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Abstract

The GHS attack is known as a method to map the discrete loga-
rithm problem(DLP) in the Jacobian of a curve C0 defined over the d
degree extension kd of a finite field k to the DLP in the Jacobian of a
new curve C over k. Recently, classification and density analysis were
shown for all elliptic curves and hyperelliptic curves C0/kd of genus 2,
3 which possess (2, . . . , 2) covering C/k of P1, therefore subjected to
GHS attack, under the isogeny condition (i.e. when g(C) = d · g(C0)).
In this paper, we first show a general classification procedure for the
odd characteristic case. Our main approach is to use representation of
the extension of Gal(kd/k) acting on cov(C/P1). Then a classification
of small genus hyperelliptic curves C0/kd which possesses (2, .., 2) cov-
ering C over k is presented without the isogeny condition. As a result,
explicit defining equations of such curves C0/kd whose covering curves
C have a model over k are presented.

Keywords : Weil descent attack, GHS attack, Elliptic curve cryptosystems,
Hyperelliptic curve cryptosystems, Index calculus, Galois representation

1 Introduction

Let kd := Fqd , k := Fq (d > 1), q be a power of a prime number.
Weil descent was firstly introduced by Frey [7] to elliptic curve cryp-

tosystems. This idea is developed into the well-known GHS attack in [11].
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This attack maps the discrete logarithm problem (DLP) in the Jacobian of
a curve C0 defined over the d degree extension field kd of the finite field k
to the DLP in the Jacobian of a curve C over k by a conorm-norm map.
The GHS attack is further extended and analyzed by many researchers and
is conceptually generalized to the cover attack [5]. The cover attack maps
the DLP in the Jacobian of a curve C0/kd to the DLP in the Jacobian of a
covering curve C/k of C0 when a covering map or a non-constant morphism
between C0 and C exists.

If the DLP in the Jacobian of C0 can be solved more efficiently in the
Jacobian of C, we call C0 a weak curve or say that it has weak covering C
against GHS or cover attack. Thus, it is important and interesting to know
what kind of curves C0 have such coverings C, how many are they, etc..

It is known that the most efficient attack to DLP in the Jacobian of al-
gebraic curve based systems is the index calculus algorithms. In [9], Gaudry
first proposed his variant of the Adleman-DeMarrais-Huang algorithm [1]
to attack hyperelliptic curve discrete logarithm problems, which is faster
than Pollard’s rho algorithm when the genus is larger than 4 but becomes
impractical for large genera. Recently, a single-large-prime variation [26]
and a double-large-prime variation [12][22] are proposed. These variations
can be applied in the GHS attack if the curve C/k is a hyperelliptic curve
of g(C) ≥ 3. The complexity of these double-large-prime algorithms are
Õ(q2−2/g). On the other hand, when C/k is a non-hyperelliptic curve,
Diem’s recent proposal of a double-large-prime variation [4] can be applied
with complexity of Õ(q2−2/(g−1)). Besides, Gaudry showed a general algo-
rithm solving discrete logarithms on Abelian varieties of dimension n′ in
running time Õ(q2−2/n′

) when q grows to infinity [10]. In particular, for
elliptic curves over cubic extension field k3, the running time is Õ(q4/3).

Recently, security analyses of elliptic and hyperelliptic curves C0/kd

with weak covering C/k were shown under the following isogeny condition
[2][17][19][20][21][23][24]. Assume that there exists a covering curve C/k of
C0/kd and

∃π/kd : C � C0 (1)

such that for

π∗ : J(C) � J(C0), (2)
Res(π∗) : J(C) −→ Reskd/kJ(C0) (3)

defines an isogeny over k, here J(C) is the Jacobian variety of C and
Reskd/kJ(C0) is its Weil restriction. Then g(C) = d · g(C0). Under this
condition, the curves C0/kd which possess covering curves C/k as (2, . . . , 2)
covering of P1 are already classified for hyperelliptic curves of genus 1,2,3
[17][19][20][21]. Here, classification means to give a complete list of all such
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weak curves C0. In particular, defining equations are presented for these
curves. Densities of the weak curves are also obtained for certain cases.

In this paper, we give a general classification procedure of hyperellip-
tic curves C0 with (2, . . . , 2) covering C/k for the odd characteristic case.
By applying this procedure, we obtain a classification of weak hyperelliptic
curves C0/kd : y2 = c · f(x) of genus 1,2,3 without isogeny condition (i.e.
g(C) = d · g(C0) + e, e > 0). Here, e is the dimension of ker(Res(π∗)).
Our approach for the classification is a representation theoretical one, to
investigate action of the extension of Gal(kd/k) on cov(C/P1). As a result,
we obtain a complete list of defining equations of these weak curves C0/kd

for small values of e which is corresponding to cryptographically meaningful
classes of C0.

2 GHS attack, (2, . . . , 2) covering and Galois rep-
resentation

Firstly, we review briefly the GHS attack and the cover attack. Let kd(C0)
be the function field of a curve C0/kd, Cl0(kd(C0)) the class group of the
degree 0 divisors of kd(C0), σkd/k the Frobenius automorphism of kd over k,
x the transcendental element over kd. Unless otherwise noted, we assume
σkd/k is extended to an automorphism σ of order d in the separable closure
of kd(x). It is showed by Diem [3] that σkd/k can extend an automorphism
of the order d when C0 is a hyperelliptic curve and d is odd for the odd
characteristic case. In [17], we extended the condition in the case of any
d > 1 and the odd characteristic. Then, the Galois closure of kd(C0)/k(x)
is F′ := kd(C0) · σ(kd(C0)) · · ·σd−1(kd(C0)) and the fixed field of F′ by the
automorphism σ is F := {ζ ∈ F′ | σ(ζ) = ζ}. The DLP in Cl0(kd(C0)) ∼=
J(C0)(kd) is mapped to the DLP in Cl0(F) ∼= J(C)(k) using the following
composition of conorm and norm maps:

NF′/F ◦ ConF′/kd(C0) : Cl0(kd(C0)) −→ Cl0(F).

This map is called the conorm-norm homomorphism in the original GHS
paper on the elliptic curve case [11].

This attack has been extended to wider classes of curves. The GHS
attack is conceptually generalized to the cover attack by Frey and Diem [5].
When there exist an algebraic curve C/k and a covering π/kd : C −→ C0,
the DLP in J(C0)(kd) can be mapped to the DLP in J(C)(k) by a pullback-
norm map.

J(C)(kd)

N
��

J(C0)(kd)
π∗

oo

N◦π∗
xxpppppppppp

J(C)(k)
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In the rest of this paper, let q be a power of an odd prime. Assume C0 is a
hyperelliptic curve with g(C0) ∈ {1, 2, 3} given by

C0/kd : y2 = c · f(x) (4)

where c ∈ k×
d , f(x) is a monic polynomial in kd[x]. Then assume that we

have a tower of extensions of function fields such that kd(x, y, σ1
y, . . . , σn−1

y) ≃

kd(C) /kd(x) (n ≤ d) is a

n︷ ︸︸ ︷
(2, . . . , 2) type extension. Here, a

n︷ ︸︸ ︷
(2, . . . , 2) cov-

ering is defined as a covering π/kd : C −→ P1

n︷ ︸︸ ︷
(2, . . . , 2)︷ ︸︸ ︷

C −→ C0 −→ P1(x)︸ ︷︷ ︸
2

(5)

such that cov(C/P1) ≃ Fn
2 , here cov(C/P1) := Gal(kd(C)/kd(x)).

Furthermore, we consider the Galois group Gal(kd/k) acting on the covering
group cov(C/P1) ≃ Fn

2 .

Gal(kd/k) × cov(C/P1) −→ cov(C/P1) (6)

(σi
kd/k, ϕ) 7−→ σi

ϕ := σiϕσ−i (7)

Then one has a map onto Aut(cov(C/P1)).

ξ : Gal(kd/k) ↪→ Aut(cov(C/P1)) ≃ GLn(F2) (8)

3 Classification procedure of elliptic/hyperelliptic
curves C0 with weak coverings

From now, we give a general procedure to classify all weak curves C0/kd

for given n, d. The procedure will output their defining equations and a
complete list of such curves.

3.1 Classification of Galois representation

First of all, we classify the representation of σ. Then, the representation of
σ for given n, d is (we use the same notation for σ and its representation):

σ =


∆1 O · · · O

O ∆2
. . .

...
...

. . . . . . O
O · · · O ∆s


}
n1

}
ns

(9)

4



is consisted of the diagonal blocks of matrices which are denoted by ∆i’s
where n =

∑s
i=1 ni and the O’s are zero matrices,

∆i =


Ωi Ωi Ô · · ·

Ô Ωi
. . . . . .

...
. . . . . . Ωi

Ô · · · Ô Ωi


1

...

li

(10)

is an ni×ni matrix which has a form of an li×li block matrix. The sub-blocks
Ωi are ni/li ×ni/li matrices and Ô’s are ni/li ×ni/li zero matrices. Here, if
Fi(x) :=(the characteristic polynomial of Ωi)li , then F (x) := LCM{Fi(x)}
is the minimal polynomial of σ. When di :=ord(∆i), d = LCM{di}.

Let S be the number of the ramification points of C/P1 covering. By
the Riemann-Hurwitz theorem, 2g(C) − 2 = 2n(−2) + 2n−1S, then S =
4 + dg(C0)+e−1

2n−2 . Hereafter, we consider the following two types:

• Type (A) : ∃di s.t. di = d (= LCM{di})
then, S = 4 + dg(C0)+e−1

2n−2 ≥ max{d, 2g(C0) + 3}

• Type (B) : di ̸= d for ∀di

then, S = 4 + dg(C0)+e−1
2n−2 ≥ max{q(d), 2g(C0) + 4}

here q(d) :=
∑

pei
i for d =

∏
pei

i (pi’s are distinct prime numbers).

The some examples for Type(A) and Type(B) are as follows:

Example 3.1. n = 2, d = 2

σ =
(

1 1
0 1

)
: Type(A), F (x) = (x + 1)2 = x2 + 1. (11)

Example 3.2. n = 2, d = 3

σ =
(

1 1
1 0

)
: Type(A), F (x) = x2 + x + 1. (12)

Example 3.3. n = 3, d = 3

σ =

1 0 0
0 1 1
0 1 0

 : Type(A), (13)

F (x) = (x + 1)(x2 + x + 1) = x3 + 1. (14)
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Example 3.4. n = 3, d = 4

σ =

1 1 0
0 1 1
0 0 1

 : Type(A), F (x) = (x + 1)3 = x3 + x2 + x + 1. (15)

Example 3.5. n = 4, d = 6

σ =


1 1 1 1
1 0 1 0
0 0 1 1
0 0 1 0

 : Type(A) or


1 1 0 0
0 1 0 0
0 0 1 1
0 0 1 0

 : Type(B) (16)

Then, σ have the minimal polynomials as F (x) = (x2 + x + 1)2, or F (x) =
(x + 1)2(x2 + x + 1).

Remark 3.1. See Example 3.5 again. Notice for the two cases:

Type(A) : σ =
(

Ω1 Ω1

O Ω1

)
,Ω1 =

(
1 1
1 0

)
Type(B) : σ =

(
∆1 O
O ∆2

)
, ∆1 =

(
1 1
0 1

)
, ∆2 = Ω2 =

(
1 1
1 0

)
Remark 3.2. In the case without isogeny condition, we have to treat more
variations of the representation σ which do not exist in the case under the
isogeny condition. For example, Type(B) matrices do not appear under the
isogeny condition for the odd characteristic case. Actually, Type(B) matrices
contain Type(A) matrices as subrepresentations. Thus it is necessary for
any e ≥ 0 to classify by using a more systematical procedure than in the case
under the isogeny condition [17][19][20][21].

From now, we are considering the case of a hyperelliptic curve C0/kd

for g(C0) ∈ {1, 2, 3} such that there is a covering π/kd : C −→ C0 and the
covering curve C/k has genus g(C) = d·g(C0)+e (Notice that the procedure
in the section 3 and Lemma 3.1 are applicable to any e ≥ 0).

3.2 Existence of a model of C over k

Recall that we consider C0 as a hyperelliptic curve over kd defined by y2 =
c · f(x) where c ∈ k×

d , f(x) is a monic polynomial in kd[x]. Denote by
F (x) := xn + an−1x

n−1 + · · · + a1x + a0 ∈ F2[x] the minimal polynomial of
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σ. Now σn = an−1σ
n−1 + · · · + a1σ + a0 since F (σ) = 0. Therefore

Gal(kd/k) y {σi
y}i mod kd(x)× (17)

=⇒ σn
y ≡

n−1∏
j=0

(
σj

y
)aj

mod kd(x)× (18)

=⇒ σn
y2 ≡

n−1∏
j=0

(
σj

y2
)aj

mod
(
kd(x)×

)2 (19)

Here, we have the following necessary and sufficient condition for given
n, d, σ :
C has a model over kd ⇐⇒

F (σ)y2 = F (σ)c · F (σ)f(x) = cF (q) · F (σ)f(x) ≡ 1 mod (kd(x)×)2,
G(σ)y2 ̸≡ 1 mod (kd(x)×)2 for∀G(x) | F (x), G(x) ̸= F (x). (20)

Hereafter, we assume that C is a model over kd.
Under this assumption, we introduce conditions for existence of a model

of C over k. Now we know a model of C over k exists iff the extension σ
of the Frobenius automorphism σkd/k is an automorphism of kd(C) of order
d in the separable closure of kd(x). Diem showed in [3] that the Frobenius
automorphism σkd/k on kd(x) is extended to an automorphism of F′/kd(x)
of order d when d is odd. Furthermore, we extended the condition in the
case of any d > 1. In the following lemma, explicit conditions for c are
shown in case of any d > 1. For the rest of this paper, define F̂ (x) ∈ F2[x]
as a polynomial such that xd + 1 = F (x)F̂ (x) ∈ F2[x].

Lemma 3.1. [17] In order that the curve C has a model over k, when
F̂ (1) = 0, c needs to be a square c ∈ (k×

d )2. When F̂ (1) = 1, there is a
ϕ ∈ cov(C/P1) such that σϕ has order d if σ does not have order d, so we
can adopt such σϕ instead of σ. Therefore C always has a model over k
when F̂ (1) = 1.

Proof: See [17].

Example 3.6. n = 2, d = 2
x2 + 1 = (x + 1)2, F (x) = (x + 1)2, F̂ (x) = 1
Since F̂ (x) = 1, F̂ (1) = 1. Therefore, c should be 1 or a non-square element
in k2 in order that the curve C has a model over k under the assumption
F (σ)f(x) ≡ 1 mod (kd(x)×)2.

Example 3.7. n = 2, d = 3
x3 + 1 = (x + 1)(x2 + x + 1), F (x) = x2 + x + 1, F̂ (x) = x + 1
Since F̂ (x) = x+1, F̂ (1) = 0. It follows that c is a square element c ∈ (k×

3 )2

(i.e. c = 1).
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Example 3.8. n = 3, d = 3
x3 + 1 = (x + 1)(x2 + x + 1), F (x) = x3 + 1, F̂ (x) = 1
Since F̂ (x) = 1, F̂ (1) = 1. Similarly, we obtain that c is 1 or a non-square
element in k3.

Example 3.9. n = 3, d = 4
x4 + 1 = (x + 1)4, F (x) = (x + 1)3, F̂ (x) = x + 1
In this case, F̂ (1) = 0. Consequently, c ∈ (k×

4 )2.

Example 3.10. n = 4, d = 6
x6 + 1 = (x + 1)2(x2 + x + 1)2

1. F (x) = (x2 + x + 1)2, F̂ (x) = (x + 1)2

Now, F̂ (1) = 0 since F̂ (x) = x2 + 1. Hence c is a square element
c ∈ (k×

6 )2.

2. F (x) = (x + 1)2(x2 + x + 1), F̂ (x) = x2 + x + 1
Then, F̂ (1) = 1. As a result, c is 1 or a non-square element in k6.

3.3 Ramification points analysis of C0/P1

Recall that the condition F (σ)f(x) ≡ 1 mod (kd(x)×)2 and F̂ (x) ∈ F2[x]
is a polynomial such that xd + 1 = F (x)F̂ (x) ∈ F2[x]. We will define the
following notation as bi = 1 when there exists a ramification point (αqi

, 0)
on C0 and let bi = 0 otherwise for i = 0, . . . , d − 1. Here, α is either in
kd (α ∈ kd \ kv, v |̸= d) or in certain extension of kd (α ∈ kdτ \ kv, v |̸=
dτ, ∃τ ∈ N>1) if f(x) contains all conjugate factors of αqi

over kd. Let
Φ(x) := bd−1x

d−1 + · · · + b1x + b0. Then Φ(x) defines a minimal Galois-
invariant set of ramification points of C0/P1 over kd.

Since F (σ)f(x) ≡ 1 mod (kd(x)×)2, F (x)Φ(x) ≡ 0 mod (xd +1). Then,
F (x)Φ(x) ≡ 0 mod (xd + 1) ⇔ Φ(x) ≡ 0 mod F̂ (x). Therefore, it fol-
lows that Φ(x) ≡ a(x)F̂ (x) mod (xd + 1) for given n, d ( ∃a(x) ∈ F2[x],
deg a(x) < deg F (x) ). Additionally, we can prove that F̂ (x)F2[x]/(xd+1) ∼=
F2[x]/(F (x)). This suggests that we can know candidates of the ramifica-
tion points of C0/P1 if a(x) ∈ F2[x] are determined for given F̂ (x) ∈ F2[x].
Hereafter, we assume that gcd(F (x), a(x)) = 1 in order to treat Φ(x) corre-
sponding to given F (x). Next, we define the equivalence relation such that
(b0, b1, . . . , bd−1) ∼ (bj , . . . , bd−1, b0, . . . , bj−1) (i.e. the coefficients of Φ(x)’s
are cyclic permutation of each other), then corresponding Φ(x)’s belong to
the same class of C0. Furthermore, xra(x)F̂ (x) ≡ a(x)F̂ (x) mod (xd + 1)
⇔ xr + 1 ≡ 0 mod F (x) for 1 ≤ r ≤ d. Thus, we obtain that r = d. From
these results, the number of the classes of C0 is N := #{(F2[x]/(F (x)))×}/d.
This means that we obtain candidates of the ramification points of C0/P1

if N different Φ(x)’s are found so that they are not cyclic permutation of
each other for given F̂ (x). From these facts, we obtain a procedure to derive
candidates of the ramification points {(αqi

, 0)|bi = 1} on C0 for given n, d, σ.
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1. Choose a polynomial a(x) = 1, then Φ(x) := F̂ (x) gives ramification
points {(αqi

, 0)|bi = 1} on C0. If N = 1, then this procedure is
completed. If N ≥ 2, then repeat step 2 ∼ 4 until N different a(x)’s
are found so that the coefficients of Φ(x)’s are not cyclic permutation
of each other.

2. Choose another polynomial a(x) such that (a(x), F (x)) = 1 and deg a(x) <
deg F (x) are satisfied. Next, define Φ(x) := a(x)F̂ (x).

3. Check whether all Φ(x)’s are cyclic permutation of each other or not.
If so, discard such a(x). Go to step 2 again. If they are not cyclic
permutation of each others, we add {(αqi

, 0)|bi = 1} defined by Φ(x)
to the candidates.

4. Check whether N different a(x)’s are found. If yes, then this procedure
is completed. Otherwise, return to step 2.

Example 3.11. n = 2, d = 2
x2 + 1 = (x + 1)2, F (x) = (x + 1)2, F̂ (x) = 1
Now, N = 1. Choose a(x) = 1, then Φ(x) = a(x)F̂ (x) = 1. Thus, there
exists a ramification point (α, 0) on C0 as a candidate.

Example 3.12. n = 2, d = 3
x3 + 1 = (x + 1)(x2 + x + 1), F (x) = x2 + x + 1, F̂ (x) = x + 1
Similarly, N = 1. Choose a(x) = 1, then Φ(x) = x + 1. C0 has ramification
points {(α, 0), (αq, 0)} on C0.

Example 3.13. n = 3, d = 3
x3 + 1 = (x + 1)(x2 + x + 1), F (x) = x3 + 1, F̂ (x) = 1, N = 1
Choose a(x) = 1, then Φ(x) = 1. Consequently, C0 has a ramification point
(α, 0) on C0.

Example 3.14. n = 3, d = 4
x4 + 1 = (x + 1)4, F (x) = (x + 1)3, F̂ (x) = x + 1, N = 1
Choose a(x) = 1, then Φ(x) = x+1. C0 has ramification points {(α, 0), (αq, 0)}
on C0.

Example 3.15. n = 4, d = 6
x6 + 1 = (x + 1)2(x2 + x + 1)2

1. F (x) = (x2 + x + 1)2, F̂ (x) = (x + 1)2, N = 2
Now, choose a(x) = 1 and a(x) = x + 1, then Φ(x) = x2 + 1 and
Φ(x) = x3 + x2 + x + 1. In these cases, C0 has ramification points
{(α, 0), (αq2

, 0)} or {(α, 0), (αq, 0), (αq2
, 0), (αq3

, 0)} as candidates.

2. F (x) = (x + 1)2(x2 + x + 1), F̂ (x) = x2 + x + 1, N = 1
Now, choose a(x) = 1, then Φ(x) = x2 + x + 1. In the case, C0 has
ramification points {(γ, 0), (γq, 0), (γq2

, 0)}.
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3.4 Defining equations of C0

The procedure in the section 3.3 gave us how to drive the candidates of the
ramification points {(αqi

, 0)} on C0 (α ∈ kd \ kv, v |̸= d or α ∈ kdτ \ kv, v |̸=
dτ, τ ∈ N>1 if f(x) contains all conjugate factors of αqi

over kd). Below, we
show main steps to find the defining equations for every weak curve C0.

1. Calculate the number of the ramification points of C/P1 covering S =
4 + dg(C0)+e−1

2n−2 for given n, d, g(C0), e using Riemann-Hurwitz formula
and test if σ is Type (A) or (B) as in the section 3.1.

2. Derive the candidates of the ramification points on C0 by the procedure
in the section 3.3 for all subrepresentations of σ except the trivial
representation (1). If σ is a Type (B) matrix, then it consists of Type
(A) matrices as sub-blocks. Therefore, we can make repeated use of
the results obtained for Type (A) matrices in the section 3.3.

3. Find f(x) to try all combinations of polynomials which contain all
conjugate factors of x − αqi

for each ramification point and have the
right degree of genus g(C0).

4. Determine c ∈ k×
d so that C has a model over k by using Lemma 3.1

in the section 3.2.

The above operations are explained in further details in the following exam-
ples.

Example 3.16. n = 2, d = 2, g(C0) = 2, e = 1, g(C) = 5, σ : Type A
In this case, we can know that f(x) has a factor x − αi as in Example 3.11
(αi ∈ k2 \ k or αi ∈ k2τ \ kv, v |̸= 2τ, τ ∈ N>1 if f(x) contains all conjugate
factors of αi over k2). Since S = 4 + (d · g(C0) + e − 1)/2n−2 = 8, we have
the following two forms as candidates of C0/k2:
(a) S = #{α1, α

q
1} + #{α2, α

q
2} + 4 = 2 + 2 + 4

C0/k2 : y2 = (x − α1)(x − α2)h1(x).
(b) S = #{α1, α

q
1} + #{α2, α

q
2} + #{α3, α

q
3} + #{α4, α

q
4} = 2 + 2 + 2 + 2

C0/k2 : y2 = (x − α1)(x − α2)(x − α3)(x − α4).
Here, h1(x) ∈ k[x], deg h1(x) ∈ {4, 3},

∏
(x−αi) ∈ k2[x]\k[x]. As g(C0) = 2

in this case, (a) should be chosen from two forms. We remark the ramifica-
tion points are α1, α2 ∈ k2 \ k or α1 ∈ k4 \ k2, α2 := αq2

1 in consideration
of conjugate factors of α1 over k2. Recall Example 3.6. F̂ (1) = 1 since
F̂ (x) = 1. Let η be 1 or a non-square element in k2. As a result, we ob-
tain C0/k2 : y2 = η(x − α1)(x − α2)h1(x). Now, g(C) = d · g(C0) + e = 5.
Roughly, the attacking costs on J(C/k) is lower than on J(C/kd) as follows:

C0/kd : C/k : hyper C/k : non-hyper

Õ(q
d·g(C0)

2 ) = Õ(q2) Õ(q2− 2
d·g(C0)+e ) = Õ(q8/5) Õ(q2− 2

d·g(C0)+e−1 ) = Õ(q3/2)

10



Example 3.17. n = 3, d = 3, g(C0) = 2, e = 3, g(C) = 9, σ : Type A
Now, f(x) has a factor x − α. Additionally, consider also (n, d) = (2, 3),
then (x−α)(x−αq)|f(x). Since S = 4 + (d · g(C0) + e− 1)/2n−2 = 8, there
exist two cases as follows:
(1) S = 3 + 5

C0/k3 : y2 = η(x − α)h1(x)
Here, α ∈ k3 \ k, h1(x) ∈ k[x], deg h1(x) ∈ {5, 4}.
(2) S = 3 + 3 + 2

C0/k3 : y2 = η(x − α1)(x − αq
1)(x − α2)(x − αq

2)h1(x)
Here, (x−α1)(x−αq

1)(x−α2)(x−αq
2) ∈ k3[x]\k[x], h1(x) ∈ k[x], deg h1(x) ∈

{2, 1}. The ramification points are α1, α2 ∈ k3 \ k or α1 ∈ k6 \ (k2 ∪ k3),
α2 := αq3

1 . Remark that η := 1 or a non-square element in k3. The rough
estimation of the attacking costs between J(C0/kd) and J(C/k) is as follows:

C0/kd : C/k : hyper C/k : non-hyper

Õ(q
d·g(C0)

2 ) = Õ(q3) Õ(q2− 2
d·g(C0)+e ) = Õ(q16/9) Õ(q2− 2

d·g(C0)+e−1 ) = Õ(q7/4)

Example 3.18. n = 3, d = 3, g(C0) = 2, e = 1, g(C) = 7, σ : Type A
Similarly, we consider factors x− α and (x− α)(x− αq). Now S = 4 + (d ·
g(C0)+e−1)/2n−2 = 7. Consequently, we obtain C0/k3 : y2 = η(x−α)(x−
αq)h1(x) when S = 3 + 4. Here, α ∈ k3 \ k, h1(x) ∈ k[x], deg h1(x) ∈ {4, 3},
η := 1 or a non-square element in k3. The rough estimation between the
attacking costs is as follows:

C0/kd : C/k : hyper C/k : non-hyper

Õ(q
d·g(C0)

2 ) = Õ(q3) Õ(q2− 2
d·g(C0)+e ) = Õ(q12/7) Õ(q2− 2

d·g(C0)+e−1 ) = Õ(q5/3)

Example 3.19. n = 3, d = 4, g(C0) = 2, e = 1, g(C) = 9, σ : Type A
Recall that (x−α)(x−αq)|f(x) (α ∈ k4 \k2 or α ∈ k4τ \kv, v |̸= 4τ, τ ∈ N>1

if f(x) contains all conjugate factors of αqi
over k4) when (n, d) = (3, 4),

and (x − β)|f(x) (β ∈ k2 \ k or β ∈ k2τ \ kv, v | ̸= 2τ, τ ∈ N>1 if f(x)
contains all conjugate factors of β over k2) when (n, d) = (2, 2). Then,
S = 4 + (d · g(C0) + e − 1)/2n−2 = 8. Since g(C0) = 2, we obtain C0/k4 :
y2 = (x − α)(x − αq)h1(x) when S = 4 + 4. Here, α ∈ k4 \ k2, h1(x) ∈ k[x],
deg h1(x) ∈ {4, 3}. The comparison similar to the above examples is as
follows:

C0/kd : C/k : hyper C/k : non-hyper

Õ(q
d·g(C0)

2 ) = Õ(q4) Õ(q2− 2
d·g(C0)+e ) = Õ(q16/9) Õ(q2− 2

d·g(C0)+e−1 ) = Õ(q7/4)

Example 3.20. n = 4, d = 6, g(C0) = 1, e = 3, g(C) = 9, σ : Type A
In this case, consider the combination of (x − α)(x − αq2

)|f(x) and (x −

11



α)(x−αq)(x−αq2
)(x−αq3

)|f(x). Now, S = 4+(d ·g(C0)+e−1)/2n−2 = 6.
Since g(C0) = 1, we obtain C0/k6 : y2 = (x − α)(x − αq)(x − αq2

)(x − αq3
)

(α ∈ k6 \ (k3∪k2)) when S = 6+0. The comparison between attacking costs
is :

C0/kd : C/k : hyper C/k : non-hyper

Õ(q
d·g(C0)

2 ) = Õ(q3) Õ(q2− 2
d·g(C0)+e ) = Õ(q16/9) Õ(q2− 2

d·g(C0)+e−1 ) = Õ(q7/4)

Example 3.21. n = 4, d = 6, g(C0) = 1, e = 3, g(C) = 9, σ : Type B
We know (x−γ)(x−γq)(x−γq2

)|f(x) as in Example 3.15. Next, consider all
proper subrepresentations of σ except the trivial representation (1). Derive
candidates of the ramification points for (n, d) = (3, 3), (2, 3), (2, 2). From
the results of Example 3.13, 3.12 and 3.11, they have been already obtained
: (x − α)|f(x), (x − α)(x − αq)|f(x) and (x − β)|f(x) (Here, α ∈ k3 \ k or
α ∈ k3τ \ kv, v |̸= 3τ, τ ∈ N>1, and β ∈ k2 \ k or β ∈ k2τ \ kv, v |̸= 2τ, τ ∈
N>1respectively). Finally, find f(x) to try all combinations of polynomials
which contain all conjugate factors of the aboves to consider that C0/k6

have g(C0) = 1 and S = 6. In this case, it follows that C0/k6 has the form
y2 = η(x − α)(x − αq)(x − β)h1(x) when S = 3 + 2 + 1. Here, α ∈ k3 \ k,
β ∈ k2 \ k, h1(x) ∈ k[x], deg h1(x) ∈ {1, 0}, η := 1 or a non-square element
in k6. The comparison between attacking costs is the same as Example 3.20.

See the lists in the section 5 for other defining equations C0/kd.

4 Classification of elliptic/hyperelliptic curves C0

for crypto usage without isogeny condition

From now, we apply the procedure in the section 3 to classify C0/kd without
isogeny condition. Here, we consider cases of a hyperelliptic curve C0/kd for
g(C0) ∈ {1, 2, 3} such that there is a covering π/kd : C −→ C0 and the
covering curve C/k has genus g(C) = d · g(C0) + e (e > 0).

4.1 Upper bound of e in g(C) = dg(C0) + e (e > 0)

Firstly, since C0 are used in the cryptographic applications, we need to re-
strict C0 to a practically meaningful class. Thus we will tentatively estimate
an upper bound of e for g(C0) ∈ {1, 2, 3}. In algebraic curve based cryp-
tosystems, the standard key length is above 160 bits at present. This means
the size of the Jacobian of C0/kd is

qg(C0)d ≥ 2160. (21)

Next, we assume that the size of Jacobian of C/k is qdg(C0)+e ≤ 2a.

12



Remark 4.1. Hereafter, we discuss within a ≤ 320. Meanwhile, Lemma
3.1 and the procedures in the previous section can apply to also qdg(C0)+e >
2320. The classification of these cases will be reported in the near future.

4.1.1 Case g(C0) = 1

Then, we have the following situation for g(C0) = 1{
qd+e ≤ 2a

2160 ≤ qd.
(22)

Now, since qd+e

qd ≤ 2a

2160 , qe ≤ 2a−160. Consequently,

log qe ≤ log 2a−160.

It follows that an upper bound of e is

e ≤ (a − 160)d
160

. (23)

Now, e ≤ d is obtained since we treat a ≤ 320.

4.1.2 Case g(C0) = 2, 3

Similarly, when g(C0) = 2, assume that{
q2d+e ≤ 2a

2160 ≤ q2d.
(24)

Then e ≤ 2d if a ≤ 320. When g(C0) = 3, the double-large-prime algorithms
have the cost of Õ(q

4
3
d). Accordingly, the condition q3d ≥ 2180 (i.e. q

4
3
d ≥

280) should be adopted instead of q3d ≥ 2160 (q
4
3
d ≥ 271.11...) to keep the same

security level with g(C0) = 1, 2 hyperelliptic curves (the costs of attack to
each DLP are q

d
2 ≥ 280 for g(C0) = 1, qd ≥ 280 for g(C0) = 2 as a key length

of more than 2160 respectively). Thus, one can assume{
q3d+e ≤ 2a

2180 ≤ q3d.
(25)

Consequently, e ≤ 7
3d when a ≤ 320. In the next subsection, we enumerate

the candidates of n, d, e, S within these bounds of e for g(C0) = 1, 2, 3.
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4.2 The candidates of (n, d, e, S)

4.2.1 σ : Type (A)

• Case g(C0) = 1:
From the above, d + e − 1 ≥ 2n−2d − 2n when g(C0) = 1. Since we assume
0 < e ≤ d, 2d−1 ≥ d+e−1 ≥ 2n−2d−2n. Then 2n−1 ≥ (2n−2−2)d (n ≥ 3).
Now, if n > 3,

(n ≤) d ≤ 4 +
7

2n−2 − 2
. (26)

Consequently, it follows that n ≥ 6 is not within the candidates. From
this result and the property of σ, the candidates of 4-triple (n, d, e, S) are:
(5, 5, 4, 5), (4, 4, 1, 5), (4, 5, 4, 6), (4, 6, 3, 6), (4, 7, 6, 7), (3, 3, 2, 6), (3, 4, 1, 6),
(3, 4, 3, 7), (3, 7, 2, 8), (3, 7, 4, 9), (3, 7, 6, 10), (2, 2, 1, 6), (2, 2, 2, 7), (2, 3, 1, 7),
(2, 3, 2, 8), (2, 3, 3, 9).
• Case g(C0) = 2:
Similarly, when g(C0) = 2, since we assume 0 < e ≤ 2d, 4d−1 ≥ 2d+e−1 ≥
2n−2d − 2n. Then, if n > 4,

(n ≤) d ≤ 4 +
15

2n−2 − 4
. (27)

Thus the candidates of (n, d, e, S) are: (4, 4, 5, 7), (4, 5, 3, 7), (4, 5, 7, 8), (4, 6, 1, 7),
(4, 6, 5, 8), (4, 6, 9, 9), (4, 7, 3, 8), (4, 7, 7, 9), (4, 7, 11, 10), (4, 15, 15, 15), (4, 15, 19, 16),
(4, 15, 23, 17), (4, 15, 27, 18), (3, 3, 1, 7), (3, 3, 3, 8), (3, 3, 5, 9), (3, 4, 1, 8), (3, 4, 3, 9),
(3, 4, 5, 10), (3, 4, 7, 11), (3, 7, 1, 11), (3, 7, 3, 12), (3, 7, 5, 13), (3, 7, 7, 14), (3, 7, 9, 15),
(3, 7, 11, 16), (3, 7, 13, 17), (2, 2, 1, 8), (2, 2, 2, 9), (2, 2, 3, 10), (2, 2, 4, 11), (2, 3, 1, 10),
(2, 3, 2, 11), (2, 3, 3, 12), (2, 3, 4, 13), (2, 3, 5, 14), (2, 3, 6, 15).
• Case g(C0) = 3:
Next, if g(C0) = 3 (0 < e ≤ 7

3d), then

(5 ≤ n ≤) d ≤ 4 +
61

3(2n−2 − 16
3 )

. (28)

Hence possible (n, d, e, S) are: (5, 8, 17, 9), (4, 4, 9, 9), (4, 5, 6, 9), (4, 5, 10, 10),
(4, 6, 3, 9), (4, 6, 7, 10), (4, 6, 11, 11), (4, 7, 4, 10), (4, 7, 8, 11), (4, 7, 12, 12), (4, 7, 16, 13),
(4, 15, 4, 16), (4, 15, 8, 17), (4, 15, 12, 18), (4, 15, 16, 19), (4, 15, 20, 20), (4, 15, 24, 21),
(4, 15, 28, 22), (4, 15, 32, 23), (3, 3, 2, 9), (3, 3, 4, 10), (3, 3, 6, 11), (3, 4, 1, 10), (3, 4, 3, 11),
(3, 4, 5, 12), (3, 4, 7, 13), (3, 4, 9, 14), (3, 7, 2, 15), (3, 7, 4, 16), (3, 7, 6, 17), (3, 7, 8, 18),
(3, 7, 10, 19), (3, 7, 12, 20), (3, 7, 14, 21), (3, 7, 16, 22), (2, 2, 1, 10), (2, 2, 2, 11), (2, 2, 3, 12),
(2, 2, 4, 13), (2, 3, 1, 13), (2, 3, 2, 14), (2, 3, 3, 15), (2, 3, 4, 16), (2, 3, 5, 17), (2, 3, 6, 18),
(2, 3, 7, 19).

4.2.2 σ : Type (B)

• Case 2 - d:
Now, d = LCM{di} ≤

∏
di ≤

∏
(2ni − 1) < 2n. (di is the order of ∆i in
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(9)). Here, if g(C0) = 1 (0 < e ≤ d), then

d + e − 1 ≤ 2d − 1 < 2n+1. (29)

On the other hand, it follows that

d + e − 1 ≥ 2n−2(q(d) − 4) (30)

since S = 4 + d+e−1
2n−2 ≥ q(d). From (29)(30), one obtains

2n+1 > 2n−2(q(d) − 4). (31)

Consequently, 12 > q(d). Besides, we have 20 > q(d) for g(C0) = 2 (0 <
e ≤ 2d) since 2n−2(q(d) − 4) ≤ 2d + e − 1 < 2n+2. By the similar manner,
26 > q(d) when g(C0) = 3 (0 < e ≤ 7

3d).
• Case 2 | d:
In this case, ni = limi, di = 2rid′i (2 - d′i), then d′i | 2mi − 1. Let r :=
max{ri}. Here, we obtain 2ri−1 + 1 ≤ li ≤ 2ri for ri ≥ 1. Accordingly,
2r−1 + 1 ≤ l1 ≤ 2r when we assume l1 with r1 ≥ 1. Now, notice that

∆i =


Ωi Ωi Ô · · ·

Ô Ωi
. . . . . .

...
. . . . . . Ωi

Ô · · · Ô Ωi


1

li

(
Ωi

) }
mi. (32)

Then

d = LCM{2rid′i} = 2r · LCM{d′i} ≤ 2r ·
∏

d′i (33)

≤ 2r ·
∏

(2mi − 1) (34)

<

{
2r+

∑
i≥1 mi (m1 ≥ 2)

2r+
∑

i≥2 mi (m1 = 1).
(35)

On the other hand, we know

dg(C0) + e − 1 ≥ 2n−2(q(d) − 4). (36)

Hence, if g(C0) = 1 (0 < e ≤ d), then

2d − 1 ≥ 2n−2(q(d) − 4). (37)

From (35) (37), we obtain

2r+(
∑

i≥1 mi)+1 > 2n−2(q(d) − 4) (38)

23+r+(
∑

i≥1 mi)−n > q(d) − 4 (39)

23+r−2r−1m1 > q(d) − 4 (40)
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for m1 ≥ 2. Similarly, 23+r−2r−1−1 > q(d) − 4 for m1 = 1. Therefore, we
obtain 8 > q(d). In the same way, we have 12 > q(d) and 15 > q(d) for
g(C0) = 2 and g(C0) = 3 respectively.

From these upper bounds and the property of σ, we obtain a list of pos-
sible (g(C0), n, d, e, S) :
(1, 4, 6, 3, 6), (2, 5, 12, 9, 8), (2, 5, 12, 17, 9), (2, 5, 14, 13, 9), (2, 5, 14, 21, 10),
(2, 5, 21, 7, 10), (2, 5, 21, 15, 11), (2, 5, 21, 23, 12), (2, 5, 21, 31, 13), (2, 5, 21, 39, 14),
(2, 4, 6, 5, 8), (2, 4, 6, 9, 9), (3, 6, 21, 34, 10), (3, 6, 28, 29, 11), (3, 6, 28, 45, 12),
(3, 6, 28, 61, 13), (3, 5, 21, 2, 12), (3, 5, 21, 10, 13), (3, 5, 21, 18, 14), (3, 5, 21, 26, 15),
(3, 5, 21, 34, 16), (3, 5, 21, 42, 17), (3, 5, 14, 7, 10), (3, 5, 14, 15, 11), (3, 5, 14, 23, 12),
(3, 5, 14, 31, 13), (3, 5, 12, 13, 10), (3, 5, 12, 21, 11), (3, 4, 6, 7, 10), (3, 4, 6, 11, 11).

Within these lists, we construct explicitly all classes of hyperelliptic
curves C0/kd for g(C0) ∈ {1, 2, 3} such that there is a covering π/kd : C −→
C0 and the covering curve C/k has genus g(C) = d · g(C0)+ e (e > 0). Lists
for all defining equations C0/kd are given in the section 5. The classification
for a > 320 will be reported in the near future.

5 Lists of classifications

5.1 Classification for the case when σ is Type (A)

Let h1(x) ∈ k[x], hd(x) ∈ kd[x] \ ku[x] (u |̸= d), η := 1 or a non-square
element in kd, α, γ ∈ kd \ kv (v |̸= d), αi ∈ kτi \ kwi (wi |̸= τi). Here, choose
αi and τi ∈ {d, 2d, · · · ,max{i}d} such that hd(x) ∈ kd[x] \ ku[x] (u |̸= d).
Refer to the section 3 as an example of how to choose αi and τi. Let
C0/kd : y2 = c · hd(x)h1(x).
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C0/kd : y2 = c · hd(x)h1(x)

(n, d, g(C0), e, S) c hd(x) deg h1(x)
(4, 4, 1, 1, 5) η (x − α)(x − αq)(x − αq2

) 1, 0
(4, 4, 2, 5, 7) η (x − α)(x − αq)(x − αq2

) 3, 2
(4, 4, 3, 9, 9) η (x − α)(x − αq)(x − αq2

) 5, 4
η (x − α)(x − γq)(x − γq2

) 5, 4
(4, 5, 3, 10, 10) 1

∏2
i=1(x − αi)(x − αq

i )(x − αq2

i )(x − αq3

i ) 0
(4, 6, 1, 3, 6) 1 (x − α)(x − αq)(x − αq2

)(x − αq3
) 0

(4, 7, 2, 7, 9) η (x − α)(x − αq)(x − αq2
)(x − αq4

) 2, 1
η (x − α)(x − αq2

)(x − αq3
)(x − αq4

) 2, 1
(4, 7, 2, 11, 10) η (x − α)(x − αq2

)(x − αq3
) 3, 2

η (x − α)(x − αq)(x − αq3
) 3, 2

(4, 7, 3, 8, 11) η (x − α)(x − αq)(x − αq2
)(x − αq4

) 4, 3
η (x − α)(x − αq2

)(x − αq3
)(x − αq4

) 4, 3
(4, 7, 3, 12, 12) η (x − α)(x − αq2

)(x − αq3
) 5, 4

η (x − α)(x − αq)(x − αq3
) 5, 4

(3, 3, 1, 2, 6) η x − α 3, 2
(3, 3, 2, 1, 7) η (x − α)(x − αq) 4, 3
(3, 3, 2, 3, 8) η x − α 5, 4

η
∏2

i=1(x − αi)(x − αq
i ) 2, 1

(3, 3, 2, 5, 9) η (x − α)(x − αq)(x − γ) 3, 2
(3, 3, 3, 2, 9) η (x − α)(x − αq) 6, 5
(3, 3, 3, 4, 10) η x − α 7, 6

η
∏2

i=1(x − αi)(x − αq
i ) 4, 3

(3, 3, 3, 6, 11) η (x − α)(x − αq)(x − γ) 5, 4
η

∏3
i=1(x − αi)(x − αq

i ) 2, 1
(2, 2, 1, 1, 6) η

∏2
i=1(x − αi) 2, 1

(2, 2, 1, 2, 7) η
∏3

i=1(x − αi) 1, 0
(2, 2, 2, 1, 8) η

∏2
i=1(x − αi) 4, 3

(2, 2, 2, 2, 9) η
∏3

i=1(x − αi) 3, 2
(2, 2, 2, 3, 10) η

∏4
i=1(x − αi) 2, 1

(2, 2, 2, 4, 11) η
∏5

i=1(x − αi) 1, 0

(n, d, g(C0), e, S) c hd(x) deg h1(x)
(2, 2, 3, 1, 10) η

∏2
i=1(x − αi) 6, 5

(2, 2, 3, 2, 11) η
∏3

i=1(x − αi) 5, 4
(2, 2, 3, 3, 12) η

∏4
i=1(x − αi) 4, 3

(2, 2, 3, 4, 13) η
∏5

i=1(x − αi) 3, 2
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Let β ∈ k2 \ k, βj ∈ kωj \ kρj (ρj |̸= ωj), h2(x) ∈ k2[x] \ k[x].
Here, choose βj and ωj ∈ {d, 2d, · · · ,max{j}d} such that h2(x) ∈ k2[x]\k[x].
Let C0/kd : y2 = c · hd(x)h2(x)h1(x).

(n, d, g(C0), e, S) c hd(x) h2(x) deg h1(x)
(3, 4, 1, 1, 6) 1 (x − α)(x − αq) 1 2, 1
(3, 4, 1, 3, 7) 1 (x − α)(x − αq) x − β 1, 0
(3, 4, 2, 1, 8) 1 (x − α)(x − αq) 1 4, 3
(3, 4, 2, 3, 9) 1 (x − α)(x − αq) x − β 3, 2
(3, 4, 2, 5, 10) 1

∏2
i=1(x − αi)(x − αq

i ) 1 2, 1
1 (x − α)(x − αq)

∏2
j=1(x − βi) 2, 1

(3, 4, 2, 7, 11) 1 (x − α)(x − αq)
∏3

j=1(x − βi) 1, 0
1

∏2
i=1(x − αi)(x − αq

i ) x − β 1, 0
(3, 4, 3, 1, 10) 1 (x − α)(x − αq) 1 6, 5
(3, 4, 3, 3, 11) 1 (x − α)(x − αq) x − β 5, 4
(3, 4, 3, 5, 12) 1

∏2
i=1(x − αi)(x − αq

i ) 1 4, 3
1 (x − α)(x − αq)

∏2
j=1(x − βi) 4, 3

(3, 4, 3, 7, 13) 1 (x − α)(x − αq)
∏3

j=1(x − βj) 3, 2
1

∏2
i=1(x − αi)(x − αq

i ) x − β 3, 2
(3, 4, 3, 9, 14) 1 (x − α)(x − αq)

∏4
j=1(x − βj) 2, 1

1
∏2

i=1(x − αi)(x − αq
i )

∏2
j=1(x − βj) 2, 1

1
∏3

i=1(x − αi)(x − αq
i ) 1 2, 1

5.2 Classification for the case when σ is Type (B)

Here, hv(x) ∈ kv[x] \ kw[x] (w |̸= v), η := 1 or a non-square element in kd.
(1) n = 6, d = 28, α ∈ k7 \ k, β ∈ k4 \ k2

C0/kd : y2 = c · h7(x)h4(x)h1(x)

(n, d, g(C0), e, S) c h7(x) h4(x) deg h1(x)
(6, 28, 3, 61, 13) η (x − α)(x − αq)(x − αq2

)(x − αq4
) (x − β)(x − βq) 2, 1

η (x − α)(x − αq2
)(x − αq3

)(x − αq4
) (x − β)(x − βq) 2, 1

(2) n = 5, d = 12, α ∈ k4 \ k2, β ∈ k3 \ k
C0/kd : y2 = c · h4(x)h3(x)h1(x)

(n, d, g(C0), e, S) c h4(x) h3(x) deg h1(x)
(5, 12, 2, 17, 9) η (x − α)(x − αq) (x − β)(x − βq) 2, 1
(5, 12, 3, 21, 11) η (x − α)(x − αq) (x − β)(x − βq) 4, 3
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(3) n = 5, d = 14, α ∈ k7 \ k, β ∈ k2 \ k, β1, β2 ∈ k2 \ k or β1 ∈ k4 \ k2,
β2 := βq2

1 , C0/kd : y2 = c · h7(x)h2(x)h1(x)

(n, d, g(C0), e, S) c h7(x) h2(x) deg h1(x)
(5, 14, 2, 21, 10) η (x − α)(x − αq)(x − αq2

)(x − αq4
) x − β 1, 0

η (x − α)(x − αq2
)(x − αq3

)(x − αq4
) x − β 1, 0

(5, 14, 3, 23, 12) η (x − α)(x − αq)(x − αq2
)(x − αq4

) x − β 3, 2
η (x − α)(x − αq2

)(x − αq3
)(x − αq4

) x − β 3, 2
(5, 14, 3, 31, 13) η (x − α)(x − αq)(x − αq2

)(x − αq4
)

∏2
i=1(x − βi) 2, 1

η (x − α)(x − αq2
)(x − αq3

)(x − αq4
)

∏2
i=1(x − βi) 2, 1

η (x − α)(x − αq2
)(x − αq3

) x − β 4, 3
η (x − α)(x − αq)(x − αq3

) x − β 4, 3

(4) n = 5, d = 21, α ∈ k7 \k, β ∈ k3 \k, β1, β2 ∈ k3 \k or β1 ∈ k6 \ (k2 ∪k3),
β2 := βq3

1 , C0/kd : y2 = c · h7(x)h3(x)h1(x)

(n, d, g(C0), e, S) c h7(x) h3(x) deg h1(x)
(5, 21, 2, 7, 10) 1 (x − α)(x − αq)(x − αq2

)(x − αq4
) (x − β)(x − βq) 0

1 (x − α)(x − αq2
)(x − αq3

)(x − αq4
) (x − β)(x − βq) 0

(5, 21, 3, 2, 12) 1 (x − α)(x − αq)(x − αq2
)(x − αq4

) (x − β)(x − βq) 2, 1
1 (x − α)(x − αq2

)(x − αq3
)(x − αq4

) (x − β)(x − βq) 2, 1
(5, 21, 3, 10, 13) 1 (x − α)(x − αq)(x − αq2

)(x − αq4
)

∏2
i=1(x − βi)(x − βq

i ) 0
1 (x − α)(x − αq2

)(x − αq3
)(x − αq4

)
∏2

i=1(x − βi)(x − βq
i ) 0

(5) n = 4, d = 6, α ∈ k3 \ k, β ∈ k2 \ k, γ ∈ k6 \ (k2 ∪ k3), α1, α2 ∈ k3 \ k

or α1 ∈ k6 \ (k2 ∪ k3) , α2 := αq3

1 , β1, β2 ∈ k2 \ k or β1 ∈ k4 \ k2, β2 := βq2

1 ,
C0/kd : y2 = c · h3(x)h2(x)h1(x)

(n, d, g(C0), e, S) c h3(x) h2(x) deg h1(x)
(4, 6, 1, 3, 6) η (x − α)(x − αq) x − β 1, 0
(4, 6, 2, 5, 8) η (x − α)(x − αq) x − β 3, 2
(4, 6, 2, 9, 9) η x − α x − β 4, 3

η
∏2

i=1(x − αi)(x − αq
i ) x − β 1, 0

η (x − α)(x − αq)
∏2

j=1(x − βj) 2, 1
(4, 6, 3, 7, 10) η (x − α)(x − αq) x − β 5, 4
(4, 6, 3, 11, 11) η x − α x − β 6, 5

η
∏2

i=1(x − αi)(x − αq
i ) x − β 3, 2

η (x − α)(x − αq)
∏2

j=1(x − βj) 4, 3

C0/kd : y2 = c · h6(x)h1(x)

(n, d, g(C0), e, S) c h6(x) deg h1(x)
(4, 6, 2, 9, 9) η (x − γ)(x − γq)(x − γq2

) 3, 2
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