
Scan-based Attacks on Linear Feedback Shift
Register Based Stream Ciphers

Yu Liu, Kaijie Wu, and Ramesh Karri
Abstract—In this paper, we present an attack on stream

cipher implementations by determining the scan chain

structure of the linear feedback shift registers in their

implementations. Although scan Design-for-Test (DFT) is a

powerful testing scheme, we show that it can be used to

retrieve the information stored in a crypto chip thus

compromising its theoretically proven security.

Index Terms—Stream Ciphers, LFSRs, Scan DFT,

Side-channel attack

I. INTRODUCTION

Stream ciphers are an important class of encryption
algorithms. They encrypt individual characters of a
plaintext message one bit at a time. In contrast block
ciphers operate on large blocks of data. Consequently,
stream ciphers have simple hardware circuitry, are
generally faster and consume very low power. Stream
ciphers are deployed in applications where buffering is
limited or characters are processed individually such as
in wireless telecommunications applications. Stream
ciphers have limited or no error propagation and hence
are advantageous in noisy environments where
transmission errors are highly probable. Stream ciphers
are being widely implemented in Radio Frequency
Identification (RFID) tags. RFID tags are made up of a
microchip with some data storage and an antenna. Tag
readers broadcast an RF signal to access information
stored on the tags. RFIDs are an important cross-section
technology whose potential application can be found in
practically all areas of daily life and business.
Scan-based attacks exploit the scan chains that are
inserted into devices for the purpose of test. Until now,
scan attacks have been demonstrated on DES and AES
block ciphers [9][13]. By loading pairs of known
plaintexts that are different in a single bit position in the
normal mode and then scanning out the internal state in

the test mode, the positions of all scan elements in the
scan chain can be determined. Then, based on a
systematic analysis of the modules in the block cipher
the secret key is easily discovered.
Countermeasures against scan-based attacks have also
been proposed. These include secure scan [13], scan
chain scrambling [1] and lock and key techniques [2],[3].
The secure scan architecture ensures a reset/clear to all
the register bits in a scan chain when the device switches
from the secure mode to the non-secure mode. The
scrambling technique randomizes the order of bits in a
scan chain and only the authorized tester knows the
secret order. The lock and key techniques implement key
checking logic into the chip. Upon detecting a wrong test
key, the internal states of the chip are scrambled.
However, since the secret order of scan flip flops of [1]
or the key checking logic of [2] and [3] is common to all
chips produced in a batch, maintaining the privacy of
these secrets becomes an additional security concern for
mass-produced products.
In this paper we will propose a scan-based attack on
LFSR-based stream ciphers. The improved attack does
NOT require the attacker to scan in any vectors, nor
provide any input to the design as required by the
scan-attacks on block ciphers. We will introduce the
general technique to determine the scan chain structure
of several types of LFSRs and follow it up with
demonstrating this attack on six LFSR-based stream
ciphers DECIM [4], Pomaranch [5], A5/1, A5/2 [6], w7
[7], and LILI II [8].

II. GENERAL DESCRIPTION OF THE ATTACK
We assume that the attacker

• knows the Cipher-Under-Attack (CUA) since all
stream ciphers discussed in this paper are public;

• can run the Device-Under-Attack (DUA) for a certain

 1

number of clock cycles;

• can scan out the states of internal registers of DUA via
scan chains after each clock cycle;

• does NOT scan in vectors and does not apply chosen
inputs to the DUA.
The last assumption makes the proposed attack different
and more powerful than the one proposed in [9]. After
each scan out operation, the attacker will obtain a bit
vector that includes all bits of the LFSR and all bits of
the architectural registers. We define architectural
registers as those that are not in the CUA specification
but are in the DUA implementation. Since LFSRs are
initialized by the secret key and an initial vector, a
stream-cipher-based DUA can be reproduced if the initial
states of all the LFSRs are recovered even though the
actual secret key itself may not be known. The goal of
the attacker is to discover the correspondence between
the bits of the N-bit scan-out vector and the bits in the
LFSRs in the stream cipher.
The attacker will scan out the internal registers at the
time when the DUA is initialized and records the
scan-out vector V0. He then clocks the DUA by one cycle
and records the scan-out vector as V1. In this manner, the
attacker repeats this procedure for a certain number of
rounds for the DUA and uses all the recorded vectors to
reconstruct the state information of the DUA.

III. SCAN ATTACK ON LFSRS
In the following subsections we will describe several
attacks that target simple but general LFSR structures.
The attack on a specific CUA is a combination of some
or all of these attacks. We will analyze the case where the
scan-out vector consists of the bits from an LFSR and
architectural registers. The states of the architectural
registers are assumed to be random. Let N denote the
length of the scan-out vector and L denote the size of the

LFSR, N ≥ L. The size of the architectural registers is
then N-L.
A. Scan Attack on External (Fibonacci) LFSRs
Figure 1 shows two L-bit external LFSRs. One has no
input and the other has one. Since the attack on both are
the same, we will only illustrate the attack on the former.

The bits of an external LFSR without an input have the
following relations:
Si(t) = Si-1(t-1) for 1 ≤ i ≤ L-1 (1)
S0(t) = ∑0≤i≤L-1 (Ci × SL-1-i(t-1)), Ci = 0 or 1 (2)
Si(t) is the state of ith stage at clock cycle t (scanned out
as part of the vector Vt) and Si-1(t-1) is the state of (i-1)th
stage at cycle t-1 (scanned out as part of the vector Vt-1).
Ci (1 ≤ i ≤ L-1) could be 1 or 0 depending on the
characteristic polynomial of the LFSR.

S0 S1 SL-2 SL-1

CL-1 CL-2
C1 C0

S0 S1 SL-2 SL-1

CL-1 CL-2
C1 C0

In

Figure 1: An L-bit external LFSR (a) without an input
and (b) with an input
To discover the bit-by-bit correspondence between the
scan-out vectors and the LFSR, the attacker randomly
picks a bit X from one of the N-bit scan-out vectors, and

performs an α-search defined below, to discover if X
belongs to the LFSR:

α-leftward-search: For a given bit X , this search looks
for another bit W where W(t-1)=X(t).

α-rightward-search: For a given bit X , this search
looks for another bit Y where X(t)=Y(t+1).

Vec tor 1 2 3 4 5 6 7 8 9 10 Susp ect se t o f W

V
0

0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 0 0

1 1

0

0

1

A ll b it s exc ept 9

V1 1 1 , 2, 3, 4, 5, 6, 7, 10

V
2

0 0 0 0 0 0 0 0 2 , 3, 4, 5, 6, 7, 10

V3 0 1 0 0 0 0 0 1 1 2 , 10

V
4

1 0 1 0 0 0 0 0 0 2

V5 0 0 0 1 0 0 0 0 1 2

V
6

0 0 1 0 0 1 0 0 1 0 2

V7 1 0 0 1 0 0 1 0 1 1 Mi ss

Vec tor 1 2 3 4 5 6 7 8 9 1 0 Susp ect set o f W

V
0

A ll bit s exc ept 8

V1 1 1 , 2, 3, 4, 5, 6, 7, 10

V
2

0 1 0 1 2 , 3, 4, 5, 6, 7, 10

V3 0 0 1 1 1 3 , 4, 5, 6, 7

V
4

1 0 0 1 0 0 4 , 5, 6, 7

V5 0 1 0 0 1 0 1 5 , 6, 7

V6 0 0 1 0 0 1 0 1 0 6 , 7

V7 1 0 0 1 0 0 1 0 1 1 7

(a)

(b)

0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0

0

Figure 2 A leftward-search returns (a) a miss or (b) a hit

 2

Let’s consider an 8-bit external LFSR with feedback
polynomial 1+x3 +x8. To remove any ambiguity we also
give the corresponding update function of the LFSR as
S0(t) = S2(t-1)+ S7(t-1). For simplicity, we assume that the
bits of the scan-out vectors are in the same sequence as
the bits in the LFSR, i.e. the 1st bit is S0, the 8th bit is S7,
and the 9th and 10th bits are architectural registers. The

α-leftward-search on this example is shown in Figure 2.
Figure 2(a) assumes that the 9th bit of the scan-out
vectors is chosen to be X. The attacker finds its left
neighbor W by pruning the “suspect set” of bits which
initially includes all bits except X. The attacker prunes
this set by eliminating those bits whose values in Vi are

different from the bit X in Vi+1. This is one round of
checking. Since the bits in the LFSR are pseudorandom
and the bits in the architectural registers are assumed to
be random, each bit in the scan-out vector has about 50%
chance to be 1 or 0. The probability of eliminating a bit
from the suspect set at the nth round equals

∏1 ≤ t ≤ n-1 PbW(t-1)=X(t) × PbW(n-1)≠X(n) = 0.5n
where PbW(t-1)=X(t) stands for the probability of
W(t-1)=X(t).
On average a bit can be eliminated from the suspect set
in 2 rounds (average number of rounds, denoted as ANR
thereafter), and more than 99.99% bits can be eliminated
from the suspect set in 15 rounds (the maximum number
of rounds, denoted as MNR thereafter). A bit that
survives MNR rounds of checking is the W bit with
very-close-to-1 probability, and the search is said to

return a hit, as shown in Figure 2 (b). If the search
returns an empty suspect set (a miss), the attacker
randomly picks another bit and repeats this procedure
until he gets a hit.
A hit discovers two bits, X and W, out of the LFSR. W is
the left neighbor of X. A discovered bit is called the Left
Boundary Bit (LBB) if its left neighbor is undiscovered.
Similarly, a discovered bit is the Right Boundary Bit
(RBB) if its right neighbor is undiscovered. In this
example, W is an LBB and X is an RBB. Repeatedly

applying the α-leftward-search on LBB grows the
discovered bits until we discover the left-most bit S0 of

the LFSR. Similarly, repeatedly applying the α-

rightward-search on an RBB will discover all the bits
until the right most bit SL-1. When all bits are discovered,
the structure of the LFSR is automatically identified. It is
important to note that the scan-out vectors used to
discover the first bits can be reused to discover the rest of
bits. Therefore for each DUA the attacker only needs to
scan out MNR+1 vectors.
B. Scan Attack on Internal (Galois) LFSRs
A general structure of an internal LFSR is shown in
Figure 3. The bits in an internal LFSR have the following
relations:

Si(t) = Si-1(t-1) ⊕ (Ci ⋅ SL-1(t-1)) (1 ≤ i ≤ L-1) (3)
S0(t) = SL-1(t-1) (4)
Ci (1 ≤ i ≤ L-1) could be 1 or 0 depending on the
characteristic polynomial implemented by the LFSR.

S0 S1 SL-2 SL-1

C1 CL-2 CL-1

Figure 3 A L-bit internal LFSR

When Ci = 1, Si(t) = Si-1(t-1) ⊕SL-1(t-1), which is referred
to as a tap bit. When Ci = 0, there is no feedback
involved and Si(t) = Si-1(t-1) (1 ≤ i ≤ L-1), which is
referred to as a non-tap bit. The non-tap bits can be

discovered by the α-search described above. Discovering
and identifying the tap-bits need a new type of search,

called β-search:
β-leftward-search: For a selected bit X, this search looks
for a 2-tuple (W, Z) where W(t-1)=X(t) when Z(t-1) = 0,
or W(t-1)=X(t)’ when Z(t-1) = 1.

β-rightward-search: For a selected bit X, this search
looks for a 2-tuple (Y, Z) where X(t)=Y(t+1) when Z(t) =
0, or X(t)=Y(t+1)’ when Z(t) = 1.

The β-search is based on the observation that
Si(t)=Si-1(t-1) or Si(t)=Si-1(t-1)’ when SL-1(t-1) = 0 or 1

respectively. For the first β-search, the attacker has to
guess two bits, the neighbor bit of X and SL-1. The
number of possible 2-tuples for a given bit X is P(U, 2),
where U is the number of undiscovered bits. However,

after the first β-search returns a hit, bit SL-1 is identified.
To discover the remaining bits using β-searches, the

 3

attacker needs to guess only one bit. This greatly reduces
the suspect set of 2-tuples to P(U, 1). The probability of
eliminating a 2-tuple from the suspect set in the nth round
equals:

∏1 ≤ t ≤ n-1 (PbZ(t-1)=1 × PbW(t-1)=X(t)’+ PbZ(t-1)=0 × PbW(t-1)=X(t))
× [PbW(n-1) ≠X(n)’ × PbZ(n-1)=1 + PbW(n-1) ≠X(n) × PbZ(n-1)=0] =

0.5n.
On average, a 2-tuple can be eliminated from the suspect
set in 2 rounds (ANR for this search) and more than
99.99% of false 2-tuples will be eliminated from the
suspect set in 15 rounds (MNR for this search). The

attack procedure combining the α and β searches is as
follows:
1) The attacker randomly picks a bit and applies the

α-leftward-search. If the search returns a miss, the
attacker randomly picks another bit and continues with

α-leftward-searches until he gets a hit. The hit discovers
a non-tap bit and its left neighbor which are the RBB and
LBB of the discovered bits respectively.

2) The attacker applies the α-leftward-search on LBB
and the α-rightward-search on RBB. This step is
repeated to grow the discovered section until either the
whole LFSR is discovered (LBB = RBB), or both the
leftward and the rightward searches return misses. The
latter case indicates that the attacker has reached tap-bits.

3) The attacker applies the β-leftward-search on the
LBB and the β-rightward-search on the RBB to locate
the left neighbor of LBB and right neighbor of RBB,
which will become the new LBB and RBB respectively.
Then go to step 2.
Steps 2) and 3) are repeated until all the bits in the LFSR

are discovered. Since the β-search will identify bit SL-1,
this bit can be used to identify all the other tap bits in this
LFSR.
C. Scan Attack on Internal LFSRs with Inputs

S0 S1 SL-2 SL-1

C1 CL-2 CL-1

In

Figure 4 An internal LFSR of length L with an input
An internal LFSR with input is shown in Figure 4. The

bits have the following relations where In stands for the
input:

Si(t) = Si-1(t-1) ⊕ (Ci⋅(SL-1(t-1) ⊕ In)), 1≤i≤L-1 (5)
S0(t) = SL-1(t-1) ⊕ In (6)
Ci (1 ≤ i ≤ L-1) could be 1 or 0 depending on the
characteristic polynomial implemented by the LFSR.
When Ci = 0, there is no feedback involved and Si(t) =
Si-1(t-1) (1≤i≤L-1). These non-tap bits can be discovered

by α-searches. When Ci = 1, Si(t) = Si-1(t-1) ⊕ S0(t-1) ⊕
In. Determining these tap bits, however, requires extra
effort since In is not accessible by the attacker. The
attacker considers two tap bits, LBB Si and the RBB Sj at

the same time. Since Si(t) = Si-1(t-1) ⊕ S0(t-1) ⊕ In and
Sj+1(t)= Sj(t-1) ⊕ S0(t-1)⊕In, and Si(t) ⊕ Sj+1(t) = Si-1(t-1)
⊕ S0(t-1) ⊕ In ⊕ Sj(t-1) ⊕ S0(t-1) ⊕ In = Si-1(t-1) ⊕
Sj(t-1)

A new γ-search for such a discovery may be defined as
follows:

γ-search: Given a pair of bits X and F, this search looks
for a 2-tuple (W, G) where W(t-1) ⊕ F(t-1) = X(t) ⊕ G(t).
The attacker has to guess two bits W and G, therefore the
suspect set of 2-tuples for bits X and F is P(U, 2) where
U is the number of undiscovered bits. The probability of
eliminating a 2-tuple from the suspect set at the nth round
is:

(∏1 ≤ t ≤ n-1 PbW(t-1) ⊕ F(t-1) = X(t) ⊕ G(t)) × PbW(n-1) ⊕ F(n-1) ≠ X(n) ⊕

G(n) = 0.5n
On average, a 2-tuple can be eliminated from the suspect
set in 2 rounds (ANR for this search) and more than
99.99% of 2-tuples can be eliminated in 15 rounds
(MNR for this search). An attack procedure combining

the α and γ searches is similar to the one described
earlier for combining α and β searches except for the
following procedure in step 3.
1) The attacker randomly picks a bit and applies the

α-leftward-search. If the search returns a miss, the
attacker randomly picks another bit and continues with

α-leftward-searches until he gets a hit. The hit discovers
a non-tap bit and its left neighbor which are the RBB and
LBB of the discovered bits respectively.

2) The attacker applies the α-leftward-search on LBB
and an α-rightward-search on RBB. This step is repeated

 4

to grow the discovered section until either the whole
LFSR is discovered (LBB = RBB), or both the leftward
and the rightward searches return misses. The latter case
indicates that the attacker has reached tap-bits.

3) The attacker applies the γ-search on the bits LBB
and RBB to locate the left neighbor of LBB and right
neighbor of RBB, which will become the new LBB and

RBB respectively. This γ-search always returns a hit. Go
to step 2.
Steps 2) and 3) are repeated until all the bits in the LFSR
are discovered.
D. Scan Attack on LFSRs with Jump Registers
A modified jump cell, has been proposed to replace the
normal register cell used in LFSRs in [10]. Figure 5
shows a register cell that can work in two modes
controlled by the Jump Control switch. When the switch
is open, it works as a normal register cell and when the
switch is closed, it works as a jump cell. Clocking an
LFSR using normal cells J times produces the same
result as clocking once the same LFSR that uses jump
cells instead. J is the jump index derived from the
characteristic polynomial.

Normal

Jump Control

Jump

Figure 5 A Jump Cell
Attacking an LFSR using jump cells does not require any
new types of searches. However, the number of rounds to
eliminate a bit/tuple from the suspect set increases. The
bits in an external LFSR using jump cells have the
following relations where JC stands for Jump Control:

Si(t) = Si-1(t-1) ⊕ JC ⋅ Si(t-1), for 1 ≤ i ≤ L-1, (7)
S0(t)=∑0≤i≤L-1(Ci ⋅ SL-1-i(t-1))⊕JC ⋅ S0(t-1), Ci = 0 or 1
 (8)
Observe that when Si(t-1) = 0, Si(t) = Si-1(t-1). The jump

version of α-search defined below can discover the bits
in an external LFSR using jump cells:

α-leftward-search-J: Given a bit X, this search looks for
another bit W where W(t-1) = X(t) when X(t-1) = 0.

α-rightward-search-J: Given a bit X, this search looks

for another bit Y where X(t-1) = Y(t) when Y(t-1) = 0.
The probability of eliminating a bit from the suspect set
at the nth round is

∏1 ≤ t ≤ n-1 (PbX(t-1)=1+ PbX(t-1)=0 × PbW(t-1)=X(t)) × (PbX(n-1)=0 ×
PbW(n-1)≠X(n)) = (3/4)n-1×1/4

On average it needs 4 rounds to eliminate a bit from the
suspect set and more than 99.99% bits will be eliminated
from the suspect set within 33 rounds (MNR). The ANR
to eliminate a suspect tuple and the MNR to eliminate
more than 99.99% tuples from the suspect set are all
doubled. The attack procedure of the LFSRs using
normal cells can also be applied to the LFSRs using
jump cells.
E. Scan Attack on irregular clock controlled LFSRs
Irregularly stepping the LFSR through successive states
is a method to increase the linear complexity of an LFSR
while preserving a large period and good statistical
properties. Stream ciphers based on regularly clocked
LFSRs are susceptible to basic and fast correlation
attacks [11][14]. Irregular clocking limits the
possibilities for mounting classical correlation attacks.
For chips using irregular clocked LFSRs, consecutive
scan-out vectors could be partly or completely the same.
These redundant vectors should be abandoned. To
determine if a vector is redundant, the attacker can check
if the bits of interest to the search (i.e. the (X W) in an

α-search, the (X W Z) in a β-search, and the (X W F G) in
a γ-search) have different values from the bits in the
previous vector. The ANR and MNR to eliminate the
bits/tuples from a suspect set increases inversely with the
probability of the LFSR being clocked in a cycle.
F. Scan Attacks on Stream Ciphers with Multiple LFSRs
Most LFSR-based stream ciphers use more than one
LFSR. To determine the scan chain structure, we need to
tell them apart. If the LFSRs have different lengths, we
can easily tell them apart. If the LFSRs have the same
length, we can still tell them apart by matching their
unique feedback functions.

IV. PUTTING IT ALL TOGETHER: ATTACKS ON
SELECTED STREAM CIPHERS

A. DECIM

 5

DECIM is a stream cipher submitted to the ECRYPT
eSTREAM project [11]. It uses an 80-bit key and a
64-bit IV, and a 192-bit external LFSR. The key stream
generation mechanism is shown in Figure 6. The bits of
the external LFSR are numbered from 0 to 191. The
Boolean function f is a 13-variable quadratic symmetric
function. ABSG is an irregular decimation mechanism.
DECIM uses a 32-bit key buffer to maintain a constant
throughput for the key stream. The LFSR is regularly
clocked.

191190…10

f

ABSG Buffer
keystream

Figure 6 DECIM Stream Cipher

To attack DECIM, the α-search suffices. While we have
estimated that the MNR=15 is sufficient for an α-search,
we used MNR=17 in our simulation to ensure a high
level of confidence. The total number of rounds of
comparisons performed is around 17×N=17×228 = 3876.
B. A5/1
A5/1 is a stream cipher used for encrypting over the air
transmissions in the GSM standard. A GSM conversation
is transmitted as a sequence of 228-bit frames (114 bits
in each direction) every 4.6 milliseconds. To ensure
privacy, each frame is XORed with a 228-bit keystream
produced by the A5/1. As shown in Figure 7, A5/1
cipher uses three external LFSRs – R1, R2, and R3 of
lengths 19, 22, and 23 bits, respectively. At each cycle,
after the initialization phase, the left-most bits of the
LFSRs are XORed to produce one bit key. The three
LFSRs are irregularly clocked depending on the output
of a majority function M. M computes the majority of S8
of R1, S10 of R2 and S10 of R3. An LFSR will shift only
when the state of its selected bit equals M.

… 80 1 … 17 18

… 100 1 … 20 21 key
stream

Majority
function

R3

R2

R1

… 100 1 … 21 22

Figure 7: A5/1 Stream Cipher

To attack A5/1, we need to apply α-searches to
determine the three register segments. After that, we can
tell them apart by their lengths. The number of vectors
used by our simulation is 32 (ie. MNR =31) and the total
number of rounds of comparisons is about
31×N=31×64=1984.
C. A5/2 Stream Cipher
A5/2 is a stream cipher used to provide voice privacy in
the GSM cellular telephone protocol. A5/2 is built from
four external LFSRs of lengths 19, 22, 23, 17 bits
denoted by R1, R2, R3 and R4 respectively, shown in
Figure 8. Each LFSR is updated by its own primitive
feedback polynomial. Clocking of R1, R2 and R3 is
controlled by R4 and R4 is regularly clocked in each
clock cycle. A majority function is attached to an LFSR
and outputs the majority of three selected bits from the
attached LFSR. The outputs of all the majorities and the
right most bit from each register are XORed to form the
output bit.

key
stream

R1

R2

R3

R4

Majority function

Majority function

Majority function

C
locking unit

16
15

1
0

0 1 … 21 22

0 1 … 20 21

0 1 … 17 18

Figure 8: A5/2 Stream Cipher

The procedure to attack A5/2 is basically the same as
that of A5/1. The number of scan vectors used in our
simulation is 42 (i.e MNR = 41) and the total number of
rounds of comparisons is approximately 41×81=3321.
D. W7
W7 is a synchronous stream cipher optimized for

 6

efficient hardware implementation [7]. W7 cipher
contains eight similar modules each of which consists of
three external LFSRs and one majority function as
shown in Figure 9. The majority function in a module
controls the clocking of the LFSRs in the module and the
clocking principle is the same as that of A5/1. The
outputs of cells compose a byte of key stream.

Since all the LFSRs are external, applying α-search is
sufficient to discover the bits of all the LFSRs. The
identity of a LFSR can be told by matching the unique
lengths and feedback functions of discovered LFSRs.
The MNR used in our simulation is 83 and the total
number of rounds of comparisons is around
83×N=83×1024=84992.

… 210 1 … 36 37

… 240 1 … 41 42 key

Majority
function

C1

C2

C3

… 260 1 … 45 46

f1

f3

f2

Figure 9: A module in W7 stream cipher
E. LILI II Stream Cipher
LILI-II is a simple and fast stream cipher that uses two
internal LFSRs. As shown in Figure 10, there are two
subsystems: one subsystem is for generating an irregular
clock that controls the other subsystem that produces key
stream. The LFSR in the clock-control subsystem is
regularly clocked. The Fc function in the system takes S0
and S126 and computes Fc = 2S0 + S126 + 1. Since the
possible output of Fc could be 1, 2, 3, or 4, the LFSR
used in data-generation subsystems is clocked 1, 2, 3, or
4 times respectively between two consecutive key bits.

LFSRc LFSRd

Fc=2x0+x126+1 Fd

Clock control Data generation

keystream

Figure 10: LILI II Stream Cipher
Since both of the two LFSRs are internal, applying

α-search and β-search can discover all the bits. The

identities of the two LFSRs can be told by matching the
lengths. The MNR used by our simulation is 62 and the
number of rounds of comparisons is about
62×N=62×255=15810.
F. Pomaranch Stream Cipher
Pomaranch is a hardware oriented stream cipher
submitted to the ECRYPT eSTREAM project. The
keystream generator of Pomaranch is called Cascade
Jump Controlled Sequence Generator consisting of 9
modules as shown in Figure 11 (a). Each module has an
18-bit shift register using a bunch of F and S cells as
shown in Figure 11 (b). An F cell works like a jump cell
when JCi of this module is 1, or like a regular shift cell
when JCi is 0. Oppositely, an S cell works like a jump
cell when JCi of this module is 0, or like a regular shift
cell when JCi is 1. All cells are regularly clocked. The
inputs to the Key Map comprises of 9 bits from the
LFSR and 16 bits of the secret key. The 1-bit output of
the Key Map is sent to the next module as the JCi. For
the 9 modules, all the even numbered modules share a
configuration of F and S cells and a feedback function,
while all the odd numbered modules share another
configuration of F and S cells and another feedback
function.

1289 …

H

keystream

JCiJCi

JCo

JCi
JCi

JCo
JCo

… 8 × 16 key bits

123456789101112131415161718

Key Map 16 key bitsJCo to next module

JCi

SSFSSSFSFFFFFFSFSS

‘0’

(a)

(b)

Figure 11: Pomaranch stream cipher (a) Top level (b)
The odd module

The attack steps are as follows:
1) Discover the 9 LFSRs by applying the jump version

of α-search;
2) Identify if a discovered LFSR belongs to an odd

 7

module or an even module by matching its feedback
function;
3) Since the JCi of the first module is 0 always, it will
match the discovered LFSR whose F and S cells never
switch modes.
4) For the remaining modules, the cell working modes
depend on the JCi of the module that in turn depends on
the LFSR and the 16-bit key used by the previous
module. Since the LFSR of the first module is identified
in step 3), we can guess JCi by simulating every possible
16-bit key (from 0x0000 up to 0xFFFF) and see if it
agrees with the cell working modes of any discovered
LFSR that belongs to an even module.
5) Repeat step 4 above to attack remaining modules.
Overall, the MNR used in our simulation is 42. The total
number of rounds of comparisons is about
42×N=42×162=6804
Table 1 summarizes the simulation results of all the
ciphers we have attacked. Note that the number of scan
vectors needed to launch such scan-based attack is just
MNR + 1. The total number of round comparisons equals

MNR × N, which takes negligible time in a modern
computer.

Table 1 The summary of all the ciphers

Cipher LFSR
Type

MNR N Clock
Control

DECIM External 17 228 Regular

A5/1 External 32 64 Irregular

A5/2 External 41 81 Irregular

W7 External 83 1024 Irregular

LILI II Internal 62 255 Irregular

Pomaranch Jump 42 162 Regular

V. CONCLUSIONS

In this paper we have proposed an improved scan-based
attack to LFSR-based stream ciphers. The attack
analyzes the scan-out vectors to discover the internal
states of DUA. The number of scan-out vectors required
is less than 20 for some ciphers and is less than 100 for
all the ciphers attacked in this paper. The CPU time for
processing the vectors and identifying the bits of LFSR is
negligible. With the knowledge of the LFSRs used in

stream cipher devices, an attacker can clone an
authentication device, eavesdrop a private conversation,
and etc.
It is reorganized that not all DFT techniques may
introduce security vulnerabilities. Even a given DFT
technique may not introduce security vulnerabilities in
all chips and in all embedded processors. For example, in
large chips and processors with over tens of thousands of
flip flops, test data is typically compressed on chip. This
adds an additional layer of security that prevents the
attacker from recovering the bit-by-bit information of the
scan chains – the attacker would have to work on
compressed scan-out vectors. However, in embedded
processors and crypto accelerators used in low end smart
cards, test data is not compressed owing to the limited
number of flip flops. With debug becoming mandatory,
test inputs and test outputs are not compressed even in
some large processors [15].

REFERENCES

[1] D. Hély, F. Bancel, M. L. Flottes, B. Rouzeyre, M. Renovell,

and N. Bérard, “Scan Design and Secure Chip,” Proceedings of IEEE

Int. On-Line Testing Symp., Funchal, 2004, pp. 219–226.

[2] J. Lee, M. Tehranipoor, C. Patel, and J. Plusquellic,

“Securing Scan Design Using Lock and Key Technique,” Proceedings

of 20th IEEE International Symposium on Defect and Fault Tolerance

in VLSI Systems, 2005, pp. 51-62.

[3] J. Lee, M. Tehranipoor, and J. Plusquellic, “A Low-Cost Solution

for Protecting IPs Against Scan-Based Side-Channel Attacks,” IEEE

VLSI Test Symposium, 2006, pp. 94-99.

[4] C. Berbain, O. Billet, A. Canteaut, N. Courtois, B. Debraize, H.

Gilbert, L. Goubin, A. Gouget, L. Granboulan, C. Lauradoux, M.

Minier, T. Pornin, and H. Sibert, “DECIM,”

http://www.ecrypt.eu.org/stream/ decimp3.html

[5] C.J.A. Jansen, T. Helleseth, and A. Kholosha, “Cascade jump

controlled sequence generator and Pomaranch stream cipher,”

http://www.ecrypt.eu.org/stream/pomaranchp3.html

[6] I. Erguler and E. Anarim, “A Modified Stream Generator for the

GSM Encryption Algorithms A5/1 and A5/2,” EUSIPCO 2005

[7] S. Thomas, D. Anthony, T. Berson, and G. Gong, “The W7

Stream Cipher Algorithm,” Internet Draft, April 2002.

[8] A. Clark, E. Dawson, J. Fuller, J. Golic, H-J Lee, W. Millan, S-J.

Moon, and L. Simpson, “The LILI-II Keystream Generator”,

 8

http://www.ecrypt.eu.org/stream/
http://www.ee.bilkent.edu.tr/%7Esignal/defevent/html/main/home.htm

 9

Proceedings of the 7th Australian Conference on Information Security

and Privacy, volume 2384 of Lecture Notes In Computer Science,

Springer-Verlag, 2002, pp. 25 – 39.

[9] B. Yang, K. Wu, and R. Karri, "Secure Scan: A Design-for-Test

Architecture for Crypto Chips", IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems (TCAD),

Vol. 25, No. 10, Oct 2006, pp 2287- 2293.

[10] C. Jansen, “Stream cipher design: Make your LFSRs jump!”

Workshop of the State of the Art of Stream Ciphers, 2004, pp. 94–108.

[11] A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of

Applied Cryptography, CRC Press, ISBN 0849385237,1996

[12] eStream, Stream cipher project of the European Network of

Excellence in Cryptology ECRYPT. http://www.ecrypt.eu.org/stream/

[13] Bo Yang, Kaijie Wu, and Ramesh Karri, "Secure Scan: A

Design-for-Test Architecture for Crypto Chips", Design Automation

Conference (DAC) 2005

[14] T. Siegenthaler, “Decrypting a class of stream ciphers using

ciphertext only”, IEEE Transactions on Computers, Vol. 34, No. 1,

1985, pp. 81–85.

[15] D, Josephson, S. Poehhnan, “Debug methodology for the

McKinley processor,” International Test Conference (ITC) 2001,

pp451-460

http://www.ecrypt.eu.org/stream/

	Scan-based Attacks on Linear Feedback Shift Register Based Stream Ciphers
	Index Terms—Stream Ciphers, LFSRs, Scan DFT, Side-channel attack
	I. INTRODUCTION
	II. GENERAL DESCRIPTION OF THE ATTACK
	III. SCAN ATTACK ON LFSRS
	A. Scan Attack on External (Fibonacci) LFSRs
	B. Scan Attack on Internal (Galois) LFSRs
	C. Scan Attack on Internal LFSRs with Inputs
	D. Scan Attack on LFSRs with Jump Registers
	E. Scan Attack on irregular clock controlled LFSRs
	F. Scan Attacks on Stream Ciphers with Multiple LFSRs

	IV. PUTTING IT ALL TOGETHER: ATTACKS ON SELECTED STREAM CIPHERS
	V. CONCLUSIONS

