Using Sphinx to Improve Onion Routing Circuit Construction®

Aniket Kate and Ian Goldberg

David R. Cheriton School of Computer Science
University of Waterloo, ON, Canada
{akate,iang}@cs.uwaterloo.ca

Abstract

This paper presents compact message formats for onion routing circuit construction using
the Sphinx methodology developed for mixes. We significantly compress the circuit construc-
tion messages for three onion routing protocols that have emerged as enhancements to the
Tor anonymizing network; namely, Tor with predistributed Diffie-Hellman values, pairing-based
onion routing, and certificateless onion routing. Our new circuit constructions are also secure
in the universal composability framework, a property that was missing from the original con-
structions. Further, we compare the performance of our schemes with their older counterparts
as well as with each other.

1 Introduction

Chaum [10] introduced the concept of digital pseudonyms and miz networks in 1981. Extending
this seminal work, Goldschlag, Reed and Syverson [21] proposed onion routing to achieve low-
latency anonymous communication on public networks, which motivated the original Onion Routing
project [35, 22, 40] and many other anonymous communication constructions [11, 18, 36, 16].
Among these, with its hundreds of thousands of users, the second generation onion routing project—
Tor [41]—has turned out to be a huge success. However, with its latency times of a few seconds,
users find Tor to be very slow for their usual communication over the Internet, and employ it only
in situations where their anonymity is indispensable to them. Efficiency is essential for widespread
use of anonymity networks; therefore, defining an efficient practical onion routing protocol forms
the motivation of this work.

An onion routing (OR) network consists of a set of onion routers (OR nodes) that relay traffic,
a large set of users and a directory server that provides routing information of the OR nodes to the
users. A user constructs a circuit choosing a small ordered subset of OR nodes, where the chosen
nodes route the user’s traffic over the path formed. The key property is that it is difficult for
any OR node in a circuit to determine the circuit nodes other than its predecessor and successor.
Further, the task must also be difficult for a powerful but not global observer. The user achieves
this by sending the first OR node an onion—a message wrapped in multiple layers of encryption
(one layer per selected node). Although OR circuit construction is a simple concept, the task of
simultaneously achieving efficiency and security presents an interesting research challenge.

In the original Onion Routing circuit construction [35], a user includes the identifier of the
next node and a random symmetric session key in each onion layer, and uses nodes’ public keys to

*This is the full version of our paper appearing in the 14th International Conference on Financial Cryptography
and Data Security (FC 2010) [25].



encrypt their respective layers. A node decrypts a received onion using its private key, forwards the
remaining onion to the next node, and uses the random symmetric session key for the rest of the
session. However, this single-pass circuit construction is not forward secret; if an adversary corrupts
a node and obtains its private key, then the adversary can decrypt all of its past communication.
The adversary could then successively compromise all the nodes in a circuit to break the anonymity
of a user’s past communications. Although changing the the public/private key pairs for all OR
nodes after a predefined interval (forward secrecy phase) is a possible solution, it is not scalable.
Every system user now has to download a new set of public keys for all the nodes at the start of
every forward secrecy phase.

Observing the above issue with forward secrecy, Dingledine, Mathewson and Syverson [16] used
an interactive and incremental telescoping approach while designing Tor. In the Tor authentication
protocol (TAP), which is used to negotiate the session keys in this multi-pass circuit construction,
a node’s public key is only used to initiate the construction and its compromise does not void
the security of the session keys once the randomness used in the protocol is erased. verlier
and Syverson [33] improved the efficiency of Tor using a half-certified Diffie-Hellman (DH) key
agreement [29, §12.6] in their Tor with predistributed DH values (Tor-preDH).

However, in Tor, ©(v?) messages are required to create a circuit of length v, as compared to O(v)
required in a single-pass circuit construction. To solve the scalability issue in single-pass circuit
constructions, Kate, Zaverucha and Goldberg [26, 27] suggested the use of an identity-based setting
and defined a pairing-based onion routing protocol (PB-OR). Catalano, Fiore and Gennaro [9]
suggested the use of a certificateless setting instead and defined two certificateless onion routing
protocols (CL-OR and 2-CL-OR). @verlier and Syverson [33] have also suggested a single-pass
circuit construction that provides forward secrecy eventually. However, an extensive comparison
between all these schemes is not available yet. In terms of security, [20] proved the security of TAP,
while [27] and [9] proved some security properties of PB-OR and CL-OR respectively. However,
none of these practical protocols achieve security in the universal composability (UC) framework [8].
Camenisch and Lysyanskaya [7] presented a framework for UC-secure OR circuit construction, but
their protocol is not practical enough for realistic use.

1.1 Contributions

In this paper, we present a practical generic onion routing circuit construction protocol that
achieves security in the UC model. We apply our protocol to Tor-preDH, PB-OR, CL-OR and
2-CL-OR to define their UC-secure versions. Importantly, the circuit construction messages for
these new protocols are significantly smaller than those in the original protocol and there is no
addition to a user’s computational cost. We achieve this using Sphinz, an efficient message format
for mix networks, defined by Danezis and Goldberg [13].

We first review the Sphinx message format and describe various OR circuit construction pro-
tocols (§2). We then give a generic Sphinx-based OR circuit construction protocol and discuss its
security properties (§3). Next, we use this generic message format to define practical UC-secure
circuit constructions (§4). We compare the message compactness and computational cost of the
new constructions with their original counterparts (§5). Finally, we compare these three onion
routing protocols in terms of computational cost and systems issues (§6).



2 Preliminaries

2.1 Notation

In this paper, we use Sphinx’s notation and briefly describe it here. (Refer to [13, Sec. 3.1] for a
detailed description.)

Our adversary is computationally bounded by a security parameter x, and it has to do 2" com-
putation to break the security of any of the protocols. Following the current security standards,
we choose k = 128. For a prime q of size 2k bits, let G be a cyclic group of order ¢. In the original
Sphinx algorithm, G is required to satisfy the decisional Diffie-Hellman (DDH) assumption [5]. In
this paper, the required cryptographic assumption changes with the OR protocol under considera-
tion; we defer their expositions to §4. Let v be the length of the circuit. Sphinx makes the circuit
construction message size independent of v; we parametrize the maximum length of the circuit as r.
Node identifiers are k-bit strings. Each node has a public/private key pair. However, as the schemes
that we are considering belong to three different methodologies (public-key cryptography—PKC,
identity-based cryptography—IBC and certificateless cryptography—CLC), the formation of the
public and the private keys changes for each scheme.

We assume a message authentication code (MAC) p : {0,1}F x {0,1}* — {0,1}", a pseudo-
random generator (PRG) p : {0,1}* — {0,1}®>"+3% and corresponding hash functions h,,, h, :
G* — {0,1}", where G* is the set of non-identity elements of G. We use another hash function
hy : G* x G* — Zy in the blinding factor computation. All hash functions are modelled as random
oracles.

2.2 The Sphinx Message Format

Mix message formats have been a point of interest in research on mix networks [31, 30, 12, 14, 7,
38, 13] . Recently, Danezis and Goldberg [13] proposed Sphinx as the most compact and efficient
cryptographic mix message format and proved its security in the UC model.

Cryptographically, the most elegant feature of the Sphinx message format is its session key
derivation technique based on a repeatedly modified random element of a cyclic prime order group.
We call this technique Sphinx’s blinding logic. The mentioned random element («) and its repeated
modified forms are called pseudonyms since each of these random elements is a temporary public
key whose private key is held by the user. In the Sphinx blinding logic, each mix node uses a
pseudonym supplied by its predecessor and its own private key to compute the session key with
the user. To improve the unlinkability, as in Tor, a pseudonym must not remain the same across
the circuit. In the mix network and onion routing literature, this is done by including separate
random pseudonyms in a construction message for each node in the circuit. In Sphinx’s blinding
logic, this is achieved using a single repeatedly changing pseudonym. At every node, a blinding
factor is extracted from the current pseudonym and the newly computed session key. The current
pseudonym is then exponentiated with the blinding factor to generate the next pseudonym. In
other words,

Qg1 = a0, (1)
The session key is computed by node n; as s; = afi, where x; is the node’s private key, and by
the user as explained in §4.

To send an anonymous message, a sender first chooses her mix nodes and obtains their public
keys. She then computes «; and s; and wraps the message in multiple layers of encryption using the
PRG p to generate ciphertext values (3;. To check the integrity of the message header, she calculates



and includes a MAC ~; at each mixing stage. Upon receiving a message header (o, 3;,7;), each
mix node n; extracts session keys using its private key z; and the pseudonym «; received from the
predecessor. It uses those to verify the MAC ~; and to decrypt a layer of encryption of ;. It also
extracts the routing information, computes the pseudonym ;1 for the next node (Equation 1) and
forwards the message to n,4+1. As we are working towards using Sphinx in OR circuit constructions,
we ignore Sphinx’s payloads and reply blocks.

Note that we are here concerned only with the circuit construction messages. Our methodologies
are not required for OR communications in already constructed circuits.

2.3 Tor Circuit Construction

In Tor circuit construction [16], a user performs a DH key agreement [15] with each successive
node in her circuit over a secure tunnel formed using the already-agreed session keys. This ensures
the forward secrecy of the communication immediately after these session keys are deleted. In the
Tor authentication protocol (TAP), a user extends a circuit to node n; by generating a random
r; €r Zy and sending a DH value (that is, a pseudonym) g* encrypted using the (RSA) public
key of node n;. Node n; decrypts the message and responds by sending g%/, where y; €r Z7, and a
hash of g¥¥:. It is important that the user herself generates and encrypts the DH value g%i; if an
intermediate adversary OR node (n; for 0 < j < ¢) derives g™, it can launch a man-in-the-middle
attack. If g” is available to node n;_; in the clear, it can generate z} € Z, and send g% to n;.
On the other hand, it can generate y, € Z,, g and ¢®¥ and send g¥% as well as a hash of ¢%¥ to
the user. Node n;_1 can now unwrap any message the user sends to node n;. It can then re-wrap
it appropriately and send it to n;, making the attack completely undetectable.

In Sphinx’s blinding logic, node n;_1 uses the received pseudonym g¢g%—! to generate and send
pseudonym ¢*¢ to node n; unencrypted. Therefore, it is not possible to directly apply the compact
Sphinx message format to Tor.

2.4 Recent Enhancements Suggested for Tor

Although widely deployed, Tor is still not a part of everyday web access for most of its users because
of its slowness. Along with the network issues such as TLS congestion control [34], the telescoping
circuit construction is also considered to be an important reason behind this inefficiency. [33, 27]

Overlier and Syverson [33], Kate et al. [26], and more recently Catalano et al. [9] suggested
improvements to Tor circuit construction. These schemes use a one-way anonymous key agree-
ment [26] strategy in the public-key cryptography (PKC), identity-based cryptography (IBC) and
certificateless cryptography (CLC) settings respectively. Here, a user chooses a random element of
Zy per circuit node and computes an associated pseudonym. A session key is computed using the
node’s public key and the random element at the user end, and using the pseudonym received and
the node’s private key at the node’s end; the precise session-key computation and the cryptographic
assumption vary with the OR circuit construction protocol. Most importantly, unlike Tor, the user
does not encrypt the pseudonyms in these schemes, which is a direct result of the inclusion of the
private key of an OR node in the session key generation. Therefore, it is possible to incorporate
Sphinx’s blinding logic into these schemes.

3 Generalizing the Sphinx Methodology

In this section, first we discuss our design goals and threat model. We then present the generic
design of OR circuit construction using the Sphinx methodology and discuss its security properties
in the UC model.



3.1 Design Goals and Threat Model

Our design goals and threat model are same as that of Tor. It must be difficult for the adversaries
to link multiple communications to or from a single user. It also should not be feasible for any node
to determine the identity of any node in a circuit other than its two adjacent non-adversary nodes.
Although it is impossible to prevent denial-of-service attacks by an adversary node, the circuit
construction protocol should be able to detect any malicious modification to circuit construction
messages.

We do not consider a global passive adversary, which in theory can follow end-to-end traffic.
Our adversaries have complete control over some part (but not all) of the network, as well as
control over some of the nodes. Furthermore, we assume that the adversaries are mobile and may
shift to the currently unadversarial nodes in the future. Thus, the circuit construction protocols
should be forward secret so that after some time, the session keys used to protect node identities
and the contents of messages are irrecoverable even if all participants in a circuit are subsequently
compromised.

3.2 Generic Design

In Sphinx, a pseudonym «;+1 for node n;41 is generated using the pseudonym «; and the session
key s; generated at node n; (Equation 1). As discussed in §2.3, we can use the Sphinx methodology
in an OR circuit construction protocol where a node can create or observe a pseudonym for the
next node in the circuit. We here present a generic OR circuit construction using the Sphinx
methodology.

For the OR circuit construction, we slightly modify the Sphinx notation from §2.2. We modify
the definition of PRG pto be p : {0,1}* — {0,1}(2"+1%_ In the original Sphinx format, a destination
address (A) and a reply block identifier I € {0,1}* are present. Since we do not require circuit
construction messages to be delivered to external parties, we can remove these portions of the
Sphinx format, saving 2k bits in the size of ;. As the sets to which the session keys s; belong
change with the OR protocol used, we also modify the definition of our hash functions as follows:
Rushp : G — {0,1}" and hy : G* x G’ — Zj, where G’ represents a set of values that the session
key s; can take.

To create an OR circuit construction message, we use Sphinx’s mix header creation algorithm
([13, §3.2]) with a generalization of the session key generation. The original Sphinx message format
is based on the half-certified DH key agreement [29, §12.6], where a session key s; is generated as
8; = yfbobl"'bi*l at the user’s end and as s; = " at node n;, where (y;, 2;) is the public/private key
pair for n;, «; is a pseudonym for node n;, x is the session-specific randomness and by, ..., b;_1 are
the blinding factors, b; = hy(ay, s;). The different OR circuit construction protocols use different
session key generation methods, so we generalize this session key generation step. At the user end,
we set

si = fu(yi,zbobr---bi—1), (2)
and at node n;,
si = fn(Tis i, 5). 3)

The other technical details of Sphinx remain exactly the same. Refer to [13, §3.2] for circuit
construction message creation and to [13, §3.6] for message processing at a node.



Note that, although Sphinx is defined for single-pass constructions, its blinding logic is also
useful in multi-pass constructions, where it can avoid the transfer of pseudonyms in circuit ex-
tension messages. However, we concentrate only on single-pass constructions in this paper as the
applicability of Sphinx is more evident there.

3.3 Security Analysis

Camenisch and Lysyanskaya [7] design a framework for onion routing with provable security in
the UC model. They define onion-correctness, onion-integrity and onion-security properties for an
OR scheme and prove Theorem 1.

Theorem 1 (Theorem 1 [7]) An onion routing scheme satisfying onion-correctness, integrity
and security, when combined with secure point-to-point secure channels, yields a UC-secure OR
scheme.

Danezis and Goldberg [13] separate a wrap-resistance property from onion-security to simplify
the onion-security definition and prove the resulting four security properties of the Sphinx message
format using random oracles. We use their security discussion to define the security requirements
for our generic OR circuit design.

Onion-correctness: According to [7], an OR circuit construction is correct, if a message reaches
the intended recipient in a constructed circuit whenever an onion is formed correctly, processed by
the right routers in the right order, and these routers follow the protocol. It is easy to observe that
a Sphinx-based OR circuit construction works correctly.

Onion-integrity: An OR circuit construction has integrity if it is not possible for an adversary to
build a circuit of more than N honest nodes, for some predefined bound N, except with negligible
probability. As we only change the session key generation step in the original Sphinx message
format, our proof of integrity remains exactly the same as that of Sphinx in [13, Sec. 4.2] except
in our case N = r instead of r + 1 as we reduce the size of §; by 2k bits.

Wrap-resistance: Camenisch and Lysyanskaya [7] also suggest a security property such that it
should not be possible for an OR node to wrap an existing onion; that is, given a target onion
(say) O;+1, it must not be possible for an adversary to construct onion O; such that a node n;
processing O; would output O;11. This must remain true even if the adversary can select n;’s
private key. In Sphinx, the wrap-resistance property is based on the difficulty of computing o
given a1 = a?b(ai’si). As this blinding logic remains unchanged in our generic OR design, our
wrap-resistance discussion is same as that of [13, Sec. 4.3].

Onion-security: As defined by [7], the onion-security property requires that an attacker con-
trolling all but one honest node (say n*) in a circuit should not be able to distinguish OR circuit
construction messages entering into the unattacked node n*. Omnion-security for our generic con-
struction differs in three places from the original Sphinx format.

1. There are no reply messages and there is no need for indistinguishability of forward and reply
messages.

2. There are no destination addresses A and no message payloads.

3. Generation of the session key varies with the circuit construction protocol.



We observe that the first two differences do not affect the security proof. The third difference is
related to the infeasibility of the adversaries to distinguish between s; generated using Equations 2
and 3 and a random s; €g G'. The exact assumption required to achieve this indistinguishability
property changes with the choice of fyy and fy, and the OR circuit construction setting. Therefore,
we here only ask that the adversaries should not be able to distinguish between a random s; and
s; generated during the circuit construction and leave the discussion of the exact cryptographic
assumptions required to the next section.

4 Applying the Generic Sphinx Format to OR Circuit Construc-
tions

In this section, we implement the generic Sphinx format into three onion routing circuit construc-
tions. We also discuss the exact security assumptions required for their UC model security.

4.1 Tor with Predistributed DH Values (Tor-preDH)

The half-certified DH key agreement scheme [29, §12.6] is a one-pass protocol with unilateral
key authentication of the receiver to the sender, assuming that the sender has an authentic copy
of the receiver’s public key. @Overlier and Syverson [33] define an enhancement to the Tor circuit
construction using half-certified DH key agreement instead of TAP.

Let z; € Z; be the private key for node n; and let y; = g be its public key, where g € G
is a chosen generator. In the half-certified DH key agreement scheme, a user generates a random
i €ER ZZ and sends a pseudonym «; = g™ to node n; over the already formed circuit (tunnel), if
any. The user generates the session key as s; = y;* and node n; generates s; = «o". Qverlier and
Syverson used this to present a single-pass protocol (their second protocol).

Using the generic Sphinx design presented in §3.2, we can not only make their eventual forward
secret protocol more efficient but also prove its security in the UC model. Here, except for the
entry node, the user is not required to send «; to node n; in the circuit. Node n;_;1 generates the
pseudonym «; = a?f(lai’l’si’l). All other computation remains the same as the half-certified DH
key agreement and the message format remains the same as that of Sphinx. As s; € G*, G’ = G*
here.

Security Analysis: Onion-security is the only security property of Sphinx that depends upon the
underlying two-party key agreement protocol. The other security properties are independent and
have been proven in §3.3. As both the original Sphinx protocol and the Tor-preDH construction use
the half-certified DH key agreement protocol, their onion-security analyses also remain the same.

In brief, for onion-security, it should not be feasible for an adversary to distinguish s; = ¢g*" € G
from a random element in G, given g, o; = ¢ and y; = g% except with negligible probability. It
is easily possible to model any DDH problem (g, g%, ¢°, 2 : 2 L g®®) in group G into this indistin-
guishability problem. Therefore, assuming that the DDH assumption holds in G, our enhancement
to Tor-preDH is secure in the UC model.

4.2 Pairing-Based Onion Routing

Kate et al. [26] observe that the public-key management issue while achieving forward se-
crecy in single-pass onion routing circuit constructions can be solved using IBC. They develop an



anonymous key agreement protocol modifying Sakai-Ohgishi-Kasahara key agreement [37] in the
Boneh-Franklin identity-based encryption (BF-IBE) setup [6] and use that to define an OR circuit
construction called pairing-based onion routing (PB-OR).

We choose three cyclic groups G, G, and Gp (all of which we shall write multiplicatively) of
prime order ¢ and a bilinear pairing e : G x G — Gp. We refer the readers to the appendix for a more
elaborate discussion of pairings. In the BF-IBE setup, given (e : G x G — Gr, g G, g€ G), a
(possibly distributed) private-key generator (PKG) generates a master key s € Zy and an associated
public key y = ¢° € G*, and derives private keys d; for nodes using their well-known identities and
s. A node with identity ID; receives the private key d; = (h1p(ID;))® € G*, where hip : {0,1}* — G*
is a cryptographic hash function.!

In PB-OR, a user generates a random r; €r Z; and sends a pseudonym «; = g"* to node
n; over the already-formed circuit (if any). The session key s; is generated at the user end as
s; = e(y, h1p(ID;))"™ and at the node n; as s; = e(qy, d;). Using our generic design, «; can be gen-
erated as a; = a?ﬁ (1%’1’81"1), while the computation of s; remains the same as that of the original
PB-OR, except here r; = xbgby---b;_1 for an = €g Z; chosen by the user. As s; € Gr, G' = Gr
here.

Security Analysis: As already mentioned, we only need to consider onion-security. In PB-
OR with Sphinx, except with negligible probability, it should not be feasible for an adversary
to distinguish s; = e(g, h1p(ID;))*"* € G from a random element of Gp, given ¢°, «; = g™ and
h1p(ID;) € G. For the bilinear pairing tuple (e, G, G, Gr), given an instance of the decisional bilinear

Diffie-Hellman (DBDH) problem [23] (g, 9%, ¢°, G, 3% 6 2 : 2 L e(g,)®°), it can be modelled as the
above indistinguishability game using the following mapping: o; = g%, ¢° = ¢° and hgp(ID;) = §°.
Therefore, assuming that the DBDH assumption holds for a tuple (e, G, G, Gr), our enhancement
to PB-OR is secure in the UC model.

4.3 Certificateless Onion Routing

Catalano et al. [9] recently introduced the concept of certificateless onion routing and presented
two protocols (CL-OR and 2-CL-OR) for it. Their motivation is to avoid pairings and to eliminate
the interactions between a PKG (or key generation centre—KGC) and nodes in PB-OR using CLC
introduced by Al-Riyami and Paterson [2].

In certificateless onion routing, the KGC chooses a random generator g € g G, two hash functions
her : {0,1} — Zg and hy : G x G — {0,1}", and a master key s €r Z,;. It then computes
y = ¢° and publishes (G, g,y, hor, hr) as the public key. When a node n; with identity ID; asks
for its partial private key, the KGC first generates a random k; €r Z,, computes w; = g" and
zi = k; + hor(ID;,w;)s and returns d; = (wj, z;) to node n;. Each node also generates a random
t; €g Zq and computes u; = g'. The public key for a node n; with identity ID; is (w;,u;) and its
private key is (z;, ;).

In CL-OR, a user generates a random r; €g Z; and sends the corresponding pseudonym «; = g"
to node n;. The user generates the session key s; = (zi1, zia) such that zj; = (wyycLIPiwi) ) and
zis = u;' and upon receiving pseudonym c;, node n; generates z;; = «;' and z5 = aﬁ".

While incorporating the generic Sphinx design, only the computation of the pseudonym c«;
changes in the above certificateless key agreement protocol. As above, the pseudonym «; is gener-
ated as o; = a?f(laifl’sifl). As s, € G x G, G' =G x G here.

n the PB-OR paper, the authors assume the symmetric (type 1) pairings. However, we maintain a generic
definition as pairings of types 2 and 3 [19] are more efficient.



Security Analysis: Catalano et al. [9] discuss onion-security for their protocols. They show
that their key agreement is onion-secure and its security is based the strong Diffie-Hellman (SDH)
assumption [1]. As the onion-security property requires the indistinguishability of a session key
from a uniformly random key, it is actually a property of the key agreement and is independent
of the message format. Therefore, CL-OR with Sphinx message format is onion-secure under the
SDH assumption and we refer the reader to [9, Sec. 3.2] for a detailed proof.

To avoid the SDH assumption, Catalano et al. also present another, slower, protocol (2-CL-
OR) with security based on the weaker computational Diffie-Hellman (CDH) assumption [15]. We
observe that in terms of using Sphinx in this protocol, only the s; generation and the corresponding
definition of G’ changes in 2-CL-OR. Node n; chooses t;1,tio €r Z, instead of t; €g Z, as its
private key and the pair (u;; = g1, u;5 = g'2) is the corresponding public key. The session key
si = (2 = (wiy?CL(ID""wi))”,zil = u;iy’, zis = uy') and G’ = G x G x G. The security analysis
remains exactly the same except under the CDH assumption now. However, in the rest of the
paper, we only consider the more efficient CL-OR protocol.

5 Performance Comparison

In this section, we compare the performance of the Sphinx-based circuit constructions of the three
protocols with their original constructions. Specifically, we compare message sizes and computa-
tional cost.

5.1 Message Sizes

Along with the UC model security, message compactness is an important advantage of using Sphinx.
It is easy to observe that the major savings in the length of a circuit construction message comes
from reuse of a pseudonym to which blinding is added at each circuit node.

Following the Sphinx notation, p is the size of a public key element in group G and r is the
maximum length of the circuit. We aim at k = 128-bit security and use the elliptic curve (ECC)
setting with points (compressed form) of size p = 256 bits, such as provided by Dan Bernstein’s
Curve 25519 [3] used by Sphinx. For the finite field setting (F), as higher values amplify our
advantage, we consider a DH modulus of size just p = 2048 bits to model 128-bit security. To
mitigate a recent attack on Tor by Evans, Dingledine and Grothoff [17], which uses long circuit
paths that loop back, the maximum circuit length for recent versions of Tor is set as 8. Therefore,
we set r = 8 for our Sphinx-based design. However, while comparing, we give an advantage to
the original Tor-preDH, PB-OR and CL-OR protocols by using Tor’s default circuit size v = 3
for them; using » = 3 in our design will only increase our advantage. Additionally, see [33] for a
discussion of the effect of Tor’s “CREATE_FAST” mechanism.

In the Sphinx-based OR construction, the user sends the tuple («g,8p,7) to node ng. The
lengths of the elements in this tuple are p, (2r — 1)k and « respectively. The total length, therefore,
is equal to p + 2rk. In the chosen ECC setting, this is equal to 1280 bits, while for the chosen
finite field setting, this is equal to 3072 bits. The message size does not depend upon a specific OR
design.

In the original Tor-preDH, PB-OR and CL-OR protocols, this cost is equal to r(p + 2k) as each
layer of onion in those constructions requires p bits for a pseudonym, x bits for identity of the
nodes and k bits for message integrity. With x = 128 and v = 3, this length is equal to 1536 bits
in the ECC setting and 6912 bits in the finite field setting. These values are significantly larger
than those in our generic format that can make circuits of any length up to 8. Note that with the
necessity of pairings in the PB-OR protocol, we do not consider the finite field setting for it.



Table 1: Comparison between lengths (in bits) of various single-pass OR circuit construction mes-
sages for 128-bit security (k = 128)

Scheme Circuit Size UC Security Message Size F ECC
(bits) (p=2048) (p = 256)
?S07 [33] v=3 X v(p+ 2K) 6912 1536
PBOR [26] v=3 X v(p+ 2k) —a 1536
CL-OR [9] v=3 X v(p+ 2k) 6912 1536
CLO5 [7] v=3 Vv v(p + k) 6528 1920°
Sphinx-OR r=8 V p + 2rk 3072 1280

@ With the necessity of pairings in the PB-OR protocol, we do not consider the finite field setting for it. ® As we use
an Elgamal ciphertext in ECC, p’ = 2p = 512.

We also consider Camenisch and Lysyanskaya’s design in [7] that is secure in the UC model.
The message length there is r(p + k), which is much larger than the Sphinx-based design. In
the ECC computation, we use an Elgamal ciphertext of two G elements of length p’ = 2p = 512
instead of p. For v = 3, the message sizes are 1920 bits and 6528 bits respectively. Therefore, our
Sphinx-based design achieves the same security guarantees with much smaller messages. Table 1
provides a succinct representation of the above discussion. Note that as Tor generates a circuit in
a telescoping form, we do not compare it with the single-pass protocols.

Although Sphinx achieves partial independence from the circuit size r with a single pseudonym,
r is still present in the message-size expression due to node addresses and the integrity mechanism.
In onion routing, a user should be able to choose its nodes from the available pool in an arbitrary
fashion [39, 32], so information theoretically, it is impossible to make the message size independent
of r.

5.2 Computational Cost

Compact messages and security in the UC model do not come without some additional com-
putational cost. However, importantly, there is no addition to the computations done by users
(possibly hundreds of thousands of them), while the increase is easily manageable for OR nodes.

The computation at a user end remains the same except for a few additional low-level opera-
tions such as a multiplication in Z,, a pseudorandom number generation and a few hashes having
computational costs in ps. Each node in a circuit has to perform an additional exponentiation in
G as it prepares the pseudonym for the next node. However, timing values computed using the
pairing-based cryptography (PBC) library [28] indicate that one exponentiation in G costs around
1 ms on a desktop machine. This does not affect the overall circuit construction cost in practice,
which is in seconds due to the network latency.

6 Comparison between Three OR Constructions

The three Sphinx-based OR circuit constructions that we present in §4 have been developed in
three different settings; namely PKC, IBC and CLC. Although the papers presenting the original
schemes compare their performance with Tor and also with each other to some extent, the analysis
is not complete. In this section, we compare these three schemes in terms of their computational
and infrastructural costs.

10



For all three schemes [33, 27, 9], their eventual forward secret constructions are significantly
more efficient than the existing Tor circuit construction, which is obvious because of a linear
message complexity gap between the two settings. The immediate forward secret constructions of
Tor-preDH and PB-OR are also more efficient than Tor due to the high computational cost of the
RSA decryptions. Immediate forward secrecy is not discussed for CL-OR [9]. Between Tor-preDH
and PB-OR, the former is more efficient as it avoids pairings. However, Sphinx is more useful
in the single-pass circuit constructions and we concentrate on the Sphinx-based versions of three
single-pass OR schemes.

In Tor-preDH, to build a circuit of length v, a user performs 2v exponentiations in G (one for a
pseudonym and other for a session key for each node), while each node performs two exponentiations
in G (one for a pseudonym for the next node and other for the session key). In PB-OR, a user does
v exponentiations in G for pseudonyms and v in Gp for session keys, while each node performs one
exponentiation in G to compute a pseudonym for the next node and one pairing computation for
the session key. In CL-OR, a user performs 3v exponentiations in G (v for pseudonyms and 2v for
session keys) and a node also performs three exponentiations in G (one for the pseudonym and two
for the session key).

Although Tor-preDH is the most efficient circuit construction in terms of computations costs,
from the systems perspective, there is a scalability challenge in it. Each OR node has to generate a
DH pair, and self-sign and forward the public half to the directory server once every forward secrecy
phase. In addition, the directory server has to verify and manage this signed public key list of all
OR nodes and all users of the anonymity network (possibly hundreds of thousands of them) have to
download the complete public key set as the new forward secrecy phase starts. Using an identity-
based infrastructure, PB-OR completely avoids the above public key management (scalability)
issue, but the key escrow available to the PKG presents an important privacy challenge. It is
possible to mitigate this problem using a distributed PKG setup [24]. However, this not only
asks for additional infrastructure, but also increases communication. Each OR node now has to
communicate with at least a threshold number of PKGs to obtain its private key as the new forward
secrecy phase starts. In CL-OR, the key escrow problem in the identity-based setting is mitigated
by combining an identity-private key pair with a user-generated (uncertified) public-private key
pair.? However, the public key management issue resurfaces here. Although not signed, each OR
node has to generate a DH pair and forward the public half of it to the directory server per forward
secrecy phase. The directory server has to maintain this (unsigned) public key list and all (possibly
hundreds of thousands) of the users have to download the complete set of public keys as the new
forward secrecy phase starts.

Apparently, none of the single-pass schemes is a clear winner. In the CLC setting, the problem
could have been solved if it would have been possible to modify the identity-private key pair without
modifying the public key for an OR node. In such a system, along with key escrow mitigation, a
single PKG generates and delivers private keys to the nodes once during each forward secrecy phase.
Importantly, users are not required to download any new public keys. However, it is not possible
to modify CL-OR to achieve this property as its IBC part of the private key z = k + hor(ID,w)s
cannot be securely modified across forward secrecy phases without changing k and the associated
public parameter w = g*. Maintaining the same k across two phases makes it possible for any node
to determine k£ and the master key s by solving a system of linear equations.

2The PKG can still apply an active (but detectable) attack to generate the DH pair itself.

11



7 Concluding Remarks and Future Work

Observing that the Sphinx message format defined for the mix networks is also applicable to OR
circuit constructions, we designed a generic OR circuit construction, which is compact as well as
secure in the UC model. Further, we used this generic construction to improve the circuit construc-
tions for the Tor-preDH, PB-OR, CL-OR and 2-CL-OR protocols. From a practical perspective,
we then compared the messages in the new circuit constructions with the original protocols and
noted that the new messages are significantly smaller.

Moreover, we compared the three new schemes with Tor as well as with each other. We observed
that in multi-pass constructions, Tor-preDH is the most efficient. However, in the absence of a
clearly optimal scheme, the choice among the single-pass circuit constructions has to be made
based on the size of a prospective anonymity network and availability of a PKG infrastructure.
For smaller networks, Tor-preDH and CL-OR are better suited than PB-OR. However, the choice
between those two is tricky. In Tor-preDH, the directory server and users have to verify OR nodes’
public key certificates once per forward secrecy phase. In CL-OR, for every circuit construction
a user has to perform v additional exponentiations and every circuit node has to perform one
additional exponentiation. For large anonymity networks, we find PB-OR to be more usable. The
public-key downloads saved there are more than compensate for the infrastructure cost incurred
by a (distributed) PKG.

Further, using the CLC setting, it may be possible to avoid the public-key scalability and key
escrow issues at the same time and it is an interesting future work to design such a scheme. Finally,
all of the above schemes assume random oracles and it would also be interesting to define an OR
circuit construction which is secure without random oracles.

Acknowledgements. We thank D. Fiore for providing the camera-ready version of his certifi-
cateless onion routing paper [9] with D. Catalano and R. Gennaro. We also thank R. Dingledine, G.
Zaverucha, and the anonymous reviewers for providing valuable feedback. This work is supported
by NSERC, MITACS, and a David R. Cheriton Graduate Scholarship.

References

[1] M. Abdalla, M. Bellare, and P. Rogaway. The Oracle Diffie-Hellman Assumptions and an
Analysis of DHIES. In CT-RSA’01, pages 143-158, 2001.

[2] S.S. Al-Riyami and K. G. Paterson. Certificateless Public Key Cryptography. In Advances
in Cryptology—ASIACRYPT’03, pages 452-473, 2003.

(3] D. J. Bernstein. Curve25519: New Diffie-Hellman Speed Records. In Public Key
Cryptography (PKC’06), pages 207-228, 2006.

[4] 1. Blake, G. Seroussi, and N. P. Smart, editors. Advances in Elliptic Curve Cryptography.
Number 317 in London Mathematical Society Lecture Note Series. Cambridge University
Press, Cambridge, UK, 2005. 183-252.

[5] D. Boneh. The Decision Diffie-Hellman Problem. In Third International Symposium
Algorithmic Number Theory (ANTS-111), pages 48-63, 1998.

[6] D. Boneh and M. Franklin. Identity-Based Encryption from the Weil Pairing. In Advances in
Cryptology—CRYPTO’01, pages 213-229, 2001.

12



[7] J. Camenisch and A. Lysyanskaya. A Formal Treatment of Onion Routing. In Advances in
Cryptology—CRYPTO’05, pages 169187, 2005.

[8] R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic Protocols.
In FOCS’01, pages 136-145, 2001.

[9] D. Catalano, D Fiore, and R. Gennaro. Certificateless Onion Routing. In CCS’09, pages
151-160, 2009.

[10] D. Chaum. Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms.
Communications of the ACM, 4(2):84-88, 1981.

[11] W. Dai. PipeNet 1.1. http://www.weidai.com/pipenet.txt, 1998. Accessed Nov. 2009.

[12] G. Danezis, R. Dingledine, and N. Mathewson. Mixminion: Design of a Type III Anonymous
Remailer Protocol. In IEEE Symposium on Security and Privacy, pages 2—15, 2003.

[13] G. Danezis and I. Goldberg. Sphinx: A Compact and Provably Secure Mix Format. In IEEE
Symposium on Security and Privacy, pages 269-282, 2009.

[14] G. Danezis and B. Laurie. Minx: A Simple and Efficient Anonymous Packet Format. In
WPES’04, pages 59-65, 2004.

[15] W. Diffie and M. Hellman. New Directions in Cryptography. IEEE Transaction on
Information Theory, 22(6):644-654, 1976.

[16] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The Second-Generation Onion Router.
In 18th USENIX Security Symposium, pages 303-320, 2004.

[17] N. S. Evans, R. Dingledine, and C. Grothoff. A Practical Congestion Attack on Tor Using
Long Paths. In 18th USENIX Security Symposium, pages 33-50, 2009.

[18] M. J. Freedman and R. Morris. Tarzan: A Peer-to-Peer Anonymizing Network Layer. In
CCS’02, pages 193-206. ACM, 2002.

[19] S. D. Galbraith, K. G. Paterson, and N. P. Smart. Pairings for Cryptographers. Discrete
Applied Mathematics, 156(16):3113-3121, 2008.

[20] 1. Goldberg. On the Security of the Tor Authentication Protocol. In PET’06, pages 316-331,
June 2006.

[21] D. M. Goldschlag, M. Reed, and P. Syverson. Hiding Routing Information. In Information
Hiding: First International Workshop, pages 137-150, 1996.

[22] D. M. Goldschlag, M. G. Reed, and P. F. Syverson. Onion Routing. Commun. ACM,
42(2):39-41, 1999.

[23] A. Joux. The Weil and Tate Pairings as Building Blocks for Public Key Cryptosystems. In
ANTS-V, pages 20-32, 2002.

[24] A. Kate and I. Goldberg. Asynchronous Distributed Private-Key Generators for
Identity-Based Cryptography. Cryptology ePrint Archive, Report 2009/355, 2009.

[25] A. Kate and I. Goldberg. Using Sphinx to Improve Onion Routing Circuit Construction. In
FC’10, 2010.

13



[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

A. Kate, G. M. Zaverucha, and I. Goldberg. Pairing-Based Onion Routing. In PETS’07,
pages 95-112, 2007.

A. Kate, G. M. Zaverucha, and I. Goldberg. Pairing-Based Onion Routing with Improved
Forward Secrecy. To appear in ACM TISSec, 2009.

B. Lynn. PBC Library — The Pairing-Based Cryptography Library.
http://crypto.stanford.edu/pbc/, 2006. Accessed September 2009.

A. Menezes, P. Van Oorschot, and S. Vanstone. Handbook of Applied Cryptography. CRC
Press, 1st edition, 1997.

B. Moller. Provably Secure Public-Key Encryption for Length-Preserving Chaumian Mixes.
In CT-RSA’03, pages 244-262, 2003.

U. Moller, L. Cottrell, P. Palfrader, and L. Sassaman. Mixmaster Protocol— Version 2.
IETF Internet Draft, 2003.

S. J. Murdoch and R. N. M. Watson. Metrics for Security and Performance in Low-Latency
Anonymity Systems. In PETS’08, pages 115-132, 2008.

L. @verlier and P. Syverson. Improving Efficiency and Simplicity of Tor Circuit
Establishment and Hidden Services. In PETS 07, pages 134-152, 2007.

J. Reardon and I. Goldberg. Improving Tor Using a TCP-over-DTLS Tunnel. In 18th
USENIX Security Symposium, pages 119-133, 2009.

M. Reed, P. Syverson, and D. Goldschlag. Anonymous Connections and Onion Routing.
IEEE J-SAC, 16(4):482-494, 1998.

M. Rennhard and B. Plattner. Introducing MorphMix: Peer-to-Peer based Anonymous
Internet Usage with Collusion Detection. In WPES’02, pages 91-102, 2002.

R. Sakai, K. Ohgishi, and M. Kasahara. Cryptosystems Based on Pairing. In Symposium on
Cryptography and Information Security (SCIS’00), Japan, 2000.

E. Shimshock, M. Staats, and N. Hopper. Breaking and Provably Fixing Minx. In PETS’08,
pages 99-114, 2008.

R. Snader and N. Borisov. A Tune-up for Tor: Improving Security and Performance in the
Tor Network. In NDSS’08, 2008.

P. Syverson, G. Tsudik, M. Reed, and C. Landwehr. Towards an Analysis of Onion Routing
Security. In Designing Privacy Enhancing Technologies: Workshop on Design Issues in
Anonymity and Unobservability, pages 96—114, 2000.

The Tor Project. . https://www.torproject.org/, 2003. Accessed Nov. 2009.

14



A Bilinear Pairings

For three cyclic groups G, G, and Gr (all of which we shall write multiplicatively) of the same
prime order p, a bilinear pairing e is a map e : G x G — Gp with the following properties.

e Bilinearity: For g € G, § € G and a,b € Zp, e(g%, %) = e(g, ).
e Non-degeneracy: The map does not send all pairs in G x G to unity € Gr.

If there is an efficient algorithm to compute e(g, g) for any g € G and g € G, the pairing e is called
admissible. We also expect that it is not feasible to invert a pairing and come back to G or G. All
pairings considered in this paper are admissible and infeasible to invert. We call such groups G and
G pairing-friendly groups. We refer readers to [4, Chap. IX and X] for a detailed mathematical
discussion of bilinear pairings.

Following [19], we consider three types of pairings: namely, type 1, 2, and 3. In type 1 pairings,
an isomorphism ¢ : G — G as well as its inverse ¢! are efficiently computable. These are also
called symmetric pairings as for such pairings e(g,§) = e(¢(9),¢ ' (g)) for any g € G and § € G.
In type 2 pairings, only the isomorphism ¢, but not ¢!, is efficiently computable. Finally in type 3
pairings, neither of ¢ nor ¢! can be efficiently computed. The efficiency of the pairing computation
improves from type 1 to type 2 to type 3 pairings. For a detailed discussion of the performance
aspects of pairings we refer the reader to a survey by Galbraith et al. [19].

15



