly q vectors in V that are sent to the same element α of U by ρ. During the loop, q/2 of these vectors
will be selected (the other half being discarded).

– If q = 2, exactly one vector the projection of which is α will be selected, for all α ∈ U . Therefore,

ρ(sum) =
∑
α∈U

α = 0

– If q > 2, because k > 1, then an even number of vectors with the same projection will be selected in the loop, and
therefore their projetions sum up to zero. ut

Corollary 1. Unless q = 2 and the rank of ∂b∂z is n− 1, Fa(z) is collinear to z.

Proof. The set Eb is in fact an affine space: it is easy to see that x ∈ Eb is equivalent to b(z) + Dzb · x = 0. This equation
yields u affine relations, the solution of which can be written:

Eb = c+ ker Dzb

where c denotes a particular solution. It must be noted that z 6= 0 belongs to ker Dzb. Then, lemma 13 concludes the proof. ut

We have shown that as soon as q > 2, this particular boosting function cannot, by any means, provide additional knowledge
on S`, and when using it, the while algorithm is bound to fail. On the other hand, it was also bound to fail when a and b are
injective mappings (since in this case, Ea = Eb = ∅). Note that the same reasoning about the size of the field can be extended
to any boosting function making use of PartialSum.

Systematic Failure of a Boosting Function. An other boosting function is defined in [49], with the aim of overcoming this
last problem:

Ga(z) =
∑

a(y+z)=a(y)+a(z)
one only∈{y,y+z}

y Gb(z) =
∑

b(x+z)=b(x)+b(z)
one only∈{x,x+z}

x

Or, using our terminology:

Ga(z) = PartialSum
(

ker
∂a
∂z
, z
)

Gb(z) = PartialSum
(

ker
∂b
∂z
, z
)

Unfortunately, G cannot be used as a boosting function at all, even if q = 2.

Lemma 14. Gb(z) is collinear to z.

Proof. Here, we have Eb = ker Dzb. By lemma 13 (and in either of the considered cases), we obtain the result. ut

Success Probability of the Boosting Function. So far, we have shown that the algorithm proposed in [49] does not work at
all over Fq with q = 2k > 2. Therefore, it cannot be used to break some of the challenges proposed by Patarin. On the positive
side, it was shown that boosting functions do exist. It is even possible to study them rigorously.

Lemma 15. When q = 2, and assuming that b is chosen randomly amongst all quadratic maps, and that z is randomly
chosen, the success probability of the boosting function is about 0.144 (and not always 1/2 as incorrectly stated in [49]).



Proof. If q = 2, the probability that dim ker ∂b∂z = 1, for a random z, is 2λ(n) according to lemma 12.
If q = 2 and dim ker ∂b∂z = 1, then Eb will be empty if the affine equation b(z) + ∂b

∂z · x = 0 has no solutions. It has
solutions if and only if b(z) belongs to the range of ∂b

∂z . Because ∂b
∂z is of rank n − 1, a random vector belongs to its range

with probability 1/2. Now, ∂b∂z and b(z) are not statistically independent, but they are nevertheless empirically sufficiently
independent for the observed probability to be 1/2.

If it is not empty, then Eb = {c, c+ z}, and sum will be chosen randomly amongst these two vectors. Since a random
choice also takes place in Fa, the probability that the boosting function provides a right relation for S is 1/2, under these
hypotheses.

So all in all, the success probability is exactly λ(n)/2. This quantity is a decreasing function of n that quickly converges
to its limit (0.144). This is confirmed by experiments. ut

It is not very hard to improve on those presented in [49]. More specifically, it is possible, based on the same ideas, to build
a boosting function that succeeds 3 times more often that Fa (by simply returning a random vector from ker ∂a∂z − {z}).

Complexity of Ω
(
n4 · qn/2

)
. Evaluating the boosting function Fa takes O

(
n3
)

operations, as it requires solving a system
of n linear equations in n unknowns. It is clear from the (vague) description of the algorithm in [49] that the boosting function
Ha is evaluated at least n · qn/2 times.

D Comparaison

To conclude this part, it is interesting to compare the techniques presented in Section 5 with previously known approach
approach for IP, namely [25]. To simplify the analysis, we denote simply by T ≈ O

(
qn/2

)
the dominant par of the complexity

of the algorithm 4. As already pointed out, this known approach is efficient (polynomial) in the affine case, but fails in the
homogeneous case. We showed here that it is possible to reduce the homogeneous case to the linear one with the knowledge
of one relation y = S` · x. The cost of [25] in the homogenous case is then ≈ O

(
T 4
)
, i.e. in this paper we have divided by 4

the complexity of [25]. Note that we can a bit improved the complexity of finding a pair (x, S` · x). To do so, we can assume
with good probability (≈ 1/2) that 1 is an eigenvalue of S`. In such case, it it sufficient to find an eigenvector x of S` to have
a right pair as S` · x = 1 · x. So, we have a probabilistic version of [25] working in ≈ O

(
T 2
)
. For the sack of comparison,

we provide below experimental results obtained with [25], and its probabilistic version. We have reported the total number of
operations required for several values of n. This is the exact cost of computing a solution in the affine case with [25] multiplied
by 2n or 2n/2 (i.e. we performed the experiments over F2). We also added the cost of our new algorithm presented in Section
5.

[25] probabilistic [25] This paper
n O

(
q2n
)

O (qn) O
(
qn/2

)
12 240 228 218.5

16 250.5 234.5 222

20 260.4 240.4 225

30 283.9 253.9 232

40 > 280 238.6

The difference will of course increase as n get bigger.
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