
Transfinite Cryptography

Jacques Patarin

Université de Versailles
45 avenue des Etats-Unis, 78035 Versailles Cedex, France

jacques.patarin@prism.uvsq.fr

Abstract. Let assume that Alice, Bob, and Charlie, the three classi-
cal people of cryptography are not limited anymore to perform a finite
number of computations on real computers, but are limited to α com-
putations and to α bits of memory, where α is a fixed infinite cardinal.
For example α = ℵ0 (the countable cardinal, i.e. the cardinal of N the
set of integers), or α = C (the cardinal of the set R of real numbers).
Is it possible to do secret key cryptography? Public key cryptography?
Encryption? Authentication? Signatures? Is it possible to generalize the
notion of one way function? The aim of this paper is to give some el-
ements of answers to these questions. We will see for example that for
secret key cryptography there are some simple solutions. However for
public key cryptography the results are much less clear.

Key words: Cryptography with infinite computations, Generalizations of cryp-
tographic problems and algorithms, Foundations and introduction to transfinite
cryptography.

1 Introduction

Many parts of mathematics are used in modern cryptography: probability, logic,
complexity theory, algebra, number theory, elliptic curves for example, and more.
In fact, some cryptographers have even claimed that mathematics and cryptog-
raphy may be the same subject (for example A. Albert [1]). However, from a
practical point of view, modern mathematics are mainly built from the analysis
of the properties of infinite sets (real numbers, complex numbers, holomorphic
functions, etc.). This is clearly different from cryptography where, from a prac-
tical point of view, 99.9 % of the mathematical results used come from the
properties of finite sets (discrete mathematics). This is not very surprising since
in cryptography the aim is to use real, finite, computers.

It is well known that some results about finite constructions can be obtained
only by using infinite concepts (Goodstein theorem for example). Many results in
number theory (about properties of integers) have been proved by using a natural
framework with infinite notions (for example the prime number theorem, with
holomorphic functions, even if it is possible to prove it only from the Peano
arithmetic).

There are also some examples of use of infinite concepts to design finite cryp-
tographic schemes, or to justify some cryptographic properties (see [9] or [10]
for example, or the use of p-adic numbers).

The aim of this paper is different: in this paper, Alice, Bob, and Charlie, the
three classical people of cryptography will be able to perform an infinite number
of computations, but this number will be limited by an infinite fixed cardinal α.
An analysis like this has been done before ([2], [13], [9] are the papers that I
know) but in rather different models of infinite computations compared to the
one we will use in this paper. In [13] the basic operations are limited, so in
this model the function x 7→ x2 on the field Q of rational numbers in one way.
This model of computation of [13] seems to us a bit artificial, and in our (more
natural) model of infinite computations, by performing ℵ0 computations, we will
easily be able to inverse x 7→ x2 on Q.

In [2] and [9], it is also shown that there is no perfect encryption scheme on
the set of an finite strings (on N for example) without revealing some information
on their length, unlike what we have on [0, 1] for example. (Similarly for secret
sharing problem). In [4] an example of encryption that can be performed on any
finite string is shown (it can be used on N for example).

In this paper we will have inputs on [0, 1] (or larger sets) without looking
for the case of the smaller infinite sets of inputs N. This is because as soon as
we have ℵ0 bits of memory, it is possible to store any real value. Moreover we
will analyze some problems not studied before in [2] and [9]: malleability, one
way functions, or in what ordinal order the messages will be send for example.
For secret key cryptography, we will see that there are some simple solutions
for stream ciphers, signatures, and authentication. As we will see, this paper is
however still essentially an introduction to transfinite cryptography, since many
natural problems are still open, particularly in public key transfinite cryptogra-
phy.

2 Our transfinite computational model

Let α be a fixed infinite cardinal. For example α = ℵ0 (the countable cardinal, i.e.
the cardinal of N), or α = C (the continuum, i.e. cardinal R). Charlie, Bob, and
Alice will be able to use “transfinite computers” able to perform α computations
and able to use α bits of memory. It is possible to describe precisely this model
of computations. Such a model has been specified in [11], [12] for example. In
order for this paper to be self contained, we will however give here some details
about such a model of computation. The general idea is to follow a generalization
of the Church-Thesis: as soon as a computation will be clearly feasible with α
bits of memory and α computations, we will include it in the model. Moreover,
the results of this paper will be very stable from little changes in the infinite
computation model. We will speak of “α programs”. We can assume that the
memory is separated in 4 zones of bits: the input memory, the program memory,
the variables of computation memory, and the output memory. Without loosing
generality we can assume that the input memory is made of 1, or 2 (or more

but ≤ α) inputs of α bits. The program memory contains a well ordered set
of α elementary operations. Thanks to the fact that the program memory is
well ordered, we can know at each “time” of the computation which is the next
operation to perform. The word “time” if of course here a generalized word, it
means that when any set of operations has been performed, we know precisely
what is the next operation to be performed. More precisely than “time”, it is the
succession of some ordinals that we will use. To each operation T at a certain
place in the program we will associate an ordinal β, so we can say that T is the
operation number β, or of position β. Each elementary operation can be of two
kinds: simple, or GOTO. A simple elementary operation is a classic operation
of present computer languages (such as C for example) on two words of 64 bits
for example such that these two words are chosen at the addresses a and b pf
the memory and the result is stored at the address c of the memory. a and b can
be addresses of the input memory, or of the variables of computation memory.
c can be an address of the variables of computation memory, or of the output
memory. a, b, and c are addresses of at most α bits and are associated with
the current operation. So each instruction of the program (operation and its
position or number) can memorize a, b, c, and the operation to be performed.
Of course, it is possible to use any other classical computer language instead
of the C language, or to use words of 32 bits (or another length) instead of 64
bits. This will not change the set of functions that we can compute. A special
instruction is the “stop instruction”. When this instruction is performed, the
program stops and the output of the program is the value stored in the α bits
of the output memory. The GOTO operation is an operation of the form (if
X = k) then GOTO β where β is an ordinal. Thus this GOTO instruction says
that the next instruction to be performed is the instruction number β (or of
position β), if a variable X of α bits is equal to the value k of α bits. (Note that
β can be the ordinal smaller than the ordinal of the current GOTO instruction
performed). If X 6= k, to determine the next instruction we will follow, as for
the simple instructions, the usual order of the ordinals of the instructions. It is
also possible to describe our model of transfinite computations with generalized
Turing machines.

Coding the instruction ordering
In the α bits of the program memory zone, there are various simple ways to
describe the ordering (well ordering) of the instructions. Let us give here an
example for α = ℵ0. (It is easy to generalize this example for any cardinal α).
Let P be an α program. By definition, we will call “ordinal of P” the ordinal of
the (well ordered) set of all instructions of P . For example, if α = ℵ0, this ordinal
may be ω, or ω3. A countable ordinal can be described as a good ordering on N.
So each countable ordinal can be written as a set of ℵ0 integers: for each integer
n, we will give the list of all the integers m such that m < n for this ordering.
We need for this ≤ ℵ0 × ℵ0 bits. The “infinite processor” can like this find the
first instruction (no instruction is strictly smaller), and then, at each step, it can
check all the integers in order to find the next instruction to be performed.

Remark.A classical result on ordinals is that countable ordinals has cardinal
ℵ1 (i.e. the smallest non countable infinite cardinal). We know that ℵ1 ≤ C.
(However we do not know if ℵ1 = C or not, this is the famous undecidable
problem called “continuum hypothesis”). Moreover each real number can be
given by ℵ0 bits. Therefore each countable ordinal can be given by ℵ0 bits. This
is what we do here for the ordinal of program P . What we have done here for
α = ℵ0 can also be extended to any infinite cardinal α since for any infinite
cardinal α, we have α2 = α (with the axiom of choice).

Example. The function x→ x2 on Q is a one way function in the model of
infinite computation of [13]. In our model of infinite computations, this function
however is not a one way function. In order to find a rational (or a real) x such
that x2 = y with ℵ0 computations and ℵ0 bits of memory, we can, for example,
find all the bits of x, one by one. If we know that x is a rational number, then
we can also try all the rational numbers one by one (card Q = ℵ0) square them,
and see if we get y. Here again we need “only” ℵ0 computations and ℵ0 bits of
memory.

Remark on the memory. On classical computers bits can have the value
0, or the value 1. In our model of computation, it is possible to assume that
the values can be 0, 1, or “not fixed”. The value “not fixed” we will obtain for
example when the bit has flipped from 0 to 1 and from 1 to 0 an infinity of times,
without being fixed since then at 0 or 1. However, it is possible to prove that if
this value “not fixed” is changed with 0 (or 1), the infinite model of computation
will be the same (i.e. we will be able to compute exactly the same functions),
the model is slightly less natural.

3 Transfinite Stream Ciphers

3.1 One-time pad on finite sets

It is well known that we can design an unconditionally secure encryption scheme
on finite sets by using the “one-time pad” algorithm. This algorithm has many
nice properties: it is very simple to describe, very fast, and it is proved “uncon-
ditionally secure”. By “unconditionally secure”, we mean that if Alice commu-
nicate with Bob with the one-time pad algorithm (with all the keys perfectly
generated and stored), then we can prove that Charlie will obtain no new infor-
mation on the cleartexts by listening the encrypted messages, except a maximum
value for the length of the cleartexts. This is true even if Charlie has access to
arbitrary infinite computing power. The security relies here on information the-
ory, and not on the available computing power. The one-time pad has, however,
many inconveniences: all the bits of the secret key must be perfectly random,
and each time we encrypt one bit of cleartext we consume one bit of the key, so
we will have to regenerate and securely transmit new bits of key. Moreover, the
one-time pad algorithm is “malleable” (more details about this property will be
given below). None of these inconveniences is so important that it kills the use
of the algorithm: there are many variants of the one-time pad that avoid some
of these problems, and this algorithm is really used for some very important

applications (the “red line” between Moscow and Washington, until recently, for
example). These applications are mainly military applications: the one-time pad
algorithm is very simple to describe but delicate and relatively expansive to use
correctly.

The “malleability” problem is this one: let assume that Alice encrypts the
message M by sending X = M ⊕K, whereK is the secret key, and ⊕ is the bit
by bit Xor operation (it is also possible to use any other group operation). If
Charlie can obtain the ciphertext, and if Charlie knows, or can guess with a good
probability, the cleartext M (such situation can occur), then Charlie is able to
find K by K = X ⊕M , and now Charlie can encrypt any message of his choice
M ′ by X ′ = M ′ ⊕K, and send X ′ to Bob instead of X. This means that from
the knowledge of a cleartext/ciphertext pair, Charlie is able to generate another
(and even all) possible cleartext/ciphertext pair. This is consistent with the
“unconditional security” of the one-time pad, since the “unconditional security”
theorem just says that Charlie will not get more information of the cleartext
than what he knows by getting the ciphertext (at the exception of his length).
However if Charlie knows already the cleartext, the “unconditional security”
property says nothing. On order to avoid this malleability problem a lot of
solutions exist. The idea is to authenticate the fact that the message comes from
Alice. Some solutions are based on error-correcting codes theory. Other solutions
are based on information theory security and are designed from random Feistel
schemes (cf [8])

3.2 Generality about the one-time pad on infinite sets

As already mentioned in previous paper (for example [2] or [9]), the one-time
pad algorithm can be extended easily to the cases of infinite sets. For example,
in order to encrypt a real value m of [0, 1], we will send the ciphertext x = m+k
mod1, where k ∈R [0, 1]. Alternatively, if we denote bym1,m2, . . . ,mi, . . . , i ∈ N,
the bits of the message M , and k1, k1, . . . , ki, . . . , i ∈ N, the bits of the secret
key K, then the encryption of M can be X with the bits x1, x2, . . . , xi, . . . , i ∈ N
such that ∀i ∈ N, xi = mi ⊕ ki. In this example we have α = ℵ0, but this
solution can be extended without any difficulty for any cardinal α. We can
notice that the one-time pad on infinite sets has a big advantage compared with
the one-time pad on finite sets: it is not necessary to generate and communicate
securely and regularly new bits of keys after the encryption of some messages
(this is true as long as the number of messages to send is ≤ α, and this is a very
natural hypothesis here, since Alice, Bob, and Charlie can perform at maximum
α computations). This comes from the fact that for any infinite cardinal α, we
have α2 = α. (This can be proven from the Axiom of Choice). For α = ℵ0,
a countable union of countable sets is countable. Therefore, from a secret key
of ℵ0 random and independent bits we can generate ℵ2

0 (or ℵ3
0,ℵ4

0, etc.) keys
with random and independent bits. The computations needed to generate these
keys from the initial key are very simple since very simple bijections from N
to N2 exist for example. In the sections below we will study how to solve the
malleability problem (Section 3.3) with transfinite one-time pad variants and

how we can proceed if the ordinal of the number of messages that Alice will
want to send to Bob is not known from the beginning (Section 4).

3.3 Solving the malleability problem for the transfinite one-time
pad

This Section 3.3 will present the first important new result of this paper. As
far as we know, we will present here, for the first time an encryption scheme
secure against malleability, in our model of transfinite cryptography. Moreover,
the solutions for this problem are not obvious. Here again, we will present our
solutions for α = ℵ0. However it will be easy to extend these solutions to any
fixed infinite cardinal. A first idea might be to assume that Alice and Bob have
chosen ℵ0 secret key bits for each possible message m to be send; it will be the
authentication of m. However this idea does not work since there are C = 2ℵ0

messages of ℵ0 bits, and C is not countable. Solving this problem is not obvious:
we will have to use the fact that between these C possible cleartexts, only ℵ0

will be really send, and of course Alice and Bob do not know which one will be
send when they have to exchange their secret key.

First solution: with Q or D The sets Q (rational numbers) and D (decimal
numbers) are countable, so Alice and Bob can have chosen and share a secret
s(x) for each x of Q (or of D). s(x) is here a string of ℵ0 bits, or a real number
(we can see it as the same thing). Then to authenticate a real number y, Alice
will give to Bob a sequence s(xn) with xn → y and xn ∈ Q such that from
the xn values, y is the only one accumulation point. We can notice that we use
here the property that Q (or D) are dense in R, despite the fact that they are
countable. The solution given here is for only one message y, but if we want to
authenticate like this ℵ0 messages y, it is enough to share ℵ2

0 = ℵ0 values si(x)
for i ∈ N.

Second solution: more direct (This second solution will be in fact about the
same solution with other notations. However with these notations the solution
will be easier to generalize to any cardinal α).

Alice and Bob share a secret s(i) and a secret t(i) for all i ∈ N. s(i) and t(i)
are here strings of ℵ0 bits. Now, in order to authenticate a string Y of ℵ0 bits,
Y = Y1, Y2, . . . , Yi, . . . , i ∈ N where the Yi values are bits, Alice will send to Bob
the sequences of the values s(i) for all i such that Yi = 1, and the sequence of
values t(i), for all i such that Yi = 0, and she will not send the other values s(i)
and t(i). Even if Charlie gets all the values send on this line, he will not be able
to authenticate a new (i.e. different from Y) string of ℵ0 bits from the values s(i)
and t(i) send. The solution presented here is for only one message Y , however in
order to authenticate like this ℵ0 messages Y , Alice and Bob just have to share
ℵ2

0 = ℵ0 values sj(i) and tj(i) for all i, j ∈ N.

4 Auto-regeneration of the keys

Let assume that Alice and Bob initially wanted to exchange ℵ0 messages with
the solutions that we have seen, and that these ℵ0 messages will be organized
as e sequence of β values where β is a countable ordinal (for example β = ω2).
However, before sending all the messages (for example after sending the 3ω + 6
first messages), Alice and Bob realize that it will be more convenient for them
to send the messages not as a sequence of β messages, but as a sequence of β′

messages where β′ is another countable ordinal (for example: β′ = ω3). Can they
change from one system of ordinal to another system of countable ordinal, i.e.
to re-organize the ℵ0 bits of the secret keys not already used by performing at
maximum ℵ0 computations? The answer is yes. By using a representation of the
ordinals as explained in Section 2, it is easy to re-organize among the ordinal β′

the ℵ0 bits of the secret key not already used.
Remark: The set of countable ordinals is not countable (it has the cardinal

ℵ1, i.e. the smallest cardinal > ℵ0). So Alice and Bob cannot affect from the
beginning ℵ0 bits of secret key for each countable ordinal β that can be the
ordinal of their future sequences of messages, if all these ordinals are possible.
However, they can re-organize the ordinal of their sequences of messages ℵ0

times, as we have seen.

5 Transfinite Secret Key Block Encryption

We have seen above how Alice and Bob can obtain security with secret key
algorithms for authentication, signatures or encryption, with α computations for
any cardinal α. The algorithms that we have seen are secure even if Charlie can
perform more than α computations (the security is based on information theory,
not on the number, even infinite, of computations to perform). For secret key
encryption, we have seen a solution based on stream ciphering. Is it also possible
to find a solution with block encryption? This means for α = ℵ0 for example:
can Alice and Bob share a bijection f from [0, 1] to [0, 1] computable in ℵ0

computations, and such that f will be secure against Charlie if Charlie is limited
to ℵ0 computations? There are 2C = f (functional) from [0, 1] to [0, 1]. Such a
bijection, if it is random, would therefore require C bits of memory, and Alice and
Bob do not have C bits of memory, if they have to choose a bijection f which
is not truly random but will look like random to Charlie. If we use a Feistel
design, for example, it is easy to see that the bijective property is not a real
problem: from ℵ0-pseudo-random functions (i.e. not distinguishable from truly
random functions when we can only perform at most ℵ0 computations), it is easy
to generate ℵ0-pseudo-random permutations from [0, 1] to [0, 1]. However, how
can we generate ℵ0-pseudo-random functions from [0, 1] to [0, 1]? This problem
seems to be related to the problem of generating ℵ0-one way functions, that we
will see below (in Section 7). It will be an open problem. Therefore, so far, for
transfinite secret key encryption we will recommend stream encryption...

6 Public key transfinite signatures and authentications

A ℵ0-one way function will be, by definition, a function that can be computed
with ℵ0 computations, and such that the probability to invert it with ℵ0 compu-
tations is negligible. We can assume, for example, that such a function is from
S to S where S is the set of all the strings of ℵ0 bits. (Similarly for α-one way
functions by changing ℵ0 with α in the definition, for any fixed infinite cardinal
α). We can notice that it is not possible to try all the strings with ℵ0 bits (or with
α bits) since 2ℵ0 > ℵ0 (and more generally since 2α > α for any cardinal α: this
is Cantor theorem). Does α-one way function exist for any cardinal α, α ≥ ℵ0?
This question will be studied in Section 7 below. Here we will assume that such
functions exist, and then show that this hypothesis will imply that public-key
transfinite signature algorithms will exist (and therefore also public-key trans-
finite authentication algorithms). More precisely, we will see that variants of
Lamport signatures schemes will be convenient. (Classical Lamport signature
schemes are designed in finite sets, cf [3], [5] [6])

Let f and g be ℵ0-one way functions. Alice secret key will be the values si and
ti (each of them of ℵ0 bits), i ∈ N, such that f(si) = Si, and g(ti) = Ti, i ∈ N,
and Alice public key will be the sequences of values Si and Ti, i ∈ N. Then, to
sign a string Y of ℵ0 bits, Y = Y1, Y2, . . . , Yi, . . . , i ∈ N, where the Yi values are
bits, Alice will give to Bob, the sequence of si values for all i such that Yi = 1,
and the sequence of ti values for all i such that Yi = 0 (and not the other si or
ti values). Bob will check for all si that he obtained that f(si) = Si and Yi = 1,
and for all ti that he obtained that g(ti) = Ti and Yi = 0. Charlie can also get
these si and ti values. However, from these values, he cannot sign another string
Y ′ different from Y , because f and g are assumed to be ℵ0-one way functions.
This solution was described above in order to sign only one message Y . However,
if they want to sign ℵ0 messages, Alice and Bob will just have to share ℵ2

0 = ℵ0

values sj(i) and tj(i) for i, j ∈ N.
When the messages are finite, in order to avoid large public keys, many

variant of Lamport signatures have been designed, such as the Merkle trees
constructions: a pyramidal construction with hash functions. However, when
the messages are infinite we do not need these improvements: since α2 = α, the
length of the public key will be α bits for α messages, exactly as for one message.
(The algorithm presented here for α = ℵ0 can immediately be generalized for
any infinite cardinal α).

7 One way functions

In classical cryptography, i.e. with finite sets, we do not know if there exist or
not one-way functions. (Such a proof of existence will imply P 6= NP , the most
famous open problem in complexity theory). However we have millions of can-
didates: many relatively simple constructions seem to be one-way, as far as we
know. In transfinite cryptography, with our computation model, the situation
is rather different: we do not know if α-one way functions exist, but we (the

authors of this paper) do not have any candidate either! We tried many different
candidates, but so far all of them have failed: we could prove that they were
not α-one way. (In an extended version of this paper, we will give more details
about the problems that occur here. One of them is to design a function with
a combinatorial explosion in the number of solutions, followed by only few fi-
nal solutions, and this seems to be much more difficult to design in transfinite
computations than with finite computations...). Moreover, it may occur that the
solution might be different when we use different values α. For example, C-one
way functions may exist, but not ℵ0-one way functions.

8 Hash functions

In traditional (finite) cryptography, hash functions are public functions, they can
have a string of any (finite) number of bits as input, and the output is a string
(called the hash value) of about 160 or 256 bits with (at least) these properties:

Property 1: Collision resistance:
It must be impossible, from a practical point of view, to find two different inputs
with the same output. (Such collisions exist but to get one must require too
many computations to be performed to be practical, typically more than 280 for
example).

Property 2: “Blob Property”:
We have the possibility to be engaged on a value, without revealing it. From
the knowing of hash(x), no useful information on x must be obtained, from a
practical point of view.

These concepts can be generalized to transfinite computations. However prop-
erty 1 and 2 will now be very different. Property 2 is difficult to obtain, because
it is related to the concept of α-one way functions. Property 1, nevertheless,
will often be easily obtained with bijections. For example, the set D of all the
countable subsets of R (the set of all real numbers) has cardinal C, and it ,is easy
to describe a bijection from D to [0, 1] that can be computed with ℵO operations
on any fixed input.

9 Conclusion

This paper can be seen as an introduction to transfinite cryptography. We have
presented the generalizations of the classical concepts of cryptography for infinite
computations bounded by a fixed cardinal α. We have presented the previous
work on this subject, and some new results. We have also pointed some new
open problems. We have seen that simple solutions for transfinite secret key
cryptography exist for authentication, signature and encryption. For public key
transfinite cryptography, it is however more difficult to design some solutions.
In [13] a one way function exists in their model of infinite computations, but no
public key encryption, nor public key signature. In our, more natural, compu-
tation model, the situation is in a way the opposite: the existence of α-one way

functions is an open problem, but if they exist, then public signature will also
exist.

References

1. Nancy E. Albert. Review of A3 and His Algebra. Cryptologia, 32(32):189–196,
2008.

2. Benny Chor and Egal Kushilevitz. Secret Sharing over Infinite Domains. In Gilles
Brassard, editor, Advances in Cryptology – CRYPTO ’89, volume 435 of Lecture
Notes in Computer Science, pages 299–306. Springer-Verlag, 1989.

3. Leslie Lamport. Construting Digital Signatures from a one-way function. Technical
Report 98, SRI Intl. CSL, 1979.

4. Boshra Makar. Tranfinite Cryptography. Cryptologia, 4(4):230–237, 1980.
5. Ralph Merkle. A digital signature based on a conventional encryption function.

In Carl pomerance, editor, Advances in Cryptology – CRYPTO ’87, volume 293 of
Lecture Notes in Computer Science, pages 369–378. Springer-Verlag, 1987.

6. Ralph Merkle. A certified digital signature. In Gilles Brassard, editor, Advances
in Cryptology – CRYPTO ’89, volume 435 of Lecture Notes in Computer Science,
pages 218–238. Springer-Verlag, 1989.

7. Jacques Patarin. Quelques Généralisations Transfinies du Théorème
d’Incomplétude de Gödel. Available from the author.

8. Jacques Patarin and Paul Camion. Design of near-optimal pseudorandom func-
tions and pseudorandom permutation in the information-theoric model. Cryptology
ePrint archive: 2005/135: Listing for 2005, 2005.

9. Raphael Phan and Serge Vaudenay. On the Impossibility of Strong Encryption
over ℵ0. Available from the authors.

10. Josef Pieprzyk, Hossein Ghodori, Chris Charnes, and Rei Safavi-Naini. Cryptog-
raphy Based on Transcendental Numbers. ACISP, pages 96–107, 1996.

11. Apostolos Syropoulos. “Hypercomputation”. Springer-Verlag, 2008.
12. Philip D. Welch. Turing Unbound: Transfinite Computation. In CIE ’2007, volume

4497 of Lecture Notes in Computer Science, pages 768–780. Springer-Verlag, 2007.
13. David Woodruff and Marten van Dijk. Cryptology in an Unbounded Model. In

Lars R. Knudsen, editor, Advances in Cryptology – EUROCRYPT ’2002, volume
2332 of Lecture Notes in Computer Science, pages 149–164. Springer-Verlag, 2002.

