
Efficient Characteristic Set Algorithms for Equation Solving in Finite

Fields and Application in Analysis of Stream Ciphers1

Xiao-Shan Gao and Zhenyu Huang
Key Laboratory of Mathematics Mechanization

Institute of Systems Science, AMSS, Chinese Academy of Sciences

Abstract. Efficient characteristic set methods for computing solutions of a polynomial
equation system in a finite field are proposed. We introduce the concept of proper
triangular sets and prove that proper triangular sets are square-free and have solutions.
We present an improved algorithm which can be used to reduce the zero set of an
equation system in general form to the union of zero sets of proper triangular sets. Bitsize
complexity for the algorithm is given in the case of Boolean polynomials. We also give a
characteristic set method for Boolean polynomials, where the size of the polynomials are
effectively controlled. The methods are implemented and extensive experiments show
that they are quite efficient for solving equations raised in analyzing certain classes of
stream ciphers.

Keywords. Characteristic set, proper triangular set, finite field, Boolean function,
stream cipher.

1. Introduction

Solving polynomial equations in finite fields plays a fundamental role in many important
fields such as coding theory, cryptology, design and analysis of computer hardware. To find
efficient algorithms to solve such equations is a central issue both in mathematics and in
computer science (see Problem 3 in [39] and Section 8 of [13]). Efficient algebraic algorithms
for solving equations in finite fields have been developed, such as the Gröbner basis methods
[2, 6, 16, 17, 19, 25, 22, 38] and the XL algorithm and its improved versions [14].

The characteristic set (CS) method is a tool for studying polynomial, algebraic dif-
ferential, and algebraic difference equation systems [1, 4, 5, 9, 10, 15, 20, 21, 23, 24, 26, 28,
29, 30, 34, 40, 41, 43]. The idea of the method is reducing equation systems in general form
to equation systems in the form of triangular sets. With this method, solving an equation
system can be reduced to solving univariate equations in cascaded form. In the case of finite
fields, univariate equations can be solved with Berlekamp’s algorithm [31]. The CS method
can also be used to compute the dimension, the degree, and the order for an equation system,
to solve the radical ideal membership problem, and to prove theorems from elementary and
differential geometries [42].

1)Partially supported by a National Key Basic Research Project of China and a grant from NSFC.

2 X.S. Gao, Z.Y. Huang

In most existing work on CS methods, the zeros of the equations are taken in an alge-
braically closed field which is infinite. These methods can also be used to solve equations
in finite fields. But, they do not take into the account of the special properties of the finite
fields and thus are not efficient for solving equations in finite fields. In this paper, we propose
efficient CS methods to solve equations in the general finite field Fq with q elements. More
precisely, we will develop efficient CS algorithms for polynomial systems in the ring

Rq = Fq[x1, . . . , xn]/(H)

where H = {xq
1 − x1, . . . , x

q
n − xn}. Due to the special property of Rq, the proposed CS

methods are more efficient and have better properties than the general CS method.

A triangular set may have no solutions in a finite field. For instance, x2 + 1 = 0 has no
solution in the finite field F3. To avoid this problem, we introduce the concept of proper
triangular sets and prove that proper triangular sets are square-free. We also give an explicit
formula for the number of solutions of a proper triangular set.

We propose an improved zero decomposition algorithm which allows us to decompose
the zero set of a polynomial equation system in Rq as the disjoint union of the zero sets of
proper triangular sets. As a consequence, we can give an explicit formula for the number
of solutions of the equation system. We also show that the improved zero decomposition
algorithms have better complexity bounds than the general CS method. We prove that our
elimination procedure to compute a triangular set needs a polynomial number of polynomial
multiplications. In the general CS method, this procedure is exponential [20].

An element in R2 is called a Boolean polynomial. Solving Boolean polynomial systems is
especially important and more methods are available. This paper will focus on CS methods.
We show that for Boolean polynomial equations, the CS method proposed in this paper and
that proposed in [8] for Boolean polynomials could be further improved. First, we give a
bitsize complexity for the zero decomposition algorithm proposed in this paper. This is the
first complexity analysis for the zero decomposition algorithm. The results in [20] are only
for the procedure to compute one CS, which is called well-ordering procedure by Wu [41].

We also present a multiplication-free CS algorithm in R2, where the size of the polynomi-
als occurring in the well-ordering procedure is bounded by the size of the input polynomial
system and the worst case bitsize complexity of the algorithm is roughly O(nd). This result
is surprising, because repeated additions of polynomials can also generate polynomials of
exponential sizes. In the general CS method, the size of the polynomials is exponential [20].
Our result also means that for a small d, the well-ordering procedure is a polynomial-time al-
gorithm in n. The bottle neck problem of intermediate expression swell is effectively avoided
for certain classes of problems due to the low complexity of the well-ordering procedure and
the usage of SZDD [33]. Our experimental results also support this observation.

We conduct extensive experiments of our methods for three kinds of polynomial systems.
These systems are generated in totally different ways, but they all have the block triangular
structure. By block triangular structure, we mean that the polynomial set can be divided
into disjoint sets such that each set consists of polynomials with the same leading variable
and different sets have different leading variables. Polynomial sets generated in many classes
of stream ciphers are in triangular block form. The experiments show that our improved

Characteristic Set Method in Finite Fields 3

algorithm is very effective for solving these polynomial equations comparing to existing
methods. We do not claim that our algorithm is faster in all cases. For instance, the first
HFE Challenge, which was solved by the Gröbner basis algorithm [18, 35], can not be solved
by our algorithm.

The rest of this paper is organized as follows. In Section 2, we introduce the notations.
In Section 3, we prove properties for the proper triangular sets. In Section 4, we present the
improved zero decomposition algorithm. In Section 5, we present a CS algorithm in R2. In
Section 6, we present the experimental results. In section 7, conclusions are presented.

2. Notations and Preliminary Results

Let p be a prime number and q = pk for a positive integer k. Fq denotes the finite
field with q elements. For an algebraic equation, we will consider the problem of finding its
solutions in Fq. Let X = {x1, . . . , xn} be a set of indeterminants. Since we only consider
solutions in Fq, we can work in the ring

Rq = Fq[X]/(H)

where
H = {xq

1 − x1, x
q
2 − x2, . . . , x

q
n − xn}. (1)

When we want to emphasize the variables, we use the notation Rq[x1, . . . , xn] instead of Rq.
It is easy to see that Rq is not an integral domain. For any α ∈ Fq, xi − α is a zero divisor
in Rq. An element P in Rq has the following canonical representation:

P = αsMs + · · ·+ α0M0, αi ∈ Fq, (2)

where Mi is a monomial and deg(Mi, xj) ≤ q − 1 for any j . We still call an element in Rq a
polynomial. In this paper, a polynomial is always in its canonical representation.

Let P be a set of polynomials in Rq. We use Zeroq(P) to denote the common zeros of the
polynomials in P in the affine space Fn

q , that is,

Zeroq(P) = {(a1, . . . , an), ai ∈ Fq, s.t.,∀P ∈ P, P (a1, . . . , an) = 0}.

In this paper, when we say a variety in Fn
q , we mean Zeroq(P) for some P ⊆ Rq[x1, . . . , xn].

Let D be a polynomial in Rq. We define a quasi variety to be

Zeroq(P/D) = Zeroq(P) \ Zeroq(D).

Let P be a set of polynomials in Fq[X]. Denote the zeros of P in an algebraically closed
extension of Fq as Zero(P). We use P to denote the image of P under the natural ring
homomorphism:

Fq[X]⇒ Rq.

We will give some preliminary results about the polynomials in Rq.

Lemma 2.1 Use the notations just introduced. We have Zero(P ∪H) = Zeroq(P), where H
is defined in (1).

4 X.S. Gao, Z.Y. Huang

Proof: Let P ∈ P. By the definition, we have P = P +
∑

i Bi(x
q
i − xi), where Bi are some

polynomials. Note that any zero in Zeroq(P) is also a zero of xq
i − xi. Then the formula to

be proved is a direct consequence of the above relation between P and P . �

Lemma 2.2 Let P be a polynomial in Rq. We have P q = P .

Proof: Since xq
i = xi, for any monomial m in Rq we have mq = m. Let P =

∑
i αimi where

mi are monomials and αi ∈ Fq. Then P q = (
∑

i αimi)q =
∑

i α
q
i m

q
i =

∑
i αimi = P . �

Lemma 2.3 Let I be a polynomial ideal in Rq. Then I is a radical ideal.

Proof: For any fs ∈ I with s an integer, there exists an integer k such that q + k(q− 1) ≥ s.
Then fsf q+k(q−1)−s = f q+k(q−1) ∈ I. By Lemma 2.2, f q+k(q−1) = f qfk(q−1) = fk(q−1)+1 =
f q+(k−1)(q−1) = · · · = f q = f. Thus, we have f ∈ I, which implies that I is a radical ideal. �

Lemma 2.4 Let I be a polynomial ideal in Rq.

(1) I = (x0 + a0, . . . , xn + an) if and only if (a0, . . . , an) is the only solution of I.

(2) I = (1) if and only if I has no solutions.

Proof: If I = (x0 + a0, . . . , xn + an), it is easy to see that (a0, . . . , an) is the only solution of
I. Conversely, let (a0, . . . , an) be the only solution of I. By Lemma 2.1, we have xi + ai = 0
on Zero(I ∪H) in Fq[X], where H is defined in (1). By Hilbert’s Nullstellensatz, there is an
integer s such that (xi + ai)s is in the ideal generated by I ∪ H in Fq[X]. Considering Rq,
it means that (xi + ai)s is in I. By Lemma 2.3, I is a radical ideal in Rq. Thus, xi + ai is
in I. This prove (1). For (2), if I has no solution, we have Zero(I ∪ H) = ∅. By Hilbert’s
Nullstellensatz, 1 ∈ (I ∪H). That is, 1 ∈ I. �

Lemma 2.5 Let P ∈ Rq. Zeroq(P) = Fn
q iff P ≡ 0. Zeroq(P) = ∅ iff P q−1 − 1 ≡ 0.

Proof: If P ≡ 0, then Zeroq(P) = Fn
q . Conversely, we prove the result by induction on n.

If n = 1, we consider the univariate polynomial P (x) ∈ Rq. Suppose that P (x) 6= 0. Since
deg(P, x) ≤ q − 1, P has at most q − 1 solutions in Fq, a contradiction. Now assume that
the result has been proved for n = k. For n = k + 1, we have P (x1, . . . , xn) = f0x

q−1
n +

f1x
q−2
n + · · ·+fq−1, where fi is a k-variable polynomial. By the induction hypothesis, if some

fi is not 0, there exists an element (a1, a2, . . . , ak) in Fk
q such that fi(a1, . . . , ak) 6= 0. Then

P (a1, . . . , ak) is a nonzero polynomial whose degree in xk+1 is less than q. Supposing ak+1

is not the solution of P (a1, . . . , ak), (a1, . . . , ak+1) is not the solution of P , a contradiction.
Thus, we have fi = 0 for all i. It means that P ≡ 0, and the first result is proved.

If Zeroq(P) = ∅, then P 6= 0 for any element in Fn
q , which implies that P q−1 − 1 = 0 for

any element in Fn
q . Then P q−1− 1 ≡ 0. Conversely, suppose that there is an element α ∈ Fn

q

such that P (α) = 0, which is impossible since P q−1(α)− 1 6= 0. Thus, Zeroq(P) = ∅. �

As a consequence of Lemma 2.5, we have

Corollary 2.6 Let q = 2 and P ∈ R2 \ F2. Then Zero2(P) 6= ∅.

Characteristic Set Method in Finite Fields 5

But when q > 2, the corollary is not correct. For example, considering R3, it is easy to
see that Zero3(x2 + 1) = ∅.

Lemma 2.7 Let U, V , and D be polynomials in Rq. We have

(U q−1V q−1 − 1) = (U q−1 − 1, V q−1 − 1). (3)
(U q−1V q−1 − U q−1 − V q−1) = (U, V). (4)
Zeroq(UV) = Zeroq(U) ∪ Zeroq(V). (5)
Zeroq(∅/D) = Zeroq(Dq−1 − 1). (6)
Zeroq(P) = Zeroq(P ∪ {U}) ∪ Zeroq(P ∪ {U q−1 − 1}). (7)

Proof: We have

(U q−1V q−1 − 1) = (U q−1V q−1 − 1, U q−1(U q−1V q−1 − 1))

= (U q−1V q−1 − 1, U q−1V q−1 − U q−1)

= (U q−1V q−1 − 1, U q−1 − 1) = (U q−1 − 1, V q−1 − 1).

This proves (3). Equation (4) can be proved similarly:

(U q−1V q−1 − U q−1 − V q−1) = (U q−1V q−1 − U q−1 − V q−1, U(U q−1V q−1 − U q−1 − V q−1))

= (U q−1V q−1 − U q−1 − V q−1, U) = (U, V).

Since Fq is a field, (5) is obvious. For any element α ∈ Fn
q , D(α) 6= 0 means that Dq−1(α)−1 =

0. Conversely, for any element α ∈ Fn
q , if D(α) = 0, we have Dq−1(α)− 1 6= 0. This proves

(6). Since U(U q−1 − 1) ≡ 0, (7) is a consequence of (5). �

From (6) of Lemma 2.7, we can see that a quasi variety in Fn
q is also a variety.

3. Proper Triangular Sets in Rq

In this section, we will introduce the concept of proper triangular sets for which we can
give an explicit formula for its number of solutions.

3.1 Triangular Sets

Let P ∈ Rq. The class of P , denoted by cls(P), is the largest c such that xc occurs
in P . Then xc is called the leading variable of P , denoted as lvar(P). If P ∈ Fq, we set
cls(P) = 0. If cls(P) = c, let us regard P as a univariate polynomial in xc. We call deg(P, xc)
the degree of P , denoted as deg(P). The coefficient of P wrt xd

c is called the initial of P ,
and is denoted by init(P). Then P can be represented uniquely as the following form:

P = Ixd
c + U (8)

where I = init(P) and U is a polynomial with deg(U, xc) < d. A polynomial P1 has higher
ordering than a polynomial P2, denoted as P2 ≺ P1, if cls(P1) > cls(P2) or cls(P1) = cls(P2)
and deg(P1) > deg(P2). If neither P1 ≺ P2 nor P2 ≺ P1, they are said to have the same

6 X.S. Gao, Z.Y. Huang

ordering, denoted as P1 ∼ P2. It is easy to see that ≺ is a partial order on the polynomials
in Rq.

A sequence of nonzero polynomials

A : A1, A2, . . . , Ar (9)

is a triangular set if either r = 1 and A1 6= 0 or 0 < cls(A1) < · · · < cls(Ar). A trivial
triangulated set is a polynomial set consisting of a nonzero element in Fq. For a triangular
set A, we denote IA to be the product of the initials of the polynomials in A.

Let A′ : A′
1, A

′
2, . . . , A

′
r′ and A′′ : A′′

1, A
′′
2, . . . , A

′′
r′′ be two triangular sets. A′ is said to

be of lower ordering than A′′, denoted as A′ ≺ A′′, if either there is some k such that
A′

1 ∼ A′′
1, . . . , A

′
k−1 ∼ A′′

k−1, while A′
k ≺ A′′

k; or r′ > r′′ and A′
1 ∼ A′′

1, . . . , A
′
r′′ ∼ A′′

r′′ . We
have the following basic property for triangular sets.

Lemma 3.1 A sequence of triangular sets steadily lower in ordering is finite. More precisely,
let A1 � A2 � · · · � Am be a strictly decreasing sequence of triangular sets in Rq. Then
m ≤ qn.

Proof: Let P be a polynomial in Rq. If cls(P) = c and deg(P) = d, P and xd
c have the same

ordering. Since we only consider the ordering of the triangular sets, we may assume that the
triangular sets consist of powers of variables. In this case, two distinct triangular sets can not
have the same ordering. To form a triangular set of this kind, we can choose one polynomial
Mi from {0, xi, x

2
i , . . . , x

q−1
i } for each i, and the triangular set is M1,M2, . . . ,Mn. Note that

when Mi = 0, we will remove it from the triangular set. Thus, there are qn − 1 nontrivial
triangular sets consist of powers of variables. Adding the trivial triangular set consist of
1, we have a sequence of triangular sets C1 � C2 � · · · � Cqn . Let A1 � A2 � · · · � Am

be a strictly decreasing sequence of triangular sets. If Ai is nontrivial, for P ∈ Ai, replace
it by lvar(P)deg(P). If Ai is trivial, replace it by 1. Then we get a strictly decreasing
sequence of triangular sets B1 � B2 � · · · � Bm. This sequence must be a sub-sequence of
C1 � C2 � · · · � Cqn . Hence, m ≤ qn. �

For two polynomials P and Q, we use prem(Q,P) to denote the pseudo-remainder of Q
with respect to P . For a triangular set A defined in (9), the pseudo-remainder of Q wrt
A is defined recursively as

prem(Q,A) = prem(prem(Q,Ar), A1, . . . , Ar−1) and prem(Q, ∅) = Q.

Let R = prem(Q,A). Then we have

Is1
1 Is2

2 · · · I
sr
r Q =

∑
i

QiAi + R (10)

where Ii = init(Ai) and Qi are some polynomials. The above formula is called the remainder
formula. Let P be a set of polynomials and A a triangular set. We use prem(P,A) to denote
the set of nonzero prem(P,A) for P ∈ P.

A polynomial Q is reduced wrt P 6= 0 if cls(P) = c > 0 and deg(Q, xc) < deg(P). A
polynomial Q is reduced wrt a triangular set A if P is reduced wrt to all the polynomials
in A. It is clear that the pseudo-remainder of any polynomial wrt A is reduced wrt A.

Characteristic Set Method in Finite Fields 7

The saturation ideal of a triangular set A is defined as follows

sat(A) = {P ∈ Rq| JP ∈ (A)}

where J is a product of certain powers of the initials of the polynomials in A. We have

Lemma 3.2 Let A = A1, . . . , Ar be a triangular set. Then sat(A) = (A1, . . . , Ar, I
q−1
A − 1)

Proof: Denote I = (A1, . . . , Ar, A0) and A0 = Iq−1
A − 1. If P ∈ sat(A), then Iq−1

A P ∈ A.
There exist polynomials Bi such that Iq−1

A P =
∑r

i=1 BiAi. Hence, P =
∑r

i=1 BiAi − PA0 ∈
I. Conversely, let P ∈ I. Then there exist polynomials Ci such that P =

∑r
i=1 Ai +

C0A0. Multiply IA to both sides of the equation. Since IA(Iq−1
A − 1) = 0, we have IAP =∑r

i=1 IACiAi. Thus, P ∈ sat(A). �

As shown by the following example, saturation ideals have different properties comparing
with that in the usual polynomial ring.

Example 3.3 Let A = A1, A2, A1 = (x1 − 1)x2, A2 = (x1 + 1)x3. Then sat(A) =
(A1, A2, (x2

1 − 1)2 − 1) = (x2, x3, x1).

3.2 Proper Triangular Sets

As we mentioned before, a triangular set could have no zero. For example, Zero3(x2+1) =
∅. To avoid this problem, we introduce the concept of proper triangular sets.

A triangular set A = A1, A2, . . . , Ar is called proper, if the following condition holds: if
cls(Ai) = ci and deg(Ai) = di, then prem(xq−di

ci Ai,A) = 0.

The following lemmas show that proper triangular sets always have solutions.

Lemma 3.4 Let P (x) be a univariate polynomial in Rq, and suppose that deg(P (x)) = d.
If prem(xq−dP (x), P (x)) = 0, then P (x) = 0 has d distinct solutions in Fq.

Proof: Since P (x) is a univariate polynomial, init(P) ∈ Fq. If prem(xq−dP (x), P (x)) = 0
in Rq, we have xq−dP (x) = Q(x)P (x), where Q(x) is a polynomial and deg(Q(x)) < q − d.
Considering the above equation in Fq[x], there is a polynomial C such that xq−dP (x)+C(xq−
x) = Q(x)P (x) in Fq[x], where xq−dP (x)+C(xq−x) is equal to the canonical representation
of xq−dP (x) in Rq. Thus, we have (xq−d −Q(x))P (x) = −C(xq − x). Since all the elements
of Fq are solutions of xq−x, the q distinct elements of Fq are solutions of (xq−d−Q(x))P (x).
Note that deg(Q(x)) < q − d. Then deg(xq−d − Q(x)) = q − d. Thus, xq−d − Q(x) has at
most q − d solutions in Fq, which means that P (x) has at least d distinct solutions in Fq.
However, deg(P (x)) = d implies P (x) has at most d solutions in Fq. Hence, we can conclude
P (x) has d distinct solutions in Fq. �

A triangular set A is called monic if the initial of each polynomial in A is 1. A monic
triangular set is of the following form:

A1 = xd1
c1 + U1, A2 = xd2

c2 + U2, · · · , Ar = xdr
cr

+ Ur

where Ui is a polynomial in x1, . . . , xci such that deg(Ui, xci) < di.

8 X.S. Gao, Z.Y. Huang

For a monic triangular set A : A1, . . . , Ar, we call deg(A1)deg(A2) · · ·deg(Ar) the degree
of A, denoted as deg(A). Let Y be the set {xi ∈ X|xi is the leading variable of some Aj ∈
A}. We use U to denote X \ Y and call the variables in U parameters of A. Then we call
|U| the dimension of A, denoted as dim(A).

The following result shows that a monic proper triangular set has nice properties by
giving an explicit formula for the number of solutions. The result is useful because we will
prove later that the zero set for any polynomial system can be decomposed as the union of
the zero sets of monic proper triangular sets.

Theorem 3.5 Let A be a monic triangular set. Then A is proper if and only if |Zeroq(A)| =
deg(A) · qdim(A).

Proof: Assume that A is proper. For the parameters in U, we can substitute them by
any element of Fq. Since |U| = dim(A), there are qdim(A) parametric values for U. For a
parametric value U0 of U and a polynomial P ∈ Rq, let P ′ denote P (U0). After the sub-
stitution, we obtain a new monic triangular set A′ : A′

1, . . . , A
′
r, where cls(A′

i) = cls(Ai)
and deg(A′

i) = deg(Ai). Let ci = cls(Ai) and di = deg(Ai). Since A is a proper trian-
gular set, we have xq−d1

c1 A1 = PA1. Then xq−d1
c1 A′

1 = P ′
1A

′
1. By Lemma 3.4, A′

1 has d1

distinct solutions. For a solution α of A′
1, consider A′

2(α). Since A is proper, we have
xq−d2

c2 A2 = Q1A1 + Q2A2 and hence xq−d2
c2 A′

2(α) = Q′
1(α)A′

1(α) + Q′
2(α)A′

2(α). Since
A′

1(α) = 0, we have xq−d2
c2 A′

2(α) = Q′
2(α)A′

2(α). By Lemma 3.4, A′
2(α) has d2 distinct

solutions. By repeating the process, we can prove that A′ has d1d2 · · · dr = deg(A) distinct
solutions. Hence, |Zeroq(A)| = deg(A) · qdim(A).

Conversely, let us assume that A has N = deg(A) ·qdim(A) solutions. Since A is monic, it
means that for any parametric value U0 of U and any point x in Zeroq(A1(U0), . . . , Ai−1(U0)),
Ai(U0, x) has deg(Ai) distinct solutions. Let Ai = Iix

di
ci

+ Vi for any i. For A1, suppose
prem(xq−d1

c1 A1,A) = R1 6= 0. Then we have (xq−d1
c1 − P1)A1 = R1, where P1 is a poly-

nomial. Choose a parametric value U0 of U such that R1(U0) 6= 0. Then A1(U0) has d1

distinct solutions, this is contradicts to 0 < deg(R1(U0), xc1) < d1. Thus, R1 = 0. Now
we consider A2. Suppose prem(xq−d2

c2 A2,A) = R2 6= 0. Then we have two polynomials
Q1 and Q2 such that xq−d2

c2 A2 = Q1A1 + Q2A2 + R2. Choose a parametric value U1 of U
such that R2(U1) 6= 0. Since deg(R2, xc1) < d1, there is a solution x of A1(U1) such that
R2(U1, x) 6= 0. Then we have (xq−d2

c2 − Q1(U1, x))A2(U1, x) = R2(U1, x). A2(U1, x) has d2

distinct solutions which contradicts to 0 < deg(R2(U1, xc2)) < d2. Thus, R2 = 0. Similarly,
we have prem(xq−di

ci Ai,A) = 0. Hence, A is proper. �

As a consequence of Theorem 3.5, a monic proper triangular set is square-free.

4. An Efficient Zero Decomposition Algorithm in Rq

In this section, we will give an improved algorithm which can be used to decompose the
zero set of a polynomial system into the union of zero sets of monic triangular sets. Due
to the special property of Rq, this algorithm has lower complexities than the general zero
decomposition algorithm and the output is stronger.

Characteristic Set Method in Finite Fields 9

First, note that the following zero decomposition theorem [10, 24, 28, 30, 40, 41] is still
valid and the proof is also quite similar.

Theorem 4.1 There is an algorithm which permits to determine for a given polynomial set
P in a finite number of steps triangular sets Aj , j = 1, . . . , s such that

Zeroq(P) = ∪s
j=1Zeroq(Aj/IAj) = ∪s

j=1Zeroq(sat(Aj))

where sat(Aj) is the saturation ideal of Aj.

In Rq, we can give the following improved zero decomposition theorem which allows us
to compute the number of solutions for a finite set of polynomials.

Theorem 4.2 For a finite polynomial set P, we can compute monic proper triangular sets
Aj , j = 1, . . . , s such that

Zeroq(P) = ∪s
i=1Zeroq(Ai)

such that Zeroq(Ai) ∩ Zeroq(Aj) = ∅ for i 6= j. As a consequence, we have

|Zeroq(P)| =
s∑

i=1

deg(Ai) · qdim(Ai).

4.1 A Top-Down Characteristic Set Algorithm

In this section, we will give a top-down characteristic set algorithm TDCS that
allows us to compute a decomposition which has the properties mentioned in Theorem 4.2.

Before giving the zero decomposition algorithm, we first give an algorithm to compute a
triangular set. The algorithm works from the polynomials with the largest class and hence
is a top-down zero decomposition algorithm. The idea of top-down elimination is explored
in [26, 40]. The key idea of the algorithm is as follows. Let Q = Ixd

c + U be a polynomial
with largest class and smallest degree in xc in a polynomial set Q. If I = 1, we can reduce
the degrees of the polynomials in Q by taking R = prem(Q, Q). Since I = 1, we have

Zeroq(Q) = Zeroq(R ∪ {Q}).

If I 6= 1, by (7), we split the zero set into two parts:

Zeroq(Q) = Zeroq(Q ∪ {Iq−1 − 1}) ∪ Zeroq(Q \ {Q} ∪ {I, U}). (11)

In the first part, since I 6= 0 and Iq−1 − 1 = 0, Q can be replaced by Q1 = xd
c + Iq−2U and

we can treat this part as in the first case. The second part is simpler than Q and can be
treated recursively. The following well ordering procedure is based on the above idea.

Algorithm 4.3 —TDTriSet(P)
Input: A finite set of polynomials P.
Output: A monic triangular set A and a set of polynomial systems P∗ such that Zero(P) =
Zero(A) ∪Q∈P∗ Zero(Q), Zero(A) ∩ Zero(Q1) = ∅, and Zero(Q1) ∩ Zero(Q2) = ∅ for all
Q1, Q2 ∈ P∗.

10 X.S. Gao, Z.Y. Huang

1 Set A = ∅ and P∗ = ∅.
2 While P 6= ∅ do

2.1 If some nonzero element α of Fq is in P, Zeroq(P) = ∅. Return A = ∅ and P∗.
2.2 Let P1 ⊂ P be the polynomials with the highest class.
2.3 Let Q ∈ P1 be a polynomial with lowest degree.
2.4 Let Q = Ixd

c + U such that cls(Q) = c, deg(Q) = d and init(Q) = I.
2.5 If I = 1 do

2.5.1 Set R = prem(P1, Q).
2.5.2 If the classes of polynomials in R are lower than c

(this situation will always happen when q = 2), do
A = A ∪ {Q}.
P = R ∪ {P \ P1}.

2.5.3 Else, do
P = R ∪ {Q} ∪ {P \ P1} and goto 2.2.

2.6 Else do
2.6.1 Set Q1 = xd

c + Iq−2U and P2 = P1 \ {Q}.
2.6.2 P = prem(P2, Q1) ∪ {Iq−1 − 1} ∪ {P \ P1}.
2.6.3 P1 = {P \ {Q}} ∪ A ∪ {I, U}.
2.6.4 P∗ = P∗ ∪ {P1}.
2.6.5 Set R = prem(P2, Q1).
2.6.6 If the classes of polynomials in R are lower than c, do

A = A ∪ {Q1}.
2.6.7 Else, do

P = P ∪ {Q1}. and goto 2.2.
3 Return A and P∗.

The following theorem shows that to compute a monic triangular set in Rq, we need only
a polynomial number of polynomial arithmetic operations. Note that if the zero set is in an
algebraically closed field, the process to compute a triangular set is exponential [20].

Theorem 4.4 Algorithm TDTriSet is correct and in the whole algorithm we need O(n2q2+
nlq) polynomial multiplications where l = |P|. In particular, we need O(nl) polynomial
multiplications when q = 2.

Proof: Let P1 ⊂ P be the set of polynomials with the highest class c and Q ∈ P1 a polynomial
with lowest degree in xc. Let c = cls(Q), d = deg(Q) and I = init(Q). If I = 1, then for P ∈
P1, as a consequence of remainder formula (10), Zeroq({Q,P}) = Zeroq({Q,prem(P,Q)}).
Therefore, we have

Zeroq(P) = Zeroq((P \ P1) ∪ {Q} ∪ {prem(P,Q) 6= 0 |P ∈ P1}).

If I 6= 1, by (7), we can split Zeroq(P) as the following two parts:

Zeroq(P) = Zeroq(P ∪ {Iq−1 − 1}) ∪ Zeroq(P ∪ {I}) (12)
= Zeroq((P \ {Q}) ∪ {Q1} ∪ {Iq−1 − 1}) ∪ Zeroq((P \ {Q}) ∪ {I, U}) (13)

Characteristic Set Method in Finite Fields 11

where Q1 = xc + Iq−2U . The first part of (13) can be treated similarly to the case of I = 1,
and the second part of (13) will be a polynomial set in the output. This proves that if we
have the output it must be correct.

Now let us prove the termination of the algorithm. After each iteration of the loop, the
lowest degree of the polynomials with highest class in P will decrease. Then the highest class
of the polynomials in P will be reduced and the polynomial Q will be added to A. Hence,
the loop will end and give a triangular set A and some polynomial sets P∗.

Finally, we will analyze the complexity of the algorithm. Let l = |P|. After each iteration,
the lowest degree of the highest class of the polynomials in P will be reduced at least by one.
Then, this loop will execute at most n(q − 1) times. After each iteration, if I = 1, then the
new P has at most l polynomials. If I 6= 1, after this iteration there are two cases:

(a) Except Q we still have some polynomials with this class. Then, the new P contains at
most l + 1 polynomials;

(b) The highest class is eliminated by Q. Then, the new P contains at most l polynomials.

Therefore, in the whole algorithm there are at most n(q − 2) + l polynomials (The number
is l when q = 2) .

In an iteration, suppose we use Q = Ixd
c + U to eliminate other polynomials. First we

should set Q to be monic. It means that we should compute Q1 = xd
c +Iq−2U and Iq−1−1, so

we need 2(q− 2) polynomial multiplications. Thus, in the whole algorithm we need at most
2n(q−1)(q−2) polynomial multiplications in order to obtain the monic polynomials. Then we
want to get prem(P,Q1). Since Q1 is monic, it takes at most one polynomial multiplication
when we reduce the degree of P by one. Let D be the sum of the degrees of polynomials with
highest class. Then D decreases by one after one polynomial multiplication. Therefore, we
need at most (n(q−2)+l)(q−1)−1 multiplications to reduce D from (n(q−2)+l)(q−1) to 1.
At the same time, we eliminate the highest class. Thus, in the whole algorithm, we need at
most n2(q−2)(q−1)+nl(q−1)−n polynomial multiplications to get the pseudo-remainders.
In all, the algorithm needs O(n2q2 + nlq) polynomial multiplications, and when q = 2 the
number is O(nl). �

Lemma 4.5 Let P be an input of TDTriSet. Assume that there is a polynomial P in P
such that cls(P) = c and init(P) = 1. Let A be the monic triangular set in the output. Then,
there is a polynomial P ′ ∈ A such that cls(P ′) = c and deg(P ′) ≤ deg(P).

Proof: Since there is a P with class c, we need to deal with this class. And we will eliminate
this class by P or by a Q with class c and lower degree. This polynomial is the P ′. �

By using TDTriSet, we have the following zero decomposition algorithm.

Algorithm 4.6 — TDCS(P)

Input: A finite set of polynomials P.
Output: Monic proper triangular sets satisfying the properties in Theorem 4.2.

12 X.S. Gao, Z.Y. Huang

1 Set P∗ = {P}, A∗ = ∅ and C∗ = ∅.
2 While P∗ 6= ∅ do

2.1 Choose a polynomial set Q from P∗.
2.2 Let Q be the input of TDTriSet. Let A and Q∗ be the output.
2.3 if A 6= ∅, set A∗ = A∗ ∪ {A}.
2.4 P∗ = P∗ ∪Q∗

3 Suppose A∗ = {A1, . . . ,Aq} and Ai = {Ai1, . . . , Aipi}.
4 For i from 1 to q do

4.1 Set B = ∅.
4.2 For j from 1 to pi do

4.2.1 Let cls(Aij) = cij and deg(Aij) = dij.
4.2.2 B = B ∪ {prem(xq−dij

cij Aij ,Ai)} 6= 0.
4.3 If B 6= ∅, do P∗ = P∗ ∪ {Ai ∪ B}.
4.4 Else, do C∗ = C∗ ∪ {C}

5 If P∗ 6= ∅, do
5.1 Set A∗ = ∅, goto 2.

6 Return C∗

Theorem 4.7 Algorithm TDCS is correct.

Proof: By Theorem 4.4, if the loop in step 2 ends, we can obtain A1, . . . ,Aq such that
Zero(P) = ∪iZero(Ai). In step 4, we check whether Ai is a proper triangular set. If it is
proper, we save it in the output list C∗. If Ai is not proper, suppose Ai = Ai1, . . . , Aipi .
we add prem(xq−dij

cij Aij ,Ai) 6= 0 to Ai, and obtain a new polynomials set Bi. We have
Zeroq(Ai) = Zeroq(Ai, x

q−dij
cij Aij) = Zeroq(Ai,prem(xq−dij

cij Aij ,Ai)). Thus, Zeroq(Ai) =
Zeroq(Bi). Then we treated Bi recursively by step 2. Hence, if A′1, . . . ,A′s is the output
of the algorithm, we have Zeroq(P) = ∪iZeroq(A′

i).

Now we need to show the termination for the algorithm. First, we prove the termination of
step 2. For a polynomial set P, we assign an index (cn,q−1, cn,q−2, . . . , cn,1, . . . , c1,q−1, . . . , c1,1)
where ci,j is the number of polynomials in P and with class i and degree j. In step 2, we add
Q′ = (Q \ {Q}) ∪ {I, U} which is in the output of TDTriSet to P∗, where Q = Ixc + U . It
is clear that the index of Q′ is less than the index of Q in the lexicographical ordering. It is
easy to show that a strictly decreasing sequence of indexes must be finite. This proves the
termination of the step 2.

Suppose we obtain A∗ = A1, . . . ,Aq after step 2. If all Ai are proper, the algorithm
will terminate. If Ai = Ai1, . . . , Aipi is not proper, similar as above, we obtain a polynomial
set Bi such that there exist polynomials in Bi, which are reduced wrt Ai. To prove the
termination of the whole algorithm, it is sufficient to show that the new monic triangular
sets we obtain from Bi in step 2 is of lower ordering than that of Ai. Note that Bi \ Ai is
the set of polynomials in Bi which are reduced wrt Ai.

Now let Q1 be the set of polynomials with highest class in Bi \ Ai and Q be the one of
lowest degree in Q1. Let Q = Ixd

c + U . Then in TDTriSet, we splits Zeroq(Bi) into two

Characteristic Set Method in Finite Fields 13

parts:

Zeroq(Bi) = Zeroq({Bi \ {Q}} ∪ {xd
c + Iq−2U} ∪ {Iq−1 − 1}) ∪ Zeroq({Bi \ {Q}} ∪ {I, U}).

Note that Ai ⊆ Bi and if there is a polynomial A′ in Ai with class c then deg(A′) >
deg(xd

c + Iq−2U). Thus, by Lemma 4.5, we can conclude that the monic triangular sets
we obtain from {Bi \ {Q}} ∪ {xd

c + Iq−2U} ∪ {Iq−1 − 1} is of lower ordering than Ai. For
{Bi \ {Q}} ∪ {I, U}, it can be recursively treated as Bi. Hence, we prove the termination of
the algorithm. �

We use the following simple example to illustrate how the algorithm works.

Example 4.8 In R3, let P = {x1x2x
2
3 − 1}.

In Algorithm TDTriSet, we have Zero3(P) = Zero3(x2
3−x1x2, x

2
1x

2
2−1)∪Zero3(x1x2, 1).

Obviously, Zero3(x1x2, 1) = ∅. Then, Zero3(P) = Zero3(x2
3 − x1x2, x

2
1x

2
2 − 1) = Zero3(x2

3 −
x1x2, x

2
2 − 1, x2

1 − 1) ∪ Zero3(x2
1, 1). The algorithm returns A = {x2

1 − 1, x2
2 − 1, x2

3 − x1x2}
and ∅.

In Algorithm TDCS, we check whether A is proper: prem(x3(x2
3 − x1x2),A) = (1 −

x1x2)x3, prem(x2(x2
2−1),A) = prem(x1(x2

1−1),A) = 0. We obtain a new P′ = {A, (x1x2−
1)x3} such that Zero3(P) = Zero3(P′).

Execute Algorithm TDTriSet with input P′. Choose (x1x2− 1)x3 to eliminate x3. Then
Zero3(P′) = Zero3(x3, x

2
3 − x1x2, x

2
2 − 1, x1x2 + 1, x2

1 − 1) ∪ Zero3(x2
3 − x1x2, x1x2 − 1, x2

2 −
1, x2

1 − 1). For the first part, we have Zero3(x3, x
2
3 − x1x2, x

2
2 − 1, x1x2 + 1, x2

1 − 1) =
Zero3(x3, x1x2, x

2
2 − 1, x1x2 + 1, x2

1 − 1) = ∅. For the second part, we execute Algorithm
TDTriSet again and have Zero3(x2

3−x1x2, x1x2− 1, x2
2− 1, x2

1− 1) = Zero3(x2
3−x1x2, x2−

x1, x
2
2− 1, x2

1− 1)∪Zero3(x2
3− x1x2, x

2
2− 1, x2

1− 1, x1, 1) = Zero3(x2
3− x1x2, x2− x1, x

2
1− 1).

Let A′ = {x2
3 − x1x2, x2 − x1, x

2
1 − 1}. Thus, Zero3(P) = Zero3(A′).

Returning to Algorithm TDCS, it is easy to check that A′ is proper. Then we have
Zero3(P) = Zero3(x2

3 − 1, x2 − x1, x
2
1 − 1), and |Zero3(P)| = 30(2× 1× 2) = 4.

4.2 Complexity Analysis of TDCS in R2

As we mentioned in Section 1, a complexity analysis for the zero decomposition algorithm
is never given. Although, TDCS is much simpler than the zero decomposition algorithm
over the field of complex numbers, it is still too difficult to give a complexity analysis.
However, we are able to give a worst case complexity analysis for algorithm TDCS in the
very important case of R2.

In R2, it is easy to prove that a monic triangular set is always proper. Therefore, we do
not need to check whether a triangular set is proper in Algorithm TDCS. Moreover, by (4),
we can modify the Step 2.6.3 of TDTriSet as

P1 = {P \ {Q}} ∪ A ∪ {U, I} = {P \ {Q}} ∪ A ∪ {IU + I + U},

and call the new algorithm TDTriSet2. After this modification, the number of polynomials
in the new component P1 will not be bigger than |P|. From the proof of Theorem 4.4, we
know that in the whole algorithm TDTriSet2 with input P the number of polynomials is
also at most |P|. Then we obtain the following algorithm:

14 X.S. Gao, Z.Y. Huang

Algorithm 4.9 — TDCS2(P)

Input: A finite set of Boolean polynomials P.
Output: A sequence of monic triangular sets satisfying Theorem 4.2.

1 Set P∗ = {P}, A∗ = ∅ and C∗ = ∅.
2 While P∗ 6= ∅ do

2.1 Choose a polynomial set Q from P∗.
2.2 Let Q be the input of TDTriSet2. Let A and Q∗ be the output.
2.3 if A 6= ∅, set A∗ = A∗ ∪ {A}.
2.4 P∗ = P∗ ∪Q∗

3 Return A∗

Theorem 4.10 The bitsize complexity of Algorithm TDCS2 is O(ln) = O(2n log l), where l
is the number of polynomials in P.

Remark. It is interesting to note that the complexity for the exhaust search algorithm is
O(‖P‖ · 2n), where ‖P‖ is the bitsize of the polynomials in P as defined in Section 5.2. The
complexity of the exhaust search is generally better than our algorithm. But on the other
hand, our algorithm can solve nontrivial problems with n ≥ 128 as shown in Section 6.2
and Section 6.3, while it is clear that the exhaust search algorithm cannot do that. The
complexity to compute a Gröbner basis of P ∪ H (H is defined in (1)) is known to be a
polynomial in dn where d is the degree of the polynomials in P [27]. Recently, Bardet,
Faugere, Salvy gave better complexity bounds under the assumption of semi-regularity [2].
It is an interesting problem that whether there exists a deterministic algorithm to find all
the solutions of a Boolean polynomial system with complexity less than O(2n).

In order to estimate the complexity of algorithm TDCS2, we need to consider the
worst case in the algorithm. We call the zero decomposition process in the worst case
W-Decomposition.

In the worst case, we consider a set P of l Boolean polynomials which are with the highest
class n and the initials of all these l polynomials are not 1. Then we need to choose one
polynomial Q = Ixn + U ∈ P and add I + 1 to P. Let Q1 = xn + U . Then we have:

Zeroq(P) = Zeroq(prem(P \ {Q}, Q1),∪{Q1, I + 1})) ∪ Zeroq(P \ {Q} ∪ {IU + I + U}) (14)

In the worst case, we assume that the class of I + 1 is n− 1 and prem(P \ {Q}, Q1) contains
l − 1 non-zero polynomials with class n − 1. Moreover, in the second component in (14),
we have a new polynomial IU + I + U which is also of class n − 1. When we repeat the
above procedure for the two components in (14), the above situations always happen. In
other words, in the worst case,when we eliminate a variable xc, the newly generated non-zero
polynomials are always of class c− 1.

We can illustrate the W-decomposition by the following figure:

Characteristic Set Method in Finite Fields 15

(l, k, . . . , . . .)⇒ (l − 1, k + 1, . . .)⇒ (l − 2, k + 2, . . .)⇒ · · ·
↓ ↓ ↓

(0, l + k, . . .)⇒ · · ·
...

(0, l + k, . . .)⇒ · · · ↓

↓
...

...

In this figure and the rest of this section, (ln, ln−1, · · · , l1) represents a polynomial set
which contains li polynomials with class i. The right arrows point to the second component
in (14), while the down arrows point to the first component in (14) or more precisely, to
prem(P \ {Q}, Q1) ∪ {I + 1}.

To solve a polynomial set P with l elements, we will obtain a lot of components. We
can sort these components into n groups by the variables involved in them. For any i =
1, 2, . . . , n, the i-th group consists of the components where the variables to be eliminated
are {x1, x2, . . . , xi}. Suppose there are ki elements in the i-th group. We define the time-
polynomial of P to be

B(P) = knTn + kn−1Tn−1 + · · ·+ k1T1 (15)

where Ti is a quantity to measure the complexity for executing TDTriSet2 whose input
is a polynomial set consisting of l polynomials in i variables {x1, x2, . . . , xi}. Ti could be
the bitsize of the involving polynomials or the number of arithmetic operations needed in
the algorithm. Obviously, B(P) gives the corresponding worst case complexity when the
meaning of Ti is fixed.

For two polynomial sets P1 and P2, let B(P1) = knTn + · · ·+ k1T1 and B(P2) = k′nTn +
· · ·+k′1T1. If ki > k′i for all i, we say that B(P1) is of higher ordering than B(P2), denoted
by B(P1) > B(P2). We define

S(P) = B(P)− Tc

where c is the highest class of the polynomials in P. Thus, S(P) is the complexity for solving
all the components which are originated from the second component in (14). The order
of S(P) can also be defined as B(P). Therefore, we can use equation (15) as the recursive
formula to compute the worst case complexity of the algorithm.

The following result shows that the problems solved with w-decomposition is indeed the
worst case in terms of complexity.

Lemma 4.11 Let Q be a polynomial set of the form (l, 0, . . . , 0), which need to be solved
with w-decomposition. Let B(P) be the time-polynomial of any other problem with |P| ≤ l.
We have B(Q) ≥ B(P) and S(Q) ≥ S(P).

Proof: We proof the lemma by induction. If n = 1, no components are generated, so we
have B(P) = T1 and S(P) = 0 for any problem, and the lemma holds for n = 1. Now suppose
we have proved the lemma for n = k. If n = k + 1, we have the following figure for the
w-decomposition of problem (l, 0, . . . , 0):

16 X.S. Gao, Z.Y. Huang

(l, 0, . . . , 0)⇒ (l − 1, 1, . . . , 0)⇒ · · · ⇒ (1, l − 1, 0, . . . , 0)⇒ (0, l, 0, . . . , 0)
↓ ↓ ↓

(0, l, 0, . . . , 0) (0, l, 0, . . . , 0) · · · (0, l, 0, . . . , 0)

We can get the following recursive formula for the time-polynomial of (l, 0, . . . , 0):

B(l, 0, . . .) = lTn + B(0, l, 0, . . .) + lS(0, l, 0, . . . , 0) (16)

where (0, l, 0, . . .) represents a w-decomposition problem with l input polynomials in variable
{x1, . . . , xn−1}

For any other polynomial set P with no more than l input polynomials, we can write it
as (ln, ln−1, . . . , l1). If ln = 0 the lemma can be proved easily from equation (16). Now we
assume ln > 0. For the ln polynomials with class n, if there is a polynomial with initial 1,
we will not generate any component when we eliminate class n, then B(P) = Tn + S(P′).
Note that |P′| ≤ l and the elements of P′ are all have n − 1 variables {x1, . . . , xn−1}. Thus
B(l, 0, . . .) ≥ B(P) and S(l, 0, . . .) ≥ S(P) by the hypothesis.

If there exist no polynomials with initial 1 in these ln polynomials. we have the the
following decomposition figure:

(ln, . . .)⇒ (ln − 1, . . .)⇒ · · · ⇒ (1, . . .)⇒ P0

↓ ↓ ↓
P1 P2 · · · Pln

Thus, we have

B(P) = lnTn + B(P0) +
ln∑

i=1

S(Pi).

Note that Pi has at most n−1 variables {x1, . . . , xn} and |Pi| ≤ l, for any i = 0, 1, . . . , ln. By
the hypothesis we have S(Pi) ≤ S(0, l, 0, . . . , 0) and B(P0) ≤ B(0, l, 0, . . . , 0). Since l ≥ ln
we can conclude that B(l, 0, . . .) ≥ B(P) and S(l, 0, . . .) ≥ S(P). Consequently, the lemma
holds in any case for n = k + 1. �

Proof of Theorem 4.10. From equation (16), we can obtain the value of B(l, 0, . . . , 0).
Write B(0, . . . , 0, l, 0, . . . , 0) as Bi and S(0, . . . , 0, l, 0, . . . , 0) as Si, where l is in the i-th
coordinate. Then we have Bn = l(Tn − Tn−1) + (l + 1)Bn−1. It is easy to check that for
n ≥ 3 we have

Bn = lTn + l2Tn−1 + l2(l + 1)Tn−2 + · · ·+ l2(l + 1)n−3T2 + (l + 1)n−2T1.

If the variables of input polynomials are {x1, . . . , xk}, the number of monomials occuring in
TDTriSet2 are at most 2k, and therefore the bitsize complexity of multiplication is 2 · 4k.
By Theorem 4.4, we can substitute Tk with (2 · 4k)k(l − 1) for any k ≥ 2 and T1 can be set
to 0. We have Bn ≈ 2(43ln+1 − 4n+1l3)/(l − 4)2 + 43l(ln − 2nl4n−2)/(l − 4). Since l >> 4,
we have proved Theorem 4.10.

5. A Multiplication Free Zero Decomposition Algorithm in R2

Characteristic Set Method in Finite Fields 17

It is known that a major difficulty in computing a zero decomposition is the occurrence
of large polynomials. In order to overcome this difficulty, we introduce a zero decomposition
algorithm in R2, where the procedure to compute a triangular set has nice complexity bounds.

5.1 The Algorithm

The key idea of the algorithm is to avoid polynomial multiplication. Before doing the
pseudo remainders, we reduce the initials of the polynomials in P1 in step 2.2 of the Algorithm
TDTriSet to 1 by repeatedly using (11). For such polynomials, we have the following result.

Lemma 5.1 Let P = xc + U1 and Q = xc + U2 be polynomials with class c and initial 1.
Then, we have deg(prem(Q,P)) ≤ max{deg(P),deg(Q)}.

Proof: In that case, the pseudo-remainder needs additions only: prem(Q,P) = U1 + U2.
The lemma follows from this formula directly. �

Based on the above idea, Algorithm TDTriSet can be modified to the following multi-
plication free (MF) well ordering procedure to compute a triangular set.

Algorithm 5.2 — MFTriSet(P)

Input:A finite set of polynomials P.
Output: A monic triangular set A and a set of polynomial systems P∗ such that Zero2(P) =
Zero2(A)∪Q∈P∗ Zero2(Q), Zero2(A)∩ Zero2(Q1) = ∅, and Zero2(Q1)∩ Zero2(Q2) = ∅ for all
Q1, Q2 ∈ P∗.

1 Set P∗ = {}, A = ∅.
2 While P 6= ∅ do

2.1 If 1 ∈ P, Zero2(P) = ∅. Set A = ∅ and return A and P∗.
2.2 Let P1 ⊂ P be the polynomials with the highest class.
2.3 Let P2 = ∅, Q1 = P \ P1.
2.4 While P1 6= ∅ do

Let P = Ixc + U ∈ P1, P1 = P1 \ {P}.
Q2 = P1 ∪Q1 ∪ P2 ∪ {I, U}.
P∗ = P∗ ∪ {Q2}.
P2 = P2 ∪ {xc + U}, Q1 = Q1 ∪ {I + 1}.

2.5 Let Q = xc + U be a polynomial with lowest degree in P2.
2.6 A = A ∪ {Q}.
2.7 P = Q1 ∪ prem(P2, Q).

3 Return A and P∗.

In Step 2.4, we use formula (11) in R2, that is,

Zero2(P = Ixc + U) = Zero2({xc + U, I + 1}) ∪ Zero2({I, U})

to split the polynomial set.

With Algorithm MFTriSet, we can easily give a multiplication-free zero decomposi-
tion algorithm: we just need to replace Algorithm TDTriSet by Algorithm MFTriSet in
Algorithm TDCS. We call this algorithm MFCS and omit the details.

18 X.S. Gao, Z.Y. Huang

Algorithm 5.3 — MFCS(P)

Input: A finite set of polynomials P.
Output: Monic proper triangular sets satisfying the properties in Theorem 4.2.

1 Set P∗ = {P}, A∗ = ∅ and C∗ = ∅.
2 While P∗ 6= ∅ do

2.1 Choose a polynomial set Q from P∗.
2.2 Let Q be the input of MFTriSet. Let A and Q∗ be the output.
2.3 if A 6= ∅, set A∗ = A∗ ∪ {A}.
2.4 P∗ = P∗ ∪Q∗

3 Return A∗

Remark. In the following, we will analyze the complexity of Algorithm MFTriSet.
Basically, we will show that the size of the polynomials in bounded by the size of the input
polynomials and the worst case complexity of this algorithm is roughly O(nd). The second
result implies that for a fixed d, say d = 2, Algorithm MFTriSet is a polynomial time
algorithm. Note that solving quadratic Boolean equations is NP complete. In Algorithm
MFCS, the number branches could be exponential. We will discuss this in Section 6.

5.2 Bitsize Bounds of the Polynomials in MFTriSet

In order to estimate the size of the polynomials, we introduce a bitsize measure for
a polynomial in R2. Let M = xi1xi2 · · ·xik be a monomial. The length of M , denoted
by ‖M‖, is defined to be k. Specially, the length of 1 is defined as 1. For a polynomial
P = M1 + · · ·+ Mt where Mi are monomials, ‖P‖ =

∑t
i=1 ‖Mi‖ is called the length of P .

We first note that since Algorithm MFCS is multiplication free, the degrees of the
polynomials occurring in the algorithm will be bounded by d = maxP∈P{deg(P)}. As a
consequence, the size of the polynomials occurring in the algorithm will be bounded by
O(nd). Then, the size of the polynomials is effectively controlled if d is small. For all the
examples in Section 6, we have d ≤ 4 and n ranges from 40 to 128. For such examples, the
polynomials have size O(n4), while the largest possible polynomials in n variables has size
O(2n).

In the following theorem, we will further show that the size of the polynomials in Algo-
rithm MFTriSet are effectively controlled in all cases.

Theorem 5.4 Let n be the number of variables and P the input of Algorithm MFTriSet.
Then, for any polynomial T occurring in Algorithm MFTriSet, we have ‖T‖ ≤

∑
P∈P ‖P‖.

If |P| > n, then there exist n polynomials P1, . . . , Pn in P such that ‖T‖ ≤ ‖P1‖ + ‖P2‖ +
· · ·+ ‖Pn‖.

This result is nontrivial, because repeated additions of polynomials can increase the size
of the polynomials by an exponential factor. The proof of this result is quite complicated.
Intuitively, we want to show that a polynomial P used in early steps of the algorithm will
be “canceled” in later steps by addition of two polynomials both containing P , that is,
(P1 + P) + (P2 + P) = P1 + P2.

Characteristic Set Method in Finite Fields 19

In order to prove Theorem 5.4, we need to prove several lemmas first. Let k be an integer
and P be a polynomial. Write P = Ixk +R as a univariate polynomial in xk. We define two
operators Rk and Jk as follows:

Rk(P) = U,Jk(P) = I + 1 if cls(P) = k. Rk(P) = P,Jk(P) = 0 if cls(P) < k. (17)

Then, we have the following lemma

Lemma 5.5 Let P and Q be polynomials with cls(P) ≤ k and cls(Q) ≤ k. Then

(1) Rk(P + Q) = Rk(P) +Rk(Q);

(2) Rk(P + 1) = Rk(P) + 1;

(3) If cls(P) = cls(Q) = k then Jk(P + Q) = Jk(P) + Jk(Q) + 1; otherwise Jk(P + Q) =
Jk(P) + Jk(Q).

Proof: It is easy to check. �

Note that we can define the composition ofR and J naturally. Let Sj,k = {OjOj+1 . . .Ok|
Oi = Ri or Ji, i = j, . . . , k}, where 1 ≤ j ≤ k ≤ n.

Lemma 5.6 Let P be a polynomial with cls(P) = k. Then
∑

Lj,i∈Sj,k
‖Lj,iP‖ ≤ ‖P‖ for

any fixed j = 1, 2, . . . , k.

Proof: For a polynomial Q = Ixc +U with I 6= 1, we have ‖Q‖ ≥ ‖I‖+ |U‖+1. JcQ = I +1
and RcQ = U . Therefore, ‖JcQ‖+‖RcQ‖ = ‖I +1‖+‖U‖ ≤ ‖I‖+‖U‖+1 ≤ ‖Q‖. If I = 1,
we have ‖JcQ‖ + ‖RcQ‖ = 0 + ‖U‖ < ‖Q‖. For i > c, we have JiQ = 0 and RiQ = Q.
Then ‖JiQ‖+ ‖RiQ‖ = ‖Q‖. Hence, in any case, we have |JiQ‖+ ‖RiQ‖ ≤ ‖Q‖.

For any j, we have
∑

Lj,i∈Sj,k
‖Lj,iP‖ =

∑
Lj+1,i∈Sj+1,k

(‖JjLj+1,iP‖ + ‖RjLj+1,iP‖) ≤∑
Lj+1,i∈Sj+1,k

‖Lj+1,iP‖ ≤ · · · ≤ ‖JkP‖+ ‖RkP‖ ≤ ‖P‖. �

Proof of Theorem 5.4: For any k = 1, . . . , n, we assume that in the k-th round of
MFTriSet we deal with the polynomials of class k. In algorithm MFTriSet, when we
compute the pseudo-remainder of two polynomials P and Q in the k-th round, we set their
initials to 1 at first, and then compute a new polynomial RkP +RkQ. Thus, a polynomial
P (k) in k-th round can be obtained in three ways:

(1) P (k) is an input polynomial;

(2) P (k) = init(Q(k+i))+1 for some Q(k+i) of round k+i. P (k) = Rk+1 · · ·Rk+i−1Jk+iQ
(k+i).

(3) P (k) = Rk+j(Q
(k+j)
1 +Q

(k+j)
2) = Rk+1 · · ·Rk+j(Q

(k+j)
1 +Q

(k+j)
2) = Rk+1 · · ·Rk+jQ

(k+j)
1 +

Rk+1 · · ·Rk+jQ
(k+j)
2 , where Q

(k+j)
1 and Q

(k+j)
2 are polynomials of round k + j.

In the cases 2 and 3, if i and j are bigger than 1, we still regard Rk+2 · · ·Rk+i−1Jk+iQ
(k+i),

Rk+2 · · ·Rk+jQ
(k+j)
1 and Rk+2 · · ·Rk+jQ

(k+j)
2 as polynomials of round k+1. In this way, we

can represent P (k) by operators and polynomials of round k+1. We call it the backtracking

20 X.S. Gao, Z.Y. Huang

representation of P (k). Now we can consider these polynomials of round k + 1 and get the
backtracking representation of them. By Lemma 5.5, we can get a representation of P (k)

by composite operators and polynomials in round k + 2. Then, we can do the process
recursively. In the process of computing the backtracking representation, when meet an
input polynomial, we stop representing this polynomial by the ones of higher round. At last,
we backtrack to the round n, and eliminate the terms composed of the same operators and
polynomials. Note that the polynomials of round n are all from the input. Then we have

P (k) =
rn∑
i=1

∑
Lj∈Tn,i

LjQ
(n)
i +

rn−1∑
i=1

∑
Lj∈Tn−1,i

LjQ
(n−1)
i + · · ·+

rk+1∑
i=1

∑
Lj∈Tk+1,i

LjQ
(k+1)
i (18)

or

P (k) =
rn∑
i=1

∑
Lj∈Tn,i

LjQ
(n)
i +

rn−1∑
i=1

∑
Lj∈Tn−1,i

LjQ
(n−1)
i + · · ·+

rk+1∑
i=1

∑
Lj∈Tk+1,i

LjQ
(k+1)
i + 1 (19)

where Tm,i ⊆ Sk+1,m is a set of composite operators and Q
(m)
i is an input polynomial with

class m (m = k + 1, . . . , n, i = 1, . . . , rm). The appearance of 1 is due to the equation (3) of
Lemma 5.5. The number of different polynomials in the above equation, denoted by N , is
rk+1 + rk+2 + · · ·+ rn.

Now we will give an upper bound for N . It is easy to see that, when we backtrack to the
round k + 1, there exist at most two different polynomials. Suppose that now we backtrack
to the round k + i, and there are t different polynomials in the representation. Then, t1
of them are the form of Rk+i+1f , where f is a polynomial with cls(f) < k + i + 1; t2 of
them are the form of Jk+i+1g, where cls(g) = k + i + 1; t3 of them are input polynomials.
Thus, the others can be represented as Rk+i+1h +Rk+i+1hi, where h is a fixed polynomial
with cls(h) = k + i + 1 and hi is some polynomial with cls(hi) = k + i + 1. Therefore,
the number of different polynomials in the representation of round k + i + 1 is at most
2(t− t1 − t2 − t3)− (t− t1 − t2 − t3 − 1) + t1 + t2 + t3 = t + 1. Hence, when we backtrack to
the round n, we have N ≤ n− k + 1.

For any m = k + 1, . . . , n, i = 1, . . . , rm, since Tm,i ⊆ Sk+1,m, by Lemma 5.6, we have∑
Lj∈Tm,i

‖LjQ
(m)
i ‖ ≤

∑
Lj∈Sk+1,m

‖LjQ
(m)
i ‖ ≤ ‖Q(m)

i ‖.

(a) Suppose that P (k) is of form (18). We have ‖P (k)‖ ≤
∑n

m=k+1

∑rm
i=1 ‖Q

(m)
i ‖ where

rk+1 + · · ·+ rn ≤ n− k + 1 ≤ n.

(b) Suppose the representation of P (k) is equation (19). It is easy to see that there exists
a term of the form Rk+1 · · ·Rk+i−1Jk+iLQ(k+j), where Q(k+j) is an input polyno-
mial with class k + j, L ∈ Sk+i+1,k+j and cls(LQ(k+j)) = k + i. If init(LQ(k+j)) =
W + 1 where W is a polynomial without a constant term, we have Jk+iLQ(k+j) =
W . Therefore ‖Jk+iLQ(k+j)‖ + ‖Rk+iLQ(k+j)‖ < ‖LQ(k+j)‖. Hence, ‖P (k)‖ <∑n

m=k+1

∑rm
i=1 ‖Q

(m)
i ‖+1 which means ‖P (k)‖ ≤

∑n
m=k+1

∑rm
i=1 ‖Q

(m)
i ‖. If init(LQ(k+j))

= W where W is a polynomial without a constant term, we have Jk+iLQ(k+j) = W +1.
Thus, P (k) = Rk+1 · · ·Rk+i−1Jk+iLQ(k+j) + 1 + E = Rk+1 · · ·Rk+i−1W + E where

Characteristic Set Method in Finite Fields 21

E is the sum of other terms in equation (19). Obviously, ‖Rk+1 · · ·Rk+i−1W‖ <
‖Rk+1 · · ·Rk+i−1(W + 1)‖ = ‖Rk+1 · · ·Rk+i−1Jk+iLQ(k+j)‖. Then ‖P‖ < ‖Rk+1 · · ·
Rk+i−1Jk+iLQ(k+j)‖+ ‖E‖ ≤

∑n
m=k+1

∑rm
i=1 ‖Q

(m)
i ‖.

In summary, we always have ‖P (k)‖ ≤
∑n

m=k+1

∑rm
i=1 ‖Q

(m)
i ‖ where rk+1 + · · · + rn ≤ n −

k + 1 ≤ n. 2

The following result shows that even the size of the monomials occurring in the algorithms
is nicely bounded.

Corollary 5.7 Let M be the set of distinct monomials which are contained in some polyno-
mial occurring in Algorithm MFTriSet and H =

∑
m∈M ‖m‖. Then, H ≤

∑
P∈P cls(P)‖P‖+

1 where P is the input of the algorithm.

Proof: From the proof of Theorem 5.4, a polynomial P occurring in the Algorithm MFTriSet
must have form (18) or (19). Then, a monomials m of P must be either 1 or contained
in some LQ(k), where Q(k) is an input polynomial with class k and L ∈ Sk−i,k. Thus,
H is not bigger than the sum of the length of all such LQ and 1. From Lemma 5.6,∑

Li2
∈S2,k

‖Li2Q
(k)‖ + · · · +

∑
Lik

∈Sk,k
‖LikQ(k)‖ + ‖Q(k)‖ ≤ k‖Q(k)‖. Considering all in-

put polynomials P and 1, we get the corollary. �

5.3 Complexity Analysis of MFTriSet

For a polynomial set P, we define deg(P) to be the highest degree of the elements in P.
In this section, we will always consider a Boolean polynomial set P with l polynomials and
deg(P) = d.

Theorem 5.8 For an input polynomial set P with |P| = l and deg(P) = d, the bitsize
complexity of MFTriSet is O(lnd+1

∑
P∈P term(P)). If l ≥ n, the bitsize complexity of

MFTriSet is O(lnd+2M) where M = maxP∈P term(P).

As a consequence, Algorithm MFTriSet is a polynomial-time algorithm for a small d.
For all the examples in Section 6, we have d ≤ 4 and n ranges from 40 to 128. For such
examples, the complexity is O(n8M) since l is roughly O(n2).

We will prove Theorem 5.8 in the rest of this section. As in Section 5.2, we assume that in
the k-th round of MFTriSet started as step 2, we deal with the polynomials of class k, which
is the worst case. Suppose that we have lk polynomials with class k in the k-th round. Since
the complexity of computing I + 1 is smaller than that of doing the polynomial additions,
we only consider the addition of two polynomials. Then we need to do lk − 1 polynomial
additions in order to eliminate xk. Thus, if we can estimate the number of the polynomials
in P in every round, then we can obtain the complexity bound of MFTriSet. Note that, in
Step 2.5 of MFTriSet, we choose a Q with the lowest degree, which is important for the
complexity analysis.

Suppose that we have a polynomial set S = {P1, . . . , Pl} with class n, which is the worst
case. After eliminating xn, we obtain two sets of polynomials:

SJ = {JnP |P ∈ S}, SR = {Rn(Ps + P)|P ∈ S}

22 X.S. Gao, Z.Y. Huang

where Ps is a fixed polynomial with lowest degree in S and {Jn,Rn} are the operators defined
in (17). Note that deg(SJ) ≤ d− 1 and deg(SR) ≤ d. Moreover, |SJ | ≤ l and |SR| ≤ l. After
eliminating xn−1, we have four polynomial sets:

SJJ = {Jn−1P |P ∈ SJ}, SJR = {Jn−1P |P ∈ SR},
SRJ = {Rn−1(Ps + P)|P ∈ SJ}, SRR = {Rn−1(Ps + P)|P ∈ SR}.

Similarly, |SJJ |, |SRJ | ≤ |SJ | ≤ l and |SJR|, |SRR| ≤ |SR| ≤ l. Since Ps is a polynomial with
the lowest degree, we have deg(Rn−1(Ps + P)) ≤ deg(P) which means that deg(SRR) ≤
deg(SR) and deg(SRJ) ≤ deg(SJ). For the other two sets, we can conclude deg(SJJ) ≤
deg(SJ)− 1 ≤ d− 2 and deg(SJR) ≤ deg(SR)− 1 ≤ d− 1.

Recursively, we have the following sequence

(S)→ (SJ , SR)→ (SJJ , SJR, SRR, SRJ)→ · · · (20)

For a set SO1O2···Ok
where Oi is J or R, we have |SO1O2···Ok

| ≤ l. We can deduce that
deg(SO1O2···Ok

) ≤ d − s where s is the number of Oi which is J . Therefore, the number
of J occurring in the subscript of S can be d − 1 at most. As a consequence, in round
n− k corresponding to the (k + 1)-th part of the sequence (20), the number of Si is at most
(k
0)+(k

1)+ · · ·+(k
d−1). Thus, the number of polynomials in round n−k is at most l(

∑d−1
i=0 (k

i)).
It implies that we need at most l(

∑n−1
k=0

∑d−1
i=0 (k

i)) = l(
∑d

i=1(
n
i)) polynomial additions in the

algorithm. It is easy to prove that in other simpler cases, the times of additions are still
bounded by l(

∑d
i=1(

n
i)) or O(lnd).

Now let us estimate the complexity of polynomial additions in MFTriSet. We can
define an operator Ik as follows: If cls(P) = k, Ik(P) = init(P); if cls(P) < k, Ik(P) = 0.
It is easy to prove that if we substitute Ji with Ii in equation (18) and equation (19) of
Section 5.2, any of the two equations will either be unchanged or become itself plus one.
Now we use term(P) to denote the number of monomials occurring in P . Then we have
term(IP) + term(RP) ≤ term(P). Similar to the proof of Theorem 5.4, we can prove the
following lemma

Lemma 5.9 Let n be the number of variables and P the input of Algorithm MFTriSet.
Then, for any polynomial T occurring in MFTriSet, we have term(T) ≤

∑
P∈P term(P)+1.

If |P| > n, then there exist n polynomials P1, . . . , Pn in P such that term(T) ≤ term(P1) +
term(P2) + · · ·+ term(Pn) + 1.

Note that the bitsize complexity of computing the sum of P1 and P2 is O(n(term(P1) +
term(P2))). Then the complexity of Algorithm MFTriSet is O(lnd+1(

∑
P∈P term(P))). We

have proved Theorem 5.8.

6. Experimental Results

We have implemented algorithms TDCS and MFCS in R2 with the C language and
tested them with a large number of polynomial systems. In order to save storage space, we
use the SZDD to store the polynomials in our implementation [33].

Characteristic Set Method in Finite Fields 23

For comparison, we also use the Gröbner basis algorithm (F4) in Magma with Degree
Reverse Lexicographic order, denoted by GB, to solve these polynomial systems. The exper-
iments are done on a PC with a 3.19GHz CPU, 2G memory, and a Linux OS. The running
times in the tables are all given in seconds.

6.1 Boolean Matrix Multiplication Problem

For two n × n Boolean matrices A and B, if AB = I, by the linear algebra we can
deduce that BA = I, where I is the n × n identity matrix. However, if we want to check
the conclusion by reasoning, it will become an extremely difficult problem. This challenge
problem was proposed by Stephen Cook in his invited talk at SAT 2004 [11, 12]. The best
known result was that the problem of n = 5 can be solved by SAT-solvers in about 800-2000
seconds. The problem of n = 6 were still unsolved [3].

Now we test our software for this problem by converting the problem into the solving of
a Boolean polynomial system. By setting the entries of A and B to be 2n2 distinct variables,
we can obtain n2 quadratic polynomials from AB = I. Then we compute the Gröbner basis
or the zero decomposition of this polynomials, and check wether the polynomials generated
by BA = I can be reduced to 0 by the Gröbner basis or by every characteristic set in the
zero decomposition. In this way, we can prove the conclusion.

We use the CS method to illustrate the above procedure. Let P1 and P2 be the polynomial
sets generated by AB = I and BA = I respectively. With the CS method, we have

Zeroq(P1) = ∪iZeroq(Ai)

where Ai are triangular sets. If prem(P,Ai) = 0 for all possible i and P ∈ P2, then we have
solved the problem. It is clear that the major difficulty here is to compute the decomposition.

For n = 4, 5, 6, the numbers of variables are 32, 50, 72 respectively. Therefore, computing
the Gröbner basis or the zero decomposition of this polynomials will be a hard work. We
used GB and our MFCS algorithm to solve the problem with n = 4, 5, 6. The running
time given in Table 1 includes solving the equations generated by AB = I and checking the
conclusion BA = I. Notation • means memory overflow.

n=4 n=5 n=6
MFCS 0.11 41 196440
GB 2363 • •

Table 1. Running times for Boolean matrix multiplication problems

6.2 Equations from Stream Ciphers Based on Nonlinear Filter Generators

In this section we generate our equations from stream ciphers based on LFSRs. We first
show how these polynomial systems are generated. A linear feedback shift register (LFSR)
of length L can be simply considered as a sequence of L numbers (c1, c2, . . . , cL) from F2

such that cL 6= 0 [31]. For an initial state S0 = (s0, s1, . . . , sL−1) ∈ FL
2 , we can use the

given LFSR to produce an infinite sequence satisfying

si = c1si−1 + c2si−2 + · · · cLsi−L, i = L,L + 1, · · · . (21)

24 X.S. Gao, Z.Y. Huang

A key property of an LFSR is that if the related feedback polynomial P (x) = cLxL +
cL−1x

L−1 + · · · + c1x − 1 is primitive, then the sequence (21) has period 2L − 1 [31]. The
number of non-zero coefficients in P is called the weight of P , denoted by wP .

An often used technique in stream ciphers to enhance the security of an LFSR is to
add a nonlinear filter to the LFSR. Let f(x1, . . . , xm) be a Boolean polynomial with m
variables. We assume that m ≤ L. Then we can use f and the sequence (21) to generate a
new sequence as follows

zt = f(st+k1 , st+k2 . . . , st+km), t = 0, 1, . . . (22)

where {ki}1≤i≤m is called the tapping sequence. A combination of an LFSR and a non-
linear polynomial f is called a nonlinear filter generator (NFG).

The filter functions used in this paper are due to Canteaut and Filiol [7]:

• CanFil 1, x1x2x3 + x1x4 + x2x5 + x3

• CanFil 2, x1x2x3 + x1x2x4 + x1x2x5 + x1x4 + x2x5 + x3 + x4 + x5

• CanFil 3, x2x3x4x5 + x1x2x3 + x2x4 + x3x5 + x4 + x5

• CanFil 4, x1x2x3 + x1x4x5 + x2x3 + x1

• CanFil 5, x2x3x4x5 + x2x3 + x1

• CanFil 6, x1x2x3x5 + x2x3 + x4

• CanFil 7, x1x2x3 + x2x3x4 + x2x3x5 + x1 + x2 + x3

• CanFil 8, x1x2x3 + x2x3x6 + x1x2 + x3x4 + x5x6 + x4 + x5

• CanFil 9, x2x4x5x7 + x2x5x6x7 + x3x4x6x7 + x1x2x4x7 + x1x3x4x7 + x1x3x6x7 + x1x4x5x7 +
x1x2x5x7 +x1x2x6x7 +x1x4x6x7 +x3x4x5x7 +x2x4x6x7 +x3x5x6x7 +x1x3x5x7 +x1x2x3x7 +
x3x4x5 +x3x4x7 +x3x6x7 +x5x6x7 +x2x6x7 +x1x4x6 +x1x5x7 +x2x4x5 +x2x3x7 +x1x2x7 +
x1x4x5 + x6x7 + x4x6 + x4x7 + x5x7 + x2x5 + x3x4 + x3x5 + x1x4 + x2x7 + x6 + x5 + x2 + x1

• CanFil 10, x1x2x3 + x2x3x4 + x2x3x5 + x6x7 + x3 + x2 + x1.

In the experiments, we use our algorithms to find S0 = (s0, s1, . . . , sL−1) by solving the
following equations for given ci, zi, and f

zt = f(st+k1 , st+k2 . . . , st+km), t = 0, 1, . . . , k (23)

where k is a positive integer, si satisfy (21), and k1, . . . , km is a tapping sequence.

We compare four different algorithms for solving these equations. Two of them are the
MFCS and GB. Faugère and Perret suggested to us that an incremental version of the
Gröbner basis algorithm is faster than GB for the equations generated by the LFSR1).
Therefore, we also compare the incremental Gröbner basis algorithm and the incremental
TDCS, denoted IGB and ITDCS respectively. Note that the F5 method [17] and the CS
method presented in [30] also use the incremental technique.

1)By an incremental GB for a polynomial set {P1, . . . , Ps}, we mean to compute the Gröbner basis G1 of
{P1} first and then to compute the Gröbner basis G2 of G1 ∪ {P2}, etc.

Characteristic Set Method in Finite Fields 25

We did three sets of experiments with increasing difficulties. The test problems are
similar to those in [8] but are more difficult. We also compare our method with one of the
benchmark implementations of the Gröbner basis method on the same computer, which are
not given in [8].

In the first set of experiments, we choose a simple tapping sequence {0, 1, 2, 3, 4, 5, 6} and
feedback polynomials with small weights. The results are given in Table 2, where L is the
number of variables, k is the number of equations (see (23)). k is the smallest number such
that the system has a unique solution, wP is the weight of the feedback polynomial P , and
• means memory overflow.

In the second set of experiments, we generate more difficult equations in the cases of
L = 40 and k = 60 by changing the weight of the feedback polynomial wP to 11. The results
are given in Table 3.

In the third set of experiments, we generate more dense polynomial systems by changing
the tapping sequence. The results are given in Table 4, in which L = 40, w = 7, k = 55,
and the tapping sequence is {0, 6, 11, 18, 25, 31, 37}. And ∗ means we have computed over 2
hours and did not obtain the solutions.

From the experiments, we have the following observations.

• From Table 2, we can see that for these “simple” examples, ITDCS is the fastest
method. IGB and MFCS are also very efficient with MFCS better than IGB in
most cases. GB tends to generate large polynomials and causes memory overflow.

• From Table 3, we can see that for “moderately difficult” polynomial systems, ITDCS
is still the fastest method. Now, IGB performs better than MFCS.

• From Table 4, we can see that for the “most difficult” polynomial systems, MFCS is
the only algorithm that can find the solutions on our computer. IGB and GB quickly
use all the memory and cause memory overflow. ITDCS has been run for two hours
without giving a result. The reason is that, in this case, ITDCS and IGB need to deal
with some high degree and dense polynomials. On the other hand, due to Theorems
5.4 and 5.8, the polynomials occurring in Algorithm MFCS are much smaller.

In summary, Algorithm MFCS seems to be the most efficient and stable approach to deal
with these kinds of polynomial systems. The main reason is that the size of the polynomials
in this algorithm is effectively controlled due to Theorems 5.4 and 5.8. To use SZDD [33]
to represent polynomials is another key factor in memory saving. Note that SZDD suits
the CS method very well. The CS method will generate a large number of components and
the polynomial sets representing different components differ only for a very few number of
polynomials due to the way of generating new components (see Step 2.6.3 of Algorithm 4.3).
Then different polynomial sets will share memory for their common polynomials, and as a
consequence, the total memory consumption is well contained.

For Algorithm MFCS, the bottle neck problem is how to control the number of compo-
nents (that is, the number of polynomial sets in P∗ in the output of Algorithm MFTriSet).
Theoretically, this number is exponential in the worst case. Practically, this number could

26 X.S. Gao, Z.Y. Huang

Filters L(wf)= 40 (5) 60 (3) 81 (3) 100 (3) 128 (5)

MFCS 0.10 0.02 0.07 0.37 0.49
ITDCS 0.10 0.04 0.05 0.21 0.37

CanFil1 IGB 0.42 0.99 2.29 3.26 8.32
GB 0.91 0.43 8.12 3.61 1997.2
k 52 114 154 140 230

MFCS 0.17 0.03 0.07 0.59 1.11
ITDCS 0.04 0.02 0.06 0.19 0.53

CanFil2 IGB 0.43 0.65 1.61 3.17 7.13
GB 0.92 30.65 0.02 55.09 •
k 44 72 138 140 217

MFCS 0.17 0.03 0.07 0.59 1.11
ITDCS 0.14 0.03 0.23 1.10 0.72

CanFil3 IGB 0.16 0.96 2.51 6.04 16.08
GB 178.57 1.68 • • •
k 64 114 162 120 128

MFCS 0.09 0.05 0.07 0.83 2.70
ITDCS 0.14 0.09 0.09 2.91 2.01

CanFil4 IGB 0.17 0.89 1.99 2.13 10.26
GB 0.65 2.24 0.39 • •
k 60 168 154 150 180

MFCS 0.03 0.01 0.03 0.08 0.12
ITDCS 0.04 0.05 0.11 0.18 0.59

CanFil5 IGB 0.14 0.37 0.80 1.59 3.46
GB 0.10 0.06 0.10 0.50 0.85

k 40 60 81 100 128

MFCS 0.05 0.04 0.08 0.11 0.35
ITDCS 0.09 0.04 0.10 0.29 1.07

CanFil6 IGB 0.08 0.35 0.80 1.70 5.28
GB 0.24 0.09 0.01 0.65 •
k 52 108 146 160 230

MFCS 0.05 0.02 0.08 0.38 0.70
ITDCS 0.03 0.03 0.08 0.24 0.42

CanFil7 IGB 0.10 0.81 1.86 3.32 9.78
GB 0.27 0.40 0.01 831.89 •
k 40 120 154 150 218

MFCS 0.32 0.08 0.21 0.61 1.31
ITDCS 0.09 0.06 0.14 0.25 0.66

CanFil8 IGB 0.13 0.30 1.26 2.09 6.11
GB 0.88 0.56 92.51 20.03 •

k 44 60 154 140 218

MFCS 2.94 0.30 0.64 0.79 15.31
ITDCS 0.45 0.06 0.24 1.22 1.28

CanFil9 IGB 4.39 5.13 13.15 17.78 47.62
GB • 90.49 • • •

k 48 102 113 110 218

MFCS 0.39 0.06 0.12 1.40 3.43
ITDCS 0.12 0.04 0.12 0.57 0.49

CanFil10 IGB 4.48 28.16 50.87 63.63 100.39
GB 28.72 2.21 492.16 • •

k 44 90 122 140 205

Table 2. Examples with simple feedback polynomials and tapping sequences

Characteristic Set Method in Finite Fields 27

Filter ITDCS MFCS IGB GB
Canfil1 0.78 3.56 0.89 55.73
Canfil2 0.47 2.72 0.66 49.33
Canfil3 1.01 10.81 3.16 •
Canfil4 0.99 2.88 0.62 26.10
Canfil5 0.58 3.73 3.00 •
Canfil6 0.58 3.18 2.81 •
Canfil7 0.16 0.50 0.27 16.64
Canfil8 0.26 17.05 0.34 33.35
Canfil9 6.83 73.18 8.54 •
Canfil10 0.70 4.12 4.87 •

Table 3. Examples with larger feedback polynomials

Filter MFCS ITDCS IGB
Canfil1 145.04 * • after 10m
Canfil2 241.05 * • after 8m
Canfil3 200.40 * • after 28m
Canfil4 17.44 * • after 60m
Canfil5 54.86 * • after 4m
Canfil6 135.26 * • after 6m
Canfil7 19.42 * • after 37m
Canfil8 5132.84 * • after 60m

Table 4. Examples with larger feedback polynomials and nontrivial tapping sequences

Canfil1 Canfil2 Canfil3 Canfil4 Canfil5 Canfil6 Canfil7 Canfil8
NC 13749 23881 7251 1657 1086 3331 1551 180710
R ≈ 2−26 2−25 2−27 2−29 2−30 2−28 2−29 2−19

Table 5. The number of components for the examples in Table 4

also be very large. But, comparing to the number 2n of exhaust search, the number of
components generated in MFTriSet is still very small. In Table 5, we give the numbers of
components for each example in Table 4. In this table, NC is the number of components and
R = NC

2n could be considered as a measure of effectiveness of Algorithm MFTriSet. We can
see that R is very small for all examples.

6.3 Attack on Bivium-A

Bivium is a simple version of the eStream stream cipher candidate Trivium [44] . It is
built on the same design principles of Trivium. The intention is to reduce the complexity of
Trivum, and to extend the attacks on Bivium to Trivium. Bivium has two versions Bivium-
A and Bivium-B. Here we focus on attacking Bivium-A. There have been several successful
attacks on Bivium-A, and we want to show that our algorithm is comparable with these
algorithms.

28 X.S. Gao, Z.Y. Huang

The Bivium-A is given by the following pseudo-code:

for i = 1 to N do
t1 ← s66 + s93

t2 ← s162 + s177

zi ← t2
t1 ← t1 + s91 · s92 + s171

t2 ← t2 + s175 · s176 + s69

(s1, s2, . . . , s93) ← (t2, s1, . . . , s92)
(s94, s95, . . . , s177) ← (t1, s94, . . . , s176)

We want to recover the initial state (s1, . . . , s177) from the given N output bits (z1, . . . , zN).
Note that the degree of the equations will increase after several clocks. In order to avoid this
problem, we can introduce two new variables and two equations for each clock:

s178 =s66 + s93 + s91 · s92 + s171 (24)
s179 =s162 + s177 + s175 · s176 + s69 (25)

Then we can obtain a boolean polynomial system with 2N +177 variables and 3N equations.

The results of the successful attacks on Bivium-A [32, 36, 37]2) is given in the following
table.

Method Graph for sparse system SatSolver Gröbner Basis
Time “about a day” 21 sec 400 sec

Output Bits 177 177 2000

Table 6. The known results for Bivium-A

In our experiments, we use the algorithm MFCS and the equations are generated by
adding two new variables for each clock. We run MFCS on a sample of 100 different random
initial states. We observed that the different initial keys make a great difference to the results.
For every initial state, we can find a number M . When the number of output bits N is not
less than M , the equations can be solved within one minute. When N becomes much bigger,
the running time will increase slowly. However, if N is less than M , the running time will
be much longer than one minute. From our experiment results, the value of M is from 200
to 700. In our experiments, we set N = 700.

The average time for solving the problem by MFCS with 700 output bits is 49.3 seconds.
We also tried to use GB to solve the same sample by the same computer. The equations are
also generated by adding two variables for each clock. In order to solve the equations, we
need 1700 output bits. If the output is less than 1700 bits, the memory will be exhausted.
For N = 1700, the average time for solving the problem by GB is 303.3 seconds. If we set
N = 2000 as in [37], the average time is 521.6 seconds. From the results, we can see that
our algorithm is comparable with the known successful algorithms in this problem.

2)In [37], they give four different results by solving in different ways. Here we only list the result by adding
new variables but without guessing any variables.

Characteristic Set Method in Finite Fields 29

7. Conclusions

In this paper, we present two algorithms to solve nonlinear equation systems in finite
fields based on the idea of characteristic set. Due to the special property of finite fields,
the given algorithms have better properties than the general characteristic set method. In
particular, we obtain an explicit formula for the number of solutions of an equation system,
and give the bitsize complexity of the algorithm for Boolean polynomials. We also prove
that the size of the polynomials in MFCS can be effectively controlled, which allows us to
avoid the expression swell problem effectively.

We test our methods by solving polynomial systems generated by the Boolean matrix
problem, stream cipher Bivium-A and stream ciphers based on nonlinear filter generators.
All these equations have block triangular structure. Extensive experiments show that our
methods are efficient for solving this kind of equations and Algorithm MFCS seems to be
the most efficient and stable approach for these problems.

References

[1] Aubry, P., Lazard, D., Maza, M.M., On the Theory of Triangular Sets, Journal of Symbolic
Computation, 25, 105-124, 1999.

[2] Bardet, M., Faugere, J.C., B.Salvy, Complexity of Gröbner Basis Computation for Semi-regular
Overdetermined sequences over F2 with Solutions in F2, INRIA report RR-5049, 2003.

[3] Biere, A., Linear Algebra, Boolean Rings and Resolution, ACA’08, July, Austria, 2008.
[4] Boulier, F., Lazard, D., Ollivier, F., Petitiot, M., Representation for the Radical of a Finitely

Generated Differential Ideal, Proc. of ISSAC’95, 158-166, ACM Press, New York, 1995.
[5] Bouziane, D., Kandri Rody, A., Maârouf, H., Unmixed-dimensional Decomposition of a Finitely

Generated Perfect Differential Ideal, Journal of Symbolic Computation, 31, 631-649, 2001.
[6] Brickenstein, M. and Dreyer, A., PolyBoRi: A Framework for Gröbner Basis Computations with

Boolean Polynomials, MEGA 2007, July, 2007, Austria.
[7] Canteaut, A. and Filiol, E., Ciphertext only Reconstruction of Stream Ciphers Based on Com-

bination Generators, Fast Software Encryption, LNCS 1978, 165-180, Springer, 2000.
[8] Chai, F., Gao, X.S., Yuan C., A Characteristic Set Method for Solving Boolean Equations and

Applications in Cryptanalysis of Stream Ciphers, Journal of Systems Science and Complexity,
21(2), 191-208, 2008.

[9] Chou, S.C., Mechanical Geometry Theorem Proving, D. Reidel, Dordrecht, 1988.
[10] Chou, S.C. and Gao, X.S., Ritt-Wu’s Decomposition Algorithm and Geometry Theorem Proving,

Proc. of CADE-10, LNAI 449, 207-220, Springer, 1990.
[11] Cook, S., From Satisfiability to Proof Complexity and Bounded Arithmetic, SAT 2004, Invited

Talk, 10-13 May, 2004, Vancouver, Canada.
[12] Cook, S. and Nguyen, P., Logical Foundations of Proof Complexity, Cambridge University Press,

2010.
[13] Coron, J.S. and de Weger, B., ECRYPT: Hardness of the Main Computational Problems Used

in Cryptography, European Network of Excellence in Cryptology, 2007.
[14] Courtois, N., Klimov, A., Patarin, J., and Shamir, A., Efficient Algorithms for Solving Over-

determined Systems of Multivariate Polynomial Equations, EUROCRYPT 2000, LNCS 1807,
392-407, 2000.

30 X.S. Gao, Z.Y. Huang

[15] Dahan, X., Maza, M.M., Schost, E., Wu, W., Xie, Y., Lifting Techniques for Triangular Decom-
positions, Proc. ISSAC’05, 108-115, ACM Press, New York, 2005.

[16] Faugère, J.C., A New Efficient Algorithm for Computing Gröbner Bases (F4), Journal of Pure
and Applied Algebra, 139(1–3), 61–88, 1999.

[17] Faugère, J.C., A New Efficient Algorithm for Computing Gröbner Bases Without Reduction to
Zero (F5), Proc. ISSAC 2002, 75-83, 2002.

[18] Faugère, J.C., and Joux, A., Algebraic cryptanalysis of Hidden Field Equation (HFE) cryp-
tosystems using Gröbner bases. In Dan Boneh, editor, Advances in Cryptology - CRYPTO
2003, volume 2729 of LNCS, pages 44–60. Springer, 2003.

[19] Faugère, J.C. and Ars, G., An Algebraic Cryptanalysis of Nonlinear Filter Generators Using
Gröbner Bases, TR No. 4739, INRIA, 2003.

[20] Gallo, G. and Mishra, B., Efficient Algorithms and Bounds for Wu-Ritt Characteristic Sets, in
Effective Methods in Algebraic Geometry, 119-142, Birkhauser, Boston, 1991.

[21] Gao, X.S., Luo, L, Yuan, C., A Characteristic Set Method for Difference Polynomial Systems,
Journal of Symbolic Computation, 44(3), 242-260, 2009.

[22] Gerdt, V. and Zinin, M., A Pommaret Division Algorithm for Computing Gröbner Bases in
Boolean Rings, Proc. ISSAC 2008, ACM Press, 2008.

[23] Hubert, E., Factorization-free Decomposition Algorithms in Differential Algebra, Journal of
Symbolic Computation, 29, 641-662, 2000.

[24] Kalkbrener, M., A Generalized Euclidean Algorithm for Computing Triangular Representations
of Algebraic Varieties, Journal of Symbolic Computation, 15, 143-167, 1993.

[25] Kapur, D. and P. Narendran, An Equational Approach to Theorem Proving in First-Order
Predicate Calculus, Proc. IJCAI-8), Los Angeles, Calif., 1985, 1146-1153.

[26] Kapur, D. and Wan, H.K., Refutational Proofs of Geometry Theorems via Characteristic Sets,
Proc. ISSAC’90, 277-284, ACM Press New York, 1990.

[27] Lazard, D., Gröbner bases, Gaussian Elimination and Resolution of Systems of Algebraic Equa-
tions, LNCS 162, Springer Berlin, 1983.

[28] Lazard, D., A New Method for Solving Algebraic Systems of Positive Dimension, Discrete Appl.
Math., 33, 147-160, 1991.

[29] Lin, D. and Liu, Z., Some Results on Theorem Proving in Geometry over Finite Fields, Proc.
ISSAC’93, 292-300, ACM Press, New York, 1993.

[30] Maza, M.M., On Triangular Decompositions of Algebraic Varieties. Technical Report 4/99, NAG,
UK, Presented at the MEGA-2000 Conference, Bath, UK.

[31] Menezes, A., van Ooschot, P., Vanstone, S., Hanndbook of Applied Cryptography, CRC Press,
1996.

[32] Mcdonald, C., Charnes, C. and Pieprzyk, J., Attacking Bivium with MiniSat.
http://eprint.iacr.org/2007/129,2007.

[33] Minto, S., Zero-Sppressed BDDs for Set Manipulation in Combinatorial Problems, Proc.
ACM/IEEE Design Automation, 272-277, ACM Press, 1993.

[34] Möller, H.M., On Decomposing Systems of Polynomial Equations with Finitely Many Solutions,
J. AAECC, 4, 217–230, 1993.

[35] Patarin, J., Hidden Fields Equations (HFE) and Isomorphisms of Polynomials (IP): Two New
Families of Asymmetric Algorithms. Extended version, 1996.

[36] Cryptanalytic results on Trivium. eSTREAM, ECRYPT Stream Cipher Project, Report
2006/039, 2006. http://www.ecrypt.eu.org/stream

Characteristic Set Method in Finite Fields 31

[37] Simonetti, I., Faugère, J.C. and Perret, L., Algebraic attack against trivium. In First Interna-
tional Conference on Symbolic Computation and Cryptography, SCC 08, pages 95–102.LMIB,
Beijing, China, April 2008.

[38] Sato, Y. and Inoue, S., On the Construction of Comprehensive Boolean Gröbner Bases. Proc.
ASCM 2005, 145-148, 2005.

[39] Smale, S, Mathematical Problems for The Next Century, Math. Intelligencer, 20, 7-15, 1998.
[40] Wang, D. An Elimination Method for Polynomial Systems. Journal of Symbolic Computation,

16, 83-114, 1993.
[41] Wu, W.T., Basic Principles of Mechanical Theorem-proving in Elementary Geometries, Journal

Automated Reasoning, 2, 221-252, 1986.
[42] Wu, W.T., Mathematics Machenization, Sience Press/Kluwer, Beijing, 2001.
[43] Yang, L., Zhang, J.Z., and Hou, X.R., Non-linear Algebraic Equations and Automated Theorem

Proving (in Chinese), ShangHai Science and Education Pub., Shanghai, 1996.
[44] eSTREAM: ECRYPT Stream Cipher Project http://www.ecrypt.eu.org/stream/

