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Abstract—In this paper, we present an attack on stream 

cipher implementations by determining the scan chain 

structure of the linear feedback shift registers in their 

implementations. Although scan Design-for-Test (DFT) is a 

powerful testing scheme, we show that it can be used to 

retrieve the information stored in a crypto chip thus 

compromising its theoretically proven security. 
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I. INTRODUCTION 

Stream ciphers are an important class of encryption 
algorithms. They encrypt individual characters of a 
plaintext message one bit at a time. In contrast block 
ciphers operate on large blocks of data. Consequently, 
stream ciphers have simple hardware circuitry, are 
generally faster and consume very low power. Stream 
ciphers are deployed in applications where buffering is 
limited or characters are processed individually such as 
in wireless telecommunications applications. Stream 
ciphers have limited or no error propagation and hence 
are advantageous in noisy environments where 
transmission errors are highly probable. Stream ciphers 
are being widely implemented in Radio Frequency 
Identification (RFID) tags. RFID tags are made up of a 
microchip with some data storage and an antenna. Tag 
readers broadcast an RF signal to access information 
stored on the tags. RFIDs are an important cross-section 
technology whose potential application can be found in 
practically all areas of daily life and business.  
Scan-based attacks exploit the scan chains that are 
inserted into devices for the purpose of test. Until now, 
scan attacks have been demonstrated on DES and AES 
block ciphers [9][13]. By loading pairs of known 
plaintexts that are different in a single bit position in the 
normal mode and then scanning out the internal state in 

the test mode, the positions of all scan elements in the 
scan chain can be determined. Then, based on a 
systematic analysis of the modules in the block cipher 
the secret key is easily discovered. 
Countermeasures against scan-based attacks have also 
been proposed. These include secure scan [13], scan 
chain scrambling [1] and lock and key techniques [2],[3]. 
The secure scan architecture ensures a reset/clear to all 
the register bits in a scan chain when the device switches 
from the secure mode to the non-secure mode. The 
scrambling technique randomizes the order of bits in a 
scan chain and only the authorized tester knows the 
secret order. The lock and key techniques implement key 
checking logic into the chip. Upon detecting a wrong test 
key, the internal states of the chip are scrambled. 
However, since the secret order of scan flip flops of [1] 
or the key checking logic of [2] and [3] is common to all 
chips produced in a batch, maintaining the privacy of 
these secrets becomes an additional security concern for 
mass-produced products.  
In this paper we will propose a scan-based attack on 
LFSR-based stream ciphers. The improved attack does 
NOT require the attacker to scan in any vectors, nor 
provide any input to the design as required by the 
scan-attacks on block ciphers. We will introduce the 
general technique to determine the scan chain structure 
of several types of LFSRs and follow it up with 
demonstrating this attack on six LFSR-based stream 
ciphers DECIM [4], Pomaranch [5], A5/1, A5/2 [6], w7 
[7], and LILI II [8].  
 

II. GENERAL DESCRIPTION OF THE ATTACK 
We assume that the attacker  

• knows the Cipher-Under-Attack (CUA) since all 
stream ciphers discussed in this paper are public; 

• can run the Device-Under-Attack (DUA) for a certain 
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number of clock cycles; 

• can scan out the states of internal registers of DUA via 
scan chains after each clock cycle;  

• does NOT scan in vectors and does not apply chosen 
inputs to the DUA. 
The last assumption makes the proposed attack different 
and more powerful than the one proposed in [9]. After 
each scan out operation, the attacker will obtain a bit 
vector that includes all bits of the LFSR and all bits of 
the architectural registers. We define architectural 
registers as those that are not in the CUA specification 
but are in the DUA implementation. Since LFSRs are 
initialized by the secret key and an initial vector, a 
stream-cipher-based DUA can be reproduced if the initial 
states of all the LFSRs are recovered even though the 
actual secret key itself may not be known. The goal of 
the attacker is to discover the correspondence between 
the bits of the N-bit scan-out vector and the bits in the 
LFSRs in the stream cipher.  
The attacker will scan out the internal registers at the 
time when the DUA is initialized and records the 
scan-out vector V0. He then clocks the DUA by one cycle 
and records the scan-out vector as V1. In this manner, the 
attacker repeats this procedure for a certain number of 
rounds for the DUA and uses all the recorded vectors to 
reconstruct the state information of the DUA.  
 

III. SCAN ATTACK ON LFSRS 
In the following subsections we will describe several 
attacks that target simple but general LFSR structures. 
The attack on a specific CUA is a combination of some 
or all of these attacks. We will analyze the case where the 
scan-out vector consists of the bits from an LFSR and 
architectural registers. The states of the architectural 
registers are assumed to be random. Let N denote the 
length of the scan-out vector and L denote the size of the 

LFSR, N ≥ L. The size of the architectural registers is 
then N-L.  
A. Scan Attack on External (Fibonacci) LFSRs 
Figure 1 shows two L-bit external LFSRs. One has no 
input and the other has one. Since the attack on both are 
the same, we will only illustrate the attack on the former. 

The bits of an external LFSR without an input have the 
following relations:  
Si(t) = Si-1(t-1)  for 1 ≤ i ≤ L-1       (1) 
S0(t) = ∑0≤i≤L-1 (Ci × SL-1-i(t-1)), Ci = 0 or 1  (2) 
Si(t) is the state of ith stage at clock cycle t (scanned out 
as part of the vector Vt) and Si-1(t-1) is the state of (i-1)th 
stage at cycle t-1 (scanned out as part of the vector Vt-1). 
Ci (1 ≤ i ≤ L-1) could be 1 or 0 depending on the 
characteristic polynomial of the LFSR. 

S0 S1 SL-2 SL-1

CL-1 CL-2
C1 C0

S0 S1 SL-2 SL-1

CL-1 CL-2
C1 C0

In
 

Figure 1: An L-bit external LFSR (a) without an input 
and (b) with an input 
To discover the bit-by-bit correspondence between the 
scan-out vectors and the LFSR, the attacker randomly 
picks a bit X from one of the N-bit scan-out vectors, and 

performs an α-search defined below, to discover if X 
belongs to the LFSR: 

α-leftward-search: For a given bit X , this search looks 
for another bit W where W(t-1)=X(t).  

α-rightward-search: For a given bit X , this search 
looks for another bit Y where X(t)=Y(t+1). 
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Figure 2 A leftward-search returns (a) a miss or (b) a hit 
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Let’s consider an 8-bit external LFSR with feedback 
polynomial 1+x3 +x8. To remove any ambiguity we also 
give the corresponding update function of the LFSR as 
S0(t) = S2(t-1)+ S7(t-1). For simplicity, we assume that the 
bits of the scan-out vectors are in the same sequence as 
the bits in the LFSR, i.e. the 1st bit is S0, the 8th bit is S7, 
and the 9th and 10th bits are architectural registers. The 

α-leftward-search on this example is shown in Figure 2. 
Figure 2(a) assumes that the 9th bit of the scan-out 
vectors is chosen to be X. The attacker finds its left 
neighbor W by pruning the “suspect set” of bits which 
initially includes all bits except X. The attacker prunes 
this set by eliminating those bits whose values in Vi are 

different from the bit X in Vi+1. This is one round of 
checking. Since the bits in the LFSR are pseudorandom 
and the bits in the architectural registers are assumed to 
be random, each bit in the scan-out vector has about 50% 
chance to be 1 or 0. The probability of eliminating a bit 
from the suspect set at the nth round equals  

∏1 ≤ t ≤ n-1 PbW(t-1)=X(t) × PbW(n-1)≠X(n) = 0.5n 
where PbW(t-1)=X(t) stands for the probability of 
W(t-1)=X(t).  
On average a bit can be eliminated from the suspect set 
in 2 rounds (average number of rounds, denoted as ANR 
thereafter), and more than 99.99% bits can be eliminated 
from the suspect set in 15 rounds (the maximum number 
of rounds, denoted as MNR thereafter). A bit that 
survives MNR rounds of checking is the W bit with 
very-close-to-1 probability, and the search is said to 

return a hit, as shown in Figure 2 (b). If the search 
returns an empty suspect set (a miss), the attacker 
randomly picks another bit and repeats this procedure 
until he gets a hit. 
A hit discovers two bits, X and W, out of the LFSR. W is 
the left neighbor of X. A discovered bit is called the Left 
Boundary Bit (LBB) if its left neighbor is undiscovered. 
Similarly, a discovered bit is the Right Boundary Bit 
(RBB) if its right neighbor is undiscovered. In this 
example, W is an LBB and X is an RBB. Repeatedly 

applying the α-leftward-search on LBB grows the 
discovered bits until we discover the left-most bit S0 of 

the LFSR. Similarly, repeatedly applying the α- 

rightward-search on an RBB will discover all the bits 
until the right most bit SL-1. When all bits are discovered, 
the structure of the LFSR is automatically identified. It is 
important to note that the scan-out vectors used to 
discover the first bits can be reused to discover the rest of 
bits. Therefore for each DUA the attacker only needs to 
scan out MNR+1 vectors. 
B. Scan Attack on Internal (Galois) LFSRs 
A general structure of an internal LFSR is shown in 
Figure 3. The bits in an internal LFSR have the following 
relations: 

Si(t) = Si-1(t-1)  ⊕ (Ci ⋅ SL-1(t-1))  (1 ≤ i ≤ L-1)  (3) 
S0(t) = SL-1(t-1)        (4) 
Ci (1 ≤ i ≤ L-1) could be 1 or 0 depending on the 
characteristic polynomial implemented by the LFSR. 

S0 S1 SL-2 SL-1

C1 CL-2 CL-1

 

Figure 3 A L-bit internal LFSR 

When Ci = 1, Si(t) = Si-1(t-1) ⊕SL-1(t-1), which is referred 
to as a tap bit. When Ci = 0, there is no feedback 
involved and Si(t) = Si-1(t-1) (1 ≤ i ≤ L-1), which is 
referred to as a non-tap bit. The non-tap bits can be 

discovered by the α-search described above. Discovering 
and identifying the tap-bits need a new type of search, 

called β-search: 
β-leftward-search: For a selected bit X, this search looks 
for a 2-tuple (W, Z) where W(t-1)=X(t) when Z(t-1) = 0, 
or W(t-1)=X(t)’ when Z(t-1) = 1.  

β-rightward-search: For a selected bit X, this search 
looks for a 2-tuple (Y, Z) where X(t)=Y(t+1) when Z(t) = 
0, or X(t)=Y(t+1)’ when Z(t) = 1. 

The β-search is based on the observation that 
Si(t)=Si-1(t-1) or Si(t)=Si-1(t-1)’ when SL-1(t-1) = 0 or 1 

respectively. For the first β-search, the attacker has to 
guess two bits, the neighbor bit of X and SL-1. The 
number of possible 2-tuples for a given bit X is P(U, 2), 
where U is the number of undiscovered bits. However, 

after the first β-search returns a hit, bit SL-1 is identified. 
To discover the remaining bits using β-searches, the 
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attacker needs to guess only one bit. This greatly reduces 
the suspect set of 2-tuples to P(U, 1). The probability of 
eliminating a 2-tuple from the suspect set in the nth round 
equals: 

∏1 ≤ t ≤ n-1 (PbZ(t-1)=1 × PbW(t-1)=X(t)’+ PbZ(t-1)=0 × PbW(t-1)=X(t)) 
× [PbW(n-1) ≠X(n)’ × PbZ(n-1)=1 + PbW(n-1) ≠X(n) × PbZ(n-1)=0] = 

0.5n. 
On average, a 2-tuple can be eliminated from the suspect 
set in 2 rounds (ANR for this search) and more than 
99.99% of false 2-tuples will be eliminated from the 
suspect set in 15 rounds (MNR for this search). The 

attack procedure combining the α and β searches is as 
follows: 
1) The attacker randomly picks a bit and applies the 

α-leftward-search. If the search returns a miss, the 
attacker randomly picks another bit and continues with 

α-leftward-searches until he gets a hit. The hit discovers 
a non-tap bit and its left neighbor which are the RBB and 
LBB of the discovered bits respectively.  

2) The attacker applies the α-leftward-search on LBB 
and the α-rightward-search on RBB. This step is 
repeated to grow the discovered section until either the 
whole LFSR is discovered (LBB = RBB), or both the 
leftward and the rightward searches return misses. The 
latter case indicates that the attacker has reached tap-bits.  

3) The attacker applies the β-leftward-search on the 
LBB and the β-rightward-search on the RBB to locate 
the left neighbor of LBB and right neighbor of RBB, 
which will become the new LBB and RBB respectively. 
Then go to step 2. 
Steps 2) and 3) are repeated until all the bits in the LFSR 

are discovered. Since the β-search will identify bit SL-1, 
this bit can be used to identify all the other tap bits in this 
LFSR. 
C. Scan Attack on Internal LFSRs with Inputs 

S0 S1 SL-2 SL-1

C1 CL-2 CL-1

In  

Figure 4 An internal LFSR of length L with an input 
An internal LFSR with input is shown in Figure 4. The 

bits have the following relations where In stands for the 
input: 

Si(t) = Si-1(t-1) ⊕ (Ci⋅(SL-1(t-1) ⊕ In)), 1≤i≤L-1  (5) 
S0(t) = SL-1(t-1) ⊕ In       (6) 
Ci (1 ≤ i ≤ L-1) could be 1 or 0 depending on the 
characteristic polynomial implemented by the LFSR. 
When Ci = 0, there is no feedback involved and Si(t) = 
Si-1(t-1) (1≤i≤L-1). These non-tap bits can be discovered 

by α-searches. When Ci = 1, Si(t) = Si-1(t-1)  ⊕ S0(t-1) ⊕ 
In. Determining these tap bits, however, requires extra 
effort since In is not accessible by the attacker. The 
attacker considers two tap bits, LBB Si and the RBB Sj at 

the same time. Since Si(t) = Si-1(t-1) ⊕ S0(t-1) ⊕ In and 
Sj+1(t)= Sj(t-1) ⊕ S0(t-1)⊕In, and Si(t) ⊕ Sj+1(t) = Si-1(t-1) 
⊕ S0(t-1) ⊕ In ⊕ Sj(t-1) ⊕ S0(t-1) ⊕ In = Si-1(t-1) ⊕ 
Sj(t-1) 

A new γ-search for such a discovery may be defined as 
follows:  

γ-search: Given a pair of bits X and F, this search looks 
for a 2-tuple (W, G) where W(t-1) ⊕ F(t-1) = X(t) ⊕ G(t).  
The attacker has to guess two bits W and G, therefore the 
suspect set of 2-tuples for bits X and F is P(U, 2) where 
U is the number of undiscovered bits. The probability of 
eliminating a 2-tuple from the suspect set at the nth round 
is: 

(∏1 ≤ t ≤ n-1 PbW(t-1) ⊕ F(t-1) = X(t) ⊕ G(t)) × PbW(n-1) ⊕ F(n-1) ≠ X(n) ⊕ 

G(n) = 0.5n 
On average, a 2-tuple can be eliminated from the suspect 
set in 2 rounds (ANR for this search) and more than 
99.99% of 2-tuples can be eliminated in 15 rounds 
(MNR for this search). An attack procedure combining 

the α and γ searches is similar to the one described 
earlier for combining α and β searches except for the 
following procedure in step 3. 
1) The attacker randomly picks a bit and applies the 

α-leftward-search. If the search returns a miss, the 
attacker randomly picks another bit and continues with 

α-leftward-searches until he gets a hit. The hit discovers 
a non-tap bit and its left neighbor which are the RBB and 
LBB of the discovered bits respectively.  

2) The attacker applies the α-leftward-search on LBB 
and an α-rightward-search on RBB. This step is repeated 
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to grow the discovered section until either the whole 
LFSR is discovered (LBB = RBB), or both the leftward 
and the rightward searches return misses. The latter case 
indicates that the attacker has reached tap-bits.  

3) The attacker applies the γ-search on the bits LBB 
and RBB to locate the left neighbor of LBB and right 
neighbor of RBB, which will become the new LBB and 

RBB respectively. This γ-search always returns a hit. Go 
to step 2.  
Steps 2) and 3) are repeated until all the bits in the LFSR 
are discovered. 
D. Scan Attack on LFSRs with Jump Registers 
A modified jump cell, has been proposed to replace the 
normal register cell used in LFSRs in [10]. Figure 5 
shows a register cell that can work in two modes 
controlled by the Jump Control switch. When the switch 
is open, it works as a normal register cell and when the 
switch is closed, it works as a jump cell. Clocking an 
LFSR using normal cells J times produces the same 
result as clocking once the same LFSR that uses jump 
cells instead. J is the jump index derived from the 
characteristic polynomial. 

Normal

Jump Control

Jump

 

Figure 5 A Jump Cell 
Attacking an LFSR using jump cells does not require any 
new types of searches. However, the number of rounds to 
eliminate a bit/tuple from the suspect set increases. The 
bits in an external LFSR using jump cells have the 
following relations where JC stands for Jump Control: 

Si(t) = Si-1(t-1)  ⊕ JC ⋅ Si(t-1), for 1 ≤ i ≤ L-1,  (7) 
S0(t)=∑0≤i≤L-1(Ci ⋅ SL-1-i(t-1))⊕JC ⋅ S0(t-1), Ci = 0 or 1
          (8) 
Observe that when Si(t-1) = 0, Si(t) = Si-1(t-1). The jump 

version of α-search defined below can discover the bits 
in an external LFSR using jump cells: 

α-leftward-search-J: Given a bit X, this search looks for 
another bit W where W(t-1) = X(t) when X(t-1) = 0.  

α-rightward-search-J: Given a bit X, this search looks 

for another bit Y where X(t-1) = Y(t) when Y(t-1) = 0.  
The probability of eliminating a bit from the suspect set 
at the nth round is  

∏1 ≤ t ≤ n-1 (PbX(t-1)=1+ PbX(t-1)=0 × PbW(t-1)=X(t)) × (PbX(n-1)=0 × 
PbW(n-1)≠X(n)) = (3/4)n-1×1/4 

On average it needs 4 rounds to eliminate a bit from the 
suspect set and more than 99.99% bits will be eliminated 
from the suspect set within 33 rounds (MNR). The ANR 
to eliminate a suspect tuple and the MNR to eliminate 
more than 99.99% tuples from the suspect set are all 
doubled. The attack procedure of the LFSRs using 
normal cells can also be applied to the LFSRs using 
jump cells. 
E. Scan Attack on irregular clock controlled LFSRs 
Irregularly stepping the LFSR through successive states 
is a method to increase the linear complexity of an LFSR 
while preserving a large period and good statistical 
properties. Stream ciphers based on regularly clocked 
LFSRs are susceptible to basic and fast correlation 
attacks [11][14]. Irregular clocking limits the 
possibilities for mounting classical correlation attacks. 
For chips using irregular clocked LFSRs, consecutive 
scan-out vectors could be partly or completely the same. 
These redundant vectors should be abandoned. To 
determine if a vector is redundant, the attacker can check 
if the bits of interest to the search (i.e. the (X W) in an 

α-search, the (X W Z) in a β-search, and the (X W F G) in 
a γ-search) have different values from the bits in the 
previous vector. The ANR and MNR to eliminate the 
bits/tuples from a suspect set increases inversely with the 
probability of the LFSR being clocked in a cycle.  
F. Scan Attacks on Stream Ciphers with Multiple LFSRs 
Most LFSR-based stream ciphers use more than one 
LFSR. To determine the scan chain structure, we need to 
tell them apart. If the LFSRs have different lengths, we 
can easily tell them apart. If the LFSRs have the same 
length, we can still tell them apart by matching their 
unique feedback functions.  
 

IV. PUTTING IT ALL TOGETHER: ATTACKS ON 
SELECTED STREAM CIPHERS  

A. DECIM 
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DECIM is a stream cipher submitted to the ECRYPT 
eSTREAM project [11]. It uses an 80-bit key and a 
64-bit IV, and a 192-bit external LFSR. The key stream 
generation mechanism is shown in Figure 6. The bits of 
the external LFSR are numbered from 0 to 191. The 
Boolean function f is a 13-variable quadratic symmetric 
function. ABSG is an irregular decimation mechanism. 
DECIM uses a 32-bit key buffer to maintain a constant 
throughput for the key stream. The LFSR is regularly 
clocked. 

191190…10

f

ABSG Buffer
keystream

 
Figure 6 DECIM Stream Cipher 

To attack DECIM, the α-search suffices. While we have 
estimated that the MNR=15 is sufficient for an α-search, 
we used MNR=17 in our simulation to ensure a high 
level of confidence. The total number of rounds of 
comparisons performed is around 17×N=17×228 = 3876.  
B. A5/1 
A5/1 is a stream cipher used for encrypting over the air 
transmissions in the GSM standard. A GSM conversation 
is transmitted as a sequence of 228-bit frames (114 bits 
in each direction) every 4.6 milliseconds. To ensure 
privacy, each frame is XORed with a 228-bit keystream 
produced by the A5/1. As shown in Figure 7, A5/1 
cipher uses three external LFSRs – R1, R2, and R3 of 
lengths 19, 22, and 23 bits, respectively. At each cycle, 
after the initialization phase, the left-most bits of the 
LFSRs are XORed to produce one bit key. The three 
LFSRs are irregularly clocked depending on the output 
of a majority function M. M computes the majority of S8 
of R1, S10 of R2 and S10 of R3. An LFSR will shift only 
when the state of its selected bit equals M.  

… 80 1 … 17 18

… 100 1 … 20 21 key
stream

Majority 
function

R3

R2

R1

… 100 1 … 21 22

 
Figure 7: A5/1 Stream Cipher 

To attack A5/1, we need to apply α-searches to 
determine the three register segments. After that, we can 
tell them apart by their lengths. The number of vectors 
used by our simulation is 32 (ie. MNR =31) and the total 
number of rounds of comparisons is about 
31×N=31×64=1984. 
C. A5/2 Stream Cipher 
A5/2 is a stream cipher used to provide voice privacy in 
the GSM cellular telephone protocol. A5/2 is built from 
four external LFSRs of lengths 19, 22, 23, 17 bits 
denoted by R1, R2, R3 and R4 respectively, shown in 
Figure 8. Each LFSR is updated by its own primitive 
feedback polynomial. Clocking of R1, R2 and R3 is 
controlled by R4 and R4 is regularly clocked in each 
clock cycle. A majority function is attached to an LFSR 
and outputs the majority of three selected bits from the 
attached LFSR. The outputs of all the majorities and the 
right most bit from each register are XORed to form the 
output bit. 

key
stream
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R2

R3

R4

Majority function

Majority function

Majority function

C
locking unit

16
15

1
0

0 1 … 21 22

0 1 … 20 21

0 1 … 17 18

 
Figure 8: A5/2 Stream Cipher 

The procedure to attack A5/2 is basically the same as 
that of A5/1. The number of scan vectors used in our 
simulation is 42 (i.e MNR = 41) and the total number of 
rounds of comparisons is approximately 41×81=3321. 
D. W7 
W7 is a synchronous stream cipher optimized for 
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efficient hardware implementation [7]. W7 cipher 
contains eight similar modules each of which consists of 
three external LFSRs and one majority function as 
shown in Figure 9. The majority function in a module 
controls the clocking of the LFSRs in the module and the 
clocking principle is the same as that of A5/1. The 
outputs of cells compose a byte of key stream.  

Since all the LFSRs are external, applying α-search is 
sufficient to discover the bits of all the LFSRs. The 
identity of a LFSR can be told by matching the unique 
lengths and feedback functions of discovered LFSRs. 
The MNR used in our simulation is 83 and the total 
number of rounds of comparisons is around 
83×N=83×1024=84992. 
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Figure 9: A module in W7 stream cipher 
E. LILI II Stream Cipher 
LILI-II is a simple and fast stream cipher that uses two 
internal LFSRs. As shown in Figure 10, there are two 
subsystems: one subsystem is for generating an irregular 
clock that controls the other subsystem that produces key 
stream. The LFSR in the clock-control subsystem is 
regularly clocked. The Fc function in the system takes S0 
and S126 and computes Fc = 2S0 + S126 + 1. Since the 
possible output of Fc could be 1, 2, 3, or 4, the LFSR 
used in data-generation subsystems is clocked 1, 2, 3, or 
4 times respectively between two consecutive key bits. 

LFSRc LFSRd

Fc=2x0+x126+1 Fd

Clock control Data generation

keystream

 

Figure 10: LILI II Stream Cipher 
Since both of the two LFSRs are internal, applying 

α-search and β-search can discover all the bits. The 

identities of the two LFSRs can be told by matching the 
lengths. The MNR used by our simulation is 62 and the 
number of rounds of comparisons is about 
62×N=62×255=15810. 
F. Pomaranch Stream Cipher 
Pomaranch is a hardware oriented stream cipher 
submitted to the ECRYPT eSTREAM project. The 
keystream generator of Pomaranch is called Cascade 
Jump Controlled Sequence Generator consisting of 9 
modules as shown in Figure 11 (a). Each module has an 
18-bit shift register using a bunch of F and S cells as 
shown in Figure 11 (b). An F cell works like a jump cell 
when JCi of this module is 1, or like a regular shift cell 
when JCi is 0. Oppositely, an S cell works like a jump 
cell when JCi of this module is 0, or like a regular shift 
cell when JCi is 1. All cells are regularly clocked. The 
inputs to the Key Map comprises of 9 bits from the 
LFSR and 16 bits of the secret key. The 1-bit output of 
the Key Map is sent to the next module as the JCi. For 
the 9 modules, all the even numbered modules share a 
configuration of F and S cells and a feedback function, 
while all the odd numbered modules share another 
configuration of F and S cells and another feedback 
function. 

1289 …

H

keystream

JCiJCi

JCo

JCi
JCi

JCo
JCo

… 8 × 16 key bits

123456789101112131415161718

Key Map 16 key bitsJCo to next module

JCi

SSFSSSFSFFFFFFSFSS

‘0’

(a)

(b)

 

Figure 11: Pomaranch stream cipher (a) Top level (b) 
The odd module 

The attack steps are as follows: 
1) Discover the 9 LFSRs by applying the jump version 

of α-search; 
2) Identify if a discovered LFSR belongs to an odd 
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module or an even module by matching its feedback 
function;  
3) Since the JCi of the first module is 0 always, it will 
match the discovered LFSR whose F and S cells never 
switch modes.  
4) For the remaining modules, the cell working modes 
depend on the JCi of the module that in turn depends on 
the LFSR and the 16-bit key used by the previous 
module. Since the LFSR of the first module is identified 
in step 3), we can guess JCi by simulating every possible 
16-bit key (from 0x0000 up to 0xFFFF) and see if it 
agrees with the cell working modes of any discovered 
LFSR that belongs to an even module. 
5) Repeat step 4 above to attack remaining modules. 
Overall, the MNR used in our simulation is 42. The total 
number of rounds of comparisons is about 
42×N=42×162=6804 
Table 1 summarizes the simulation results of all the 
ciphers we have attacked. Note that the number of scan 
vectors needed to launch such scan-based attack is just 
MNR + 1. The total number of round comparisons equals 

MNR × N, which takes negligible time in a modern 
computer. 

Table 1 The summary of all the ciphers 

Cipher LFSR 
Type 

MNR N Clock 
Control

DECIM External 17 228 Regular

A5/1 External 32 64 Irregular

A5/2 External 41 81 Irregular

W7 External 83 1024 Irregular

LILI II Internal 62 255 Irregular

Pomaranch Jump 42 162 Regular

 
V. CONCLUSIONS 

In this paper we have proposed an improved scan-based 
attack to LFSR-based stream ciphers. The attack 
analyzes the scan-out vectors to discover the internal 
states of DUA. The number of scan-out vectors required 
is less than 20 for some ciphers and is less than 100 for 
all the ciphers attacked in this paper. The CPU time for 
processing the vectors and identifying the bits of LFSR is 
negligible. With the knowledge of the LFSRs used in 

stream cipher devices, an attacker can clone an 
authentication device, eavesdrop a private conversation, 
and etc.  
It is reorganized that not all DFT techniques may 
introduce security vulnerabilities. Even a given DFT 
technique may not introduce security vulnerabilities in 
all chips and in all embedded processors. For example, in 
large chips and processors with over tens of thousands of 
flip flops, test data is typically compressed on chip. This 
adds an additional layer of security that prevents the 
attacker from recovering the bit-by-bit information of the 
scan chains – the attacker would have to work on 
compressed scan-out vectors. However, in embedded 
processors and crypto accelerators used in low end smart 
cards, test data is not compressed owing to the limited 
number of flip flops. With debug becoming mandatory, 
test inputs and test outputs are not compressed even in 
some large processors [15]. 
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